xfs: DIO write completion size updates race
[linux-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
1da177e4 40
a27bb332 41#include <linux/aio.h>
1da177e4 42#include <linux/dcache.h>
2fe17c10 43#include <linux/falloc.h>
d126d43f 44#include <linux/pagevec.h>
1da177e4 45
f0f37e2f 46static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 47
487f84f3
DC
48/*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52static inline void
53xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56{
57 if (type & XFS_IOLOCK_EXCL)
58 mutex_lock(&VFS_I(ip)->i_mutex);
59 xfs_ilock(ip, type);
60}
61
62static inline void
63xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66{
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 mutex_unlock(&VFS_I(ip)->i_mutex);
70}
71
72static inline void
73xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76{
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 mutex_unlock(&VFS_I(ip)->i_mutex);
80}
81
dda35b8f
CH
82/*
83 * xfs_iozero
84 *
85 * xfs_iozero clears the specified range of buffer supplied,
86 * and marks all the affected blocks as valid and modified. If
87 * an affected block is not allocated, it will be allocated. If
88 * an affected block is not completely overwritten, and is not
89 * valid before the operation, it will be read from disk before
90 * being partially zeroed.
91 */
ef9d8733 92int
dda35b8f
CH
93xfs_iozero(
94 struct xfs_inode *ip, /* inode */
95 loff_t pos, /* offset in file */
96 size_t count) /* size of data to zero */
97{
98 struct page *page;
99 struct address_space *mapping;
100 int status;
101
102 mapping = VFS_I(ip)->i_mapping;
103 do {
104 unsigned offset, bytes;
105 void *fsdata;
106
107 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
108 bytes = PAGE_CACHE_SIZE - offset;
109 if (bytes > count)
110 bytes = count;
111
112 status = pagecache_write_begin(NULL, mapping, pos, bytes,
113 AOP_FLAG_UNINTERRUPTIBLE,
114 &page, &fsdata);
115 if (status)
116 break;
117
118 zero_user(page, offset, bytes);
119
120 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
121 page, fsdata);
122 WARN_ON(status <= 0); /* can't return less than zero! */
123 pos += bytes;
124 count -= bytes;
125 status = 0;
126 } while (count);
127
128 return (-status);
129}
130
8add71ca
CH
131int
132xfs_update_prealloc_flags(
133 struct xfs_inode *ip,
134 enum xfs_prealloc_flags flags)
135{
136 struct xfs_trans *tp;
137 int error;
138
139 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
140 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
141 if (error) {
142 xfs_trans_cancel(tp, 0);
143 return error;
144 }
145
146 xfs_ilock(ip, XFS_ILOCK_EXCL);
147 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
148
149 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
150 ip->i_d.di_mode &= ~S_ISUID;
151 if (ip->i_d.di_mode & S_IXGRP)
152 ip->i_d.di_mode &= ~S_ISGID;
153 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
154 }
155
156 if (flags & XFS_PREALLOC_SET)
157 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
158 if (flags & XFS_PREALLOC_CLEAR)
159 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
160
161 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
162 if (flags & XFS_PREALLOC_SYNC)
163 xfs_trans_set_sync(tp);
164 return xfs_trans_commit(tp, 0);
165}
166
1da2f2db
CH
167/*
168 * Fsync operations on directories are much simpler than on regular files,
169 * as there is no file data to flush, and thus also no need for explicit
170 * cache flush operations, and there are no non-transaction metadata updates
171 * on directories either.
172 */
173STATIC int
174xfs_dir_fsync(
175 struct file *file,
176 loff_t start,
177 loff_t end,
178 int datasync)
179{
180 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
181 struct xfs_mount *mp = ip->i_mount;
182 xfs_lsn_t lsn = 0;
183
184 trace_xfs_dir_fsync(ip);
185
186 xfs_ilock(ip, XFS_ILOCK_SHARED);
187 if (xfs_ipincount(ip))
188 lsn = ip->i_itemp->ili_last_lsn;
189 xfs_iunlock(ip, XFS_ILOCK_SHARED);
190
191 if (!lsn)
192 return 0;
2451337d 193 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
194}
195
fd3200be
CH
196STATIC int
197xfs_file_fsync(
198 struct file *file,
02c24a82
JB
199 loff_t start,
200 loff_t end,
fd3200be
CH
201 int datasync)
202{
7ea80859
CH
203 struct inode *inode = file->f_mapping->host;
204 struct xfs_inode *ip = XFS_I(inode);
a27a263b 205 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
206 int error = 0;
207 int log_flushed = 0;
b1037058 208 xfs_lsn_t lsn = 0;
fd3200be 209
cca28fb8 210 trace_xfs_file_fsync(ip);
fd3200be 211
02c24a82
JB
212 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
213 if (error)
214 return error;
215
a27a263b 216 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 217 return -EIO;
fd3200be
CH
218
219 xfs_iflags_clear(ip, XFS_ITRUNCATED);
220
a27a263b
CH
221 if (mp->m_flags & XFS_MOUNT_BARRIER) {
222 /*
223 * If we have an RT and/or log subvolume we need to make sure
224 * to flush the write cache the device used for file data
225 * first. This is to ensure newly written file data make
226 * it to disk before logging the new inode size in case of
227 * an extending write.
228 */
229 if (XFS_IS_REALTIME_INODE(ip))
230 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
231 else if (mp->m_logdev_targp != mp->m_ddev_targp)
232 xfs_blkdev_issue_flush(mp->m_ddev_targp);
233 }
234
fd3200be 235 /*
8a9c9980
CH
236 * All metadata updates are logged, which means that we just have
237 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
238 */
239 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
240 if (xfs_ipincount(ip)) {
241 if (!datasync ||
242 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
243 lsn = ip->i_itemp->ili_last_lsn;
244 }
8a9c9980 245 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 246
8a9c9980 247 if (lsn)
b1037058
CH
248 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
249
a27a263b
CH
250 /*
251 * If we only have a single device, and the log force about was
252 * a no-op we might have to flush the data device cache here.
