xfs: merge xfs_reflink_remap_range and xfs_file_share_range
[linux-2.6-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
0613f16c 41#include "xfs_reflink.h"
1da177e4
LT
42
43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
66114cad 46#include <linux/backing-dev.h>
1da177e4 47
f0f37e2f 48static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 49
487f84f3
DC
50/*
51 * Locking primitives for read and write IO paths to ensure we consistently use
52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 */
54static inline void
55xfs_rw_ilock(
56 struct xfs_inode *ip,
57 int type)
58{
59 if (type & XFS_IOLOCK_EXCL)
5955102c 60 inode_lock(VFS_I(ip));
487f84f3
DC
61 xfs_ilock(ip, type);
62}
63
64static inline void
65xfs_rw_iunlock(
66 struct xfs_inode *ip,
67 int type)
68{
69 xfs_iunlock(ip, type);
70 if (type & XFS_IOLOCK_EXCL)
5955102c 71 inode_unlock(VFS_I(ip));
487f84f3
DC
72}
73
74static inline void
75xfs_rw_ilock_demote(
76 struct xfs_inode *ip,
77 int type)
78{
79 xfs_ilock_demote(ip, type);
80 if (type & XFS_IOLOCK_EXCL)
5955102c 81 inode_unlock(VFS_I(ip));
487f84f3
DC
82}
83
dda35b8f 84/*
68a9f5e7
CH
85 * Clear the specified ranges to zero through either the pagecache or DAX.
86 * Holes and unwritten extents will be left as-is as they already are zeroed.
dda35b8f 87 */
ef9d8733 88int
7bb41db3 89xfs_zero_range(
68a9f5e7 90 struct xfs_inode *ip,
7bb41db3
CH
91 xfs_off_t pos,
92 xfs_off_t count,
93 bool *did_zero)
dda35b8f 94{
459f0fbc 95 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
dda35b8f
CH
96}
97
8add71ca
CH
98int
99xfs_update_prealloc_flags(
100 struct xfs_inode *ip,
101 enum xfs_prealloc_flags flags)
102{
103 struct xfs_trans *tp;
104 int error;
105
253f4911
CH
106 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
107 0, 0, 0, &tp);
108 if (error)
8add71ca 109 return error;
8add71ca
CH
110
111 xfs_ilock(ip, XFS_ILOCK_EXCL);
112 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
113
114 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
115 VFS_I(ip)->i_mode &= ~S_ISUID;
116 if (VFS_I(ip)->i_mode & S_IXGRP)
117 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
119 }
120
121 if (flags & XFS_PREALLOC_SET)
122 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
123 if (flags & XFS_PREALLOC_CLEAR)
124 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
125
126 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
127 if (flags & XFS_PREALLOC_SYNC)
128 xfs_trans_set_sync(tp);
70393313 129 return xfs_trans_commit(tp);
8add71ca
CH
130}
131
1da2f2db
CH
132/*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138STATIC int
139xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144{
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
2451337d 158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
159}
160
fd3200be
CH
161STATIC int
162xfs_file_fsync(
163 struct file *file,
02c24a82
JB
164 loff_t start,
165 loff_t end,
fd3200be
CH
166 int datasync)
167{
7ea80859
CH
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
a27a263b 170 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
171 int error = 0;
172 int log_flushed = 0;
b1037058 173 xfs_lsn_t lsn = 0;
fd3200be 174
cca28fb8 175 trace_xfs_file_fsync(ip);
fd3200be 176
02c24a82
JB
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
a27a263b 181 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 182 return -EIO;
fd3200be
CH
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
a27a263b
CH
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
fd3200be 200 /*
fc0561ce
DC
201 * All metadata updates are logged, which means that we just have to
202 * flush the log up to the latest LSN that touched the inode. If we have
203 * concurrent fsync/fdatasync() calls, we need them to all block on the
204 * log force before we clear the ili_fsync_fields field. This ensures
205 * that we don't get a racing sync operation that does not wait for the
206 * metadata to hit the journal before returning. If we race with
207 * clearing the ili_fsync_fields, then all that will happen is the log
208 * force will do nothing as the lsn will already be on disk. We can't
209 * race with setting ili_fsync_fields because that is done under
210 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
211 * until after the ili_fsync_fields is cleared.
fd3200be
CH
212 */
213 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
214 if (xfs_ipincount(ip)) {
215 if (!datasync ||
fc0561ce 216 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
217 lsn = ip->i_itemp->ili_last_lsn;
218 }
fd3200be 219
fc0561ce 220 if (lsn) {
b1037058 221 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
222 ip->i_itemp->ili_fsync_fields = 0;
223 }
224 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 225
a27a263b
CH
226 /*
227 * If we only have a single device, and the log force about was
228 * a no-op we might have to flush the data device cache here.
229 * This can only happen for fdatasync/O_DSYNC if we were overwriting
230 * an already allocated file and thus do not have any metadata to
231 * commit.
232 */
233 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
234 mp->m_logdev_targp == mp->m_ddev_targp &&
235 !XFS_IS_REALTIME_INODE(ip) &&
236 !log_flushed)
237 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 238
2451337d 239 return error;
fd3200be
CH
240}
241
00258e36 242STATIC ssize_t
bbc5a740 243xfs_file_dio_aio_read(
dda35b8f 244 struct kiocb *iocb,
b4f5d2c6 245 struct iov_iter *to)
dda35b8f 246{
bbc5a740
CH
247 struct address_space *mapping = iocb->ki_filp->f_mapping;
248 struct inode *inode = mapping->host;
00258e36 249 struct xfs_inode *ip = XFS_I(inode);
f1285ff0 250 loff_t isize = i_size_read(inode);
bbc5a740 251 size_t count = iov_iter_count(to);
0ee7a3f6 252 loff_t end = iocb->ki_pos + count - 1;
f1285ff0 253 struct iov_iter data;
bbc5a740 254 struct xfs_buftarg *target;
dda35b8f 255 ssize_t ret = 0;
dda35b8f 256
bbc5a740 257 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 258
f1285ff0
CH
259 if (!count)
260 return 0; /* skip atime */
dda35b8f 261
bbc5a740
CH
262 if (XFS_IS_REALTIME_INODE(ip))
263 target = ip->i_mount->m_rtdev_targp;
264 else
265 target = ip->i_mount->m_ddev_targp;
dda35b8f 266
16d4d435
CH
267 /* DIO must be aligned to device logical sector size */
268 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
269 if (iocb->ki_pos == isize)
270 return 0;
271 return -EINVAL;
dda35b8f 272 }
dda35b8f 273
a447d7cd
CH
274 file_accessed(iocb->ki_filp);
275
0c38a251 276 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
bbc5a740 277 if (mapping->nrpages) {
0ee7a3f6
CH
278 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
279 if (ret)
280 goto out_unlock;
487f84f3 281
3d751af2 282 /*
0ee7a3f6
CH
283 * Invalidate whole pages. This can return an error if we fail
284 * to invalidate a page, but this should never happen on XFS.
