dax: remove VM_MIXEDMAP for fsdax and device dax
[linux-block.git] / fs / xfs / xfs_file.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
dda35b8f 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
57062787
DC
13#include "xfs_da_format.h"
14#include "xfs_da_btree.h"
1da177e4 15#include "xfs_inode.h"
239880ef 16#include "xfs_trans.h"
fd3200be 17#include "xfs_inode_item.h"
dda35b8f 18#include "xfs_bmap.h"
c24b5dfa 19#include "xfs_bmap_util.h"
1da177e4 20#include "xfs_error.h"
2b9ab5ab 21#include "xfs_dir2.h"
c24b5dfa 22#include "xfs_dir2_priv.h"
ddcd856d 23#include "xfs_ioctl.h"
dda35b8f 24#include "xfs_trace.h"
239880ef 25#include "xfs_log.h"
dc06f398 26#include "xfs_icache.h"
781355c6 27#include "xfs_pnfs.h"
68a9f5e7 28#include "xfs_iomap.h"
0613f16c 29#include "xfs_reflink.h"
1da177e4
LT
30
31#include <linux/dcache.h>
2fe17c10 32#include <linux/falloc.h>
d126d43f 33#include <linux/pagevec.h>
66114cad 34#include <linux/backing-dev.h>
a39e596b 35#include <linux/mman.h>
1da177e4 36
f0f37e2f 37static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 38
8add71ca
CH
39int
40xfs_update_prealloc_flags(
41 struct xfs_inode *ip,
42 enum xfs_prealloc_flags flags)
43{
44 struct xfs_trans *tp;
45 int error;
46
253f4911
CH
47 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
48 0, 0, 0, &tp);
49 if (error)
8add71ca 50 return error;
8add71ca
CH
51
52 xfs_ilock(ip, XFS_ILOCK_EXCL);
53 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
54
55 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
56 VFS_I(ip)->i_mode &= ~S_ISUID;
57 if (VFS_I(ip)->i_mode & S_IXGRP)
58 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
59 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
60 }
61
62 if (flags & XFS_PREALLOC_SET)
63 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
64 if (flags & XFS_PREALLOC_CLEAR)
65 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
66
67 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
68 if (flags & XFS_PREALLOC_SYNC)
69 xfs_trans_set_sync(tp);
70393313 70 return xfs_trans_commit(tp);
8add71ca
CH
71}
72
1da2f2db
CH
73/*
74 * Fsync operations on directories are much simpler than on regular files,
75 * as there is no file data to flush, and thus also no need for explicit
76 * cache flush operations, and there are no non-transaction metadata updates
77 * on directories either.
78 */
79STATIC int
80xfs_dir_fsync(
81 struct file *file,
82 loff_t start,
83 loff_t end,
84 int datasync)
85{
86 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
87 struct xfs_mount *mp = ip->i_mount;
88 xfs_lsn_t lsn = 0;
89
90 trace_xfs_dir_fsync(ip);
91
92 xfs_ilock(ip, XFS_ILOCK_SHARED);
93 if (xfs_ipincount(ip))
94 lsn = ip->i_itemp->ili_last_lsn;
95 xfs_iunlock(ip, XFS_ILOCK_SHARED);
96
97 if (!lsn)
98 return 0;
656de4ff 99 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
100}
101
fd3200be
CH
102STATIC int
103xfs_file_fsync(
104 struct file *file,
02c24a82
JB
105 loff_t start,
106 loff_t end,
fd3200be
CH
107 int datasync)
108{
7ea80859
CH
109 struct inode *inode = file->f_mapping->host;
110 struct xfs_inode *ip = XFS_I(inode);
a27a263b 111 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
112 int error = 0;
113 int log_flushed = 0;
b1037058 114 xfs_lsn_t lsn = 0;
fd3200be 115
cca28fb8 116 trace_xfs_file_fsync(ip);
fd3200be 117
1b180274 118 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
119 if (error)
120 return error;
121
a27a263b 122 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 123 return -EIO;
fd3200be
CH
124
125 xfs_iflags_clear(ip, XFS_ITRUNCATED);
126
2291dab2
DC
127 /*
128 * If we have an RT and/or log subvolume we need to make sure to flush
129 * the write cache the device used for file data first. This is to
130 * ensure newly written file data make it to disk before logging the new
131 * inode size in case of an extending write.
132 */
133 if (XFS_IS_REALTIME_INODE(ip))
134 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
135 else if (mp->m_logdev_targp != mp->m_ddev_targp)
136 xfs_blkdev_issue_flush(mp->m_ddev_targp);
a27a263b 137
fd3200be 138 /*
fc0561ce
DC
139 * All metadata updates are logged, which means that we just have to
140 * flush the log up to the latest LSN that touched the inode. If we have
141 * concurrent fsync/fdatasync() calls, we need them to all block on the
142 * log force before we clear the ili_fsync_fields field. This ensures
143 * that we don't get a racing sync operation that does not wait for the
144 * metadata to hit the journal before returning. If we race with
145 * clearing the ili_fsync_fields, then all that will happen is the log
146 * force will do nothing as the lsn will already be on disk. We can't
147 * race with setting ili_fsync_fields because that is done under
148 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
149 * until after the ili_fsync_fields is cleared.
fd3200be
CH
150 */
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
152 if (xfs_ipincount(ip)) {
153 if (!datasync ||
fc0561ce 154 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
155 lsn = ip->i_itemp->ili_last_lsn;
156 }
fd3200be 157
fc0561ce 158 if (lsn) {
656de4ff 159 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
160 ip->i_itemp->ili_fsync_fields = 0;
161 }
162 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 163
a27a263b
CH
164 /*
165 * If we only have a single device, and the log force about was
166 * a no-op we might have to flush the data device cache here.
