xfs: remove i_iolock and use i_rwsem in the VFS inode instead
[linux-2.6-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
0613f16c 41#include "xfs_reflink.h"
1da177e4
LT
42
43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
66114cad 46#include <linux/backing-dev.h>
1da177e4 47
f0f37e2f 48static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 49
dda35b8f 50/*
68a9f5e7
CH
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
dda35b8f 53 */
ef9d8733 54int
7bb41db3 55xfs_zero_range(
68a9f5e7 56 struct xfs_inode *ip,
7bb41db3
CH
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
dda35b8f 60{
459f0fbc 61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
dda35b8f
CH
62}
63
8add71ca
CH
64int
65xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
68{
69 struct xfs_trans *tp;
70 int error;
71
253f4911
CH
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
8add71ca 75 return error;
8add71ca
CH
76
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 }
86
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
70393313 95 return xfs_trans_commit(tp);
8add71ca
CH
96}
97
1da2f2db
CH
98/*
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
103 */
104STATIC int
105xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
110{
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
114
115 trace_xfs_dir_fsync(ip);
116
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121
122 if (!lsn)
123 return 0;
2451337d 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
125}
126
fd3200be
CH
127STATIC int
128xfs_file_fsync(
129 struct file *file,
02c24a82
JB
130 loff_t start,
131 loff_t end,
fd3200be
CH
132 int datasync)
133{
7ea80859
CH
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
a27a263b 136 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
137 int error = 0;
138 int log_flushed = 0;
b1037058 139 xfs_lsn_t lsn = 0;
fd3200be 140
cca28fb8 141 trace_xfs_file_fsync(ip);
fd3200be 142
02c24a82
JB
143 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 if (error)
145 return error;
146
a27a263b 147 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 148 return -EIO;
fd3200be
CH
149
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
151
a27a263b
CH
152 if (mp->m_flags & XFS_MOUNT_BARRIER) {
153 /*
154 * If we have an RT and/or log subvolume we need to make sure
155 * to flush the write cache the device used for file data
156 * first. This is to ensure newly written file data make
157 * it to disk before logging the new inode size in case of
158 * an extending write.
159 */
160 if (XFS_IS_REALTIME_INODE(ip))
161 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
162 else if (mp->m_logdev_targp != mp->m_ddev_targp)
163 xfs_blkdev_issue_flush(mp->m_ddev_targp);
164 }
165
fd3200be 166 /*
fc0561ce
DC
167 * All metadata updates are logged, which means that we just have to
168 * flush the log up to the latest LSN that touched the inode. If we have
169 * concurrent fsync/fdatasync() calls, we need them to all block on the
170 * log force before we clear the ili_fsync_fields field. This ensures
171 * that we don't get a racing sync operation that does not wait for the
172 * metadata to hit the journal before returning. If we race with
173 * clearing the ili_fsync_fields, then all that will happen is the log
174 * force will do nothing as the lsn will already be on disk. We can't
175 * race with setting ili_fsync_fields because that is done under
176 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
177 * until after the ili_fsync_fields is cleared.
fd3200be
CH
178 */
179 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
180 if (xfs_ipincount(ip)) {
181 if (!datasync ||
fc0561ce 182 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
183 lsn = ip->i_itemp->ili_last_lsn;
184 }
fd3200be 185
fc0561ce 186 if (lsn) {
b1037058 187 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
188 ip->i_itemp->ili_fsync_fields = 0;
189 }
190 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 191
a27a263b
CH
192 /*
193 * If we only have a single device, and the log force about was
194 * a no-op we might have to flush the data device cache here.
195 * This can only happen for fdatasync/O_DSYNC if we were overwriting
196 * an already allocated file and thus do not have any metadata to
197 * commit.
198 */
199 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
200 mp->m_logdev_targp == mp->m_ddev_targp &&
201 !XFS_IS_REALTIME_INODE(ip) &&
202 !log_flushed)
203 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 204
2451337d 205 return error;
fd3200be
CH
206}
207
00258e36 208STATIC ssize_t
bbc5a740 209xfs_file_dio_aio_read(
dda35b8f 210 struct kiocb *iocb,
b4f5d2c6 211 struct iov_iter *to)
dda35b8f 212{
bbc5a740
CH
213 struct address_space *mapping = iocb->ki_filp->f_mapping;
214 struct inode *inode = mapping->host;
00258e36 215 struct xfs_inode *ip = XFS_I(inode);
f1285ff0 216 loff_t isize = i_size_read(inode);
bbc5a740 217 size_t count = iov_iter_count(to);
0ee7a3f6 218 loff_t end = iocb->ki_pos + count - 1;
f1285ff0 219 struct iov_iter data;
bbc5a740 220 struct xfs_buftarg *target;
dda35b8f 221 ssize_t ret = 0;
dda35b8f 222
bbc5a740 223 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 224
f1285ff0
CH
225 if (!count)
226 return 0; /* skip atime */
dda35b8f 227
bbc5a740
CH
228 if (XFS_IS_REALTIME_INODE(ip))
229 target = ip->i_mount->m_rtdev_targp;
230 else
231 target = ip->i_mount->m_ddev_targp;
dda35b8f 232
16d4d435
CH
233 /* DIO must be aligned to device logical sector size */
234 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
235 if (iocb->ki_pos == isize)
236 return 0;
237 return -EINVAL;
dda35b8f 238 }
dda35b8f 239
a447d7cd
CH
240 file_accessed(iocb->ki_filp);
241
65523218 242 xfs_ilock(ip, XFS_IOLOCK_SHARED);
bbc5a740 243 if (mapping->nrpages) {
0ee7a3f6
CH
244 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
245 if (ret)
246 goto out_unlock;
487f84f3 247
3d751af2 248 /*
0ee7a3f6
CH
249 * Invalidate whole pages. This can return an error if we fail
250 * to invalidate a page, but this should never happen on XFS.
251 * Warn if it does fail.