253 * This can only happen for fdatasync/O_DSYNC if we were overwriting
254 * an already allocated file and thus do not have any metadata to
255 * commit.
256 */
257 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
258 mp->m_logdev_targp == mp->m_ddev_targp &&
259 !XFS_IS_REALTIME_INODE(ip) &&
260 !log_flushed)
261 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 262
2451337d 263 return error;
fd3200be
CH
264}
265
00258e36 266STATIC ssize_t
b4f5d2c6 267xfs_file_read_iter(
dda35b8f 268 struct kiocb *iocb,
b4f5d2c6 269 struct iov_iter *to)
dda35b8f
CH
270{
271 struct file *file = iocb->ki_filp;
272 struct inode *inode = file->f_mapping->host;
00258e36
CH
273 struct xfs_inode *ip = XFS_I(inode);
274 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 275 size_t size = iov_iter_count(to);
dda35b8f 276 ssize_t ret = 0;
00258e36 277 int ioflags = 0;
dda35b8f 278 xfs_fsize_t n;
b4f5d2c6 279 loff_t pos = iocb->ki_pos;
dda35b8f 280
dda35b8f
CH
281 XFS_STATS_INC(xs_read_calls);
282
00258e36 283 if (unlikely(file->f_flags & O_DIRECT))
b92cc59f 284 ioflags |= XFS_IO_ISDIRECT;
00258e36 285 if (file->f_mode & FMODE_NOCMTIME)
b92cc59f 286 ioflags |= XFS_IO_INVIS;
00258e36 287
b92cc59f 288 if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
dda35b8f
CH
289 xfs_buftarg_t *target =
290 XFS_IS_REALTIME_INODE(ip) ?
291 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
292 /* DIO must be aligned to device logical sector size */
293 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 294 if (pos == i_size_read(inode))
00258e36 295 return 0;
b474c7ae 296 return -EINVAL;
dda35b8f
CH
297 }
298 }
299
fb595814 300 n = mp->m_super->s_maxbytes - pos;
00258e36 301 if (n <= 0 || size == 0)
dda35b8f
CH
302 return 0;
303
304 if (n < size)
305 size = n;
306
307 if (XFS_FORCED_SHUTDOWN(mp))
308 return -EIO;
309
0c38a251
DC
310 /*
311 * Locking is a bit tricky here. If we take an exclusive lock
312 * for direct IO, we effectively serialise all new concurrent
313 * read IO to this file and block it behind IO that is currently in
314 * progress because IO in progress holds the IO lock shared. We only
315 * need to hold the lock exclusive to blow away the page cache, so
316 * only take lock exclusively if the page cache needs invalidation.
317 * This allows the normal direct IO case of no page cache pages to
318 * proceeed concurrently without serialisation.
319 */
320 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b92cc59f 321 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
0c38a251 322 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
323 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
324
00258e36 325 if (inode->i_mapping->nrpages) {
8ff1e670 326 ret = filemap_write_and_wait_range(
fb595814 327 VFS_I(ip)->i_mapping,
7d4ea3ce 328 pos, pos + size - 1);
487f84f3
DC
329 if (ret) {
330 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
331 return ret;
332 }
85e584da
CM
333
334 /*
335 * Invalidate whole pages. This can return an error if
336 * we fail to invalidate a page, but this should never
337 * happen on XFS. Warn if it does fail.
338 */
339 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
340 pos >> PAGE_CACHE_SHIFT,
341 (pos + size - 1) >> PAGE_CACHE_SHIFT);
85e584da
CM
342 WARN_ON_ONCE(ret);
343 ret = 0;
00258e36 344 }
487f84f3 345 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 346 }
dda35b8f 347
fb595814 348 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 349
b4f5d2c6 350 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
351 if (ret > 0)
352 XFS_STATS_ADD(xs_read_bytes, ret);
353
487f84f3 354 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
355 return ret;
356}
357
00258e36
CH
358STATIC ssize_t
359xfs_file_splice_read(
dda35b8f
CH
360 struct file *infilp,
361 loff_t *ppos,
362 struct pipe_inode_info *pipe,
363 size_t count,
00258e36 364 unsigned int flags)
dda35b8f 365{
00258e36 366 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 367 int ioflags = 0;
dda35b8f
CH
368 ssize_t ret;
369
370 XFS_STATS_INC(xs_read_calls);
00258e36
CH
371
372 if (infilp->f_mode & FMODE_NOCMTIME)
b92cc59f 373 ioflags |= XFS_IO_INVIS;
00258e36 374
dda35b8f
CH
375 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
376 return -EIO;
377
487f84f3 378 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 379
dda35b8f
CH
380 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
381
382 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
383 if (ret > 0)
384 XFS_STATS_ADD(xs_read_bytes, ret);
385
487f84f3 386 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
387 return ret;
388}
389
dda35b8f 390/*
193aec10
CH
391 * This routine is called to handle zeroing any space in the last block of the
392 * file that is beyond the EOF. We do this since the size is being increased
393 * without writing anything to that block and we don't want to read the
394 * garbage on the disk.
dda35b8f
CH
395 */
396STATIC int /* error (positive) */
397xfs_zero_last_block(
193aec10
CH
398 struct xfs_inode *ip,
399 xfs_fsize_t offset,
400 xfs_fsize_t isize)
dda35b8f 401{
193aec10
CH
402 struct xfs_mount *mp = ip->i_mount;
403 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
404 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
405 int zero_len;
406 int nimaps = 1;
407 int error = 0;
408 struct xfs_bmbt_irec imap;
dda35b8f 409
193aec10 410 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 411 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 412 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 413 if (error)
dda35b8f 414 return error;
193aec10 415
dda35b8f 416 ASSERT(nimaps > 0);
193aec10 417
dda35b8f
CH
418 /*
419 * If the block underlying isize is just a hole, then there
420 * is nothing to zero.