167 * This can only happen for fdatasync/O_DSYNC if we were overwriting
168 * an already allocated file and thus do not have any metadata to
169 * commit.
170 */
2291dab2
DC
171 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
172 mp->m_logdev_targp == mp->m_ddev_targp)
a27a263b 173 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 174
2451337d 175 return error;
fd3200be
CH
176}
177
00258e36 178STATIC ssize_t
bbc5a740 179xfs_file_dio_aio_read(
dda35b8f 180 struct kiocb *iocb,
b4f5d2c6 181 struct iov_iter *to)
dda35b8f 182{
acdda3aa 183 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
bbc5a740 184 size_t count = iov_iter_count(to);
acdda3aa 185 ssize_t ret;
dda35b8f 186
bbc5a740 187 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 188
f1285ff0
CH
189 if (!count)
190 return 0; /* skip atime */
dda35b8f 191
a447d7cd
CH
192 file_accessed(iocb->ki_filp);
193
65523218 194 xfs_ilock(ip, XFS_IOLOCK_SHARED);
acdda3aa 195 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
65523218 196 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 197
16d4d435
CH
198 return ret;
199}
200
f021bd07 201static noinline ssize_t
16d4d435
CH
202xfs_file_dax_read(
203 struct kiocb *iocb,
204 struct iov_iter *to)
205{
6c31f495 206 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
207 size_t count = iov_iter_count(to);
208 ssize_t ret = 0;
209
210 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
211
212 if (!count)
213 return 0; /* skip atime */
214
942491c9
CH
215 if (iocb->ki_flags & IOCB_NOWAIT) {
216 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
29a5d29e 217 return -EAGAIN;
942491c9 218 } else {
29a5d29e
GR
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 }
942491c9 221
11c59c92 222 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
65523218 223 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 224
f1285ff0 225 file_accessed(iocb->ki_filp);
bbc5a740
CH
226 return ret;
227}
228
229STATIC ssize_t
230xfs_file_buffered_aio_read(
231 struct kiocb *iocb,
232 struct iov_iter *to)
233{
234 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
235 ssize_t ret;
236
237 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 238
942491c9
CH
239 if (iocb->ki_flags & IOCB_NOWAIT) {
240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
91f9943e 241 return -EAGAIN;
942491c9 242 } else {
91f9943e
CH
243 xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 }
b4f5d2c6 245 ret = generic_file_read_iter(iocb, to);
65523218 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
247
248 return ret;
249}
250
251STATIC ssize_t
252xfs_file_read_iter(
253 struct kiocb *iocb,
254 struct iov_iter *to)
255{
16d4d435
CH
256 struct inode *inode = file_inode(iocb->ki_filp);
257 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
258 ssize_t ret = 0;
259
260 XFS_STATS_INC(mp, xs_read_calls);
261
262 if (XFS_FORCED_SHUTDOWN(mp))
263 return -EIO;
264
16d4d435
CH
265 if (IS_DAX(inode))
266 ret = xfs_file_dax_read(iocb, to);
267 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 268 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 269 else
bbc5a740 270 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 271
dda35b8f 272 if (ret > 0)
ff6d6af2 273 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
274 return ret;
275}
276
4d8d1581
DC
277/*
278 * Common pre-write limit and setup checks.
279 *
5bf1f262
CH
280 * Called with the iolocked held either shared and exclusive according to
281 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
282 * if called for a direct write beyond i_size.
4d8d1581
DC
283 */
284STATIC ssize_t
285xfs_file_aio_write_checks(
99733fa3
AV
286 struct kiocb *iocb,
287 struct iov_iter *from,
4d8d1581
DC
288 int *iolock)
289{
99733fa3 290 struct file *file = iocb->ki_filp;
4d8d1581
DC
291 struct inode *inode = file->f_mapping->host;
292 struct xfs_inode *ip = XFS_I(inode);
3309dd04 293 ssize_t error = 0;
99733fa3 294 size_t count = iov_iter_count(from);
3136e8bb 295 bool drained_dio = false;
f5c54717 296 loff_t isize;
4d8d1581 297
7271d243 298restart:
3309dd04
AV
299 error = generic_write_checks(iocb, from);
300 if (error <= 0)
4d8d1581 301 return error;
4d8d1581 302
69eb5fa1 303 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
781355c6
CH
304 if (error)
305 return error;
306
65523218
CH
307 /*
308 * For changing security info in file_remove_privs() we need i_rwsem
309 * exclusively.
310 */
a6de82ca 311 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 312 xfs_iunlock(ip, *iolock);
a6de82ca 313 *iolock = XFS_IOLOCK_EXCL;
65523218 314 xfs_ilock(ip, *iolock);
a6de82ca
JK
315 goto restart;
316 }
4d8d1581
DC
317 /*
318 * If the offset is beyond the size of the file, we need to zero any
319 * blocks that fall between the existing EOF and the start of this
2813d682 320 * write. If zeroing is needed and we are currently holding the
467f7899
CH
321 * iolock shared, we need to update it to exclusive which implies
322 * having to redo all checks before.
b9d59846
DC
323 *
324 * We need to serialise against EOF updates that occur in IO
325 * completions here. We want to make sure that nobody is changing the
326 * size while we do this check until we have placed an IO barrier (i.e.