3d751af2 252 */
0ee7a3f6
CH
253 ret = invalidate_inode_pages2_range(mapping,
254 iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
255 WARN_ON_ONCE(ret);
256 ret = 0;
0c38a251 257 }
dda35b8f 258
f1285ff0 259 data = *to;
16d4d435
CH
260 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
261 xfs_get_blocks_direct, NULL, NULL, 0);
c3a69024 262 if (ret >= 0) {
16d4d435
CH
263 iocb->ki_pos += ret;
264 iov_iter_advance(to, ret);
fa8d972d 265 }
dda35b8f 266
0ee7a3f6 267out_unlock:
65523218 268 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
16d4d435
CH
269 return ret;
270}
271
f021bd07 272static noinline ssize_t
16d4d435
CH
273xfs_file_dax_read(
274 struct kiocb *iocb,
275 struct iov_iter *to)
276{
6c31f495 277 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
278 size_t count = iov_iter_count(to);
279 ssize_t ret = 0;
280
281 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
282
283 if (!count)
284 return 0; /* skip atime */
285
65523218 286 xfs_ilock(ip, XFS_IOLOCK_SHARED);
11c59c92 287 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
65523218 288 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 289
f1285ff0 290 file_accessed(iocb->ki_filp);
bbc5a740
CH
291 return ret;
292}
293
294STATIC ssize_t
295xfs_file_buffered_aio_read(
296 struct kiocb *iocb,
297 struct iov_iter *to)
298{
299 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
300 ssize_t ret;
301
302 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 303
65523218 304 xfs_ilock(ip, XFS_IOLOCK_SHARED);
b4f5d2c6 305 ret = generic_file_read_iter(iocb, to);
65523218 306 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
307
308 return ret;
309}
310
311STATIC ssize_t
312xfs_file_read_iter(
313 struct kiocb *iocb,
314 struct iov_iter *to)
315{
16d4d435
CH
316 struct inode *inode = file_inode(iocb->ki_filp);
317 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
318 ssize_t ret = 0;
319
320 XFS_STATS_INC(mp, xs_read_calls);
321
322 if (XFS_FORCED_SHUTDOWN(mp))
323 return -EIO;
324
16d4d435
CH
325 if (IS_DAX(inode))
326 ret = xfs_file_dax_read(iocb, to);
327 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 328 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 329 else
bbc5a740 330 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 331
dda35b8f 332 if (ret > 0)
ff6d6af2 333 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
334 return ret;
335}
336
dda35b8f 337/*
193aec10
CH
338 * Zero any on disk space between the current EOF and the new, larger EOF.
339 *
340 * This handles the normal case of zeroing the remainder of the last block in
341 * the file and the unusual case of zeroing blocks out beyond the size of the
342 * file. This second case only happens with fixed size extents and when the
343 * system crashes before the inode size was updated but after blocks were
344 * allocated.
345 *
346 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 347 */
dda35b8f
CH
348int /* error (positive) */
349xfs_zero_eof(
193aec10
CH
350 struct xfs_inode *ip,
351 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
352 xfs_fsize_t isize, /* current inode size */
353 bool *did_zeroing)
dda35b8f 354{
193aec10 355 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
356 ASSERT(offset > isize);
357
0a50f162 358 trace_xfs_zero_eof(ip, isize, offset - isize);
570b6211 359 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
dda35b8f
CH
360}
361
4d8d1581
DC
362/*
363 * Common pre-write limit and setup checks.
364 *
5bf1f262
CH
365 * Called with the iolocked held either shared and exclusive according to
366 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
367 * if called for a direct write beyond i_size.
4d8d1581
DC
368 */
369STATIC ssize_t
370xfs_file_aio_write_checks(
99733fa3
AV
371 struct kiocb *iocb,
372 struct iov_iter *from,
4d8d1581
DC
373 int *iolock)
374{
99733fa3 375 struct file *file = iocb->ki_filp;
4d8d1581
DC
376 struct inode *inode = file->f_mapping->host;
377 struct xfs_inode *ip = XFS_I(inode);
3309dd04 378 ssize_t error = 0;
99733fa3 379 size_t count = iov_iter_count(from);
3136e8bb 380 bool drained_dio = false;
4d8d1581 381
7271d243 382restart:
3309dd04
AV
383 error = generic_write_checks(iocb, from);
384 if (error <= 0)
4d8d1581 385 return error;
4d8d1581 386
65523218 387 error = xfs_break_layouts(inode, iolock);
781355c6
CH
388 if (error)
389 return error;
390
65523218
CH
391 /*
392 * For changing security info in file_remove_privs() we need i_rwsem
393 * exclusively.
394 */
a6de82ca 395 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 396 xfs_iunlock(ip, *iolock);
a6de82ca 397 *iolock = XFS_IOLOCK_EXCL;
65523218 398 xfs_ilock(ip, *iolock);
a6de82ca
JK
399 goto restart;
400 }
4d8d1581
DC
401 /*
402 * If the offset is beyond the size of the file, we need to zero any
403 * blocks that fall between the existing EOF and the start of this
2813d682 404 * write. If zeroing is needed and we are currently holding the
467f7899
CH
405 * iolock shared, we need to update it to exclusive which implies
406 * having to redo all checks before.
b9d59846
DC
407 *
408 * We need to serialise against EOF updates that occur in IO
409 * completions here. We want to make sure that nobody is changing the
410 * size while we do this check until we have placed an IO barrier (i.e.
411 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
412 * The spinlock effectively forms a memory barrier once we have the
413 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
414 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 415 */
b9d59846 416 spin_lock(&ip->i_flags_lock);
99733fa3 417 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
418 bool zero = false;
419
b9d59846 420 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
421 if (!drained_dio) {
422 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 423 xfs_iunlock(ip, *iolock);
3136e8bb 424 *iolock = XFS_IOLOCK_EXCL;
65523218 425 xfs_ilock(ip, *iolock);
3136e8bb
BF
426 iov_iter_reexpand(from, count);
427 }
40c63fbc
DC
428 /*
429 * We now have an IO submission barrier in place, but
430 * AIO can do EOF updates during IO completion and hence
431 * we now need to wait for all of them to drain. Non-AIO
432 * DIO will have drained before we are given the
433 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
434 * no-op.
435 */
436 inode_dio_wait(inode);
3136e8bb 437 drained_dio = true;
7271d243
DC
438 goto restart;
439 }
99733fa3 440 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
441 if (error)
442 return error;
b9d59846
DC
443 } else
444 spin_unlock(&ip->i_flags_lock);
4d8d1581 445
8a9c9980
CH
446 /*
447 * Updating the timestamps will grab the ilock again from
448 * xfs_fs_dirty_inode, so we have to call it after dropping the
449 * lock above. Eventually we should look into a way to avoid
450 * the pointless lock roundtrip.
451 */
c3b2da31
JB
452 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
453 error = file_update_time(file);
454 if (error)
455 return error;
456 }
8a9c9980 457
4d8d1581
DC
458 /*
459 * If we're writing the file then make sure to clear the setuid and
460 * setgid bits if the process is not being run by root. This keeps
461 * people from modifying setuid and setgid binaries.