421 */
193aec10 422 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 423 return 0;
dda35b8f
CH
424
425 zero_len = mp->m_sb.sb_blocksize - zero_offset;
426 if (isize + zero_len > offset)
427 zero_len = offset - isize;
193aec10 428 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
429}
430
431/*
193aec10
CH
432 * Zero any on disk space between the current EOF and the new, larger EOF.
433 *
434 * This handles the normal case of zeroing the remainder of the last block in
435 * the file and the unusual case of zeroing blocks out beyond the size of the
436 * file. This second case only happens with fixed size extents and when the
437 * system crashes before the inode size was updated but after blocks were
438 * allocated.
439 *
440 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 441 */
dda35b8f
CH
442int /* error (positive) */
443xfs_zero_eof(
193aec10
CH
444 struct xfs_inode *ip,
445 xfs_off_t offset, /* starting I/O offset */
446 xfs_fsize_t isize) /* current inode size */
dda35b8f 447{
193aec10
CH
448 struct xfs_mount *mp = ip->i_mount;
449 xfs_fileoff_t start_zero_fsb;
450 xfs_fileoff_t end_zero_fsb;
451 xfs_fileoff_t zero_count_fsb;
452 xfs_fileoff_t last_fsb;
453 xfs_fileoff_t zero_off;
454 xfs_fsize_t zero_len;
455 int nimaps;
456 int error = 0;
457 struct xfs_bmbt_irec imap;
458
459 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
460 ASSERT(offset > isize);
461
462 /*
463 * First handle zeroing the block on which isize resides.
193aec10 464 *
dda35b8f
CH
465 * We only zero a part of that block so it is handled specially.
466 */
193aec10
CH
467 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
468 error = xfs_zero_last_block(ip, offset, isize);
469 if (error)
470 return error;
dda35b8f
CH
471 }
472
473 /*
193aec10
CH
474 * Calculate the range between the new size and the old where blocks
475 * needing to be zeroed may exist.
476 *
477 * To get the block where the last byte in the file currently resides,
478 * we need to subtract one from the size and truncate back to a block
479 * boundary. We subtract 1 in case the size is exactly on a block
480 * boundary.
dda35b8f
CH
481 */
482 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
483 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
484 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
485 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
486 if (last_fsb == end_zero_fsb) {
487 /*
488 * The size was only incremented on its last block.
489 * We took care of that above, so just return.
490 */
491 return 0;
492 }
493
494 ASSERT(start_zero_fsb <= end_zero_fsb);
495 while (start_zero_fsb <= end_zero_fsb) {
496 nimaps = 1;
497 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
498
499 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
500 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
501 &imap, &nimaps, 0);
193aec10
CH
502 xfs_iunlock(ip, XFS_ILOCK_EXCL);
503 if (error)
dda35b8f 504 return error;
193aec10 505
dda35b8f
CH
506 ASSERT(nimaps > 0);
507
508 if (imap.br_state == XFS_EXT_UNWRITTEN ||
509 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
510 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
511 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
512 continue;
513 }
514
515 /*
516 * There are blocks we need to zero.
dda35b8f 517 */
dda35b8f
CH
518 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
519 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
520
521 if ((zero_off + zero_len) > offset)
522 zero_len = offset - zero_off;
523
524 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
525 if (error)
526 return error;
dda35b8f
CH
527
528 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
529 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
530 }
531
532 return 0;
dda35b8f
CH
533}
534
4d8d1581
DC
535/*
536 * Common pre-write limit and setup checks.
537 *
5bf1f262
CH
538 * Called with the iolocked held either shared and exclusive according to
539 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
540 * if called for a direct write beyond i_size.
4d8d1581
DC
541 */
542STATIC ssize_t
543xfs_file_aio_write_checks(
544 struct file *file,
545 loff_t *pos,
546 size_t *count,
547 int *iolock)
548{
549 struct inode *inode = file->f_mapping->host;
550 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
551 int error = 0;
552
7271d243 553restart:
4d8d1581 554 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 555 if (error)
4d8d1581 556 return error;
4d8d1581 557
781355c6
CH
558 error = xfs_break_layouts(inode, iolock);
559 if (error)
560 return error;
561
4d8d1581
DC
562 /*
563 * If the offset is beyond the size of the file, we need to zero any
564 * blocks that fall between the existing EOF and the start of this
2813d682 565 * write. If zeroing is needed and we are currently holding the
467f7899
CH
566 * iolock shared, we need to update it to exclusive which implies
567 * having to redo all checks before.
b9d59846
DC
568 *
569 * We need to serialise against EOF updates that occur in IO
570 * completions here. We want to make sure that nobody is changing the
571 * size while we do this check until we have placed an IO barrier (i.e.
572 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
573 * The spinlock effectively forms a memory barrier once we have the
574 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
575 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 576 */
b9d59846 577 spin_lock(&ip->i_flags_lock);
2813d682 578 if (*pos > i_size_read(inode)) {
b9d59846 579 spin_unlock(&ip->i_flags_lock);
7271d243 580 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 581 xfs_rw_iunlock(ip, *iolock);
7271d243 582 *iolock = XFS_IOLOCK_EXCL;
467f7899 583 xfs_rw_ilock(ip, *iolock);
7271d243
DC
584 goto restart;
585 }
2451337d 586 error = xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
587 if (error)
588 return error;
b9d59846
DC
589 } else
590 spin_unlock(&ip->i_flags_lock);
4d8d1581 591
8a9c9980
CH
592 /*
593 * Updating the timestamps will grab the ilock again from
594 * xfs_fs_dirty_inode, so we have to call it after dropping the
595 * lock above. Eventually we should look into a way to avoid
596 * the pointless lock roundtrip.