327 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
328 * The spinlock effectively forms a memory barrier once we have the
329 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
330 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 331 */
b9d59846 332 spin_lock(&ip->i_flags_lock);
f5c54717
CH
333 isize = i_size_read(inode);
334 if (iocb->ki_pos > isize) {
b9d59846 335 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
336 if (!drained_dio) {
337 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 338 xfs_iunlock(ip, *iolock);
3136e8bb 339 *iolock = XFS_IOLOCK_EXCL;
65523218 340 xfs_ilock(ip, *iolock);
3136e8bb
BF
341 iov_iter_reexpand(from, count);
342 }
40c63fbc
DC
343 /*
344 * We now have an IO submission barrier in place, but
345 * AIO can do EOF updates during IO completion and hence
346 * we now need to wait for all of them to drain. Non-AIO
347 * DIO will have drained before we are given the
348 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
349 * no-op.
350 */
351 inode_dio_wait(inode);
3136e8bb 352 drained_dio = true;
7271d243
DC
353 goto restart;
354 }
f5c54717
CH
355
356 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
357 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
358 NULL, &xfs_iomap_ops);
467f7899
CH
359 if (error)
360 return error;
b9d59846
DC
361 } else
362 spin_unlock(&ip->i_flags_lock);
4d8d1581 363
8a9c9980
CH
364 /*
365 * Updating the timestamps will grab the ilock again from
366 * xfs_fs_dirty_inode, so we have to call it after dropping the
367 * lock above. Eventually we should look into a way to avoid
368 * the pointless lock roundtrip.
369 */
c3b2da31
JB
370 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
371 error = file_update_time(file);
372 if (error)
373 return error;
374 }
8a9c9980 375
4d8d1581
DC
376 /*
377 * If we're writing the file then make sure to clear the setuid and
378 * setgid bits if the process is not being run by root. This keeps
379 * people from modifying setuid and setgid binaries.
380 */
a6de82ca
JK
381 if (!IS_NOSEC(inode))
382 return file_remove_privs(file);
383 return 0;
4d8d1581
DC
384}
385
acdda3aa
CH
386static int
387xfs_dio_write_end_io(
388 struct kiocb *iocb,
389 ssize_t size,
390 unsigned flags)
391{
392 struct inode *inode = file_inode(iocb->ki_filp);
393 struct xfs_inode *ip = XFS_I(inode);
394 loff_t offset = iocb->ki_pos;
acdda3aa
CH
395 int error = 0;
396
397 trace_xfs_end_io_direct_write(ip, offset, size);
398
399 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
400 return -EIO;
401
402 if (size <= 0)
403 return size;
404
ed5c3e66
DC
405 /*
406 * Capture amount written on completion as we can't reliably account
407 * for it on submission.
408 */
409 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
410
ee70daab
EG
411 if (flags & IOMAP_DIO_COW) {
412 error = xfs_reflink_end_cow(ip, offset, size);
413 if (error)
414 return error;
415 }
416
417 /*
418 * Unwritten conversion updates the in-core isize after extent
419 * conversion but before updating the on-disk size. Updating isize any
420 * earlier allows a racing dio read to find unwritten extents before
421 * they are converted.
422 */
423 if (flags & IOMAP_DIO_UNWRITTEN)
424 return xfs_iomap_write_unwritten(ip, offset, size, true);
425
acdda3aa
CH
426 /*
427 * We need to update the in-core inode size here so that we don't end up
428 * with the on-disk inode size being outside the in-core inode size. We
429 * have no other method of updating EOF for AIO, so always do it here
430 * if necessary.
431 *
432 * We need to lock the test/set EOF update as we can be racing with
433 * other IO completions here to update the EOF. Failing to serialise
434 * here can result in EOF moving backwards and Bad Things Happen when
435 * that occurs.
436 */
437 spin_lock(&ip->i_flags_lock);
438 if (offset + size > i_size_read(inode)) {
439 i_size_write(inode, offset + size);
ee70daab 440 spin_unlock(&ip->i_flags_lock);
acdda3aa 441 error = xfs_setfilesize(ip, offset, size);
ee70daab
EG
442 } else {
443 spin_unlock(&ip->i_flags_lock);
444 }
acdda3aa
CH
445
446 return error;
447}
448
f0d26e86
DC
449/*
450 * xfs_file_dio_aio_write - handle direct IO writes
451 *
452 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 453 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
454 * follow locking changes and looping.
455 *
eda77982
DC
456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
458 * pages are flushed out.
459 *
460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
461 * allowing them to be done in parallel with reads and other direct IO writes.
462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
463 * needs to do sub-block zeroing and that requires serialisation against other
464 * direct IOs to the same block. In this case we need to serialise the
465 * submission of the unaligned IOs so that we don't get racing block zeroing in
466 * the dio layer. To avoid the problem with aio, we also need to wait for
467 * outstanding IOs to complete so that unwritten extent conversion is completed
468 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 469 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 470 *
f0d26e86
DC
471 * Returns with locks held indicated by @iolock and errors indicated by
472 * negative return values.