462 */
a6de82ca
JK
463 if (!IS_NOSEC(inode))
464 return file_remove_privs(file);
465 return 0;
4d8d1581
DC
466}
467
f0d26e86
DC
468/*
469 * xfs_file_dio_aio_write - handle direct IO writes
470 *
471 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 472 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
473 * follow locking changes and looping.
474 *
eda77982
DC
475 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
476 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
477 * pages are flushed out.
478 *
479 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
480 * allowing them to be done in parallel with reads and other direct IO writes.
481 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
482 * needs to do sub-block zeroing and that requires serialisation against other
483 * direct IOs to the same block. In this case we need to serialise the
484 * submission of the unaligned IOs so that we don't get racing block zeroing in
485 * the dio layer. To avoid the problem with aio, we also need to wait for
486 * outstanding IOs to complete so that unwritten extent conversion is completed
487 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 488 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 489 *
f0d26e86
DC
490 * Returns with locks held indicated by @iolock and errors indicated by
491 * negative return values.
492 */
493STATIC ssize_t
494xfs_file_dio_aio_write(
495 struct kiocb *iocb,
b3188919 496 struct iov_iter *from)
f0d26e86
DC
497{
498 struct file *file = iocb->ki_filp;
499 struct address_space *mapping = file->f_mapping;
500 struct inode *inode = mapping->host;
501 struct xfs_inode *ip = XFS_I(inode);
502 struct xfs_mount *mp = ip->i_mount;
503 ssize_t ret = 0;
eda77982 504 int unaligned_io = 0;
d0606464 505 int iolock;
b3188919 506 size_t count = iov_iter_count(from);
0cefb29e
DC
507 loff_t end;
508 struct iov_iter data;
f0d26e86
DC
509 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
510 mp->m_rtdev_targp : mp->m_ddev_targp;
511
7c71ee78 512 /* DIO must be aligned to device logical sector size */
16d4d435 513 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 514 return -EINVAL;
f0d26e86 515
7271d243 516 /*
0ee7a3f6
CH
517 * Don't take the exclusive iolock here unless the I/O is unaligned to
518 * the file system block size. We don't need to consider the EOF
519 * extension case here because xfs_file_aio_write_checks() will relock
520 * the inode as necessary for EOF zeroing cases and fill out the new
521 * inode size as appropriate.
7271d243 522 */
0ee7a3f6
CH
523 if ((iocb->ki_pos & mp->m_blockmask) ||
524 ((iocb->ki_pos + count) & mp->m_blockmask)) {
525 unaligned_io = 1;
d0606464 526 iolock = XFS_IOLOCK_EXCL;
0ee7a3f6 527 } else {
d0606464 528 iolock = XFS_IOLOCK_SHARED;
c58cb165 529 }
f0d26e86 530
65523218 531 xfs_ilock(ip, iolock);
0ee7a3f6 532
99733fa3 533 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 534 if (ret)
d0606464 535 goto out;
99733fa3 536 count = iov_iter_count(from);
13712713 537 end = iocb->ki_pos + count - 1;
f0d26e86
DC
538
539 if (mapping->nrpages) {
0ee7a3f6 540 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
f0d26e86 541 if (ret)
d0606464 542 goto out;
0ee7a3f6 543
834ffca6 544 /*
3d751af2
BF
545 * Invalidate whole pages. This can return an error if we fail
546 * to invalidate a page, but this should never happen on XFS.
547 * Warn if it does fail.
834ffca6 548 */
0ee7a3f6
CH
549 ret = invalidate_inode_pages2_range(mapping,
550 iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
834ffca6
DC
551 WARN_ON_ONCE(ret);
552 ret = 0;
f0d26e86
DC
553 }
554
eda77982
DC
555 /*
556 * If we are doing unaligned IO, wait for all other IO to drain,
0ee7a3f6
CH
557 * otherwise demote the lock if we had to take the exclusive lock
558 * for other reasons in xfs_file_aio_write_checks.
eda77982
DC
559 */
560 if (unaligned_io)
4a06fd26 561 inode_dio_wait(inode);
d0606464 562 else if (iolock == XFS_IOLOCK_EXCL) {
65523218 563 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 564 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
565 }
566
3176c3e0 567 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
f0d26e86 568
0613f16c
DW
569 /* If this is a block-aligned directio CoW, remap immediately. */
570 if (xfs_is_reflink_inode(ip) && !unaligned_io) {
571 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
572 if (ret)
573 goto out;
574 }
575
0cefb29e 576 data = *from;
16d4d435
CH
577 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
578 xfs_get_blocks_direct, xfs_end_io_direct_write,
579 NULL, DIO_ASYNC_EXTEND);
0cefb29e
DC
580
581 /* see generic_file_direct_write() for why this is necessary */
582 if (mapping->nrpages) {
583 invalidate_inode_pages2_range(mapping,
13712713 584 iocb->ki_pos >> PAGE_SHIFT,
09cbfeaf 585 end >> PAGE_SHIFT);
0cefb29e
DC
586 }
587
588 if (ret > 0) {
13712713 589 iocb->ki_pos += ret;
0cefb29e 590 iov_iter_advance(from, ret);
0cefb29e 591 }
d0606464 592out:
65523218 593 xfs_iunlock(ip, iolock);
d0606464 594
6b698ede 595 /*
16d4d435
CH
596 * No fallback to buffered IO on errors for XFS, direct IO will either
597 * complete fully or fail.
6b698ede 598 */
16d4d435
CH
599 ASSERT(ret < 0 || ret == count);
600 return ret;
601}
602
f021bd07 603static noinline ssize_t
16d4d435
CH
604xfs_file_dax_write(
605 struct kiocb *iocb,
606 struct iov_iter *from)
607{
6c31f495 608 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 609 struct xfs_inode *ip = XFS_I(inode);
17879e8f 610 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
611 ssize_t ret, error = 0;
612 size_t count;
613 loff_t pos;
16d4d435 614
65523218 615 xfs_ilock(ip, iolock);
16d4d435
CH
616 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
617 if (ret)
618 goto out;
619
6c31f495
CH
620 pos = iocb->ki_pos;
621 count = iov_iter_count(from);
8b2180b3 622
6c31f495 623 trace_xfs_file_dax_write(ip, count, pos);
11c59c92 624 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
6c31f495
CH
625 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
626 i_size_write(inode, iocb->ki_pos);
627 error = xfs_setfilesize(ip, pos, ret);
16d4d435 628 }
16d4d435 629out:
65523218 630 xfs_iunlock(ip, iolock);
6c31f495 631 return error ? error : ret;
f0d26e86
DC
632}
633
00258e36 634STATIC ssize_t
637bbc75 635xfs_file_buffered_aio_write(
dda35b8f 636 struct kiocb *iocb,
b3188919 637 struct iov_iter *from)
dda35b8f
CH
638{
639 struct file *file = iocb->ki_filp;
640 struct address_space *mapping = file->f_mapping;
641 struct inode *inode = mapping->host;
00258e36 642 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
643 ssize_t ret;
644 int enospc = 0;
d0606464 645 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 646
65523218 647 xfs_ilock(ip, iolock);
dda35b8f 648
99733fa3 649 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 650 if (ret)
d0606464 651 goto out;
dda35b8f
CH
652
653 /* We can write back this queue in page reclaim */
de1414a6 654 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 655
dda35b8f 656write_retry:
3176c3e0 657 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 658 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 659 if (likely(ret >= 0))
99733fa3 660 iocb->ki_pos += ret;
dc06f398 661
637bbc75 662 /*
dc06f398
BF
663 * If we hit a space limit, try to free up some lingering preallocated
664 * space before returning an error. In the case of ENOSPC, first try to
665 * write back all dirty inodes to free up some of the excess reserved
666 * metadata space. This reduces the chances that the eofblocks scan
667 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
668 * also behaves as a filter to prevent too many eofblocks scans from
669 * running at the same time.