285 * Warn if it does fail.
3d751af2 286 */
0ee7a3f6
CH
287 ret = invalidate_inode_pages2_range(mapping,
288 iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
289 WARN_ON_ONCE(ret);
290 ret = 0;
0c38a251 291 }
dda35b8f 292
f1285ff0 293 data = *to;
16d4d435
CH
294 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
295 xfs_get_blocks_direct, NULL, NULL, 0);
c3a69024 296 if (ret >= 0) {
16d4d435
CH
297 iocb->ki_pos += ret;
298 iov_iter_advance(to, ret);
fa8d972d 299 }
dda35b8f 300
0ee7a3f6
CH
301out_unlock:
302 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
16d4d435
CH
303 return ret;
304}
305
f021bd07 306static noinline ssize_t
16d4d435
CH
307xfs_file_dax_read(
308 struct kiocb *iocb,
309 struct iov_iter *to)
310{
6c31f495 311 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
312 size_t count = iov_iter_count(to);
313 ssize_t ret = 0;
314
315 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
316
317 if (!count)
318 return 0; /* skip atime */
319
320 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
6c31f495 321 ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
bbc5a740
CH
322 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
323
f1285ff0 324 file_accessed(iocb->ki_filp);
bbc5a740
CH
325 return ret;
326}
327
328STATIC ssize_t
329xfs_file_buffered_aio_read(
330 struct kiocb *iocb,
331 struct iov_iter *to)
332{
333 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
334 ssize_t ret;
335
336 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 337
bbc5a740 338 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b4f5d2c6 339 ret = generic_file_read_iter(iocb, to);
bbc5a740
CH
340 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
341
342 return ret;
343}
344
345STATIC ssize_t
346xfs_file_read_iter(
347 struct kiocb *iocb,
348 struct iov_iter *to)
349{
16d4d435
CH
350 struct inode *inode = file_inode(iocb->ki_filp);
351 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
352 ssize_t ret = 0;
353
354 XFS_STATS_INC(mp, xs_read_calls);
355
356 if (XFS_FORCED_SHUTDOWN(mp))
357 return -EIO;
358
16d4d435
CH
359 if (IS_DAX(inode))
360 ret = xfs_file_dax_read(iocb, to);
361 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 362 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 363 else
bbc5a740 364 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 365
dda35b8f 366 if (ret > 0)
ff6d6af2 367 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
368 return ret;
369}
370
dda35b8f 371/*
193aec10
CH
372 * Zero any on disk space between the current EOF and the new, larger EOF.
373 *
374 * This handles the normal case of zeroing the remainder of the last block in
375 * the file and the unusual case of zeroing blocks out beyond the size of the
376 * file. This second case only happens with fixed size extents and when the
377 * system crashes before the inode size was updated but after blocks were
378 * allocated.
379 *
380 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 381 */
dda35b8f
CH
382int /* error (positive) */
383xfs_zero_eof(
193aec10
CH
384 struct xfs_inode *ip,
385 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
386 xfs_fsize_t isize, /* current inode size */
387 bool *did_zeroing)
dda35b8f 388{
193aec10 389 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
390 ASSERT(offset > isize);
391
0a50f162 392 trace_xfs_zero_eof(ip, isize, offset - isize);
570b6211 393 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
dda35b8f
CH
394}
395
4d8d1581
DC
396/*
397 * Common pre-write limit and setup checks.
398 *
5bf1f262
CH
399 * Called with the iolocked held either shared and exclusive according to
400 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
401 * if called for a direct write beyond i_size.
4d8d1581
DC
402 */
403STATIC ssize_t
404xfs_file_aio_write_checks(
99733fa3
AV
405 struct kiocb *iocb,
406 struct iov_iter *from,
4d8d1581
DC
407 int *iolock)
408{
99733fa3 409 struct file *file = iocb->ki_filp;
4d8d1581
DC
410 struct inode *inode = file->f_mapping->host;
411 struct xfs_inode *ip = XFS_I(inode);
3309dd04 412 ssize_t error = 0;
99733fa3 413 size_t count = iov_iter_count(from);
3136e8bb 414 bool drained_dio = false;
4d8d1581 415
7271d243 416restart:
3309dd04
AV
417 error = generic_write_checks(iocb, from);
418 if (error <= 0)
4d8d1581 419 return error;
4d8d1581 420
21c3ea18 421 error = xfs_break_layouts(inode, iolock, true);
781355c6
CH
422 if (error)
423 return error;
424
a6de82ca
JK
425 /* For changing security info in file_remove_privs() we need i_mutex */
426 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
427 xfs_rw_iunlock(ip, *iolock);
428 *iolock = XFS_IOLOCK_EXCL;
429 xfs_rw_ilock(ip, *iolock);
430 goto restart;
431 }
4d8d1581
DC
432 /*
433 * If the offset is beyond the size of the file, we need to zero any
434 * blocks that fall between the existing EOF and the start of this
2813d682 435 * write. If zeroing is needed and we are currently holding the
467f7899
CH
436 * iolock shared, we need to update it to exclusive which implies
437 * having to redo all checks before.
b9d59846
DC
438 *
439 * We need to serialise against EOF updates that occur in IO
440 * completions here. We want to make sure that nobody is changing the
441 * size while we do this check until we have placed an IO barrier (i.e.