473 */
474STATIC ssize_t
475xfs_file_dio_aio_write(
476 struct kiocb *iocb,
b3188919 477 struct iov_iter *from)
f0d26e86
DC
478{
479 struct file *file = iocb->ki_filp;
480 struct address_space *mapping = file->f_mapping;
481 struct inode *inode = mapping->host;
482 struct xfs_inode *ip = XFS_I(inode);
483 struct xfs_mount *mp = ip->i_mount;
484 ssize_t ret = 0;
eda77982 485 int unaligned_io = 0;
d0606464 486 int iolock;
b3188919 487 size_t count = iov_iter_count(from);
acdda3aa 488 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
f0d26e86
DC
489 mp->m_rtdev_targp : mp->m_ddev_targp;
490
7c71ee78 491 /* DIO must be aligned to device logical sector size */
16d4d435 492 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 493 return -EINVAL;
f0d26e86 494
7271d243 495 /*
0ee7a3f6
CH
496 * Don't take the exclusive iolock here unless the I/O is unaligned to
497 * the file system block size. We don't need to consider the EOF
498 * extension case here because xfs_file_aio_write_checks() will relock
499 * the inode as necessary for EOF zeroing cases and fill out the new
500 * inode size as appropriate.
7271d243 501 */
0ee7a3f6
CH
502 if ((iocb->ki_pos & mp->m_blockmask) ||
503 ((iocb->ki_pos + count) & mp->m_blockmask)) {
504 unaligned_io = 1;
54a4ef8a
CH
505
506 /*
507 * We can't properly handle unaligned direct I/O to reflink
508 * files yet, as we can't unshare a partial block.
509 */
510 if (xfs_is_reflink_inode(ip)) {
511 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
512 return -EREMCHG;
513 }
d0606464 514 iolock = XFS_IOLOCK_EXCL;
0ee7a3f6 515 } else {
d0606464 516 iolock = XFS_IOLOCK_SHARED;
c58cb165 517 }
f0d26e86 518
942491c9
CH
519 if (iocb->ki_flags & IOCB_NOWAIT) {
520 if (!xfs_ilock_nowait(ip, iolock))
29a5d29e 521 return -EAGAIN;
942491c9 522 } else {
29a5d29e
GR
523 xfs_ilock(ip, iolock);
524 }
0ee7a3f6 525
99733fa3 526 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 527 if (ret)
d0606464 528 goto out;
99733fa3 529 count = iov_iter_count(from);
f0d26e86 530
eda77982
DC
531 /*
532 * If we are doing unaligned IO, wait for all other IO to drain,
0ee7a3f6
CH
533 * otherwise demote the lock if we had to take the exclusive lock
534 * for other reasons in xfs_file_aio_write_checks.
eda77982 535 */
29a5d29e
GR
536 if (unaligned_io) {
537 /* If we are going to wait for other DIO to finish, bail */
538 if (iocb->ki_flags & IOCB_NOWAIT) {
539 if (atomic_read(&inode->i_dio_count))
540 return -EAGAIN;
541 } else {
542 inode_dio_wait(inode);
543 }
544 } else if (iolock == XFS_IOLOCK_EXCL) {
65523218 545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 546 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
547 }
548
3176c3e0 549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
acdda3aa 550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
d0606464 551out:
65523218 552 xfs_iunlock(ip, iolock);
d0606464 553
6b698ede 554 /*
16d4d435
CH
555 * No fallback to buffered IO on errors for XFS, direct IO will either
556 * complete fully or fail.
6b698ede 557 */
16d4d435
CH
558 ASSERT(ret < 0 || ret == count);
559 return ret;
560}
561
f021bd07 562static noinline ssize_t
16d4d435
CH
563xfs_file_dax_write(
564 struct kiocb *iocb,
565 struct iov_iter *from)
566{
6c31f495 567 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 568 struct xfs_inode *ip = XFS_I(inode);
17879e8f 569 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
570 ssize_t ret, error = 0;
571 size_t count;
572 loff_t pos;
16d4d435 573
942491c9
CH
574 if (iocb->ki_flags & IOCB_NOWAIT) {
575 if (!xfs_ilock_nowait(ip, iolock))
29a5d29e 576 return -EAGAIN;
942491c9 577 } else {
29a5d29e
GR
578 xfs_ilock(ip, iolock);
579 }
580
16d4d435
CH
581 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
582 if (ret)
583 goto out;
584
6c31f495
CH
585 pos = iocb->ki_pos;
586 count = iov_iter_count(from);
8b2180b3 587
6c31f495 588 trace_xfs_file_dax_write(ip, count, pos);
11c59c92 589 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
6c31f495
CH
590 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
591 i_size_write(inode, iocb->ki_pos);
592 error = xfs_setfilesize(ip, pos, ret);
16d4d435 593 }
16d4d435 594out:
65523218 595 xfs_iunlock(ip, iolock);
ed5c3e66
DC
596 if (error)
597 return error;
598
599 if (ret > 0) {
600 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
601
602 /* Handle various SYNC-type writes */
603 ret = generic_write_sync(iocb, ret);
604 }
605 return ret;
f0d26e86
DC
606}
607
00258e36 608STATIC ssize_t
637bbc75 609xfs_file_buffered_aio_write(
dda35b8f 610 struct kiocb *iocb,
b3188919 611 struct iov_iter *from)
dda35b8f
CH
612{
613 struct file *file = iocb->ki_filp;
614 struct address_space *mapping = file->f_mapping;
615 struct inode *inode = mapping->host;
00258e36 616 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
617 ssize_t ret;
618 int enospc = 0;
c3155097 619 int iolock;
dda35b8f 620
91f9943e
CH
621 if (iocb->ki_flags & IOCB_NOWAIT)
622 return -EOPNOTSUPP;
623
c3155097
BF
624write_retry:
625 iolock = XFS_IOLOCK_EXCL;
65523218 626 xfs_ilock(ip, iolock);
dda35b8f 627
99733fa3 628 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 629 if (ret)
d0606464 630 goto out;
dda35b8f
CH
631
632 /* We can write back this queue in page reclaim */
de1414a6 633 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 634
3176c3e0 635 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 636 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 637 if (likely(ret >= 0))
99733fa3 638 iocb->ki_pos += ret;
dc06f398 639
637bbc75 640 /*
dc06f398
BF
641 * If we hit a space limit, try to free up some lingering preallocated
642 * space before returning an error. In the case of ENOSPC, first try to
643 * write back all dirty inodes to free up some of the excess reserved
644 * metadata space. This reduces the chances that the eofblocks scan
645 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
646 * also behaves as a filter to prevent too many eofblocks scans from
647 * running at the same time.