637bbc75 670 */
dc06f398
BF
671 if (ret == -EDQUOT && !enospc) {
672 enospc = xfs_inode_free_quota_eofblocks(ip);
673 if (enospc)
674 goto write_retry;
83104d44
DW
675 enospc = xfs_inode_free_quota_cowblocks(ip);
676 if (enospc)
677 goto write_retry;
dc06f398
BF
678 } else if (ret == -ENOSPC && !enospc) {
679 struct xfs_eofblocks eofb = {0};
680
637bbc75 681 enospc = 1;
9aa05000 682 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
683 eofb.eof_scan_owner = ip->i_ino; /* for locking */
684 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
685 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 686 goto write_retry;
dda35b8f 687 }
d0606464 688
dda35b8f 689 current->backing_dev_info = NULL;
d0606464 690out:
65523218 691 xfs_iunlock(ip, iolock);
637bbc75
DC
692 return ret;
693}
694
695STATIC ssize_t
bf97f3bc 696xfs_file_write_iter(
637bbc75 697 struct kiocb *iocb,
bf97f3bc 698 struct iov_iter *from)
637bbc75
DC
699{
700 struct file *file = iocb->ki_filp;
701 struct address_space *mapping = file->f_mapping;
702 struct inode *inode = mapping->host;
703 struct xfs_inode *ip = XFS_I(inode);
704 ssize_t ret;
bf97f3bc 705 size_t ocount = iov_iter_count(from);
637bbc75 706
ff6d6af2 707 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 708
637bbc75
DC
709 if (ocount == 0)
710 return 0;
711
bf97f3bc
AV
712 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
713 return -EIO;
637bbc75 714
16d4d435
CH
715 if (IS_DAX(inode))
716 ret = xfs_file_dax_write(iocb, from);
0613f16c
DW
717 else if (iocb->ki_flags & IOCB_DIRECT) {
718 /*
719 * Allow a directio write to fall back to a buffered
720 * write *only* in the case that we're doing a reflink
721 * CoW. In all other directio scenarios we do not
722 * allow an operation to fall back to buffered mode.
723 */
bf97f3bc 724 ret = xfs_file_dio_aio_write(iocb, from);
0613f16c
DW
725 if (ret == -EREMCHG)
726 goto buffered;
727 } else {
728buffered:
bf97f3bc 729 ret = xfs_file_buffered_aio_write(iocb, from);
0613f16c 730 }
dda35b8f 731
d0606464 732 if (ret > 0) {
ff6d6af2 733 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 734
d0606464 735 /* Handle various SYNC-type writes */
e2592217 736 ret = generic_write_sync(iocb, ret);
dda35b8f 737 }
a363f0c2 738 return ret;
dda35b8f
CH
739}
740
a904b1ca
NJ
741#define XFS_FALLOC_FL_SUPPORTED \
742 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
743 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 744 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 745
2fe17c10
CH
746STATIC long
747xfs_file_fallocate(
83aee9e4
CH
748 struct file *file,
749 int mode,
750 loff_t offset,
751 loff_t len)
2fe17c10 752{
83aee9e4
CH
753 struct inode *inode = file_inode(file);
754 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 755 long error;
8add71ca 756 enum xfs_prealloc_flags flags = 0;
781355c6 757 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 758 loff_t new_size = 0;
a904b1ca 759 bool do_file_insert = 0;
2fe17c10 760
83aee9e4
CH
761 if (!S_ISREG(inode->i_mode))
762 return -EINVAL;
a904b1ca 763 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
764 return -EOPNOTSUPP;
765
781355c6 766 xfs_ilock(ip, iolock);
65523218 767 error = xfs_break_layouts(inode, &iolock);
781355c6
CH
768 if (error)
769 goto out_unlock;
770
e8e9ad42
DC
771 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
772 iolock |= XFS_MMAPLOCK_EXCL;
773
83aee9e4
CH
774 if (mode & FALLOC_FL_PUNCH_HOLE) {
775 error = xfs_free_file_space(ip, offset, len);
776 if (error)
777 goto out_unlock;
e1d8fb88
NJ
778 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
779 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
780
781 if (offset & blksize_mask || len & blksize_mask) {
2451337d 782 error = -EINVAL;
e1d8fb88
NJ
783 goto out_unlock;
784 }
785
23fffa92
LC
786 /*
787 * There is no need to overlap collapse range with EOF,
788 * in which case it is effectively a truncate operation
789 */
790 if (offset + len >= i_size_read(inode)) {
2451337d 791 error = -EINVAL;
23fffa92
LC
792 goto out_unlock;
793 }
794
e1d8fb88
NJ
795 new_size = i_size_read(inode) - len;
796
797 error = xfs_collapse_file_space(ip, offset, len);
798 if (error)
799 goto out_unlock;
a904b1ca
NJ
800 } else if (mode & FALLOC_FL_INSERT_RANGE) {
801 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
802
803 new_size = i_size_read(inode) + len;
804 if (offset & blksize_mask || len & blksize_mask) {
805 error = -EINVAL;
806 goto out_unlock;
807 }
808
809 /* check the new inode size does not wrap through zero */
810 if (new_size > inode->i_sb->s_maxbytes) {
811 error = -EFBIG;
812 goto out_unlock;
813 }
814
815 /* Offset should be less than i_size */
816 if (offset >= i_size_read(inode)) {
817 error = -EINVAL;
818 goto out_unlock;
819 }
820 do_file_insert = 1;
83aee9e4 821 } else {
8add71ca
CH
822 flags |= XFS_PREALLOC_SET;
823
83aee9e4
CH
824 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
825 offset + len > i_size_read(inode)) {
826 new_size = offset + len;
2451337d 827 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
828 if (error)
829 goto out_unlock;
830 }
2fe17c10 831
376ba313
LC
832 if (mode & FALLOC_FL_ZERO_RANGE)
833 error = xfs_zero_file_space(ip, offset, len);
98cc2db5
DW
834 else {
835 if (mode & FALLOC_FL_UNSHARE_RANGE) {
836 error = xfs_reflink_unshare(ip, offset, len);
837 if (error)
838 goto out_unlock;
839 }
376ba313
LC
840 error = xfs_alloc_file_space(ip, offset, len,
841 XFS_BMAPI_PREALLOC);
98cc2db5 842 }
2fe17c10
CH
843 if (error)
844 goto out_unlock;
845 }
846
83aee9e4 847 if (file->f_flags & O_DSYNC)
8add71ca
CH
848 flags |= XFS_PREALLOC_SYNC;
849
850 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
851 if (error)
852 goto out_unlock;
853
854 /* Change file size if needed */
855 if (new_size) {
856 struct iattr iattr;
857
858 iattr.ia_valid = ATTR_SIZE;
859 iattr.ia_size = new_size;
69bca807 860 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
861 if (error)
862 goto out_unlock;
2fe17c10
CH
863 }
864
a904b1ca
NJ
865 /*
866 * Perform hole insertion now that the file size has been
867 * updated so that if we crash during the operation we don't
868 * leave shifted extents past EOF and hence losing access to
869 * the data that is contained within them.
