xfs: move eofblocks conversion function to xfs_ioctl.c
[linux-block.git] / fs / xfs / xfs_icache.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
fe4fa4b8
DC
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
fe4fa4b8
DC
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
5467b34b 8#include "xfs_shared.h"
6ca1c906 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
fe4fa4b8 12#include "xfs_sb.h"
fe4fa4b8 13#include "xfs_mount.h"
fe4fa4b8 14#include "xfs_inode.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
fe4fa4b8 17#include "xfs_inode_item.h"
7d095257 18#include "xfs_quota.h"
0b1b213f 19#include "xfs_trace.h"
6d8b79cf 20#include "xfs_icache.h"
c24b5dfa 21#include "xfs_bmap_util.h"
dc06f398
BF
22#include "xfs_dquot_item.h"
23#include "xfs_dquot.h"
83104d44 24#include "xfs_reflink.h"
bb8a66af 25#include "xfs_ialloc.h"
fe4fa4b8 26
f0e28280 27#include <linux/iversion.h>
a167b17e 28
33479e05
DC
29/*
30 * Allocate and initialise an xfs_inode.
31 */
638f4416 32struct xfs_inode *
33479e05
DC
33xfs_inode_alloc(
34 struct xfs_mount *mp,
35 xfs_ino_t ino)
36{
37 struct xfs_inode *ip;
38
39 /*
40 * if this didn't occur in transactions, we could use
41 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
42 * code up to do this anyway.
43 */
707e0dda 44 ip = kmem_zone_alloc(xfs_inode_zone, 0);
33479e05
DC
45 if (!ip)
46 return NULL;
47 if (inode_init_always(mp->m_super, VFS_I(ip))) {
377bcd5f 48 kmem_cache_free(xfs_inode_zone, ip);
33479e05
DC
49 return NULL;
50 }
51
c19b3b05
DC
52 /* VFS doesn't initialise i_mode! */
53 VFS_I(ip)->i_mode = 0;
54
ff6d6af2 55 XFS_STATS_INC(mp, vn_active);
33479e05 56 ASSERT(atomic_read(&ip->i_pincount) == 0);
33479e05
DC
57 ASSERT(!xfs_isiflocked(ip));
58 ASSERT(ip->i_ino == 0);
59
33479e05
DC
60 /* initialise the xfs inode */
61 ip->i_ino = ino;
62 ip->i_mount = mp;
63 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
64 ip->i_afp = NULL;
3993baeb 65 ip->i_cowfp = NULL;
3ba738df 66 memset(&ip->i_df, 0, sizeof(ip->i_df));
33479e05
DC
67 ip->i_flags = 0;
68 ip->i_delayed_blks = 0;
f8d55aa0 69 memset(&ip->i_d, 0, sizeof(ip->i_d));
6772c1f1
DW
70 ip->i_sick = 0;
71 ip->i_checked = 0;
cb357bf3
DW
72 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
73 INIT_LIST_HEAD(&ip->i_ioend_list);
74 spin_lock_init(&ip->i_ioend_lock);
33479e05
DC
75
76 return ip;
77}
78
79STATIC void
80xfs_inode_free_callback(
81 struct rcu_head *head)
82{
83 struct inode *inode = container_of(head, struct inode, i_rcu);
84 struct xfs_inode *ip = XFS_I(inode);
85
c19b3b05 86 switch (VFS_I(ip)->i_mode & S_IFMT) {
33479e05
DC
87 case S_IFREG:
88 case S_IFDIR:
89 case S_IFLNK:
ef838512 90 xfs_idestroy_fork(&ip->i_df);
33479e05
DC
91 break;
92 }
93
ef838512
CH
94 if (ip->i_afp) {
95 xfs_idestroy_fork(ip->i_afp);
96 kmem_cache_free(xfs_ifork_zone, ip->i_afp);
97 }
98 if (ip->i_cowfp) {
99 xfs_idestroy_fork(ip->i_cowfp);
100 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
101 }
33479e05 102 if (ip->i_itemp) {
22525c17
DC
103 ASSERT(!test_bit(XFS_LI_IN_AIL,
104 &ip->i_itemp->ili_item.li_flags));
33479e05
DC
105 xfs_inode_item_destroy(ip);
106 ip->i_itemp = NULL;
107 }
108
377bcd5f 109 kmem_cache_free(xfs_inode_zone, ip);
1f2dcfe8
DC
110}
111
8a17d7dd
DC
112static void
113__xfs_inode_free(
114 struct xfs_inode *ip)
115{
116 /* asserts to verify all state is correct here */
117 ASSERT(atomic_read(&ip->i_pincount) == 0);
8a17d7dd
DC
118 XFS_STATS_DEC(ip->i_mount, vn_active);
119
120 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
121}
122
1f2dcfe8
DC
123void
124xfs_inode_free(
125 struct xfs_inode *ip)
126{
98efe8af
BF
127 ASSERT(!xfs_isiflocked(ip));
128
33479e05
DC
129 /*
130 * Because we use RCU freeing we need to ensure the inode always
131 * appears to be reclaimed with an invalid inode number when in the
132 * free state. The ip->i_flags_lock provides the barrier against lookup
133 * races.
134 */
135 spin_lock(&ip->i_flags_lock);
136 ip->i_flags = XFS_IRECLAIM;
137 ip->i_ino = 0;
138 spin_unlock(&ip->i_flags_lock);
139
8a17d7dd 140 __xfs_inode_free(ip);
33479e05
DC
141}
142
ad438c40
DC
143/*
144 * Queue a new inode reclaim pass if there are reclaimable inodes and there
145 * isn't a reclaim pass already in progress. By default it runs every 5s based
146 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
147 * tunable, but that can be done if this method proves to be ineffective or too
148 * aggressive.
149 */
150static void
151xfs_reclaim_work_queue(
152 struct xfs_mount *mp)
153{
154
155 rcu_read_lock();
156 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
157 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
158 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
159 }
160 rcu_read_unlock();
161}
162
163/*
164 * This is a fast pass over the inode cache to try to get reclaim moving on as
165 * many inodes as possible in a short period of time. It kicks itself every few
166 * seconds, as well as being kicked by the inode cache shrinker when memory
167 * goes low. It scans as quickly as possible avoiding locked inodes or those
168 * already being flushed, and once done schedules a future pass.
169 */
170void
171xfs_reclaim_worker(
172 struct work_struct *work)
173{
174 struct xfs_mount *mp = container_of(to_delayed_work(work),
175 struct xfs_mount, m_reclaim_work);
176
177 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
178 xfs_reclaim_work_queue(mp);
179}
180
181static void
182xfs_perag_set_reclaim_tag(
183 struct xfs_perag *pag)
184{
185 struct xfs_mount *mp = pag->pag_mount;
186
95989c46 187 lockdep_assert_held(&pag->pag_ici_lock);
ad438c40
DC
188 if (pag->pag_ici_reclaimable++)
189 return;
190
191 /* propagate the reclaim tag up into the perag radix tree */
192 spin_lock(&mp->m_perag_lock);
193 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
194 XFS_ICI_RECLAIM_TAG);
195 spin_unlock(&mp->m_perag_lock);
196
197 /* schedule periodic background inode reclaim */
198 xfs_reclaim_work_queue(mp);
199
200 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
201}
202
203static void
204xfs_perag_clear_reclaim_tag(
205 struct xfs_perag *pag)
206{
207 struct xfs_mount *mp = pag->pag_mount;
208
95989c46 209 lockdep_assert_held(&pag->pag_ici_lock);
ad438c40
DC
210 if (--pag->pag_ici_reclaimable)
211 return;
212
213 /* clear the reclaim tag from the perag radix tree */
214 spin_lock(&mp->m_perag_lock);
215 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
216 XFS_ICI_RECLAIM_TAG);
217 spin_unlock(&mp->m_perag_lock);
218 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
219}
220
221
222/*
223 * We set the inode flag atomically with the radix tree tag.
224 * Once we get tag lookups on the radix tree, this inode flag
225 * can go away.