637bbc75 648 */
dc06f398 649 if (ret == -EDQUOT && !enospc) {
c3155097 650 xfs_iunlock(ip, iolock);
dc06f398
BF
651 enospc = xfs_inode_free_quota_eofblocks(ip);
652 if (enospc)
653 goto write_retry;
83104d44
DW
654 enospc = xfs_inode_free_quota_cowblocks(ip);
655 if (enospc)
656 goto write_retry;
c3155097 657 iolock = 0;
dc06f398
BF
658 } else if (ret == -ENOSPC && !enospc) {
659 struct xfs_eofblocks eofb = {0};
660
637bbc75 661 enospc = 1;
9aa05000 662 xfs_flush_inodes(ip->i_mount);
c3155097
BF
663
664 xfs_iunlock(ip, iolock);
dc06f398
BF
665 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
666 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
cf2cb784 667 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
9aa05000 668 goto write_retry;
dda35b8f 669 }
d0606464 670
dda35b8f 671 current->backing_dev_info = NULL;
d0606464 672out:
c3155097
BF
673 if (iolock)
674 xfs_iunlock(ip, iolock);
ed5c3e66
DC
675
676 if (ret > 0) {
677 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
678 /* Handle various SYNC-type writes */
679 ret = generic_write_sync(iocb, ret);
680 }
637bbc75
DC
681 return ret;
682}
683
684STATIC ssize_t
bf97f3bc 685xfs_file_write_iter(
637bbc75 686 struct kiocb *iocb,
bf97f3bc 687 struct iov_iter *from)
637bbc75
DC
688{
689 struct file *file = iocb->ki_filp;
690 struct address_space *mapping = file->f_mapping;
691 struct inode *inode = mapping->host;
692 struct xfs_inode *ip = XFS_I(inode);
693 ssize_t ret;
bf97f3bc 694 size_t ocount = iov_iter_count(from);
637bbc75 695
ff6d6af2 696 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 697
637bbc75
DC
698 if (ocount == 0)
699 return 0;
700
bf97f3bc
AV
701 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
702 return -EIO;
637bbc75 703
16d4d435 704 if (IS_DAX(inode))
ed5c3e66
DC
705 return xfs_file_dax_write(iocb, from);
706
707 if (iocb->ki_flags & IOCB_DIRECT) {
0613f16c
DW
708 /*
709 * Allow a directio write to fall back to a buffered
710 * write *only* in the case that we're doing a reflink
711 * CoW. In all other directio scenarios we do not
712 * allow an operation to fall back to buffered mode.