870 */
871 if (do_file_insert)
872 error = xfs_insert_file_space(ip, offset, len);
873
2fe17c10 874out_unlock:
781355c6 875 xfs_iunlock(ip, iolock);
2451337d 876 return error;
2fe17c10
CH
877}
878
9fe26045
DW
879STATIC ssize_t
880xfs_file_copy_range(
881 struct file *file_in,
882 loff_t pos_in,
883 struct file *file_out,
884 loff_t pos_out,
885 size_t len,
886 unsigned int flags)
887{
888 int error;
889
5faaf4fa 890 error = xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660 891 len, false);
9fe26045
DW
892 if (error)
893 return error;
894 return len;
895}
896
897STATIC int
898xfs_file_clone_range(
899 struct file *file_in,
900 loff_t pos_in,
901 struct file *file_out,
902 loff_t pos_out,
903 u64 len)
904{
5faaf4fa 905 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660
DW
906 len, false);
907}
908
909#define XFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
910STATIC ssize_t
911xfs_file_dedupe_range(
912 struct file *src_file,
913 u64 loff,
914 u64 len,
915 struct file *dst_file,
916 u64 dst_loff)
917{
918 int error;
919
920 /*
921 * Limit the total length we will dedupe for each operation.
922 * This is intended to bound the total time spent in this
923 * ioctl to something sane.
924 */
925 if (len > XFS_MAX_DEDUPE_LEN)
926 len = XFS_MAX_DEDUPE_LEN;
927
5faaf4fa 928 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
cc714660
DW
929 len, true);
930 if (error)
931 return error;
932 return len;
9fe26045 933}
2fe17c10 934
1da177e4 935STATIC int
3562fd45 936xfs_file_open(
1da177e4 937 struct inode *inode,
f999a5bf 938 struct file *file)
1da177e4 939{
f999a5bf 940 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 941 return -EFBIG;
f999a5bf
CH
942 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
943 return -EIO;
944 return 0;
945}
946
947STATIC int
948xfs_dir_open(
949 struct inode *inode,
950 struct file *file)
951{
952 struct xfs_inode *ip = XFS_I(inode);
953 int mode;
954 int error;
955
956 error = xfs_file_open(inode, file);
957 if (error)
958 return error;
959
960 /*
961 * If there are any blocks, read-ahead block 0 as we're almost
962 * certain to have the next operation be a read there.
963 */
309ecac8 964 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 965 if (ip->i_d.di_nextents > 0)
9df2dd0b 966 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
967 xfs_iunlock(ip, mode);
968 return 0;
1da177e4
LT
969}
970
1da177e4 971STATIC int
3562fd45 972xfs_file_release(
1da177e4
LT
973 struct inode *inode,
974 struct file *filp)
975{
2451337d 976 return xfs_release(XFS_I(inode));
1da177e4
LT
977}
978
1da177e4 979STATIC int
3562fd45 980xfs_file_readdir(
b8227554
AV
981 struct file *file,
982 struct dir_context *ctx)
1da177e4 983{
b8227554 984 struct inode *inode = file_inode(file);
739bfb2a 985 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
986 size_t bufsize;
987
988 /*
989 * The Linux API doesn't pass down the total size of the buffer
990 * we read into down to the filesystem. With the filldir concept
991 * it's not needed for correct information, but the XFS dir2 leaf
992 * code wants an estimate of the buffer size to calculate it's
993 * readahead window and size the buffers used for mapping to
994 * physical blocks.
995 *
996 * Try to give it an estimate that's good enough, maybe at some
997 * point we can change the ->readdir prototype to include the
a9cc799e 998 * buffer size. For now we use the current glibc buffer size.
051e7cd4 999 */
a9cc799e 1000 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1001
8300475e 1002 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1003}
1004
d126d43f
JL
1005/*
1006 * This type is designed to indicate the type of offset we would like
49c69591 1007 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1008 */
1009enum {
1010 HOLE_OFF = 0,
1011 DATA_OFF,
1012};
1013
1014/*
1015 * Lookup the desired type of offset from the given page.
1016 *
1017 * On success, return true and the offset argument will point to the
1018 * start of the region that was found. Otherwise this function will
1019 * return false and keep the offset argument unchanged.
1020 */
1021STATIC bool
1022xfs_lookup_buffer_offset(
1023 struct page *page,
1024 loff_t *offset,
1025 unsigned int type)
1026{
1027 loff_t lastoff = page_offset(page);
1028 bool found = false;
1029 struct buffer_head *bh, *head;
1030
1031 bh = head = page_buffers(page);
1032 do {
1033 /*
1034 * Unwritten extents that have data in the page
1035 * cache covering them can be identified by the
1036 * BH_Unwritten state flag. Pages with multiple
1037 * buffers might have a mix of holes, data and
1038 * unwritten extents - any buffer with valid
1039 * data in it should have BH_Uptodate flag set
1040 * on it.