226 */
227void
228xfs_inode_set_reclaim_tag(
229 struct xfs_inode *ip)
230{
231 struct xfs_mount *mp = ip->i_mount;
232 struct xfs_perag *pag;
233
234 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
235 spin_lock(&pag->pag_ici_lock);
236 spin_lock(&ip->i_flags_lock);
237
238 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
239 XFS_ICI_RECLAIM_TAG);
240 xfs_perag_set_reclaim_tag(pag);
241 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
242
243 spin_unlock(&ip->i_flags_lock);
244 spin_unlock(&pag->pag_ici_lock);
245 xfs_perag_put(pag);
246}
247
248STATIC void
249xfs_inode_clear_reclaim_tag(
250 struct xfs_perag *pag,
251 xfs_ino_t ino)
252{
253 radix_tree_tag_clear(&pag->pag_ici_root,
254 XFS_INO_TO_AGINO(pag->pag_mount, ino),
255 XFS_ICI_RECLAIM_TAG);
256 xfs_perag_clear_reclaim_tag(pag);
257}
258
ae2c4ac2
BF
259static void
260xfs_inew_wait(
261 struct xfs_inode *ip)
262{
263 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
264 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
265
266 do {
21417136 267 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
ae2c4ac2
BF
268 if (!xfs_iflags_test(ip, XFS_INEW))
269 break;
270 schedule();
271 } while (true);
21417136 272 finish_wait(wq, &wait.wq_entry);
ae2c4ac2
BF
273}
274
50997470
DC
275/*
276 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
277 * part of the structure. This is made more complex by the fact we store
278 * information about the on-disk values in the VFS inode and so we can't just
83e06f21 279 * overwrite the values unconditionally. Hence we save the parameters we
50997470 280 * need to retain across reinitialisation, and rewrite them into the VFS inode
83e06f21 281 * after reinitialisation even if it fails.
50997470
DC
282 */
283static int
284xfs_reinit_inode(
285 struct xfs_mount *mp,
286 struct inode *inode)
287{
288 int error;
54d7b5c1 289 uint32_t nlink = inode->i_nlink;
9e9a2674 290 uint32_t generation = inode->i_generation;
f0e28280 291 uint64_t version = inode_peek_iversion(inode);
c19b3b05 292 umode_t mode = inode->i_mode;
acd1d715 293 dev_t dev = inode->i_rdev;
3d8f2821
CH
294 kuid_t uid = inode->i_uid;
295 kgid_t gid = inode->i_gid;
50997470
DC
296
297 error = inode_init_always(mp->m_super, inode);
298
54d7b5c1 299 set_nlink(inode, nlink);
9e9a2674 300 inode->i_generation = generation;
f0e28280 301 inode_set_iversion_queried(inode, version);
c19b3b05 302 inode->i_mode = mode;
acd1d715 303 inode->i_rdev = dev;
3d8f2821
CH
304 inode->i_uid = uid;
305 inode->i_gid = gid;
50997470
DC
306 return error;
307}
308
afca6c5b
DC
309/*
310 * If we are allocating a new inode, then check what was returned is
311 * actually a free, empty inode. If we are not allocating an inode,
312 * then check we didn't find a free inode.
313 *
314 * Returns:
315 * 0 if the inode free state matches the lookup context
316 * -ENOENT if the inode is free and we are not allocating
317 * -EFSCORRUPTED if there is any state mismatch at all
318 */
319static int
320xfs_iget_check_free_state(
321 struct xfs_inode *ip,
322 int flags)
323{
324 if (flags & XFS_IGET_CREATE) {
325 /* should be a free inode */
326 if (VFS_I(ip)->i_mode != 0) {
327 xfs_warn(ip->i_mount,
328"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
329 ip->i_ino, VFS_I(ip)->i_mode);
330 return -EFSCORRUPTED;
331 }
332
333 if (ip->i_d.di_nblocks != 0) {
334 xfs_warn(ip->i_mount,
335"Corruption detected! Free inode 0x%llx has blocks allocated!",
336 ip->i_ino);
337 return -EFSCORRUPTED;
338 }
339 return 0;
340 }
341
342 /* should be an allocated inode */
343 if (VFS_I(ip)->i_mode == 0)
344 return -ENOENT;
345
346 return 0;
347}
348
33479e05
DC
349/*
350 * Check the validity of the inode we just found it the cache
351 */
352static int
353xfs_iget_cache_hit(
354 struct xfs_perag *pag,
355 struct xfs_inode *ip,
356 xfs_ino_t ino,
357 int flags,
358 int lock_flags) __releases(RCU)
359{
360 struct inode *inode = VFS_I(ip);
361 struct xfs_mount *mp = ip->i_mount;
362 int error;
363
364 /*
365 * check for re-use of an inode within an RCU grace period due to the
366 * radix tree nodes not being updated yet. We monitor for this by
367 * setting the inode number to zero before freeing the inode structure.
368 * If the inode has been reallocated and set up, then the inode number
369 * will not match, so check for that, too.
370 */
371 spin_lock(&ip->i_flags_lock);
372 if (ip->i_ino != ino) {
373 trace_xfs_iget_skip(ip);
ff6d6af2 374 XFS_STATS_INC(mp, xs_ig_frecycle);
2451337d 375 error = -EAGAIN;
33479e05
DC
376 goto out_error;
377 }
378
379
380 /*
381 * If we are racing with another cache hit that is currently
382 * instantiating this inode or currently recycling it out of
383 * reclaimabe state, wait for the initialisation to complete
384 * before continuing.
385 *
386 * XXX(hch): eventually we should do something equivalent to
387 * wait_on_inode to wait for these flags to be cleared
388 * instead of polling for it.
389 */
390 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
391 trace_xfs_iget_skip(ip);
ff6d6af2 392 XFS_STATS_INC(mp, xs_ig_frecycle);
2451337d 393 error = -EAGAIN;
33479e05
DC
394 goto out_error;
395 }
396
397 /*
afca6c5b
DC
398 * Check the inode free state is valid. This also detects lookup
399 * racing with unlinks.
33479e05 400 */
afca6c5b
DC
401 error = xfs_iget_check_free_state(ip, flags);
402 if (error)
33479e05 403 goto out_error;
33479e05
DC
404
405 /*
406 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
407 * Need to carefully get it back into useable state.
408 */
409 if (ip->i_flags & XFS_IRECLAIMABLE) {
410 trace_xfs_iget_reclaim(ip);
411
378f681c
DW
412 if (flags & XFS_IGET_INCORE) {
413 error = -EAGAIN;
414 goto out_error;
415 }
416
33479e05
DC
417 /*
418 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
419 * from stomping over us while we recycle the inode. We can't
420 * clear the radix tree reclaimable tag yet as it requires
421 * pag_ici_lock to be held exclusive.
422 */
423 ip->i_flags |= XFS_IRECLAIM;
424
425 spin_unlock(&ip->i_flags_lock);
426 rcu_read_unlock();
427
d45344d6 428 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
50997470 429 error = xfs_reinit_inode(mp, inode);
33479e05 430 if (error) {
756baca2 431 bool wake;
33479e05
DC
432 /*
433 * Re-initializing the inode failed, and we are in deep
434 * trouble. Try to re-add it to the reclaim list.
435 */
436 rcu_read_lock();
437 spin_lock(&ip->i_flags_lock);
756baca2 438 wake = !!__xfs_iflags_test(ip, XFS_INEW);
33479e05 439 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
756baca2
BF
440 if (wake)
441 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
33479e05
DC
442 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
443 trace_xfs_iget_reclaim_fail(ip);
444 goto out_error;
445 }
446
447 spin_lock(&pag->pag_ici_lock);
448 spin_lock(&ip->i_flags_lock);
449
450 /*
451 * Clear the per-lifetime state in the inode as we are now
452 * effectively a new inode and need to return to the initial
453 * state before reuse occurs.