713 */
bf97f3bc 714 ret = xfs_file_dio_aio_write(iocb, from);
ed5c3e66
DC
715 if (ret != -EREMCHG)
716 return ret;
0613f16c 717 }
dda35b8f 718
ed5c3e66 719 return xfs_file_buffered_aio_write(iocb, from);
dda35b8f
CH
720}
721
d6dc57e2
DW
722static void
723xfs_wait_dax_page(
e25ff835 724 struct inode *inode)
d6dc57e2
DW
725{
726 struct xfs_inode *ip = XFS_I(inode);
727
d6dc57e2
DW
728 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
729 schedule();
730 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
731}
732
733static int
734xfs_break_dax_layouts(
735 struct inode *inode,
e25ff835 736 bool *retry)
d6dc57e2
DW
737{
738 struct page *page;
739
740 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
741
742 page = dax_layout_busy_page(inode->i_mapping);
743 if (!page)
744 return 0;
745
e25ff835 746 *retry = true;
d6dc57e2
DW
747 return ___wait_var_event(&page->_refcount,
748 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
e25ff835 749 0, 0, xfs_wait_dax_page(inode));
d6dc57e2
DW
750}
751
69eb5fa1
DW
752int
753xfs_break_layouts(
754 struct inode *inode,
755 uint *iolock,
756 enum layout_break_reason reason)
757{
758 bool retry;
d6dc57e2 759 int error;
69eb5fa1
DW
760
761 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
762
d6dc57e2
DW
763 do {
764 retry = false;
765 switch (reason) {
766 case BREAK_UNMAP:
a4722a64 767 error = xfs_break_dax_layouts(inode, &retry);
d6dc57e2
DW
768 if (error || retry)
769 break;
770 /* fall through */
771 case BREAK_WRITE:
772 error = xfs_break_leased_layouts(inode, iolock, &retry);
773 break;
774 default:
775 WARN_ON_ONCE(1);
776 error = -EINVAL;
777 }
778 } while (error == 0 && retry);
779
780 return error;
69eb5fa1
DW
781}
782
a904b1ca
NJ
783#define XFS_FALLOC_FL_SUPPORTED \
784 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
785 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 786 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 787
2fe17c10
CH
788STATIC long
789xfs_file_fallocate(
83aee9e4
CH
790 struct file *file,
791 int mode,
792 loff_t offset,
793 loff_t len)
2fe17c10 794{
83aee9e4
CH
795 struct inode *inode = file_inode(file);
796 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 797 long error;
8add71ca 798 enum xfs_prealloc_flags flags = 0;
c63a8eae 799 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
83aee9e4 800 loff_t new_size = 0;
749f24f3 801 bool do_file_insert = false;
2fe17c10 802
83aee9e4
CH
803 if (!S_ISREG(inode->i_mode))
804 return -EINVAL;
a904b1ca 805 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
806 return -EOPNOTSUPP;
807
781355c6 808 xfs_ilock(ip, iolock);
69eb5fa1 809 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
781355c6
CH
810 if (error)
811 goto out_unlock;
812
83aee9e4
CH
813 if (mode & FALLOC_FL_PUNCH_HOLE) {
814 error = xfs_free_file_space(ip, offset, len);
815 if (error)
816 goto out_unlock;
e1d8fb88 817 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
93407472 818 unsigned int blksize_mask = i_blocksize(inode) - 1;
e1d8fb88
NJ
819
820 if (offset & blksize_mask || len & blksize_mask) {
2451337d 821 error = -EINVAL;
e1d8fb88
NJ
822 goto out_unlock;
823 }
824
23fffa92
LC
825 /*
826 * There is no need to overlap collapse range with EOF,
827 * in which case it is effectively a truncate operation
828 */
829 if (offset + len >= i_size_read(inode)) {
2451337d 830 error = -EINVAL;
23fffa92
LC
831 goto out_unlock;
832 }
833
e1d8fb88
NJ
834 new_size = i_size_read(inode) - len;
835
836 error = xfs_collapse_file_space(ip, offset, len);
837 if (error)
838 goto out_unlock;
a904b1ca 839 } else if (mode & FALLOC_FL_INSERT_RANGE) {
7d83fb14
DW
840 unsigned int blksize_mask = i_blocksize(inode) - 1;
841 loff_t isize = i_size_read(inode);
a904b1ca 842
a904b1ca
NJ
843 if (offset & blksize_mask || len & blksize_mask) {
844 error = -EINVAL;
845 goto out_unlock;
846 }
847
7d83fb14
DW
848 /*
849 * New inode size must not exceed ->s_maxbytes, accounting for
850 * possible signed overflow.
851 */
852 if (inode->i_sb->s_maxbytes - isize < len) {
a904b1ca
NJ
853 error = -EFBIG;
854 goto out_unlock;
855 }
7d83fb14 856 new_size = isize + len;
a904b1ca
NJ
857
858 /* Offset should be less than i_size */
7d83fb14 859 if (offset >= isize) {
a904b1ca
NJ
860 error = -EINVAL;
861 goto out_unlock;
862 }
749f24f3 863 do_file_insert = true;
83aee9e4 864 } else {
8add71ca
CH
865 flags |= XFS_PREALLOC_SET;
866
83aee9e4
CH
867 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
868 offset + len > i_size_read(inode)) {
869 new_size = offset + len;
2451337d 870 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
871 if (error)
872 goto out_unlock;
873 }
2fe17c10 874
376ba313
LC
875 if (mode & FALLOC_FL_ZERO_RANGE)
876 error = xfs_zero_file_space(ip, offset, len);
98cc2db5
DW
877 else {
878 if (mode & FALLOC_FL_UNSHARE_RANGE) {
879 error = xfs_reflink_unshare(ip, offset, len);
880 if (error)
881 goto out_unlock;
882 }
376ba313
LC
883 error = xfs_alloc_file_space(ip, offset, len,
884 XFS_BMAPI_PREALLOC);
98cc2db5 885 }
2fe17c10
CH
886 if (error)
887 goto out_unlock;
888 }
889
83aee9e4 890 if (file->f_flags & O_DSYNC)
8add71ca
CH
891 flags |= XFS_PREALLOC_SYNC;
892
893 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
894 if (error)
895 goto out_unlock;
896
897 /* Change file size if needed */
898 if (new_size) {
899 struct iattr iattr;
900
901 iattr.ia_valid = ATTR_SIZE;
902 iattr.ia_size = new_size;
69bca807 903 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
904 if (error)
905 goto out_unlock;
2fe17c10
CH
906 }
907
a904b1ca
NJ
908 /*
909 * Perform hole insertion now that the file size has been
910 * updated so that if we crash during the operation we don't
911 * leave shifted extents past EOF and hence losing access to
912 * the data that is contained within them.