442 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
443 * The spinlock effectively forms a memory barrier once we have the
444 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
445 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 446 */
b9d59846 447 spin_lock(&ip->i_flags_lock);
99733fa3 448 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
449 bool zero = false;
450
b9d59846 451 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
452 if (!drained_dio) {
453 if (*iolock == XFS_IOLOCK_SHARED) {
454 xfs_rw_iunlock(ip, *iolock);
455 *iolock = XFS_IOLOCK_EXCL;
456 xfs_rw_ilock(ip, *iolock);
457 iov_iter_reexpand(from, count);
458 }
40c63fbc
DC
459 /*
460 * We now have an IO submission barrier in place, but
461 * AIO can do EOF updates during IO completion and hence
462 * we now need to wait for all of them to drain. Non-AIO
463 * DIO will have drained before we are given the
464 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
465 * no-op.
466 */
467 inode_dio_wait(inode);
3136e8bb 468 drained_dio = true;
7271d243
DC
469 goto restart;
470 }
99733fa3 471 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
472 if (error)
473 return error;
b9d59846
DC
474 } else
475 spin_unlock(&ip->i_flags_lock);
4d8d1581 476
8a9c9980
CH
477 /*
478 * Updating the timestamps will grab the ilock again from
479 * xfs_fs_dirty_inode, so we have to call it after dropping the
480 * lock above. Eventually we should look into a way to avoid
481 * the pointless lock roundtrip.
482 */
c3b2da31
JB
483 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
484 error = file_update_time(file);
485 if (error)
486 return error;
487 }
8a9c9980 488
4d8d1581
DC
489 /*
490 * If we're writing the file then make sure to clear the setuid and
491 * setgid bits if the process is not being run by root. This keeps
492 * people from modifying setuid and setgid binaries.
493 */
a6de82ca
JK
494 if (!IS_NOSEC(inode))
495 return file_remove_privs(file);
496 return 0;
4d8d1581
DC
497}
498
f0d26e86
DC
499/*
500 * xfs_file_dio_aio_write - handle direct IO writes
501 *
502 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 503 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
504 * follow locking changes and looping.
505 *
eda77982
DC
506 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
507 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
508 * pages are flushed out.
509 *
510 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
511 * allowing them to be done in parallel with reads and other direct IO writes.
512 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
513 * needs to do sub-block zeroing and that requires serialisation against other
514 * direct IOs to the same block. In this case we need to serialise the
515 * submission of the unaligned IOs so that we don't get racing block zeroing in
516 * the dio layer. To avoid the problem with aio, we also need to wait for
517 * outstanding IOs to complete so that unwritten extent conversion is completed
518 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 519 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 520 *
f0d26e86
DC
521 * Returns with locks held indicated by @iolock and errors indicated by
522 * negative return values.
523 */
524STATIC ssize_t
525xfs_file_dio_aio_write(
526 struct kiocb *iocb,
b3188919 527 struct iov_iter *from)
f0d26e86
DC
528{
529 struct file *file = iocb->ki_filp;
530 struct address_space *mapping = file->f_mapping;
531 struct inode *inode = mapping->host;
532 struct xfs_inode *ip = XFS_I(inode);
533 struct xfs_mount *mp = ip->i_mount;
534 ssize_t ret = 0;
eda77982 535 int unaligned_io = 0;
d0606464 536 int iolock;
b3188919 537 size_t count = iov_iter_count(from);
0cefb29e
DC
538 loff_t end;
539 struct iov_iter data;
f0d26e86
DC
540 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
541 mp->m_rtdev_targp : mp->m_ddev_targp;
542
7c71ee78 543 /* DIO must be aligned to device logical sector size */
16d4d435 544 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 545 return -EINVAL;
f0d26e86 546
7271d243 547 /*
0ee7a3f6
CH
548 * Don't take the exclusive iolock here unless the I/O is unaligned to
549 * the file system block size. We don't need to consider the EOF
550 * extension case here because xfs_file_aio_write_checks() will relock
551 * the inode as necessary for EOF zeroing cases and fill out the new
552 * inode size as appropriate.
7271d243 553 */
0ee7a3f6
CH
554 if ((iocb->ki_pos & mp->m_blockmask) ||
555 ((iocb->ki_pos + count) & mp->m_blockmask)) {
556 unaligned_io = 1;
d0606464 557 iolock = XFS_IOLOCK_EXCL;
0ee7a3f6 558 } else {
d0606464 559 iolock = XFS_IOLOCK_SHARED;
c58cb165 560 }
f0d26e86 561
0ee7a3f6
CH
562 xfs_rw_ilock(ip, iolock);
563
99733fa3 564 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 565 if (ret)
d0606464 566 goto out;
99733fa3 567 count = iov_iter_count(from);
13712713 568 end = iocb->ki_pos + count - 1;
f0d26e86
DC
569
570 if (mapping->nrpages) {
0ee7a3f6 571 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
f0d26e86 572 if (ret)
d0606464 573 goto out;
0ee7a3f6 574
834ffca6 575 /*
3d751af2
BF
576 * Invalidate whole pages. This can return an error if we fail
577 * to invalidate a page, but this should never happen on XFS.
578 * Warn if it does fail.