454 */
455 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
456 ip->i_flags |= XFS_INEW;
545c0889 457 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
33479e05 458 inode->i_state = I_NEW;
6772c1f1
DW
459 ip->i_sick = 0;
460 ip->i_checked = 0;
33479e05 461
33479e05
DC
462 spin_unlock(&ip->i_flags_lock);
463 spin_unlock(&pag->pag_ici_lock);
464 } else {
465 /* If the VFS inode is being torn down, pause and try again. */
466 if (!igrab(inode)) {
467 trace_xfs_iget_skip(ip);
2451337d 468 error = -EAGAIN;
33479e05
DC
469 goto out_error;
470 }
471
472 /* We've got a live one. */
473 spin_unlock(&ip->i_flags_lock);
474 rcu_read_unlock();
475 trace_xfs_iget_hit(ip);
476 }
477
478 if (lock_flags != 0)
479 xfs_ilock(ip, lock_flags);
480
378f681c
DW
481 if (!(flags & XFS_IGET_INCORE))
482 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
ff6d6af2 483 XFS_STATS_INC(mp, xs_ig_found);
33479e05
DC
484
485 return 0;
486
487out_error:
488 spin_unlock(&ip->i_flags_lock);
489 rcu_read_unlock();
490 return error;
491}
492
493
494static int
495xfs_iget_cache_miss(
496 struct xfs_mount *mp,
497 struct xfs_perag *pag,
498 xfs_trans_t *tp,
499 xfs_ino_t ino,
500 struct xfs_inode **ipp,
501 int flags,
502 int lock_flags)
503{
504 struct xfs_inode *ip;
505 int error;
506 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
507 int iflags;
508
509 ip = xfs_inode_alloc(mp, ino);
510 if (!ip)
2451337d 511 return -ENOMEM;
33479e05 512
bb8a66af 513 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
33479e05
DC
514 if (error)
515 goto out_destroy;
516
bb8a66af
CH
517 /*
518 * For version 5 superblocks, if we are initialising a new inode and we
519 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
520 * simply build the new inode core with a random generation number.
521 *
522 * For version 4 (and older) superblocks, log recovery is dependent on
523 * the di_flushiter field being initialised from the current on-disk
524 * value and hence we must also read the inode off disk even when
525 * initializing new inodes.
526 */
527 if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
528 (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
529 VFS_I(ip)->i_generation = prandom_u32();
530 } else {
531 struct xfs_dinode *dip;
532 struct xfs_buf *bp;
533
534 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
535 if (error)
536 goto out_destroy;
537
538 error = xfs_inode_from_disk(ip, dip);
539 if (!error)
540 xfs_buf_set_ref(bp, XFS_INO_REF);
541 xfs_trans_brelse(tp, bp);
542
543 if (error)
544 goto out_destroy;
545 }
546
33479e05
DC
547 trace_xfs_iget_miss(ip);
548
ee457001 549 /*
afca6c5b
DC
550 * Check the inode free state is valid. This also detects lookup
551 * racing with unlinks.
ee457001 552 */
afca6c5b
DC
553 error = xfs_iget_check_free_state(ip, flags);
554 if (error)
33479e05 555 goto out_destroy;
33479e05
DC
556
557 /*
558 * Preload the radix tree so we can insert safely under the
559 * write spinlock. Note that we cannot sleep inside the preload
560 * region. Since we can be called from transaction context, don't
561 * recurse into the file system.
562 */
563 if (radix_tree_preload(GFP_NOFS)) {
2451337d 564 error = -EAGAIN;
33479e05
DC
565 goto out_destroy;
566 }
567
568 /*
569 * Because the inode hasn't been added to the radix-tree yet it can't
570 * be found by another thread, so we can do the non-sleeping lock here.
571 */
572 if (lock_flags) {
573 if (!xfs_ilock_nowait(ip, lock_flags))
574 BUG();
575 }
576
577 /*
578 * These values must be set before inserting the inode into the radix
579 * tree as the moment it is inserted a concurrent lookup (allowed by the
580 * RCU locking mechanism) can find it and that lookup must see that this
581 * is an inode currently under construction (i.e. that XFS_INEW is set).
582 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
583 * memory barrier that ensures this detection works correctly at lookup
584 * time.
585 */
586 iflags = XFS_INEW;
587 if (flags & XFS_IGET_DONTCACHE)
588 iflags |= XFS_IDONTCACHE;
113a5683
CS
589 ip->i_udquot = NULL;
590 ip->i_gdquot = NULL;
92f8ff73 591 ip->i_pdquot = NULL;
33479e05
DC
592 xfs_iflags_set(ip, iflags);
593
594 /* insert the new inode */
595 spin_lock(&pag->pag_ici_lock);
596 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
597 if (unlikely(error)) {
598 WARN_ON(error != -EEXIST);
ff6d6af2 599 XFS_STATS_INC(mp, xs_ig_dup);
2451337d 600 error = -EAGAIN;
33479e05
DC
601 goto out_preload_end;
602 }
603 spin_unlock(&pag->pag_ici_lock);
604 radix_tree_preload_end();
605
606 *ipp = ip;
607 return 0;
608
609out_preload_end:
610 spin_unlock(&pag->pag_ici_lock);
611 radix_tree_preload_end();
612 if (lock_flags)
613 xfs_iunlock(ip, lock_flags);
614out_destroy:
615 __destroy_inode(VFS_I(ip));
616 xfs_inode_free(ip);
617 return error;
618}
619
620/*
621 * Look up an inode by number in the given file system.
622 * The inode is looked up in the cache held in each AG.
623 * If the inode is found in the cache, initialise the vfs inode
624 * if necessary.
625 *
626 * If it is not in core, read it in from the file system's device,
627 * add it to the cache and initialise the vfs inode.
628 *
629 * The inode is locked according to the value of the lock_flags parameter.
630 * This flag parameter indicates how and if the inode's IO lock and inode lock
631 * should be taken.
632 *
633 * mp -- the mount point structure for the current file system. It points
634 * to the inode hash table.
635 * tp -- a pointer to the current transaction if there is one. This is
636 * simply passed through to the xfs_iread() call.
637 * ino -- the number of the inode desired. This is the unique identifier
638 * within the file system for the inode being requested.
639 * lock_flags -- flags indicating how to lock the inode. See the comment
640 * for xfs_ilock() for a list of valid values.
641 */
642int
643xfs_iget(
644 xfs_mount_t *mp,
645 xfs_trans_t *tp,
646 xfs_ino_t ino,
647 uint flags,
648 uint lock_flags,
649 xfs_inode_t **ipp)
650{
651 xfs_inode_t *ip;
652 int error;
653 xfs_perag_t *pag;
654 xfs_agino_t agino;
655
656 /*
657 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
658 * doesn't get freed while it's being referenced during a
659 * radix tree traversal here. It assumes this function
660 * aqcuires only the ILOCK (and therefore it has no need to
661 * involve the IOLOCK in this synchronization).
662 */
663 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
664
665 /* reject inode numbers outside existing AGs */
666 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
2451337d 667 return -EINVAL;
33479e05 668
ff6d6af2 669 XFS_STATS_INC(mp, xs_ig_attempts);
8774cf8b 670
33479e05
DC
671 /* get the perag structure and ensure that it's inode capable */
672 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
673 agino = XFS_INO_TO_AGINO(mp, ino);
674
675again:
676 error = 0;
677 rcu_read_lock();
678 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
679
680 if (ip) {
681 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
682 if (error)
683 goto out_error_or_again;
684 } else {
685 rcu_read_unlock();
378f681c 686 if (flags & XFS_IGET_INCORE) {
ed438b47 687 error = -ENODATA;
378f681c
DW
688 goto out_error_or_again;
689 }
ff6d6af2 690 XFS_STATS_INC(mp, xs_ig_missed);
33479e05
DC
691
692 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
693 flags, lock_flags);
694 if (error)
695 goto out_error_or_again;
696 }
697 xfs_perag_put(pag);
698
699 *ipp = ip;
700
701 /*
58c90473 702 * If we have a real type for an on-disk inode, we can setup the inode
33479e05
DC
703 * now. If it's a new inode being created, xfs_ialloc will handle it.
704 */
c19b3b05 705 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
58c90473 706 xfs_setup_existing_inode(ip);
33479e05
DC
707 return 0;
708
709out_error_or_again:
378f681c 710 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
33479e05
DC
711 delay(1);
712 goto again;
713 }
714 xfs_perag_put(pag);
715 return error;
716}
717
378f681c
DW
718/*
719 * "Is this a cached inode that's also allocated?"