597 */
c3b2da31
JB
598 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
599 error = file_update_time(file);
600 if (error)
601 return error;
602 }
8a9c9980 603
4d8d1581
DC
604 /*
605 * If we're writing the file then make sure to clear the setuid and
606 * setgid bits if the process is not being run by root. This keeps
607 * people from modifying setuid and setgid binaries.
608 */
609 return file_remove_suid(file);
4d8d1581
DC
610}
611
f0d26e86
DC
612/*
613 * xfs_file_dio_aio_write - handle direct IO writes
614 *
615 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 616 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
617 * follow locking changes and looping.
618 *
eda77982
DC
619 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
620 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
621 * pages are flushed out.
622 *
623 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
624 * allowing them to be done in parallel with reads and other direct IO writes.
625 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
626 * needs to do sub-block zeroing and that requires serialisation against other
627 * direct IOs to the same block. In this case we need to serialise the
628 * submission of the unaligned IOs so that we don't get racing block zeroing in
629 * the dio layer. To avoid the problem with aio, we also need to wait for
630 * outstanding IOs to complete so that unwritten extent conversion is completed
631 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 632 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 633 *
f0d26e86
DC
634 * Returns with locks held indicated by @iolock and errors indicated by
635 * negative return values.
636 */
637STATIC ssize_t
638xfs_file_dio_aio_write(
639 struct kiocb *iocb,
b3188919 640 struct iov_iter *from)
f0d26e86
DC
641{
642 struct file *file = iocb->ki_filp;
643 struct address_space *mapping = file->f_mapping;
644 struct inode *inode = mapping->host;
645 struct xfs_inode *ip = XFS_I(inode);
646 struct xfs_mount *mp = ip->i_mount;
647 ssize_t ret = 0;
eda77982 648 int unaligned_io = 0;
d0606464 649 int iolock;
b3188919
AV
650 size_t count = iov_iter_count(from);
651 loff_t pos = iocb->ki_pos;
f0d26e86
DC
652 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
653 mp->m_rtdev_targp : mp->m_ddev_targp;
654
7c71ee78
ES
655 /* DIO must be aligned to device logical sector size */
656 if ((pos | count) & target->bt_logical_sectormask)
b474c7ae 657 return -EINVAL;
f0d26e86 658
7c71ee78 659 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
660 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
661 unaligned_io = 1;
662
7271d243
DC
663 /*
664 * We don't need to take an exclusive lock unless there page cache needs
665 * to be invalidated or unaligned IO is being executed. We don't need to
666 * consider the EOF extension case here because
667 * xfs_file_aio_write_checks() will relock the inode as necessary for
668 * EOF zeroing cases and fill out the new inode size as appropriate.
669 */
670 if (unaligned_io || mapping->nrpages)
d0606464 671 iolock = XFS_IOLOCK_EXCL;
f0d26e86 672 else
d0606464
CH
673 iolock = XFS_IOLOCK_SHARED;
674 xfs_rw_ilock(ip, iolock);
c58cb165
CH
675
676 /*
677 * Recheck if there are cached pages that need invalidate after we got
678 * the iolock to protect against other threads adding new pages while
679 * we were waiting for the iolock.
680 */
d0606464
CH
681 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
682 xfs_rw_iunlock(ip, iolock);
683 iolock = XFS_IOLOCK_EXCL;
684 xfs_rw_ilock(ip, iolock);
c58cb165 685 }
f0d26e86 686
d0606464 687 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 688 if (ret)
d0606464 689 goto out;
b3188919 690 iov_iter_truncate(from, count);
f0d26e86
DC
691
692 if (mapping->nrpages) {
07d5035a 693 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
7d4ea3ce 694 pos, pos + count - 1);
f0d26e86 695 if (ret)
d0606464 696 goto out;
834ffca6
DC
697 /*
698 * Invalidate whole pages. This can return an error if
699 * we fail to invalidate a page, but this should never
700 * happen on XFS. Warn if it does fail.
701 */
702 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
703 pos >> PAGE_CACHE_SHIFT,
704 (pos + count - 1) >> PAGE_CACHE_SHIFT);
834ffca6
DC
705 WARN_ON_ONCE(ret);
706 ret = 0;
f0d26e86
DC
707 }
708
eda77982
DC
709 /*
710 * If we are doing unaligned IO, wait for all other IO to drain,
711 * otherwise demote the lock if we had to flush cached pages
712 */
713 if (unaligned_io)
4a06fd26 714 inode_dio_wait(inode);
d0606464 715 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 716 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 717 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
718 }
719
720 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
b3188919 721 ret = generic_file_direct_write(iocb, from, pos);
f0d26e86 722
d0606464
CH
723out:
724 xfs_rw_iunlock(ip, iolock);
725
f0d26e86
DC
726 /* No fallback to buffered IO on errors for XFS. */
727 ASSERT(ret < 0 || ret == count);
728 return ret;
729}
730
00258e36 731STATIC ssize_t
637bbc75 732xfs_file_buffered_aio_write(
dda35b8f 733 struct kiocb *iocb,
b3188919 734 struct iov_iter *from)
dda35b8f
CH
735{
736 struct file *file = iocb->ki_filp;
737 struct address_space *mapping = file->f_mapping;
738 struct inode *inode = mapping->host;
00258e36 739 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
740 ssize_t ret;
741 int enospc = 0;
d0606464 742 int iolock = XFS_IOLOCK_EXCL;
b3188919
AV
743 loff_t pos = iocb->ki_pos;
744 size_t count = iov_iter_count(from);
dda35b8f 745
d0606464 746 xfs_rw_ilock(ip, iolock);
dda35b8f 747
d0606464 748 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 749 if (ret)
d0606464 750 goto out;
dda35b8f 751
b3188919 752 iov_iter_truncate(from, count);
dda35b8f 753 /* We can write back this queue in page reclaim */
de1414a6 754 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 755
dda35b8f 756write_retry:
637bbc75 757 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
b3188919 758 ret = generic_perform_write(file, from, pos);
0a64bc2c
AV
759 if (likely(ret >= 0))
760 iocb->ki_pos = pos + ret;
dc06f398 761
637bbc75 762 /*
dc06f398
BF
763 * If we hit a space limit, try to free up some lingering preallocated
764 * space before returning an error. In the case of ENOSPC, first try to
765 * write back all dirty inodes to free up some of the excess reserved
766 * metadata space. This reduces the chances that the eofblocks scan
767 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
768 * also behaves as a filter to prevent too many eofblocks scans from
769 * running at the same time.