834ffca6 579 */
0ee7a3f6
CH
580 ret = invalidate_inode_pages2_range(mapping,
581 iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
834ffca6
DC
582 WARN_ON_ONCE(ret);
583 ret = 0;
f0d26e86
DC
584 }
585
eda77982
DC
586 /*
587 * If we are doing unaligned IO, wait for all other IO to drain,
0ee7a3f6
CH
588 * otherwise demote the lock if we had to take the exclusive lock
589 * for other reasons in xfs_file_aio_write_checks.
eda77982
DC
590 */
591 if (unaligned_io)
4a06fd26 592 inode_dio_wait(inode);
d0606464 593 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 594 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 595 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
596 }
597
3176c3e0 598 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
f0d26e86 599
0613f16c
DW
600 /* If this is a block-aligned directio CoW, remap immediately. */
601 if (xfs_is_reflink_inode(ip) && !unaligned_io) {
602 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
603 if (ret)
604 goto out;
605 }
606
0cefb29e 607 data = *from;
16d4d435
CH
608 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
609 xfs_get_blocks_direct, xfs_end_io_direct_write,
610 NULL, DIO_ASYNC_EXTEND);
0cefb29e
DC
611
612 /* see generic_file_direct_write() for why this is necessary */
613 if (mapping->nrpages) {
614 invalidate_inode_pages2_range(mapping,
13712713 615 iocb->ki_pos >> PAGE_SHIFT,
09cbfeaf 616 end >> PAGE_SHIFT);
0cefb29e
DC
617 }
618
619 if (ret > 0) {
13712713 620 iocb->ki_pos += ret;
0cefb29e 621 iov_iter_advance(from, ret);
0cefb29e 622 }
d0606464
CH
623out:
624 xfs_rw_iunlock(ip, iolock);
625
6b698ede 626 /*
16d4d435
CH
627 * No fallback to buffered IO on errors for XFS, direct IO will either
628 * complete fully or fail.
6b698ede 629 */
16d4d435
CH
630 ASSERT(ret < 0 || ret == count);
631 return ret;
632}
633
f021bd07 634static noinline ssize_t
16d4d435
CH
635xfs_file_dax_write(
636 struct kiocb *iocb,
637 struct iov_iter *from)
638{
6c31f495 639 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 640 struct xfs_inode *ip = XFS_I(inode);
17879e8f 641 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
642 ssize_t ret, error = 0;
643 size_t count;
644 loff_t pos;
16d4d435 645
16d4d435 646 xfs_rw_ilock(ip, iolock);
16d4d435
CH
647 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
648 if (ret)
649 goto out;
650
6c31f495
CH
651 pos = iocb->ki_pos;
652 count = iov_iter_count(from);
8b2180b3 653
6c31f495 654 trace_xfs_file_dax_write(ip, count, pos);
16d4d435 655
6c31f495
CH
656 ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
657 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
658 i_size_write(inode, iocb->ki_pos);
659 error = xfs_setfilesize(ip, pos, ret);
16d4d435
CH
660 }
661
16d4d435
CH
662out:
663 xfs_rw_iunlock(ip, iolock);
6c31f495 664 return error ? error : ret;
f0d26e86
DC
665}
666
00258e36 667STATIC ssize_t
637bbc75 668xfs_file_buffered_aio_write(
dda35b8f 669 struct kiocb *iocb,
b3188919 670 struct iov_iter *from)
dda35b8f
CH
671{
672 struct file *file = iocb->ki_filp;
673 struct address_space *mapping = file->f_mapping;
674 struct inode *inode = mapping->host;
00258e36 675 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
676 ssize_t ret;
677 int enospc = 0;
d0606464 678 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 679
d0606464 680 xfs_rw_ilock(ip, iolock);
dda35b8f 681
99733fa3 682 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 683 if (ret)
d0606464 684 goto out;
dda35b8f
CH
685
686 /* We can write back this queue in page reclaim */
de1414a6 687 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 688
dda35b8f 689write_retry:
3176c3e0 690 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 691 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 692 if (likely(ret >= 0))
99733fa3 693 iocb->ki_pos += ret;
dc06f398 694
637bbc75 695 /*
dc06f398
BF
696 * If we hit a space limit, try to free up some lingering preallocated
697 * space before returning an error. In the case of ENOSPC, first try to
698 * write back all dirty inodes to free up some of the excess reserved
699 * metadata space. This reduces the chances that the eofblocks scan
700 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
701 * also behaves as a filter to prevent too many eofblocks scans from
702 * running at the same time.
637bbc75 703 */
dc06f398
BF
704 if (ret == -EDQUOT && !enospc) {
705 enospc = xfs_inode_free_quota_eofblocks(ip);
706 if (enospc)
707 goto write_retry;
83104d44
DW
708 enospc = xfs_inode_free_quota_cowblocks(ip);
709 if (enospc)
710 goto write_retry;
dc06f398
BF
711 } else if (ret == -ENOSPC && !enospc) {
712 struct xfs_eofblocks eofb = {0};
713
637bbc75 714 enospc = 1;
9aa05000 715 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
716 eofb.eof_scan_owner = ip->i_ino; /* for locking */
717 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
718 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 719 goto write_retry;
dda35b8f 720 }
d0606464 721
dda35b8f 722 current->backing_dev_info = NULL;
d0606464
CH
723out:
724 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
725 return ret;
726}
727
728STATIC ssize_t
bf97f3bc 729xfs_file_write_iter(
637bbc75 730 struct kiocb *iocb,
bf97f3bc 731 struct iov_iter *from)
637bbc75
DC
732{
733 struct file *file = iocb->ki_filp;
734 struct address_space *mapping = file->f_mapping;
735 struct inode *inode = mapping->host;
736 struct xfs_inode *ip = XFS_I(inode);
737 ssize_t ret;
bf97f3bc 738 size_t ocount = iov_iter_count(from);
637bbc75 739
ff6d6af2 740 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 741
637bbc75
DC
742 if (ocount == 0)
743 return 0;
744
bf97f3bc
AV
745 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
746 return -EIO;
637bbc75 747
16d4d435
CH
748 if (IS_DAX(inode))
749 ret = xfs_file_dax_write(iocb, from);
0613f16c
DW
750 else if (iocb->ki_flags & IOCB_DIRECT) {
751 /*
752 * Allow a directio write to fall back to a buffered
753 * write *only* in the case that we're doing a reflink
754 * CoW. In all other directio scenarios we do not
755 * allow an operation to fall back to buffered mode.