720 *
721 * Look up an inode by number in the given file system. If the inode is
722 * in cache and isn't in purgatory, return 1 if the inode is allocated
723 * and 0 if it is not. For all other cases (not in cache, being torn
724 * down, etc.), return a negative error code.
725 *
726 * The caller has to prevent inode allocation and freeing activity,
727 * presumably by locking the AGI buffer. This is to ensure that an
728 * inode cannot transition from allocated to freed until the caller is
729 * ready to allow that. If the inode is in an intermediate state (new,
730 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
731 * inode is not in the cache, -ENOENT will be returned. The caller must
732 * deal with these scenarios appropriately.
733 *
734 * This is a specialized use case for the online scrubber; if you're
735 * reading this, you probably want xfs_iget.
736 */
737int
738xfs_icache_inode_is_allocated(
739 struct xfs_mount *mp,
740 struct xfs_trans *tp,
741 xfs_ino_t ino,
742 bool *inuse)
743{
744 struct xfs_inode *ip;
745 int error;
746
747 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
748 if (error)
749 return error;
750
751 *inuse = !!(VFS_I(ip)->i_mode);
44a8736b 752 xfs_irele(ip);
378f681c
DW
753 return 0;
754}
755
78ae5256
DC
756/*
757 * The inode lookup is done in batches to keep the amount of lock traffic and
758 * radix tree lookups to a minimum. The batch size is a trade off between
759 * lookup reduction and stack usage. This is in the reclaim path, so we can't
760 * be too greedy.
761 */
762#define XFS_LOOKUP_BATCH 32
763
e13de955
DC
764STATIC int
765xfs_inode_ag_walk_grab(
ae2c4ac2
BF
766 struct xfs_inode *ip,
767 int flags)
e13de955
DC
768{
769 struct inode *inode = VFS_I(ip);
ae2c4ac2 770 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
e13de955 771
1a3e8f3d
DC
772 ASSERT(rcu_read_lock_held());
773
774 /*
775 * check for stale RCU freed inode
776 *
777 * If the inode has been reallocated, it doesn't matter if it's not in
778 * the AG we are walking - we are walking for writeback, so if it
779 * passes all the "valid inode" checks and is dirty, then we'll write
780 * it back anyway. If it has been reallocated and still being
781 * initialised, the XFS_INEW check below will catch it.
782 */
783 spin_lock(&ip->i_flags_lock);
784 if (!ip->i_ino)
785 goto out_unlock_noent;
786
787 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
ae2c4ac2
BF
788 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
789 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
1a3e8f3d
DC
790 goto out_unlock_noent;
791 spin_unlock(&ip->i_flags_lock);
792
e13de955
DC
793 /* nothing to sync during shutdown */
794 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
2451337d 795 return -EFSCORRUPTED;
e13de955 796
e13de955
DC
797 /* If we can't grab the inode, it must on it's way to reclaim. */
798 if (!igrab(inode))
2451337d 799 return -ENOENT;
e13de955 800
e13de955
DC
801 /* inode is valid */
802 return 0;
1a3e8f3d
DC
803
804out_unlock_noent:
805 spin_unlock(&ip->i_flags_lock);
2451337d 806 return -ENOENT;
e13de955
DC
807}
808
75f3cb13
DC
809STATIC int
810xfs_inode_ag_walk(
811 struct xfs_mount *mp,
5017e97d 812 struct xfs_perag *pag,
e0094008 813 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
814 void *args),
815 int flags,
816 void *args,
ae2c4ac2
BF
817 int tag,
818 int iter_flags)
75f3cb13 819{
75f3cb13
DC
820 uint32_t first_index;
821 int last_error = 0;
822 int skipped;
65d0f205 823 int done;
78ae5256 824 int nr_found;
75f3cb13
DC
825
826restart:
65d0f205 827 done = 0;
75f3cb13
DC
828 skipped = 0;
829 first_index = 0;
78ae5256 830 nr_found = 0;
75f3cb13 831 do {
78ae5256 832 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 833 int error = 0;
78ae5256 834 int i;
75f3cb13 835
1a3e8f3d 836 rcu_read_lock();
a454f742
BF
837
838 if (tag == -1)
839 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
840 (void **)batch, first_index,
841 XFS_LOOKUP_BATCH);
a454f742
BF
842 else
843 nr_found = radix_tree_gang_lookup_tag(
844 &pag->pag_ici_root,
845 (void **) batch, first_index,
846 XFS_LOOKUP_BATCH, tag);
847
65d0f205 848 if (!nr_found) {
1a3e8f3d 849 rcu_read_unlock();
75f3cb13 850 break;
c8e20be0 851 }
75f3cb13 852
65d0f205 853 /*
78ae5256
DC
854 * Grab the inodes before we drop the lock. if we found
855 * nothing, nr == 0 and the loop will be skipped.
65d0f205 856 */
78ae5256
DC
857 for (i = 0; i < nr_found; i++) {
858 struct xfs_inode *ip = batch[i];
859
ae2c4ac2 860 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
78ae5256
DC
861 batch[i] = NULL;
862
863 /*
1a3e8f3d
DC
864 * Update the index for the next lookup. Catch
865 * overflows into the next AG range which can occur if
866 * we have inodes in the last block of the AG and we
867 * are currently pointing to the last inode.
868 *
869 * Because we may see inodes that are from the wrong AG
870 * due to RCU freeing and reallocation, only update the
871 * index if it lies in this AG. It was a race that lead
872 * us to see this inode, so another lookup from the
873 * same index will not find it again.
78ae5256 874 */
1a3e8f3d
DC
875 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
876 continue;
78ae5256
DC
877 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
878 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
879 done = 1;
e13de955 880 }
78ae5256
DC
881
882 /* unlock now we've grabbed the inodes. */
1a3e8f3d 883 rcu_read_unlock();
e13de955 884
78ae5256
DC
885 for (i = 0; i < nr_found; i++) {
886 if (!batch[i])
887 continue;
ae2c4ac2
BF
888 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
889 xfs_iflags_test(batch[i], XFS_INEW))
890 xfs_inew_wait(batch[i]);
e0094008 891 error = execute(batch[i], flags, args);
44a8736b 892 xfs_irele(batch[i]);
2451337d 893 if (error == -EAGAIN) {
78ae5256
DC
894 skipped++;
895 continue;
896 }
2451337d 897 if (error && last_error != -EFSCORRUPTED)
78ae5256 898 last_error = error;
75f3cb13 899 }
c8e20be0
DC
900
901 /* bail out if the filesystem is corrupted. */
2451337d 902 if (error == -EFSCORRUPTED)
75f3cb13
DC
903 break;
904
8daaa831
DC
905 cond_resched();
906
78ae5256 907 } while (nr_found && !done);
75f3cb13
DC
908
909 if (skipped) {
910 delay(1);
911 goto restart;
912 }
75f3cb13
DC
913 return last_error;
914}
915
579b62fa
BF
916/*
917 * Background scanning to trim post-EOF preallocated space. This is queued
b9fe5052 918 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
579b62fa 919 */
fa5a4f57 920void
579b62fa
BF
921xfs_queue_eofblocks(
922 struct xfs_mount *mp)
923{
924 rcu_read_lock();
925 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
926 queue_delayed_work(mp->m_eofblocks_workqueue,
927 &mp->m_eofblocks_work,
928 msecs_to_jiffies(xfs_eofb_secs * 1000));
929 rcu_read_unlock();
930}
931
932void
933xfs_eofblocks_worker(
934 struct work_struct *work)
935{
936 struct xfs_mount *mp = container_of(to_delayed_work(work),
937 struct xfs_mount, m_eofblocks_work);
4b674b9a
BF
938
939 if (!sb_start_write_trylock(mp->m_super))
940 return;
579b62fa 941 xfs_icache_free_eofblocks(mp, NULL);
4b674b9a
BF
942 sb_end_write(mp->m_super);
943
579b62fa
BF
944 xfs_queue_eofblocks(mp);
945}
946
83104d44
DW
947/*
948 * Background scanning to trim preallocated CoW space. This is queued
949 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