637bbc75 770 */
dc06f398
BF
771 if (ret == -EDQUOT && !enospc) {
772 enospc = xfs_inode_free_quota_eofblocks(ip);
773 if (enospc)
774 goto write_retry;
775 } else if (ret == -ENOSPC && !enospc) {
776 struct xfs_eofblocks eofb = {0};
777
637bbc75 778 enospc = 1;
9aa05000 779 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
780 eofb.eof_scan_owner = ip->i_ino; /* for locking */
781 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
782 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 783 goto write_retry;
dda35b8f 784 }
d0606464 785
dda35b8f 786 current->backing_dev_info = NULL;
d0606464
CH
787out:
788 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
789 return ret;
790}
791
792STATIC ssize_t
bf97f3bc 793xfs_file_write_iter(
637bbc75 794 struct kiocb *iocb,
bf97f3bc 795 struct iov_iter *from)
637bbc75
DC
796{
797 struct file *file = iocb->ki_filp;
798 struct address_space *mapping = file->f_mapping;
799 struct inode *inode = mapping->host;
800 struct xfs_inode *ip = XFS_I(inode);
801 ssize_t ret;
bf97f3bc 802 size_t ocount = iov_iter_count(from);
637bbc75
DC
803
804 XFS_STATS_INC(xs_write_calls);
805
637bbc75
DC
806 if (ocount == 0)
807 return 0;
808
bf97f3bc
AV
809 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
810 return -EIO;
637bbc75
DC
811
812 if (unlikely(file->f_flags & O_DIRECT))
bf97f3bc 813 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 814 else
bf97f3bc 815 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 816
d0606464
CH
817 if (ret > 0) {
818 ssize_t err;
dda35b8f 819
d0606464 820 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 821
d0606464 822 /* Handle various SYNC-type writes */
d311d79d 823 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
824 if (err < 0)
825 ret = err;
dda35b8f 826 }
a363f0c2 827 return ret;
dda35b8f
CH
828}
829
2fe17c10
CH
830STATIC long
831xfs_file_fallocate(
83aee9e4
CH
832 struct file *file,
833 int mode,
834 loff_t offset,
835 loff_t len)
2fe17c10 836{
83aee9e4
CH
837 struct inode *inode = file_inode(file);
838 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 839 long error;
8add71ca 840 enum xfs_prealloc_flags flags = 0;
781355c6 841 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 842 loff_t new_size = 0;
2fe17c10 843
83aee9e4
CH
844 if (!S_ISREG(inode->i_mode))
845 return -EINVAL;
e1d8fb88 846 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
376ba313 847 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
848 return -EOPNOTSUPP;
849
781355c6
CH
850 xfs_ilock(ip, iolock);
851 error = xfs_break_layouts(inode, &iolock);
852 if (error)
853 goto out_unlock;
854
83aee9e4
CH
855 if (mode & FALLOC_FL_PUNCH_HOLE) {
856 error = xfs_free_file_space(ip, offset, len);
857 if (error)
858 goto out_unlock;
e1d8fb88
NJ
859 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
860 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
861
862 if (offset & blksize_mask || len & blksize_mask) {
2451337d 863 error = -EINVAL;
e1d8fb88
NJ
864 goto out_unlock;
865 }
866
23fffa92
LC
867 /*
868 * There is no need to overlap collapse range with EOF,
869 * in which case it is effectively a truncate operation
870 */
871 if (offset + len >= i_size_read(inode)) {
2451337d 872 error = -EINVAL;
23fffa92
LC
873 goto out_unlock;
874 }
875
e1d8fb88
NJ
876 new_size = i_size_read(inode) - len;
877
878 error = xfs_collapse_file_space(ip, offset, len);
879 if (error)
880 goto out_unlock;
83aee9e4 881 } else {
8add71ca
CH
882 flags |= XFS_PREALLOC_SET;
883
83aee9e4
CH
884 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
885 offset + len > i_size_read(inode)) {
886 new_size = offset + len;
2451337d 887 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
888 if (error)
889 goto out_unlock;
890 }
2fe17c10 891
376ba313
LC
892 if (mode & FALLOC_FL_ZERO_RANGE)
893 error = xfs_zero_file_space(ip, offset, len);
894 else
895 error = xfs_alloc_file_space(ip, offset, len,
896 XFS_BMAPI_PREALLOC);
2fe17c10
CH
897 if (error)
898 goto out_unlock;
899 }
900
83aee9e4 901 if (file->f_flags & O_DSYNC)
8add71ca
CH
902 flags |= XFS_PREALLOC_SYNC;
903
904 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
905 if (error)
906 goto out_unlock;
907
908 /* Change file size if needed */
909 if (new_size) {
910 struct iattr iattr;
911
912 iattr.ia_valid = ATTR_SIZE;
913 iattr.ia_size = new_size;
83aee9e4 914 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
915 }
916
917out_unlock:
781355c6 918 xfs_iunlock(ip, iolock);
2451337d 919 return error;
2fe17c10
CH
920}
921
922
1da177e4 923STATIC int
3562fd45 924xfs_file_open(
1da177e4 925 struct inode *inode,
f999a5bf 926 struct file *file)
1da177e4 927{
f999a5bf 928 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 929 return -EFBIG;
f999a5bf
CH
930 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
931 return -EIO;
932 return 0;
933}
934
935STATIC int
936xfs_dir_open(
937 struct inode *inode,
938 struct file *file)
939{
940 struct xfs_inode *ip = XFS_I(inode);
941 int mode;
942 int error;
943
944 error = xfs_file_open(inode, file);
945 if (error)
946 return error;
947
948 /*
949 * If there are any blocks, read-ahead block 0 as we're almost
950 * certain to have the next operation be a read there.