1041 */
1042 if (buffer_unwritten(bh) ||
1043 buffer_uptodate(bh)) {
1044 if (type == DATA_OFF)
1045 found = true;
1046 } else {
1047 if (type == HOLE_OFF)
1048 found = true;
1049 }
1050
1051 if (found) {
1052 *offset = lastoff;
1053 break;
1054 }
1055 lastoff += bh->b_size;
1056 } while ((bh = bh->b_this_page) != head);
1057
1058 return found;
1059}
1060
1061/*
1062 * This routine is called to find out and return a data or hole offset
1063 * from the page cache for unwritten extents according to the desired
49c69591 1064 * type for xfs_seek_hole_data().
d126d43f
JL
1065 *
1066 * The argument offset is used to tell where we start to search from the
1067 * page cache. Map is used to figure out the end points of the range to
1068 * lookup pages.
1069 *
1070 * Return true if the desired type of offset was found, and the argument
1071 * offset is filled with that address. Otherwise, return false and keep
1072 * offset unchanged.
1073 */
1074STATIC bool
1075xfs_find_get_desired_pgoff(
1076 struct inode *inode,
1077 struct xfs_bmbt_irec *map,
1078 unsigned int type,
1079 loff_t *offset)
1080{
1081 struct xfs_inode *ip = XFS_I(inode);
1082 struct xfs_mount *mp = ip->i_mount;
1083 struct pagevec pvec;
1084 pgoff_t index;
1085 pgoff_t end;
1086 loff_t endoff;
1087 loff_t startoff = *offset;
1088 loff_t lastoff = startoff;
1089 bool found = false;
1090
1091 pagevec_init(&pvec, 0);
1092
09cbfeaf 1093 index = startoff >> PAGE_SHIFT;
d126d43f 1094 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
09cbfeaf 1095 end = endoff >> PAGE_SHIFT;
d126d43f
JL
1096 do {
1097 int want;
1098 unsigned nr_pages;
1099 unsigned int i;
1100
1101 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1102 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1103 want);
1104 /*
1105 * No page mapped into given range. If we are searching holes
1106 * and if this is the first time we got into the loop, it means
1107 * that the given offset is landed in a hole, return it.
1108 *
1109 * If we have already stepped through some block buffers to find
1110 * holes but they all contains data. In this case, the last
1111 * offset is already updated and pointed to the end of the last
1112 * mapped page, if it does not reach the endpoint to search,
1113 * that means there should be a hole between them.
1114 */
1115 if (nr_pages == 0) {
1116 /* Data search found nothing */
1117 if (type == DATA_OFF)
1118 break;
1119
1120 ASSERT(type == HOLE_OFF);
1121 if (lastoff == startoff || lastoff < endoff) {
1122 found = true;
1123 *offset = lastoff;
1124 }
1125 break;
1126 }
1127
1128 /*
1129 * At lease we found one page. If this is the first time we
1130 * step into the loop, and if the first page index offset is
1131 * greater than the given search offset, a hole was found.
1132 */
1133 if (type == HOLE_OFF && lastoff == startoff &&
1134 lastoff < page_offset(pvec.pages[0])) {
1135 found = true;
1136 break;
1137 }
1138
1139 for (i = 0; i < nr_pages; i++) {
1140 struct page *page = pvec.pages[i];
1141 loff_t b_offset;
1142
1143 /*
1144 * At this point, the page may be truncated or
1145 * invalidated (changing page->mapping to NULL),
1146 * or even swizzled back from swapper_space to tmpfs
1147 * file mapping. However, page->index will not change
1148 * because we have a reference on the page.
1149 *
1150 * Searching done if the page index is out of range.
1151 * If the current offset is not reaches the end of
1152 * the specified search range, there should be a hole
1153 * between them.
1154 */
1155 if (page->index > end) {
1156 if (type == HOLE_OFF && lastoff < endoff) {
1157 *offset = lastoff;
1158 found = true;
1159 }
1160 goto out;
1161 }
1162
1163 lock_page(page);
1164 /*
1165 * Page truncated or invalidated(page->mapping == NULL).
1166 * We can freely skip it and proceed to check the next
1167 * page.
1168 */
1169 if (unlikely(page->mapping != inode->i_mapping)) {
1170 unlock_page(page);
1171 continue;
1172 }
1173
1174 if (!page_has_buffers(page)) {
1175 unlock_page(page);
1176 continue;
1177 }
1178
1179 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1180 if (found) {
1181 /*
1182 * The found offset may be less than the start
1183 * point to search if this is the first time to
1184 * come here.
1185 */
1186 *offset = max_t(loff_t, startoff, b_offset);
1187 unlock_page(page);
1188 goto out;
1189 }
1190
1191 /*
1192 * We either searching data but nothing was found, or
1193 * searching hole but found a data buffer. In either
1194 * case, probably the next page contains the desired
1195 * things, update the last offset to it so.
1196 */
1197 lastoff = page_offset(page) + PAGE_SIZE;
1198 unlock_page(page);
1199 }
1200
1201 /*
1202 * The number of returned pages less than our desired, search
1203 * done. In this case, nothing was found for searching data,
1204 * but we found a hole behind the last offset.
1205 */
1206 if (nr_pages < want) {
1207 if (type == HOLE_OFF) {
1208 *offset = lastoff;
1209 found = true;
1210 }
1211 break;
1212 }
1213
1214 index = pvec.pages[i - 1]->index + 1;
1215 pagevec_release(&pvec);
1216 } while (index <= end);
1217
1218out:
1219 pagevec_release(&pvec);
1220 return found;
1221}
1222
8aa7d37e
ES
1223/*
1224 * caller must lock inode with xfs_ilock_data_map_shared,
1225 * can we craft an appropriate ASSERT?
1226 *
1227 * end is because the VFS-level lseek interface is defined such that any
1228 * offset past i_size shall return -ENXIO, but we use this for quota code
1229 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1230 */
1231loff_t
1232__xfs_seek_hole_data(
1233 struct inode *inode,
49c69591 1234 loff_t start,
8aa7d37e 1235 loff_t end,
49c69591 1236 int whence)
3fe3e6b1 1237{
3fe3e6b1
JL
1238 struct xfs_inode *ip = XFS_I(inode);
1239 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1 1240 loff_t uninitialized_var(offset);
3fe3e6b1 1241 xfs_fileoff_t fsbno;
8aa7d37e 1242 xfs_filblks_t lastbno;
3fe3e6b1
JL
1243 int error;
1244
8aa7d37e 1245 if (start >= end) {
2451337d 1246 error = -ENXIO;
8aa7d37e 1247 goto out_error;
3fe3e6b1
JL
1248 }
1249
3fe3e6b1
JL
1250 /*
1251 * Try to read extents from the first block indicated
1252 * by fsbno to the end block of the file.