950 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
951 */
10ddf64e 952void
83104d44
DW
953xfs_queue_cowblocks(
954 struct xfs_mount *mp)
955{
956 rcu_read_lock();
957 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
958 queue_delayed_work(mp->m_eofblocks_workqueue,
959 &mp->m_cowblocks_work,
960 msecs_to_jiffies(xfs_cowb_secs * 1000));
961 rcu_read_unlock();
962}
963
964void
965xfs_cowblocks_worker(
966 struct work_struct *work)
967{
968 struct xfs_mount *mp = container_of(to_delayed_work(work),
969 struct xfs_mount, m_cowblocks_work);
4b674b9a
BF
970
971 if (!sb_start_write_trylock(mp->m_super))
972 return;
83104d44 973 xfs_icache_free_cowblocks(mp, NULL);
4b674b9a
BF
974 sb_end_write(mp->m_super);
975
83104d44
DW
976 xfs_queue_cowblocks(mp);
977}
978
fe588ed3 979int
ae2c4ac2 980xfs_inode_ag_iterator_flags(
75f3cb13 981 struct xfs_mount *mp,
e0094008 982 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
983 void *args),
984 int flags,
ae2c4ac2
BF
985 void *args,
986 int iter_flags)
75f3cb13 987{
16fd5367 988 struct xfs_perag *pag;
75f3cb13
DC
989 int error = 0;
990 int last_error = 0;
991 xfs_agnumber_t ag;
992
16fd5367 993 ag = 0;
65d0f205
DC
994 while ((pag = xfs_perag_get(mp, ag))) {
995 ag = pag->pag_agno + 1;
ae2c4ac2
BF
996 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
997 iter_flags);
a454f742
BF
998 xfs_perag_put(pag);
999 if (error) {
1000 last_error = error;
2451337d 1001 if (error == -EFSCORRUPTED)
a454f742
BF
1002 break;
1003 }
1004 }
b474c7ae 1005 return last_error;
a454f742
BF
1006}
1007
ae2c4ac2
BF
1008int
1009xfs_inode_ag_iterator(
1010 struct xfs_mount *mp,
1011 int (*execute)(struct xfs_inode *ip, int flags,
1012 void *args),
1013 int flags,
1014 void *args)
1015{
1016 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
1017}
1018
a454f742
BF
1019int
1020xfs_inode_ag_iterator_tag(
1021 struct xfs_mount *mp,
e0094008 1022 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
1023 void *args),
1024 int flags,
1025 void *args,
1026 int tag)
1027{
1028 struct xfs_perag *pag;
1029 int error = 0;
1030 int last_error = 0;
1031 xfs_agnumber_t ag;
1032
1033 ag = 0;
1034 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
1035 ag = pag->pag_agno + 1;
ae2c4ac2
BF
1036 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
1037 0);
5017e97d 1038 xfs_perag_put(pag);
75f3cb13
DC
1039 if (error) {
1040 last_error = error;
2451337d 1041 if (error == -EFSCORRUPTED)
75f3cb13
DC
1042 break;
1043 }
1044 }
b474c7ae 1045 return last_error;
75f3cb13
DC
1046}
1047
e3a20c0b
DC
1048/*
1049 * Grab the inode for reclaim exclusively.
1050 * Return 0 if we grabbed it, non-zero otherwise.
1051 */
1052STATIC int
1053xfs_reclaim_inode_grab(
1054 struct xfs_inode *ip,
1055 int flags)
1056{
1a3e8f3d
DC
1057 ASSERT(rcu_read_lock_held());
1058
1059 /* quick check for stale RCU freed inode */
1060 if (!ip->i_ino)
1061 return 1;
e3a20c0b
DC
1062
1063 /*
474fce06
CH
1064 * If we are asked for non-blocking operation, do unlocked checks to
1065 * see if the inode already is being flushed or in reclaim to avoid
1066 * lock traffic.
e3a20c0b
DC
1067 */
1068 if ((flags & SYNC_TRYLOCK) &&
474fce06 1069 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 1070 return 1;
e3a20c0b
DC
1071
1072 /*
1073 * The radix tree lock here protects a thread in xfs_iget from racing
1074 * with us starting reclaim on the inode. Once we have the
1075 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
1076 *
1077 * Due to RCU lookup, we may find inodes that have been freed and only
1078 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
1079 * aren't candidates for reclaim at all, so we must check the
1080 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
1081 */
1082 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
1083 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1084 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1085 /* not a reclaim candidate. */
e3a20c0b
DC
1086 spin_unlock(&ip->i_flags_lock);
1087 return 1;
1088 }
1089 __xfs_iflags_set(ip, XFS_IRECLAIM);
1090 spin_unlock(&ip->i_flags_lock);
1091 return 0;
1092}
1093
777df5af 1094/*
8a48088f
CH
1095 * Inodes in different states need to be treated differently. The following
1096 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
1097 *
1098 * inode state iflush ret required action
1099 * --------------- ---------- ---------------
1100 * bad - reclaim
1101 * shutdown EIO unpin and reclaim
1102 * clean, unpinned 0 reclaim
1103 * stale, unpinned 0 reclaim
c854363e
DC
1104 * clean, pinned(*) 0 requeue
1105 * stale, pinned EAGAIN requeue
8a48088f
CH
1106 * dirty, async - requeue
1107 * dirty, sync 0 reclaim
777df5af
DC
1108 *
1109 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1110 * handled anyway given the order of checks implemented.
1111 *
c854363e
DC
1112 * Also, because we get the flush lock first, we know that any inode that has
1113 * been flushed delwri has had the flush completed by the time we check that
8a48088f 1114 * the inode is clean.
c854363e 1115 *
8a48088f
CH
1116 * Note that because the inode is flushed delayed write by AIL pushing, the
1117 * flush lock may already be held here and waiting on it can result in very
1118 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1119 * the caller should push the AIL first before trying to reclaim inodes to
1120 * minimise the amount of time spent waiting. For background relaim, we only
1121 * bother to reclaim clean inodes anyway.
c854363e 1122 *
777df5af
DC
1123 * Hence the order of actions after gaining the locks should be:
1124 * bad => reclaim
1125 * shutdown => unpin and reclaim
8a48088f 1126 * pinned, async => requeue
c854363e 1127 * pinned, sync => unpin
777df5af
DC
1128 * stale => reclaim
1129 * clean => reclaim
8a48088f 1130 * dirty, async => requeue
c854363e 1131 * dirty, sync => flush, wait and reclaim
777df5af 1132 */
75f3cb13 1133STATIC int
c8e20be0 1134xfs_reclaim_inode(
75f3cb13
DC
1135 struct xfs_inode *ip,
1136 struct xfs_perag *pag,
c8e20be0 1137 int sync_mode)
fce08f2f 1138{
4c46819a 1139 struct xfs_buf *bp = NULL;
8a17d7dd 1140 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
4c46819a 1141 int error;
777df5af 1142
1bfd8d04
DC
1143restart:
1144 error = 0;
c8e20be0 1145 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
1146 if (!xfs_iflock_nowait(ip)) {
1147 if (!(sync_mode & SYNC_WAIT))
1148 goto out;
1149 xfs_iflock(ip);
1150 }
7a3be02b 1151
777df5af
DC
1152 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1153 xfs_iunpin_wait(ip);
98efe8af 1154 /* xfs_iflush_abort() drops the flush lock */
88fc1879 1155 xfs_iflush_abort(ip);
777df5af
DC
1156 goto reclaim;
1157 }
c854363e 1158 if (xfs_ipincount(ip)) {
8a48088f
CH
1159 if (!(sync_mode & SYNC_WAIT))
1160 goto out_ifunlock;
777df5af 1161 xfs_iunpin_wait(ip);
c854363e 1162 }
98efe8af
BF
1163 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1164 xfs_ifunlock(ip);
777df5af 1165 goto reclaim;
98efe8af 1166 }
777df5af 1167
8a48088f
CH
1168 /*
1169 * Never flush out dirty data during non-blocking reclaim, as it would
1170 * just contend with AIL pushing trying to do the same job.
1171 */
1172 if (!(sync_mode & SYNC_WAIT))
1173 goto out_ifunlock;
1174
1bfd8d04
DC
1175 /*
1176 * Now we have an inode that needs flushing.