951 */
309ecac8 952 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 953 if (ip->i_d.di_nextents > 0)
9df2dd0b 954 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
955 xfs_iunlock(ip, mode);
956 return 0;
1da177e4
LT
957}
958
1da177e4 959STATIC int
3562fd45 960xfs_file_release(
1da177e4
LT
961 struct inode *inode,
962 struct file *filp)
963{
2451337d 964 return xfs_release(XFS_I(inode));
1da177e4
LT
965}
966
1da177e4 967STATIC int
3562fd45 968xfs_file_readdir(
b8227554
AV
969 struct file *file,
970 struct dir_context *ctx)
1da177e4 971{
b8227554 972 struct inode *inode = file_inode(file);
739bfb2a 973 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
974 size_t bufsize;
975
976 /*
977 * The Linux API doesn't pass down the total size of the buffer
978 * we read into down to the filesystem. With the filldir concept
979 * it's not needed for correct information, but the XFS dir2 leaf
980 * code wants an estimate of the buffer size to calculate it's
981 * readahead window and size the buffers used for mapping to
982 * physical blocks.
983 *
984 * Try to give it an estimate that's good enough, maybe at some
985 * point we can change the ->readdir prototype to include the
a9cc799e 986 * buffer size. For now we use the current glibc buffer size.
051e7cd4 987 */
a9cc799e 988 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 989
8300475e 990 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
991}
992
1da177e4 993STATIC int
3562fd45 994xfs_file_mmap(
1da177e4
LT
995 struct file *filp,
996 struct vm_area_struct *vma)
997{
3562fd45 998 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 999
fbc1462b 1000 file_accessed(filp);
1da177e4
LT
1001 return 0;
1002}
1003
4f57dbc6
DC
1004/*
1005 * mmap()d file has taken write protection fault and is being made
1006 * writable. We can set the page state up correctly for a writable
1007 * page, which means we can do correct delalloc accounting (ENOSPC
1008 * checking!) and unwritten extent mapping.
1009 */
1010STATIC int
1011xfs_vm_page_mkwrite(
1012 struct vm_area_struct *vma,
c2ec175c 1013 struct vm_fault *vmf)
4f57dbc6 1014{
c2ec175c 1015 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
1016}
1017
d126d43f
JL
1018/*
1019 * This type is designed to indicate the type of offset we would like
49c69591 1020 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1021 */
1022enum {
1023 HOLE_OFF = 0,
1024 DATA_OFF,
1025};
1026
1027/*
1028 * Lookup the desired type of offset from the given page.
1029 *
1030 * On success, return true and the offset argument will point to the
1031 * start of the region that was found. Otherwise this function will
1032 * return false and keep the offset argument unchanged.
1033 */
1034STATIC bool
1035xfs_lookup_buffer_offset(
1036 struct page *page,
1037 loff_t *offset,
1038 unsigned int type)
1039{
1040 loff_t lastoff = page_offset(page);
1041 bool found = false;
1042 struct buffer_head *bh, *head;
1043
1044 bh = head = page_buffers(page);
1045 do {
1046 /*
1047 * Unwritten extents that have data in the page
1048 * cache covering them can be identified by the
1049 * BH_Unwritten state flag. Pages with multiple
1050 * buffers might have a mix of holes, data and
1051 * unwritten extents - any buffer with valid
1052 * data in it should have BH_Uptodate flag set
1053 * on it.
1054 */
1055 if (buffer_unwritten(bh) ||
1056 buffer_uptodate(bh)) {
1057 if (type == DATA_OFF)
1058 found = true;
1059 } else {
1060 if (type == HOLE_OFF)
1061 found = true;
1062 }
1063
1064 if (found) {
1065 *offset = lastoff;
1066 break;
1067 }
1068 lastoff += bh->b_size;
1069 } while ((bh = bh->b_this_page) != head);
1070
1071 return found;
1072}
1073
1074/*
1075 * This routine is called to find out and return a data or hole offset
1076 * from the page cache for unwritten extents according to the desired
49c69591 1077 * type for xfs_seek_hole_data().
d126d43f
JL
1078 *
1079 * The argument offset is used to tell where we start to search from the
1080 * page cache. Map is used to figure out the end points of the range to
1081 * lookup pages.
1082 *
1083 * Return true if the desired type of offset was found, and the argument
1084 * offset is filled with that address. Otherwise, return false and keep
1085 * offset unchanged.