1253 */
52f1acc8 1254 fsbno = XFS_B_TO_FSBT(mp, start);
8aa7d37e 1255 lastbno = XFS_B_TO_FSB(mp, end);
49c69591 1256
52f1acc8
JL
1257 for (;;) {
1258 struct xfs_bmbt_irec map[2];
1259 int nmap = 2;
1260 unsigned int i;
3fe3e6b1 1261
8aa7d37e 1262 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
52f1acc8
JL
1263 XFS_BMAPI_ENTIRE);
1264 if (error)
8aa7d37e 1265 goto out_error;
3fe3e6b1 1266
52f1acc8
JL
1267 /* No extents at given offset, must be beyond EOF */
1268 if (nmap == 0) {
2451337d 1269 error = -ENXIO;
8aa7d37e 1270 goto out_error;
52f1acc8
JL
1271 }
1272
1273 for (i = 0; i < nmap; i++) {
1274 offset = max_t(loff_t, start,
1275 XFS_FSB_TO_B(mp, map[i].br_startoff));
1276
49c69591
ES
1277 /* Landed in the hole we wanted? */
1278 if (whence == SEEK_HOLE &&
1279 map[i].br_startblock == HOLESTARTBLOCK)
1280 goto out;
1281
1282 /* Landed in the data extent we wanted? */
1283 if (whence == SEEK_DATA &&
1284 (map[i].br_startblock == DELAYSTARTBLOCK ||
1285 (map[i].br_state == XFS_EXT_NORM &&
1286 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1287 goto out;
1288
1289 /*
49c69591
ES
1290 * Landed in an unwritten extent, try to search
1291 * for hole or data from page cache.
52f1acc8
JL
1292 */
1293 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1294 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1295 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1296 &offset))
52f1acc8
JL
1297 goto out;
1298 }
1299 }
1300
1301 /*
49c69591
ES
1302 * We only received one extent out of the two requested. This
1303 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1304 */
3fe3e6b1 1305 if (nmap == 1) {
49c69591
ES
1306 /*
1307 * If we were looking for a hole, set offset to
1308 * the end of the file (i.e., there is an implicit
1309 * hole at the end of any file).
1310 */
1311 if (whence == SEEK_HOLE) {
8aa7d37e 1312 offset = end;
49c69591
ES
1313 break;
1314 }
1315 /*
1316 * If we were looking for data, it's nowhere to be found
1317 */
1318 ASSERT(whence == SEEK_DATA);
2451337d 1319 error = -ENXIO;
8aa7d37e 1320 goto out_error;
3fe3e6b1
JL
1321 }
1322
52f1acc8
JL
1323 ASSERT(i > 1);
1324
1325 /*
1326 * Nothing was found, proceed to the next round of search
49c69591 1327 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1328 */
1329 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1330 start = XFS_FSB_TO_B(mp, fsbno);
8aa7d37e 1331 if (start >= end) {
49c69591 1332 if (whence == SEEK_HOLE) {
8aa7d37e 1333 offset = end;
49c69591
ES
1334 break;
1335 }
1336 ASSERT(whence == SEEK_DATA);
2451337d 1337 error = -ENXIO;
8aa7d37e 1338 goto out_error;
52f1acc8 1339 }
3fe3e6b1
JL
1340 }
1341
b686d1f7
JL
1342out:
1343 /*
49c69591 1344 * If at this point we have found the hole we wanted, the returned
b686d1f7 1345 * offset may be bigger than the file size as it may be aligned to
49c69591 1346 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1347 * situation in particular.
1348 */
49c69591 1349 if (whence == SEEK_HOLE)
8aa7d37e
ES
1350 offset = min_t(loff_t, offset, end);
1351
1352 return offset;
1353
1354out_error:
1355 return error;
1356}
1357
1358STATIC loff_t
1359xfs_seek_hole_data(
1360 struct file *file,
1361 loff_t start,
1362 int whence)
1363{
1364 struct inode *inode = file->f_mapping->host;
1365 struct xfs_inode *ip = XFS_I(inode);
1366 struct xfs_mount *mp = ip->i_mount;
1367 uint lock;
1368 loff_t offset, end;
1369 int error = 0;
1370
1371 if (XFS_FORCED_SHUTDOWN(mp))
1372 return -EIO;
1373
1374 lock = xfs_ilock_data_map_shared(ip);
1375
1376 end = i_size_read(inode);
1377 offset = __xfs_seek_hole_data(inode, start, end, whence);
1378 if (offset < 0) {
1379 error = offset;
1380 goto out_unlock;
1381 }
1382
46a1c2c7 1383 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1384
1385out_unlock:
01f4f327 1386 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1387
1388 if (error)
2451337d 1389 return error;
3fe3e6b1
JL
1390 return offset;
1391}
1392
1393STATIC loff_t
1394xfs_file_llseek(
1395 struct file *file,
1396 loff_t offset,
59f9c004 1397 int whence)
3fe3e6b1 1398{
59f9c004 1399 switch (whence) {
3fe3e6b1
JL
1400 case SEEK_END:
1401 case SEEK_CUR:
1402 case SEEK_SET:
59f9c004 1403 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1404 case SEEK_HOLE:
49c69591 1405 case SEEK_DATA:
59f9c004 1406 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1407 default:
1408 return -EINVAL;
1409 }
1410}
1411
de0e8c20
DC
1412/*
1413 * Locking for serialisation of IO during page faults. This results in a lock
1414 * ordering of:
1415 *
1416 * mmap_sem (MM)
6b698ede 1417 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1418 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1419 * page_lock (MM)
1420 * i_lock (XFS - extent map serialisation)
de0e8c20 1421 */
de0e8c20 1422
075a924d
DC
1423/*
1424 * mmap()d file has taken write protection fault and is being made writable. We
1425 * can set the page state up correctly for a writable page, which means we can
1426 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1427 * mapping.