1177 *
4c46819a 1178 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 1179 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 1180 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
1181 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1182 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
1183 *
1184 * As xfs_ifree_cluser() must gather all inodes that are active in the
1185 * cache to mark them stale, if we hit this case we don't actually want
1186 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
1187 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1188 * inode, back off and try again. Hopefully the next pass through will
1189 * see the stale flag set on the inode.
1bfd8d04 1190 */
4c46819a 1191 error = xfs_iflush(ip, &bp);
2451337d 1192 if (error == -EAGAIN) {
8a48088f
CH
1193 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1194 /* backoff longer than in xfs_ifree_cluster */
1195 delay(2);
1196 goto restart;
c854363e 1197 }
c854363e 1198
4c46819a
CH
1199 if (!error) {
1200 error = xfs_bwrite(bp);
1201 xfs_buf_relse(bp);
1202 }
1203
777df5af 1204reclaim:
98efe8af
BF
1205 ASSERT(!xfs_isiflocked(ip));
1206
8a17d7dd
DC
1207 /*
1208 * Because we use RCU freeing we need to ensure the inode always appears
1209 * to be reclaimed with an invalid inode number when in the free state.
98efe8af 1210 * We do this as early as possible under the ILOCK so that
f2e9ad21
OS
1211 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1212 * detect races with us here. By doing this, we guarantee that once
1213 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1214 * it will see either a valid inode that will serialise correctly, or it
1215 * will see an invalid inode that it can skip.
8a17d7dd
DC
1216 */
1217 spin_lock(&ip->i_flags_lock);
1218 ip->i_flags = XFS_IRECLAIM;
1219 ip->i_ino = 0;
1220 spin_unlock(&ip->i_flags_lock);
1221
c8e20be0 1222 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab 1223
ff6d6af2 1224 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
2f11feab
DC
1225 /*
1226 * Remove the inode from the per-AG radix tree.
1227 *
1228 * Because radix_tree_delete won't complain even if the item was never
1229 * added to the tree assert that it's been there before to catch
1230 * problems with the inode life time early on.
1231 */
1a427ab0 1232 spin_lock(&pag->pag_ici_lock);
2f11feab 1233 if (!radix_tree_delete(&pag->pag_ici_root,
8a17d7dd 1234 XFS_INO_TO_AGINO(ip->i_mount, ino)))
2f11feab 1235 ASSERT(0);
545c0889 1236 xfs_perag_clear_reclaim_tag(pag);
1a427ab0 1237 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
1238
1239 /*
1240 * Here we do an (almost) spurious inode lock in order to coordinate
1241 * with inode cache radix tree lookups. This is because the lookup
1242 * can reference the inodes in the cache without taking references.
1243 *
1244 * We make that OK here by ensuring that we wait until the inode is
ad637a10 1245 * unlocked after the lookup before we go ahead and free it.
2f11feab 1246 */
ad637a10 1247 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 1248 xfs_qm_dqdetach(ip);
ad637a10 1249 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab 1250
8a17d7dd 1251 __xfs_inode_free(ip);
ad637a10 1252 return error;
8a48088f
CH
1253
1254out_ifunlock:
1255 xfs_ifunlock(ip);
1256out:
1257 xfs_iflags_clear(ip, XFS_IRECLAIM);
1258 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1259 /*
2451337d 1260 * We could return -EAGAIN here to make reclaim rescan the inode tree in
8a48088f 1261 * a short while. However, this just burns CPU time scanning the tree
5889608d
DC
1262 * waiting for IO to complete and the reclaim work never goes back to
1263 * the idle state. Instead, return 0 to let the next scheduled
1264 * background reclaim attempt to reclaim the inode again.
8a48088f
CH
1265 */
1266 return 0;
7a3be02b
DC
1267}
1268
65d0f205
DC
1269/*
1270 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1271 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1272 * then a shut down during filesystem unmount reclaim walk leak all the
1273 * unreclaimed inodes.
1274 */
33479e05 1275STATIC int
65d0f205
DC
1276xfs_reclaim_inodes_ag(
1277 struct xfs_mount *mp,
1278 int flags,
1279 int *nr_to_scan)
1280{
1281 struct xfs_perag *pag;
1282 int error = 0;
1283 int last_error = 0;
1284 xfs_agnumber_t ag;
69b491c2
DC
1285 int trylock = flags & SYNC_TRYLOCK;
1286 int skipped;
65d0f205 1287
69b491c2 1288restart:
65d0f205 1289 ag = 0;
69b491c2 1290 skipped = 0;
65d0f205
DC
1291 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1292 unsigned long first_index = 0;
1293 int done = 0;
e3a20c0b 1294 int nr_found = 0;
65d0f205
DC
1295
1296 ag = pag->pag_agno + 1;
1297
69b491c2
DC
1298 if (trylock) {
1299 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1300 skipped++;
f83282a8 1301 xfs_perag_put(pag);
69b491c2
DC
1302 continue;
1303 }
1304 first_index = pag->pag_ici_reclaim_cursor;
1305 } else
1306 mutex_lock(&pag->pag_ici_reclaim_lock);
1307
65d0f205 1308 do {
e3a20c0b
DC
1309 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1310 int i;
65d0f205 1311
1a3e8f3d 1312 rcu_read_lock();
e3a20c0b
DC
1313 nr_found = radix_tree_gang_lookup_tag(
1314 &pag->pag_ici_root,
1315 (void **)batch, first_index,
1316 XFS_LOOKUP_BATCH,
65d0f205
DC
1317 XFS_ICI_RECLAIM_TAG);
1318 if (!nr_found) {
b2232219 1319 done = 1;
1a3e8f3d 1320 rcu_read_unlock();
65d0f205
DC
1321 break;
1322 }
1323
1324 /*
e3a20c0b
DC
1325 * Grab the inodes before we drop the lock. if we found
1326 * nothing, nr == 0 and the loop will be skipped.
65d0f205 1327 */
e3a20c0b
DC
1328 for (i = 0; i < nr_found; i++) {
1329 struct xfs_inode *ip = batch[i];
1330
1331 if (done || xfs_reclaim_inode_grab(ip, flags))
1332 batch[i] = NULL;
1333
1334 /*
1335 * Update the index for the next lookup. Catch
1336 * overflows into the next AG range which can
1337 * occur if we have inodes in the last block of
1338 * the AG and we are currently pointing to the
1339 * last inode.
1a3e8f3d
DC
1340 *
1341 * Because we may see inodes that are from the
1342 * wrong AG due to RCU freeing and
1343 * reallocation, only update the index if it
1344 * lies in this AG. It was a race that lead us
1345 * to see this inode, so another lookup from
1346 * the same index will not find it again.
e3a20c0b 1347 */
1a3e8f3d
DC
1348 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1349 pag->pag_agno)
1350 continue;
e3a20c0b
DC
1351 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1352 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1353 done = 1;
1354 }
65d0f205 1355
e3a20c0b 1356 /* unlock now we've grabbed the inodes. */
1a3e8f3d 1357 rcu_read_unlock();
e3a20c0b
DC
1358
1359 for (i = 0; i < nr_found; i++) {
1360 if (!batch[i])
1361 continue;
1362 error = xfs_reclaim_inode(batch[i], pag, flags);
2451337d 1363 if (error && last_error != -EFSCORRUPTED)
e3a20c0b
DC
1364 last_error = error;
1365 }
1366
1367 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 1368
8daaa831
DC
1369 cond_resched();
1370
e3a20c0b 1371 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 1372
69b491c2
DC
1373 if (trylock && !done)
1374 pag->pag_ici_reclaim_cursor = first_index;
1375 else
1376 pag->pag_ici_reclaim_cursor = 0;
1377 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
1378 xfs_perag_put(pag);
1379 }
69b491c2
DC
1380
1381 /*
1382 * if we skipped any AG, and we still have scan count remaining, do
1383 * another pass this time using blocking reclaim semantics (i.e
1384 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1385 * ensure that when we get more reclaimers than AGs we block rather
1386 * than spin trying to execute reclaim.