756 */
bf97f3bc 757 ret = xfs_file_dio_aio_write(iocb, from);
0613f16c
DW
758 if (ret == -EREMCHG)
759 goto buffered;
760 } else {
761buffered:
bf97f3bc 762 ret = xfs_file_buffered_aio_write(iocb, from);
0613f16c 763 }
dda35b8f 764
d0606464 765 if (ret > 0) {
ff6d6af2 766 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 767
d0606464 768 /* Handle various SYNC-type writes */
e2592217 769 ret = generic_write_sync(iocb, ret);
dda35b8f 770 }
a363f0c2 771 return ret;
dda35b8f
CH
772}
773
a904b1ca
NJ
774#define XFS_FALLOC_FL_SUPPORTED \
775 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
776 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 777 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 778
2fe17c10
CH
779STATIC long
780xfs_file_fallocate(
83aee9e4
CH
781 struct file *file,
782 int mode,
783 loff_t offset,
784 loff_t len)
2fe17c10 785{
83aee9e4
CH
786 struct inode *inode = file_inode(file);
787 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 788 long error;
8add71ca 789 enum xfs_prealloc_flags flags = 0;
781355c6 790 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 791 loff_t new_size = 0;
a904b1ca 792 bool do_file_insert = 0;
2fe17c10 793
83aee9e4
CH
794 if (!S_ISREG(inode->i_mode))
795 return -EINVAL;
a904b1ca 796 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
797 return -EOPNOTSUPP;
798
781355c6 799 xfs_ilock(ip, iolock);
21c3ea18 800 error = xfs_break_layouts(inode, &iolock, false);
781355c6
CH
801 if (error)
802 goto out_unlock;
803
e8e9ad42
DC
804 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
805 iolock |= XFS_MMAPLOCK_EXCL;
806
83aee9e4
CH
807 if (mode & FALLOC_FL_PUNCH_HOLE) {
808 error = xfs_free_file_space(ip, offset, len);
809 if (error)
810 goto out_unlock;
e1d8fb88
NJ
811 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
812 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
813
814 if (offset & blksize_mask || len & blksize_mask) {
2451337d 815 error = -EINVAL;
e1d8fb88
NJ
816 goto out_unlock;
817 }
818
23fffa92
LC
819 /*
820 * There is no need to overlap collapse range with EOF,
821 * in which case it is effectively a truncate operation
822 */
823 if (offset + len >= i_size_read(inode)) {
2451337d 824 error = -EINVAL;
23fffa92
LC
825 goto out_unlock;
826 }
827
e1d8fb88
NJ
828 new_size = i_size_read(inode) - len;
829
830 error = xfs_collapse_file_space(ip, offset, len);
831 if (error)
832 goto out_unlock;
a904b1ca
NJ
833 } else if (mode & FALLOC_FL_INSERT_RANGE) {
834 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
835
836 new_size = i_size_read(inode) + len;
837 if (offset & blksize_mask || len & blksize_mask) {
838 error = -EINVAL;
839 goto out_unlock;
840 }
841
842 /* check the new inode size does not wrap through zero */
843 if (new_size > inode->i_sb->s_maxbytes) {
844 error = -EFBIG;
845 goto out_unlock;
846 }
847
848 /* Offset should be less than i_size */
849 if (offset >= i_size_read(inode)) {
850 error = -EINVAL;
851 goto out_unlock;
852 }
853 do_file_insert = 1;
83aee9e4 854 } else {
8add71ca
CH
855 flags |= XFS_PREALLOC_SET;
856
83aee9e4
CH
857 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
858 offset + len > i_size_read(inode)) {
859 new_size = offset + len;
2451337d 860 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
861 if (error)
862 goto out_unlock;
863 }
2fe17c10 864
376ba313
LC
865 if (mode & FALLOC_FL_ZERO_RANGE)
866 error = xfs_zero_file_space(ip, offset, len);
98cc2db5
DW
867 else {
868 if (mode & FALLOC_FL_UNSHARE_RANGE) {
869 error = xfs_reflink_unshare(ip, offset, len);
870 if (error)
871 goto out_unlock;
872 }
376ba313
LC
873 error = xfs_alloc_file_space(ip, offset, len,
874 XFS_BMAPI_PREALLOC);
98cc2db5 875 }
2fe17c10
CH
876 if (error)
877 goto out_unlock;
878 }
879
83aee9e4 880 if (file->f_flags & O_DSYNC)
8add71ca
CH
881 flags |= XFS_PREALLOC_SYNC;
882
883 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
884 if (error)
885 goto out_unlock;
886
887 /* Change file size if needed */
888 if (new_size) {
889 struct iattr iattr;
890
891 iattr.ia_valid = ATTR_SIZE;
892 iattr.ia_size = new_size;
69bca807 893 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
894 if (error)
895 goto out_unlock;
2fe17c10
CH
896 }
897
a904b1ca
NJ
898 /*
899 * Perform hole insertion now that the file size has been
900 * updated so that if we crash during the operation we don't
901 * leave shifted extents past EOF and hence losing access to
902 * the data that is contained within them.
903 */
904 if (do_file_insert)
905 error = xfs_insert_file_space(ip, offset, len);
906
2fe17c10 907out_unlock:
781355c6 908 xfs_iunlock(ip, iolock);
2451337d 909 return error;
2fe17c10
CH
910}
911
9fe26045
DW
912STATIC ssize_t
913xfs_file_copy_range(
914 struct file *file_in,
915 loff_t pos_in,
916 struct file *file_out,
917 loff_t pos_out,
918 size_t len,
919 unsigned int flags)
920{
921 int error;
922
5faaf4fa 923 error = xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660 924 len, false);
9fe26045
DW
925 if (error)
926 return error;
927 return len;
928}
929
930STATIC int
931xfs_file_clone_range(
932 struct file *file_in,
933 loff_t pos_in,
934 struct file *file_out,
935 loff_t pos_out,
936 u64 len)
937{
5faaf4fa 938 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660
DW
939 len, false);
940}
941
942#define XFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
943STATIC ssize_t
944xfs_file_dedupe_range(
945 struct file *src_file,
946 u64 loff,
947 u64 len,
948 struct file *dst_file,
949 u64 dst_loff)
950{
951 int error;
952
953 /*
954 * Limit the total length we will dedupe for each operation.