de0e8c20
DC
1428 */
1429STATIC int
075a924d 1430xfs_filemap_page_mkwrite(
de0e8c20
DC
1431 struct vm_area_struct *vma,
1432 struct vm_fault *vmf)
1433{
6b698ede 1434 struct inode *inode = file_inode(vma->vm_file);
ec56b1f1 1435 int ret;
de0e8c20 1436
6b698ede 1437 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1438
6b698ede 1439 sb_start_pagefault(inode->i_sb);
ec56b1f1 1440 file_update_time(vma->vm_file);
6b698ede 1441 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1442
6b698ede 1443 if (IS_DAX(inode)) {
11c59c92 1444 ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
6b698ede 1445 } else {
68a9f5e7 1446 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
6b698ede
DC
1447 ret = block_page_mkwrite_return(ret);
1448 }
1449
1450 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1451 sb_end_pagefault(inode->i_sb);
1452
1453 return ret;
de0e8c20
DC
1454}
1455
075a924d 1456STATIC int
6b698ede 1457xfs_filemap_fault(
075a924d
DC
1458 struct vm_area_struct *vma,
1459 struct vm_fault *vmf)
1460{
b2442c5a 1461 struct inode *inode = file_inode(vma->vm_file);
6b698ede 1462 int ret;
ec56b1f1 1463
b2442c5a 1464 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1465
6b698ede 1466 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1467 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
6b698ede 1468 return xfs_filemap_page_mkwrite(vma, vmf);
075a924d 1469
b2442c5a
DC
1470 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1471 if (IS_DAX(inode)) {
1472 /*
1473 * we do not want to trigger unwritten extent conversion on read
1474 * faults - that is unnecessary overhead and would also require
1475 * changes to xfs_get_blocks_direct() to map unwritten extent
1476 * ioend for conversion on read-only mappings.
1477 */
11c59c92 1478 ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
b2442c5a
DC
1479 } else
1480 ret = filemap_fault(vma, vmf);
1481 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1482
6b698ede
DC
1483 return ret;
1484}
1485
13ad4fe3
DC
1486/*
1487 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1488 * both read and write faults. Hence we need to handle both cases. There is no
1489 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1490 * handle both cases here. @flags carries the information on the type of fault
1491 * occuring.
1492 */
acd76e74
MW
1493STATIC int
1494xfs_filemap_pmd_fault(
1495 struct vm_area_struct *vma,
1496 unsigned long addr,
1497 pmd_t *pmd,
1498 unsigned int flags)
1499{
1500 struct inode *inode = file_inode(vma->vm_file);
1501 struct xfs_inode *ip = XFS_I(inode);
1502 int ret;
1503
1504 if (!IS_DAX(inode))
1505 return VM_FAULT_FALLBACK;
1506
1507 trace_xfs_filemap_pmd_fault(ip);
1508
13ad4fe3
DC
1509 if (flags & FAULT_FLAG_WRITE) {
1510 sb_start_pagefault(inode->i_sb);
1511 file_update_time(vma->vm_file);
1512 }
1513
acd76e74 1514 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
862f1b9d 1515 ret = dax_iomap_pmd_fault(vma, addr, pmd, flags, &xfs_iomap_ops);
acd76e74 1516 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acd76e74 1517
13ad4fe3
DC
1518 if (flags & FAULT_FLAG_WRITE)
1519 sb_end_pagefault(inode->i_sb);
acd76e74
MW
1520
1521 return ret;
1522}
1523
3af49285
DC
1524/*
1525 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1526 * updates on write faults. In reality, it's need to serialise against
5eb88dca
RZ
1527 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1528 * to ensure we serialise the fault barrier in place.
3af49285
DC
1529 */
1530static int
1531xfs_filemap_pfn_mkwrite(
1532 struct vm_area_struct *vma,
1533 struct vm_fault *vmf)
1534{
1535
1536 struct inode *inode = file_inode(vma->vm_file);
1537 struct xfs_inode *ip = XFS_I(inode);
1538 int ret = VM_FAULT_NOPAGE;
1539 loff_t size;
1540
1541 trace_xfs_filemap_pfn_mkwrite(ip);
1542
1543 sb_start_pagefault(inode->i_sb);
1544 file_update_time(vma->vm_file);
1545
1546 /* check if the faulting page hasn't raced with truncate */
1547 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1548 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1549 if (vmf->pgoff >= size)
1550 ret = VM_FAULT_SIGBUS;
5eb88dca
RZ
1551 else if (IS_DAX(inode))
1552 ret = dax_pfn_mkwrite(vma, vmf);
3af49285
DC
1553 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1554 sb_end_pagefault(inode->i_sb);
acd76e74 1555 return ret;
3af49285 1556
acd76e74
MW
1557}
1558
6b698ede
DC
1559static const struct vm_operations_struct xfs_file_vm_ops = {
1560 .fault = xfs_filemap_fault,
acd76e74 1561 .pmd_fault = xfs_filemap_pmd_fault,
6b698ede
DC
1562 .map_pages = filemap_map_pages,
1563 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1564 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1565};
1566
1567STATIC int
1568xfs_file_mmap(
1569 struct file *filp,
1570 struct vm_area_struct *vma)
1571{
1572 file_accessed(filp);
1573 vma->vm_ops = &xfs_file_vm_ops;
1574 if (IS_DAX(file_inode(filp)))
acd76e74 1575 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1576 return 0;
075a924d
DC
1577}
1578
4b6f5d20 1579const struct file_operations xfs_file_operations = {
3fe3e6b1 1580 .llseek = xfs_file_llseek,
b4f5d2c6 1581 .read_iter = xfs_file_read_iter,
bf97f3bc 1582 .write_iter = xfs_file_write_iter,
82c156f8 1583 .splice_read = generic_file_splice_read,
8d020765 1584 .splice_write = iter_file_splice_write,
3562fd45 1585 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1586#ifdef CONFIG_COMPAT
3562fd45 1587 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1588#endif
3562fd45
NS
1589 .mmap = xfs_file_mmap,
1590 .open = xfs_file_open,
1591 .release = xfs_file_release,
1592 .fsync = xfs_file_fsync,
dbe6ec81 1593 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1594 .fallocate = xfs_file_fallocate,
9fe26045
DW
1595 .copy_file_range = xfs_file_copy_range,
1596 .clone_file_range = xfs_file_clone_range,
cc714660 1597 .dedupe_file_range = xfs_file_dedupe_range,
1da177e4
LT
1598};
1599
4b6f5d20 1600const struct file_operations xfs_dir_file_operations = {
f999a5bf 1601 .open = xfs_dir_open,
1da177e4 1602 .read = generic_read_dir,
3b0a3c1a 1603 .iterate_shared = xfs_file_readdir,
59af1584 1604 .llseek = generic_file_llseek,
3562fd45 1605 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1606#ifdef CONFIG_COMPAT
3562fd45 1607 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1608#endif
1da2f2db 1609 .fsync = xfs_dir_fsync,
1da177e4 1610};