913 */
914 if (do_file_insert)
915 error = xfs_insert_file_space(ip, offset, len);
916
2fe17c10 917out_unlock:
781355c6 918 xfs_iunlock(ip, iolock);
2451337d 919 return error;
2fe17c10
CH
920}
921
9fe26045
DW
922STATIC int
923xfs_file_clone_range(
924 struct file *file_in,
925 loff_t pos_in,
926 struct file *file_out,
927 loff_t pos_out,
928 u64 len)
929{
5faaf4fa 930 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660
DW
931 len, false);
932}
933
cc714660
DW
934STATIC ssize_t
935xfs_file_dedupe_range(
936 struct file *src_file,
937 u64 loff,
938 u64 len,
939 struct file *dst_file,
940 u64 dst_loff)
941{
021ba8e9
DW
942 struct inode *srci = file_inode(src_file);
943 u64 max_dedupe;
cc714660
DW
944 int error;
945
021ba8e9
DW
946 /*
947 * Since we have to read all these pages in to compare them, cut
948 * it off at MAX_RW_COUNT/2 rounded down to the nearest block.
949 * That means we won't do more than MAX_RW_COUNT IO per request.
950 */
951 max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1);
952 if (len > max_dedupe)
953 len = max_dedupe;
5faaf4fa 954 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
cc714660
DW
955 len, true);
956 if (error)
957 return error;
958 return len;
9fe26045 959}
2fe17c10 960
1da177e4 961STATIC int
3562fd45 962xfs_file_open(
1da177e4 963 struct inode *inode,
f999a5bf 964 struct file *file)
1da177e4 965{
f999a5bf 966 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 967 return -EFBIG;
f999a5bf
CH
968 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
969 return -EIO;
91f9943e 970 file->f_mode |= FMODE_NOWAIT;
f999a5bf
CH
971 return 0;
972}
973
974STATIC int
975xfs_dir_open(
976 struct inode *inode,
977 struct file *file)
978{
979 struct xfs_inode *ip = XFS_I(inode);
980 int mode;
981 int error;
982
983 error = xfs_file_open(inode, file);
984 if (error)
985 return error;
986
987 /*
988 * If there are any blocks, read-ahead block 0 as we're almost
989 * certain to have the next operation be a read there.
990 */
309ecac8 991 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 992 if (ip->i_d.di_nextents > 0)
7a652bbe 993 error = xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf 994 xfs_iunlock(ip, mode);
7a652bbe 995 return error;
1da177e4
LT
996}
997
1da177e4 998STATIC int
3562fd45 999xfs_file_release(
1da177e4
LT
1000 struct inode *inode,
1001 struct file *filp)
1002{
2451337d 1003 return xfs_release(XFS_I(inode));
1da177e4
LT
1004}
1005
1da177e4 1006STATIC int
3562fd45 1007xfs_file_readdir(
b8227554
AV
1008 struct file *file,
1009 struct dir_context *ctx)
1da177e4 1010{
b8227554 1011 struct inode *inode = file_inode(file);
739bfb2a 1012 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1013 size_t bufsize;
1014
1015 /*
1016 * The Linux API doesn't pass down the total size of the buffer
1017 * we read into down to the filesystem. With the filldir concept
1018 * it's not needed for correct information, but the XFS dir2 leaf
1019 * code wants an estimate of the buffer size to calculate it's
1020 * readahead window and size the buffers used for mapping to
1021 * physical blocks.
1022 *
1023 * Try to give it an estimate that's good enough, maybe at some
1024 * point we can change the ->readdir prototype to include the
a9cc799e 1025 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1026 */
a5c46e5e 1027 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
051e7cd4 1028
acb9553c 1029 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
1030}
1031
1032STATIC loff_t
1033xfs_file_llseek(
1034 struct file *file,
1035 loff_t offset,
59f9c004 1036 int whence)
3fe3e6b1 1037{
9b2970aa
CH
1038 struct inode *inode = file->f_mapping->host;
1039
1040 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1041 return -EIO;
1042
59f9c004 1043 switch (whence) {
9b2970aa 1044 default:
59f9c004 1045 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1046 case SEEK_HOLE:
9b2970aa
CH
1047 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1048 break;
49c69591 1049 case SEEK_DATA:
9b2970aa
CH
1050 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1051 break;
3fe3e6b1 1052 }
9b2970aa
CH
1053
1054 if (offset < 0)
1055 return offset;
1056 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1057}
1058
de0e8c20
DC
1059/*
1060 * Locking for serialisation of IO during page faults. This results in a lock
1061 * ordering of:
1062 *
1063 * mmap_sem (MM)
6b698ede 1064 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1065 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1066 * page_lock (MM)
1067 * i_lock (XFS - extent map serialisation)
de0e8c20 1068 */
05edd888 1069static vm_fault_t
d522d569
CH
1070__xfs_filemap_fault(
1071 struct vm_fault *vmf,
1072 enum page_entry_size pe_size,
1073 bool write_fault)
de0e8c20 1074{