955 * This is intended to bound the total time spent in this
956 * ioctl to something sane.
957 */
958 if (len > XFS_MAX_DEDUPE_LEN)
959 len = XFS_MAX_DEDUPE_LEN;
960
5faaf4fa 961 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
cc714660
DW
962 len, true);
963 if (error)
964 return error;
965 return len;
9fe26045 966}
2fe17c10 967
1da177e4 968STATIC int
3562fd45 969xfs_file_open(
1da177e4 970 struct inode *inode,
f999a5bf 971 struct file *file)
1da177e4 972{
f999a5bf 973 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 974 return -EFBIG;
f999a5bf
CH
975 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
976 return -EIO;
977 return 0;
978}
979
980STATIC int
981xfs_dir_open(
982 struct inode *inode,
983 struct file *file)
984{
985 struct xfs_inode *ip = XFS_I(inode);
986 int mode;
987 int error;
988
989 error = xfs_file_open(inode, file);
990 if (error)
991 return error;
992
993 /*
994 * If there are any blocks, read-ahead block 0 as we're almost
995 * certain to have the next operation be a read there.
996 */
309ecac8 997 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 998 if (ip->i_d.di_nextents > 0)
9df2dd0b 999 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
1000 xfs_iunlock(ip, mode);
1001 return 0;
1da177e4
LT
1002}
1003
1da177e4 1004STATIC int
3562fd45 1005xfs_file_release(
1da177e4
LT
1006 struct inode *inode,
1007 struct file *filp)
1008{
2451337d 1009 return xfs_release(XFS_I(inode));
1da177e4
LT
1010}
1011
1da177e4 1012STATIC int
3562fd45 1013xfs_file_readdir(
b8227554
AV
1014 struct file *file,
1015 struct dir_context *ctx)
1da177e4 1016{
b8227554 1017 struct inode *inode = file_inode(file);
739bfb2a 1018 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1019 size_t bufsize;
1020
1021 /*
1022 * The Linux API doesn't pass down the total size of the buffer
1023 * we read into down to the filesystem. With the filldir concept
1024 * it's not needed for correct information, but the XFS dir2 leaf
1025 * code wants an estimate of the buffer size to calculate it's
1026 * readahead window and size the buffers used for mapping to
1027 * physical blocks.
1028 *
1029 * Try to give it an estimate that's good enough, maybe at some
1030 * point we can change the ->readdir prototype to include the
a9cc799e 1031 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1032 */
a9cc799e 1033 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1034
8300475e 1035 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1036}
1037
d126d43f
JL
1038/*
1039 * This type is designed to indicate the type of offset we would like
49c69591 1040 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1041 */
1042enum {
1043 HOLE_OFF = 0,
1044 DATA_OFF,
1045};
1046
1047/*
1048 * Lookup the desired type of offset from the given page.
1049 *
1050 * On success, return true and the offset argument will point to the
1051 * start of the region that was found. Otherwise this function will
1052 * return false and keep the offset argument unchanged.
1053 */
1054STATIC bool
1055xfs_lookup_buffer_offset(
1056 struct page *page,
1057 loff_t *offset,
1058 unsigned int type)
1059{
1060 loff_t lastoff = page_offset(page);
1061 bool found = false;
1062 struct buffer_head *bh, *head;
1063
1064 bh = head = page_buffers(page);
1065 do {
1066 /*
1067 * Unwritten extents that have data in the page
1068 * cache covering them can be identified by the
1069 * BH_Unwritten state flag. Pages with multiple
1070 * buffers might have a mix of holes, data and
1071 * unwritten extents - any buffer with valid
1072 * data in it should have BH_Uptodate flag set
1073 * on it.
1074 */
1075 if (buffer_unwritten(bh) ||
1076 buffer_uptodate(bh)) {
1077 if (type == DATA_OFF)
1078 found = true;
1079 } else {
1080 if (type == HOLE_OFF)
1081 found = true;
1082 }
1083
1084 if (found) {
1085 *offset = lastoff;
1086 break;
1087 }
1088 lastoff += bh->b_size;
1089 } while ((bh = bh->b_this_page) != head);
1090
1091 return found;
1092}
1093
1094/*
1095 * This routine is called to find out and return a data or hole offset
1096 * from the page cache for unwritten extents according to the desired
49c69591 1097 * type for xfs_seek_hole_data().
d126d43f
JL
1098 *
1099 * The argument offset is used to tell where we start to search from the
1100 * page cache. Map is used to figure out the end points of the range to
1101 * lookup pages.
1102 *
1103 * Return true if the desired type of offset was found, and the argument
1104 * offset is filled with that address. Otherwise, return false and keep
1105 * offset unchanged.
1106 */
1107STATIC bool
1108xfs_find_get_desired_pgoff(
1109 struct inode *inode,
1110 struct xfs_bmbt_irec *map,
1111 unsigned int type,
1112 loff_t *offset)
1113{
1114 struct xfs_inode *ip = XFS_I(inode);
1115 struct xfs_mount *mp = ip->i_mount;
1116 struct pagevec pvec;
1117 pgoff_t index;
1118 pgoff_t end;
1119 loff_t endoff;
1120 loff_t startoff = *offset;
1121 loff_t lastoff = startoff;
1122 bool found = false;
1123
1124 pagevec_init(&pvec, 0);
1125
09cbfeaf 1126 index = startoff >> PAGE_SHIFT;
d126d43f 1127 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
09cbfeaf 1128 end = endoff >> PAGE_SHIFT;
d126d43f
JL
1129 do {
1130 int want;
1131 unsigned nr_pages;
1132 unsigned int i;
1133
1134 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1135 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1136 want);
1137 /*
1138 * No page mapped into given range. If we are searching holes
1139 * and if this is the first time we got into the loop, it means
1140 * that the given offset is landed in a hole, return it.