1387 */
8daaa831 1388 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
1389 trylock = 0;
1390 goto restart;
1391 }
b474c7ae 1392 return last_error;
65d0f205
DC
1393}
1394
7a3be02b
DC
1395int
1396xfs_reclaim_inodes(
1397 xfs_mount_t *mp,
7a3be02b
DC
1398 int mode)
1399{
65d0f205
DC
1400 int nr_to_scan = INT_MAX;
1401
1402 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
1403}
1404
1405/*
8daaa831 1406 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
1407 *
1408 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 1409 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
1410 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1411 * them to be cleaned, which we hope will not be very long due to the
1412 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 1413 */
0a234c6d 1414long
8daaa831
DC
1415xfs_reclaim_inodes_nr(
1416 struct xfs_mount *mp,
1417 int nr_to_scan)
9bf729c0 1418{
8daaa831 1419 /* kick background reclaimer and push the AIL */
5889608d 1420 xfs_reclaim_work_queue(mp);
8daaa831 1421 xfs_ail_push_all(mp->m_ail);
a7b339f1 1422
0a234c6d 1423 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
8daaa831 1424}
9bf729c0 1425
8daaa831
DC
1426/*
1427 * Return the number of reclaimable inodes in the filesystem for
1428 * the shrinker to determine how much to reclaim.
1429 */
1430int
1431xfs_reclaim_inodes_count(
1432 struct xfs_mount *mp)
1433{
1434 struct xfs_perag *pag;
1435 xfs_agnumber_t ag = 0;
1436 int reclaimable = 0;
9bf729c0 1437
65d0f205
DC
1438 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1439 ag = pag->pag_agno + 1;
70e60ce7
DC
1440 reclaimable += pag->pag_ici_reclaimable;
1441 xfs_perag_put(pag);
9bf729c0 1442 }
9bf729c0
DC
1443 return reclaimable;
1444}
1445
3e3f9f58
BF
1446STATIC int
1447xfs_inode_match_id(
1448 struct xfs_inode *ip,
1449 struct xfs_eofblocks *eofb)
1450{
b9fe5052
DE
1451 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1452 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1b556048 1453 return 0;
3e3f9f58 1454
b9fe5052
DE
1455 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1456 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1b556048
BF
1457 return 0;
1458
b9fe5052 1459 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
de7a866f 1460 ip->i_d.di_projid != eofb->eof_prid)
1b556048
BF
1461 return 0;
1462
1463 return 1;
3e3f9f58
BF
1464}
1465
f4526397
BF
1466/*
1467 * A union-based inode filtering algorithm. Process the inode if any of the
1468 * criteria match. This is for global/internal scans only.
1469 */
1470STATIC int
1471xfs_inode_match_id_union(
1472 struct xfs_inode *ip,
1473 struct xfs_eofblocks *eofb)
1474{
1475 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1476 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1477 return 1;
1478
1479 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1480 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1481 return 1;
1482
1483 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
de7a866f 1484 ip->i_d.di_projid == eofb->eof_prid)
f4526397
BF
1485 return 1;
1486
1487 return 0;
1488}
1489
41176a68
BF
1490STATIC int
1491xfs_inode_free_eofblocks(
1492 struct xfs_inode *ip,
41176a68
BF
1493 int flags,
1494 void *args)
1495{
a36b9261 1496 int ret = 0;
3e3f9f58 1497 struct xfs_eofblocks *eofb = args;
f4526397 1498 int match;
5400da7d 1499
41176a68
BF
1500 if (!xfs_can_free_eofblocks(ip, false)) {
1501 /* inode could be preallocated or append-only */
1502 trace_xfs_inode_free_eofblocks_invalid(ip);
1503 xfs_inode_clear_eofblocks_tag(ip);
1504 return 0;
1505 }
1506
1507 /*
1508 * If the mapping is dirty the operation can block and wait for some
1509 * time. Unless we are waiting, skip it.
1510 */
1511 if (!(flags & SYNC_WAIT) &&
1512 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1513 return 0;
1514
00ca79a0 1515 if (eofb) {
f4526397
BF
1516 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1517 match = xfs_inode_match_id_union(ip, eofb);
1518 else
1519 match = xfs_inode_match_id(ip, eofb);
1520 if (!match)
00ca79a0
BF
1521 return 0;
1522
1523 /* skip the inode if the file size is too small */
1524 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1525 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1526 return 0;
1527 }
3e3f9f58 1528
a36b9261
BF
1529 /*
1530 * If the caller is waiting, return -EAGAIN to keep the background
1531 * scanner moving and revisit the inode in a subsequent pass.
1532 */
c3155097 1533 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
a36b9261
BF
1534 if (flags & SYNC_WAIT)
1535 ret = -EAGAIN;
1536 return ret;
1537 }
1538 ret = xfs_free_eofblocks(ip);
c3155097 1539 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
41176a68
BF
1540
1541 return ret;
1542}
1543
83104d44
DW
1544static int
1545__xfs_icache_free_eofblocks(
41176a68 1546 struct xfs_mount *mp,
83104d44
DW
1547 struct xfs_eofblocks *eofb,
1548 int (*execute)(struct xfs_inode *ip, int flags,
1549 void *args),
1550 int tag)
41176a68 1551{
8ca149de
BF
1552 int flags = SYNC_TRYLOCK;
1553
1554 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1555 flags = SYNC_WAIT;
1556
83104d44
DW
1557 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1558 eofb, tag);
1559}
1560
1561int
1562xfs_icache_free_eofblocks(
1563 struct xfs_mount *mp,
1564 struct xfs_eofblocks *eofb)
1565{
1566 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1567 XFS_ICI_EOFBLOCKS_TAG);
41176a68
BF
1568}
1569
dc06f398
BF
1570/*
1571 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1572 * multiple quotas, we don't know exactly which quota caused an allocation
1573 * failure. We make a best effort by including each quota under low free space
1574 * conditions (less than 1% free space) in the scan.
1575 */
83104d44
DW
1576static int
1577__xfs_inode_free_quota_eofblocks(
1578 struct xfs_inode *ip,
1579 int (*execute)(struct xfs_mount *mp,
1580 struct xfs_eofblocks *eofb))
dc06f398
BF
1581{
1582 int scan = 0;
1583 struct xfs_eofblocks eofb = {0};
1584 struct xfs_dquot *dq;
1585
dc06f398 1586 /*
c3155097 1587 * Run a sync scan to increase effectiveness and use the union filter to
dc06f398
BF
1588 * cover all applicable quotas in a single scan.
1589 */
dc06f398
BF
1590 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1591
1592 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1593 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1594 if (dq && xfs_dquot_lowsp(dq)) {
1595 eofb.eof_uid = VFS_I(ip)->i_uid;
1596 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1597 scan = 1;
1598 }
1599 }
1600
1601 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1602 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1603 if (dq && xfs_dquot_lowsp(dq)) {
1604 eofb.eof_gid = VFS_I(ip)->i_gid;
1605 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1606 scan = 1;
1607 }
1608 }
1609
1610 if (scan)
83104d44 1611 execute(ip->i_mount, &eofb);
dc06f398
BF
1612
1613 return scan;
1614}
1615
83104d44
DW
1616int
1617xfs_inode_free_quota_eofblocks(
1618 struct xfs_inode *ip)
1619{
1620 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1621}
1622
91aae6be
DW
1623static inline unsigned long
1624xfs_iflag_for_tag(
1625 int tag)
1626{
1627 switch (tag) {
1628 case XFS_ICI_EOFBLOCKS_TAG:
1629 return XFS_IEOFBLOCKS;
1630 case XFS_ICI_COWBLOCKS_TAG:
1631 return XFS_ICOWBLOCKS;
1632 default:
1633 ASSERT(0);
1634 return 0;
1635 }
1636}
1637
83104d44 1638static void
91aae6be 1639__xfs_inode_set_blocks_tag(
83104d44
DW
1640 xfs_inode_t *ip,
1641 void (*execute)(struct xfs_mount *mp),
1642 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1643 int error, unsigned long caller_ip),
1644 int tag)
27b52867
BF
1645{
1646 struct xfs_mount *mp = ip->i_mount;
1647 struct xfs_perag *pag;
1648 int tagged;
1649
85a6e764
CH
1650 /*
1651 * Don't bother locking the AG and looking up in the radix trees
1652 * if we already know that we have the tag set.