1086 */
1087STATIC bool
1088xfs_find_get_desired_pgoff(
1089 struct inode *inode,
1090 struct xfs_bmbt_irec *map,
1091 unsigned int type,
1092 loff_t *offset)
1093{
1094 struct xfs_inode *ip = XFS_I(inode);
1095 struct xfs_mount *mp = ip->i_mount;
1096 struct pagevec pvec;
1097 pgoff_t index;
1098 pgoff_t end;
1099 loff_t endoff;
1100 loff_t startoff = *offset;
1101 loff_t lastoff = startoff;
1102 bool found = false;
1103
1104 pagevec_init(&pvec, 0);
1105
1106 index = startoff >> PAGE_CACHE_SHIFT;
1107 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1108 end = endoff >> PAGE_CACHE_SHIFT;
1109 do {
1110 int want;
1111 unsigned nr_pages;
1112 unsigned int i;
1113
1114 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1115 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1116 want);
1117 /*
1118 * No page mapped into given range. If we are searching holes
1119 * and if this is the first time we got into the loop, it means
1120 * that the given offset is landed in a hole, return it.
1121 *
1122 * If we have already stepped through some block buffers to find
1123 * holes but they all contains data. In this case, the last
1124 * offset is already updated and pointed to the end of the last
1125 * mapped page, if it does not reach the endpoint to search,
1126 * that means there should be a hole between them.
1127 */
1128 if (nr_pages == 0) {
1129 /* Data search found nothing */
1130 if (type == DATA_OFF)
1131 break;
1132
1133 ASSERT(type == HOLE_OFF);
1134 if (lastoff == startoff || lastoff < endoff) {
1135 found = true;
1136 *offset = lastoff;
1137 }
1138 break;
1139 }
1140
1141 /*
1142 * At lease we found one page. If this is the first time we
1143 * step into the loop, and if the first page index offset is
1144 * greater than the given search offset, a hole was found.
1145 */
1146 if (type == HOLE_OFF && lastoff == startoff &&
1147 lastoff < page_offset(pvec.pages[0])) {
1148 found = true;
1149 break;
1150 }
1151
1152 for (i = 0; i < nr_pages; i++) {
1153 struct page *page = pvec.pages[i];
1154 loff_t b_offset;
1155
1156 /*
1157 * At this point, the page may be truncated or
1158 * invalidated (changing page->mapping to NULL),
1159 * or even swizzled back from swapper_space to tmpfs
1160 * file mapping. However, page->index will not change
1161 * because we have a reference on the page.
1162 *
1163 * Searching done if the page index is out of range.
1164 * If the current offset is not reaches the end of
1165 * the specified search range, there should be a hole
1166 * between them.
1167 */
1168 if (page->index > end) {
1169 if (type == HOLE_OFF && lastoff < endoff) {
1170 *offset = lastoff;
1171 found = true;
1172 }
1173 goto out;
1174 }
1175
1176 lock_page(page);
1177 /*
1178 * Page truncated or invalidated(page->mapping == NULL).
1179 * We can freely skip it and proceed to check the next
1180 * page.
1181 */
1182 if (unlikely(page->mapping != inode->i_mapping)) {
1183 unlock_page(page);
1184 continue;
1185 }
1186
1187 if (!page_has_buffers(page)) {
1188 unlock_page(page);
1189 continue;
1190 }
1191
1192 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1193 if (found) {
1194 /*
1195 * The found offset may be less than the start
1196 * point to search if this is the first time to
1197 * come here.
1198 */
1199 *offset = max_t(loff_t, startoff, b_offset);
1200 unlock_page(page);
1201 goto out;
1202 }
1203
1204 /*
1205 * We either searching data but nothing was found, or
1206 * searching hole but found a data buffer. In either
1207 * case, probably the next page contains the desired
1208 * things, update the last offset to it so.
1209 */
1210 lastoff = page_offset(page) + PAGE_SIZE;
1211 unlock_page(page);
1212 }
1213
1214 /*
1215 * The number of returned pages less than our desired, search
1216 * done. In this case, nothing was found for searching data,
1217 * but we found a hole behind the last offset.
1218 */
1219 if (nr_pages < want) {
1220 if (type == HOLE_OFF) {
1221 *offset = lastoff;
1222 found = true;
1223 }
1224 break;
1225 }
1226
1227 index = pvec.pages[i - 1]->index + 1;
1228 pagevec_release(&pvec);
1229 } while (index <= end);
1230
1231out:
1232 pagevec_release(&pvec);
1233 return found;
1234}
1235
3fe3e6b1 1236STATIC loff_t
49c69591 1237xfs_seek_hole_data(
3fe3e6b1 1238 struct file *file,
49c69591
ES
1239 loff_t start,
1240 int whence)
3fe3e6b1
JL
1241{
1242 struct inode *inode = file->f_mapping->host;
1243 struct xfs_inode *ip = XFS_I(inode);
1244 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1245 loff_t uninitialized_var(offset);
1246 xfs_fsize_t isize;
1247 xfs_fileoff_t fsbno;
1248 xfs_filblks_t end;
1249 uint lock;
1250 int error;
1251
49c69591
ES
1252 if (XFS_FORCED_SHUTDOWN(mp))
1253 return -EIO;
1254
309ecac8 1255 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1256
1257 isize = i_size_read(inode);
1258 if (start >= isize) {
2451337d 1259 error = -ENXIO;
3fe3e6b1
JL
1260 goto out_unlock;
1261 }
1262
3fe3e6b1
JL
1263 /*
1264 * Try to read extents from the first block indicated
1265 * by fsbno to the end block of the file.