1141 *
1142 * If we have already stepped through some block buffers to find
1143 * holes but they all contains data. In this case, the last
1144 * offset is already updated and pointed to the end of the last
1145 * mapped page, if it does not reach the endpoint to search,
1146 * that means there should be a hole between them.
1147 */
1148 if (nr_pages == 0) {
1149 /* Data search found nothing */
1150 if (type == DATA_OFF)
1151 break;
1152
1153 ASSERT(type == HOLE_OFF);
1154 if (lastoff == startoff || lastoff < endoff) {
1155 found = true;
1156 *offset = lastoff;
1157 }
1158 break;
1159 }
1160
1161 /*
1162 * At lease we found one page. If this is the first time we
1163 * step into the loop, and if the first page index offset is
1164 * greater than the given search offset, a hole was found.
1165 */
1166 if (type == HOLE_OFF && lastoff == startoff &&
1167 lastoff < page_offset(pvec.pages[0])) {
1168 found = true;
1169 break;
1170 }
1171
1172 for (i = 0; i < nr_pages; i++) {
1173 struct page *page = pvec.pages[i];
1174 loff_t b_offset;
1175
1176 /*
1177 * At this point, the page may be truncated or
1178 * invalidated (changing page->mapping to NULL),
1179 * or even swizzled back from swapper_space to tmpfs
1180 * file mapping. However, page->index will not change
1181 * because we have a reference on the page.
1182 *
1183 * Searching done if the page index is out of range.
1184 * If the current offset is not reaches the end of
1185 * the specified search range, there should be a hole
1186 * between them.
1187 */
1188 if (page->index > end) {
1189 if (type == HOLE_OFF && lastoff < endoff) {
1190 *offset = lastoff;
1191 found = true;
1192 }
1193 goto out;
1194 }
1195
1196 lock_page(page);
1197 /*
1198 * Page truncated or invalidated(page->mapping == NULL).
1199 * We can freely skip it and proceed to check the next
1200 * page.
1201 */
1202 if (unlikely(page->mapping != inode->i_mapping)) {
1203 unlock_page(page);
1204 continue;
1205 }
1206
1207 if (!page_has_buffers(page)) {
1208 unlock_page(page);
1209 continue;
1210 }
1211
1212 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1213 if (found) {
1214 /*
1215 * The found offset may be less than the start
1216 * point to search if this is the first time to
1217 * come here.
1218 */
1219 *offset = max_t(loff_t, startoff, b_offset);
1220 unlock_page(page);
1221 goto out;
1222 }
1223
1224 /*
1225 * We either searching data but nothing was found, or
1226 * searching hole but found a data buffer. In either
1227 * case, probably the next page contains the desired
1228 * things, update the last offset to it so.
1229 */
1230 lastoff = page_offset(page) + PAGE_SIZE;
1231 unlock_page(page);
1232 }
1233
1234 /*
1235 * The number of returned pages less than our desired, search
1236 * done. In this case, nothing was found for searching data,
1237 * but we found a hole behind the last offset.
1238 */
1239 if (nr_pages < want) {
1240 if (type == HOLE_OFF) {
1241 *offset = lastoff;
1242 found = true;
1243 }
1244 break;
1245 }
1246
1247 index = pvec.pages[i - 1]->index + 1;
1248 pagevec_release(&pvec);
1249 } while (index <= end);
1250
1251out:
1252 pagevec_release(&pvec);
1253 return found;
1254}
1255
8aa7d37e
ES
1256/*
1257 * caller must lock inode with xfs_ilock_data_map_shared,
1258 * can we craft an appropriate ASSERT?
1259 *
1260 * end is because the VFS-level lseek interface is defined such that any
1261 * offset past i_size shall return -ENXIO, but we use this for quota code
1262 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1263 */
1264loff_t
1265__xfs_seek_hole_data(
1266 struct inode *inode,
49c69591 1267 loff_t start,
8aa7d37e 1268 loff_t end,
49c69591 1269 int whence)
3fe3e6b1 1270{
3fe3e6b1
JL
1271 struct xfs_inode *ip = XFS_I(inode);
1272 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1 1273 loff_t uninitialized_var(offset);
3fe3e6b1 1274 xfs_fileoff_t fsbno;
8aa7d37e 1275 xfs_filblks_t lastbno;
3fe3e6b1
JL
1276 int error;
1277
8aa7d37e 1278 if (start >= end) {
2451337d 1279 error = -ENXIO;
8aa7d37e 1280 goto out_error;
3fe3e6b1
JL
1281 }
1282
3fe3e6b1
JL
1283 /*
1284 * Try to read extents from the first block indicated
1285 * by fsbno to the end block of the file.
1286 */
52f1acc8 1287 fsbno = XFS_B_TO_FSBT(mp, start);
8aa7d37e 1288 lastbno = XFS_B_TO_FSB(mp, end);
49c69591 1289
52f1acc8
JL
1290 for (;;) {
1291 struct xfs_bmbt_irec map[2];
1292 int nmap = 2;
1293 unsigned int i;
3fe3e6b1 1294
8aa7d37e 1295 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
52f1acc8
JL
1296 XFS_BMAPI_ENTIRE);
1297 if (error)
8aa7d37e 1298 goto out_error;
3fe3e6b1 1299
52f1acc8
JL
1300 /* No extents at given offset, must be beyond EOF */
1301 if (nmap == 0) {
2451337d 1302 error = -ENXIO;
8aa7d37e 1303 goto out_error;
52f1acc8
JL
1304 }
1305
1306 for (i = 0; i < nmap; i++) {
1307 offset = max_t(loff_t, start,
1308 XFS_FSB_TO_B(mp, map[i].br_startoff));
1309
49c69591
ES
1310 /* Landed in the hole we wanted? */
1311 if (whence == SEEK_HOLE &&
1312 map[i].br_startblock == HOLESTARTBLOCK)
1313 goto out;
1314
1315 /* Landed in the data extent we wanted? */
1316 if (whence == SEEK_DATA &&
1317 (map[i].br_startblock == DELAYSTARTBLOCK ||
1318 (map[i].br_state == XFS_EXT_NORM &&
1319 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1320 goto out;
1321
1322 /*
49c69591
ES
1323 * Landed in an unwritten extent, try to search
1324 * for hole or data from page cache.