11bac800 1075 struct inode *inode = file_inode(vmf->vma->vm_file);
d522d569 1076 struct xfs_inode *ip = XFS_I(inode);
05edd888 1077 vm_fault_t ret;
de0e8c20 1078
d522d569 1079 trace_xfs_filemap_fault(ip, pe_size, write_fault);
de0e8c20 1080
d522d569
CH
1081 if (write_fault) {
1082 sb_start_pagefault(inode->i_sb);
1083 file_update_time(vmf->vma->vm_file);
1084 }
de0e8c20 1085
d522d569 1086 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1087 if (IS_DAX(inode)) {
a39e596b
CH
1088 pfn_t pfn;
1089
c0b24625 1090 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
a39e596b
CH
1091 if (ret & VM_FAULT_NEEDDSYNC)
1092 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
6b698ede 1093 } else {
d522d569
CH
1094 if (write_fault)
1095 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1096 else
1097 ret = filemap_fault(vmf);
6b698ede 1098 }
6b698ede 1099 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1100
d522d569
CH
1101 if (write_fault)
1102 sb_end_pagefault(inode->i_sb);
6b698ede 1103 return ret;
de0e8c20
DC
1104}
1105
05edd888 1106static vm_fault_t
6b698ede 1107xfs_filemap_fault(
075a924d
DC
1108 struct vm_fault *vmf)
1109{
6b698ede 1110 /* DAX can shortcut the normal fault path on write faults! */
d522d569
CH
1111 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1112 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1113 (vmf->flags & FAULT_FLAG_WRITE));
6b698ede
DC
1114}
1115
05edd888 1116static vm_fault_t
a2d58167 1117xfs_filemap_huge_fault(
c791ace1
DJ
1118 struct vm_fault *vmf,
1119 enum page_entry_size pe_size)
acd76e74 1120{
d522d569 1121 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
acd76e74
MW
1122 return VM_FAULT_FALLBACK;
1123
d522d569
CH
1124 /* DAX can shortcut the normal fault path on write faults! */
1125 return __xfs_filemap_fault(vmf, pe_size,
1126 (vmf->flags & FAULT_FLAG_WRITE));
1127}
acd76e74 1128
05edd888 1129static vm_fault_t
d522d569
CH
1130xfs_filemap_page_mkwrite(
1131 struct vm_fault *vmf)
1132{
1133 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1134}
1135
3af49285 1136/*
7b565c9f
JK
1137 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1138 * on write faults. In reality, it needs to serialise against truncate and
1139 * prepare memory for writing so handle is as standard write fault.
3af49285 1140 */
05edd888 1141static vm_fault_t
3af49285 1142xfs_filemap_pfn_mkwrite(
3af49285
DC
1143 struct vm_fault *vmf)
1144{
1145
7b565c9f 1146 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1147}
1148
6b698ede
DC
1149static const struct vm_operations_struct xfs_file_vm_ops = {
1150 .fault = xfs_filemap_fault,
a2d58167 1151 .huge_fault = xfs_filemap_huge_fault,
6b698ede
DC
1152 .map_pages = filemap_map_pages,
1153 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1154 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1155};
1156
1157STATIC int
1158xfs_file_mmap(
1159 struct file *filp,
1160 struct vm_area_struct *vma)
1161{
a39e596b
CH
1162 /*
1163 * We don't support synchronous mappings for non-DAX files. At least
1164 * until someone comes with a sensible use case.
1165 */
1166 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1167 return -EOPNOTSUPP;
1168
6b698ede
DC
1169 file_accessed(filp);
1170 vma->vm_ops = &xfs_file_vm_ops;
1171 if (IS_DAX(file_inode(filp)))
e1fb4a08 1172 vma->vm_flags |= VM_HUGEPAGE;
6b698ede 1173 return 0;
075a924d
DC
1174}
1175
4b6f5d20 1176const struct file_operations xfs_file_operations = {
3fe3e6b1 1177 .llseek = xfs_file_llseek,
b4f5d2c6 1178 .read_iter = xfs_file_read_iter,
bf97f3bc 1179 .write_iter = xfs_file_write_iter,
82c156f8 1180 .splice_read = generic_file_splice_read,
8d020765 1181 .splice_write = iter_file_splice_write,
3562fd45 1182 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1183#ifdef CONFIG_COMPAT
3562fd45 1184 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1185#endif
3562fd45 1186 .mmap = xfs_file_mmap,
a39e596b 1187 .mmap_supported_flags = MAP_SYNC,
3562fd45
NS
1188 .open = xfs_file_open,
1189 .release = xfs_file_release,
1190 .fsync = xfs_file_fsync,
dbe6ec81 1191 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1192 .fallocate = xfs_file_fallocate,
9fe26045 1193 .clone_file_range = xfs_file_clone_range,
cc714660 1194 .dedupe_file_range = xfs_file_dedupe_range,
1da177e4
LT
1195};
1196
4b6f5d20 1197const struct file_operations xfs_dir_file_operations = {
f999a5bf 1198 .open = xfs_dir_open,
1da177e4 1199 .read = generic_read_dir,
3b0a3c1a 1200 .iterate_shared = xfs_file_readdir,
59af1584 1201 .llseek = generic_file_llseek,
3562fd45 1202 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1203#ifdef CONFIG_COMPAT
3562fd45 1204 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1205#endif
1da2f2db 1206 .fsync = xfs_dir_fsync,
1da177e4 1207};