1653 */
91aae6be 1654 if (ip->i_flags & xfs_iflag_for_tag(tag))
85a6e764
CH
1655 return;
1656 spin_lock(&ip->i_flags_lock);
91aae6be 1657 ip->i_flags |= xfs_iflag_for_tag(tag);
85a6e764
CH
1658 spin_unlock(&ip->i_flags_lock);
1659
27b52867
BF
1660 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1661 spin_lock(&pag->pag_ici_lock);
27b52867 1662
83104d44 1663 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
27b52867 1664 radix_tree_tag_set(&pag->pag_ici_root,
83104d44 1665 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
27b52867
BF
1666 if (!tagged) {
1667 /* propagate the eofblocks tag up into the perag radix tree */
1668 spin_lock(&ip->i_mount->m_perag_lock);
1669 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1670 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
83104d44 1671 tag);
27b52867 1672 spin_unlock(&ip->i_mount->m_perag_lock);
579b62fa
BF
1673
1674 /* kick off background trimming */
83104d44 1675 execute(ip->i_mount);
27b52867 1676
83104d44 1677 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
27b52867
BF
1678 }
1679
1680 spin_unlock(&pag->pag_ici_lock);
1681 xfs_perag_put(pag);
1682}
1683
1684void
83104d44 1685xfs_inode_set_eofblocks_tag(
27b52867 1686 xfs_inode_t *ip)
83104d44
DW
1687{
1688 trace_xfs_inode_set_eofblocks_tag(ip);
91aae6be 1689 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
83104d44
DW
1690 trace_xfs_perag_set_eofblocks,
1691 XFS_ICI_EOFBLOCKS_TAG);
1692}
1693
1694static void
91aae6be 1695__xfs_inode_clear_blocks_tag(
83104d44
DW
1696 xfs_inode_t *ip,
1697 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1698 int error, unsigned long caller_ip),
1699 int tag)
27b52867
BF
1700{
1701 struct xfs_mount *mp = ip->i_mount;
1702 struct xfs_perag *pag;
1703
85a6e764 1704 spin_lock(&ip->i_flags_lock);
91aae6be 1705 ip->i_flags &= ~xfs_iflag_for_tag(tag);
85a6e764
CH
1706 spin_unlock(&ip->i_flags_lock);
1707
27b52867
BF
1708 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1709 spin_lock(&pag->pag_ici_lock);
27b52867
BF
1710
1711 radix_tree_tag_clear(&pag->pag_ici_root,
83104d44
DW
1712 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1713 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
27b52867
BF
1714 /* clear the eofblocks tag from the perag radix tree */
1715 spin_lock(&ip->i_mount->m_perag_lock);
1716 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1717 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
83104d44 1718 tag);
27b52867 1719 spin_unlock(&ip->i_mount->m_perag_lock);
83104d44 1720 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
27b52867
BF
1721 }
1722
1723 spin_unlock(&pag->pag_ici_lock);
1724 xfs_perag_put(pag);
1725}
1726
83104d44
DW
1727void
1728xfs_inode_clear_eofblocks_tag(
1729 xfs_inode_t *ip)
1730{
1731 trace_xfs_inode_clear_eofblocks_tag(ip);
91aae6be 1732 return __xfs_inode_clear_blocks_tag(ip,
83104d44
DW
1733 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1734}
1735
1736/*
be78ff0e
DW
1737 * Set ourselves up to free CoW blocks from this file. If it's already clean
1738 * then we can bail out quickly, but otherwise we must back off if the file
1739 * is undergoing some kind of write.
83104d44 1740 */
be78ff0e
DW
1741static bool
1742xfs_prep_free_cowblocks(
51d62690 1743 struct xfs_inode *ip)
83104d44 1744{
39937234
BF
1745 /*
1746 * Just clear the tag if we have an empty cow fork or none at all. It's
1747 * possible the inode was fully unshared since it was originally tagged.
1748 */
51d62690 1749 if (!xfs_inode_has_cow_data(ip)) {
83104d44
DW
1750 trace_xfs_inode_free_cowblocks_invalid(ip);
1751 xfs_inode_clear_cowblocks_tag(ip);
be78ff0e 1752 return false;
83104d44
DW
1753 }
1754
1755 /*
1756 * If the mapping is dirty or under writeback we cannot touch the
1757 * CoW fork. Leave it alone if we're in the midst of a directio.
1758 */
a1b7a4de
CH
1759 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1760 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
83104d44
DW
1761 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1762 atomic_read(&VFS_I(ip)->i_dio_count))
be78ff0e
DW
1763 return false;
1764
1765 return true;
1766}
1767
1768/*
1769 * Automatic CoW Reservation Freeing
1770 *
1771 * These functions automatically garbage collect leftover CoW reservations
1772 * that were made on behalf of a cowextsize hint when we start to run out
1773 * of quota or when the reservations sit around for too long. If the file
1774 * has dirty pages or is undergoing writeback, its CoW reservations will
1775 * be retained.
1776 *
1777 * The actual garbage collection piggybacks off the same code that runs
1778 * the speculative EOF preallocation garbage collector.
1779 */
1780STATIC int
1781xfs_inode_free_cowblocks(
1782 struct xfs_inode *ip,
1783 int flags,
1784 void *args)
1785{
1786 struct xfs_eofblocks *eofb = args;
be78ff0e
DW
1787 int match;
1788 int ret = 0;
1789
51d62690 1790 if (!xfs_prep_free_cowblocks(ip))
83104d44
DW
1791 return 0;
1792
1793 if (eofb) {
1794 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1795 match = xfs_inode_match_id_union(ip, eofb);
1796 else
1797 match = xfs_inode_match_id(ip, eofb);
1798 if (!match)
1799 return 0;
1800
1801 /* skip the inode if the file size is too small */
1802 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1803 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1804 return 0;
83104d44
DW
1805 }
1806
1807 /* Free the CoW blocks */
c3155097
BF
1808 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1809 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
83104d44 1810
be78ff0e
DW
1811 /*
1812 * Check again, nobody else should be able to dirty blocks or change
1813 * the reflink iflag now that we have the first two locks held.
1814 */
51d62690 1815 if (xfs_prep_free_cowblocks(ip))
be78ff0e 1816 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
83104d44 1817
c3155097
BF
1818 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1819 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
83104d44
DW
1820
1821 return ret;
1822}
1823
1824int
1825xfs_icache_free_cowblocks(
1826 struct xfs_mount *mp,
1827 struct xfs_eofblocks *eofb)
1828{
1829 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1830 XFS_ICI_COWBLOCKS_TAG);
1831}
1832
1833int
1834xfs_inode_free_quota_cowblocks(
1835 struct xfs_inode *ip)
1836{
1837 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1838}
1839
1840void
1841xfs_inode_set_cowblocks_tag(
1842 xfs_inode_t *ip)
1843{
7b7381f0 1844 trace_xfs_inode_set_cowblocks_tag(ip);
91aae6be 1845 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
7b7381f0 1846 trace_xfs_perag_set_cowblocks,
83104d44
DW
1847 XFS_ICI_COWBLOCKS_TAG);
1848}
1849
1850void
1851xfs_inode_clear_cowblocks_tag(
1852 xfs_inode_t *ip)
1853{
7b7381f0 1854 trace_xfs_inode_clear_cowblocks_tag(ip);
91aae6be 1855 return __xfs_inode_clear_blocks_tag(ip,
7b7381f0 1856 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
83104d44 1857}
d6b636eb
DW
1858
1859/* Disable post-EOF and CoW block auto-reclamation. */
1860void
ed30dcbd 1861xfs_stop_block_reaping(
d6b636eb
DW
1862 struct xfs_mount *mp)
1863{
1864 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1865 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1866}
1867
1868/* Enable post-EOF and CoW block auto-reclamation. */
1869void
ed30dcbd 1870xfs_start_block_reaping(
d6b636eb
DW
1871 struct xfs_mount *mp)
1872{
1873 xfs_queue_eofblocks(mp);
1874 xfs_queue_cowblocks(mp);
1875}