1266 */
52f1acc8 1267 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1268 end = XFS_B_TO_FSB(mp, isize);
49c69591 1269
52f1acc8
JL
1270 for (;;) {
1271 struct xfs_bmbt_irec map[2];
1272 int nmap = 2;
1273 unsigned int i;
3fe3e6b1 1274
52f1acc8
JL
1275 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1276 XFS_BMAPI_ENTIRE);
1277 if (error)
1278 goto out_unlock;
3fe3e6b1 1279
52f1acc8
JL
1280 /* No extents at given offset, must be beyond EOF */
1281 if (nmap == 0) {
2451337d 1282 error = -ENXIO;
52f1acc8
JL
1283 goto out_unlock;
1284 }
1285
1286 for (i = 0; i < nmap; i++) {
1287 offset = max_t(loff_t, start,
1288 XFS_FSB_TO_B(mp, map[i].br_startoff));
1289
49c69591
ES
1290 /* Landed in the hole we wanted? */
1291 if (whence == SEEK_HOLE &&
1292 map[i].br_startblock == HOLESTARTBLOCK)
1293 goto out;
1294
1295 /* Landed in the data extent we wanted? */
1296 if (whence == SEEK_DATA &&
1297 (map[i].br_startblock == DELAYSTARTBLOCK ||
1298 (map[i].br_state == XFS_EXT_NORM &&
1299 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1300 goto out;
1301
1302 /*
49c69591
ES
1303 * Landed in an unwritten extent, try to search
1304 * for hole or data from page cache.
52f1acc8
JL
1305 */
1306 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1307 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1308 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1309 &offset))
52f1acc8
JL
1310 goto out;
1311 }
1312 }
1313
1314 /*
49c69591
ES
1315 * We only received one extent out of the two requested. This
1316 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1317 */
3fe3e6b1 1318 if (nmap == 1) {
49c69591
ES
1319 /*
1320 * If we were looking for a hole, set offset to
1321 * the end of the file (i.e., there is an implicit
1322 * hole at the end of any file).
1323 */
1324 if (whence == SEEK_HOLE) {
1325 offset = isize;
1326 break;
1327 }
1328 /*
1329 * If we were looking for data, it's nowhere to be found
1330 */
1331 ASSERT(whence == SEEK_DATA);
2451337d 1332 error = -ENXIO;
3fe3e6b1
JL
1333 goto out_unlock;
1334 }
1335
52f1acc8
JL
1336 ASSERT(i > 1);
1337
1338 /*
1339 * Nothing was found, proceed to the next round of search
49c69591 1340 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1341 */
1342 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1343 start = XFS_FSB_TO_B(mp, fsbno);
1344 if (start >= isize) {
49c69591
ES
1345 if (whence == SEEK_HOLE) {
1346 offset = isize;
1347 break;
1348 }
1349 ASSERT(whence == SEEK_DATA);
2451337d 1350 error = -ENXIO;
52f1acc8
JL
1351 goto out_unlock;
1352 }
3fe3e6b1
JL
1353 }
1354
b686d1f7
JL
1355out:
1356 /*
49c69591 1357 * If at this point we have found the hole we wanted, the returned
b686d1f7 1358 * offset may be bigger than the file size as it may be aligned to
49c69591 1359 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1360 * situation in particular.
1361 */
49c69591
ES
1362 if (whence == SEEK_HOLE)
1363 offset = min_t(loff_t, offset, isize);
46a1c2c7 1364 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1365
1366out_unlock:
01f4f327 1367 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1368
1369 if (error)
2451337d 1370 return error;
3fe3e6b1
JL
1371 return offset;
1372}
1373
1374STATIC loff_t
1375xfs_file_llseek(
1376 struct file *file,
1377 loff_t offset,
59f9c004 1378 int whence)
3fe3e6b1 1379{
59f9c004 1380 switch (whence) {
3fe3e6b1
JL
1381 case SEEK_END:
1382 case SEEK_CUR:
1383 case SEEK_SET:
59f9c004 1384 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1385 case SEEK_HOLE:
49c69591 1386 case SEEK_DATA:
59f9c004 1387 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1388 default:
1389 return -EINVAL;
1390 }
1391}
1392
4b6f5d20 1393const struct file_operations xfs_file_operations = {
3fe3e6b1 1394 .llseek = xfs_file_llseek,
b4f5d2c6 1395 .read = new_sync_read,
bf97f3bc 1396 .write = new_sync_write,
b4f5d2c6 1397 .read_iter = xfs_file_read_iter,
bf97f3bc 1398 .write_iter = xfs_file_write_iter,
1b895840 1399 .splice_read = xfs_file_splice_read,
8d020765 1400 .splice_write = iter_file_splice_write,
3562fd45 1401 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1402#ifdef CONFIG_COMPAT
3562fd45 1403 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1404#endif
3562fd45
NS
1405 .mmap = xfs_file_mmap,
1406 .open = xfs_file_open,
1407 .release = xfs_file_release,
1408 .fsync = xfs_file_fsync,
2fe17c10 1409 .fallocate = xfs_file_fallocate,
1da177e4
LT
1410};
1411
4b6f5d20 1412const struct file_operations xfs_dir_file_operations = {
f999a5bf 1413 .open = xfs_dir_open,
1da177e4 1414 .read = generic_read_dir,
b8227554 1415 .iterate = xfs_file_readdir,
59af1584 1416 .llseek = generic_file_llseek,
3562fd45 1417 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1418#ifdef CONFIG_COMPAT
3562fd45 1419 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1420#endif
1da2f2db 1421 .fsync = xfs_dir_fsync,
1da177e4
LT
1422};
1423
f0f37e2f 1424static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1425 .fault = filemap_fault,
f1820361 1426 .map_pages = filemap_map_pages,
4f57dbc6 1427 .page_mkwrite = xfs_vm_page_mkwrite,
6fac0cb4 1428};