52f1acc8
JL
1325 */
1326 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1327 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1328 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1329 &offset))
52f1acc8
JL
1330 goto out;
1331 }
1332 }
1333
1334 /*
49c69591
ES
1335 * We only received one extent out of the two requested. This
1336 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1337 */
3fe3e6b1 1338 if (nmap == 1) {
49c69591
ES
1339 /*
1340 * If we were looking for a hole, set offset to
1341 * the end of the file (i.e., there is an implicit
1342 * hole at the end of any file).
1343 */
1344 if (whence == SEEK_HOLE) {
8aa7d37e 1345 offset = end;
49c69591
ES
1346 break;
1347 }
1348 /*
1349 * If we were looking for data, it's nowhere to be found
1350 */
1351 ASSERT(whence == SEEK_DATA);
2451337d 1352 error = -ENXIO;
8aa7d37e 1353 goto out_error;
3fe3e6b1
JL
1354 }
1355
52f1acc8
JL
1356 ASSERT(i > 1);
1357
1358 /*
1359 * Nothing was found, proceed to the next round of search
49c69591 1360 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1361 */
1362 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1363 start = XFS_FSB_TO_B(mp, fsbno);
8aa7d37e 1364 if (start >= end) {
49c69591 1365 if (whence == SEEK_HOLE) {
8aa7d37e 1366 offset = end;
49c69591
ES
1367 break;
1368 }
1369 ASSERT(whence == SEEK_DATA);
2451337d 1370 error = -ENXIO;
8aa7d37e 1371 goto out_error;
52f1acc8 1372 }
3fe3e6b1
JL
1373 }
1374
b686d1f7
JL
1375out:
1376 /*
49c69591 1377 * If at this point we have found the hole we wanted, the returned
b686d1f7 1378 * offset may be bigger than the file size as it may be aligned to
49c69591 1379 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1380 * situation in particular.
1381 */
49c69591 1382 if (whence == SEEK_HOLE)
8aa7d37e
ES
1383 offset = min_t(loff_t, offset, end);
1384
1385 return offset;
1386
1387out_error:
1388 return error;
1389}
1390
1391STATIC loff_t
1392xfs_seek_hole_data(
1393 struct file *file,
1394 loff_t start,
1395 int whence)
1396{
1397 struct inode *inode = file->f_mapping->host;
1398 struct xfs_inode *ip = XFS_I(inode);
1399 struct xfs_mount *mp = ip->i_mount;
1400 uint lock;
1401 loff_t offset, end;
1402 int error = 0;
1403
1404 if (XFS_FORCED_SHUTDOWN(mp))
1405 return -EIO;
1406
1407 lock = xfs_ilock_data_map_shared(ip);
1408
1409 end = i_size_read(inode);
1410 offset = __xfs_seek_hole_data(inode, start, end, whence);
1411 if (offset < 0) {
1412 error = offset;
1413 goto out_unlock;
1414 }
1415
46a1c2c7 1416 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1417
1418out_unlock:
01f4f327 1419 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1420
1421 if (error)
2451337d 1422 return error;
3fe3e6b1
JL
1423 return offset;
1424}
1425
1426STATIC loff_t
1427xfs_file_llseek(
1428 struct file *file,
1429 loff_t offset,
59f9c004 1430 int whence)
3fe3e6b1 1431{
59f9c004 1432 switch (whence) {
3fe3e6b1
JL
1433 case SEEK_END:
1434 case SEEK_CUR:
1435 case SEEK_SET:
59f9c004 1436 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1437 case SEEK_HOLE:
49c69591 1438 case SEEK_DATA:
59f9c004 1439 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1440 default:
1441 return -EINVAL;
1442 }
1443}
1444
de0e8c20
DC
1445/*
1446 * Locking for serialisation of IO during page faults. This results in a lock
1447 * ordering of:
1448 *
1449 * mmap_sem (MM)
6b698ede 1450 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1451 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1452 * page_lock (MM)
1453 * i_lock (XFS - extent map serialisation)
de0e8c20 1454 */
de0e8c20 1455
075a924d
DC
1456/*
1457 * mmap()d file has taken write protection fault and is being made writable. We
1458 * can set the page state up correctly for a writable page, which means we can
1459 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1460 * mapping.
de0e8c20
DC
1461 */
1462STATIC int
075a924d 1463xfs_filemap_page_mkwrite(
de0e8c20
DC
1464 struct vm_area_struct *vma,
1465 struct vm_fault *vmf)
1466{
6b698ede 1467 struct inode *inode = file_inode(vma->vm_file);
ec56b1f1 1468 int ret;
de0e8c20 1469
6b698ede 1470 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1471
6b698ede 1472 sb_start_pagefault(inode->i_sb);
ec56b1f1 1473 file_update_time(vma->vm_file);
6b698ede 1474 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1475
6b698ede 1476 if (IS_DAX(inode)) {
6c31f495 1477 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
6b698ede 1478 } else {
68a9f5e7 1479 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
6b698ede
DC
1480 ret = block_page_mkwrite_return(ret);
1481 }
1482
1483 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1484 sb_end_pagefault(inode->i_sb);
1485
1486 return ret;
de0e8c20
DC
1487}
1488
075a924d 1489STATIC int
6b698ede 1490xfs_filemap_fault(
075a924d
DC
1491 struct vm_area_struct *vma,
1492 struct vm_fault *vmf)
1493{
b2442c5a 1494 struct inode *inode = file_inode(vma->vm_file);
6b698ede 1495 int ret;
ec56b1f1 1496
b2442c5a 1497 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1498
6b698ede 1499 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1500 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
6b698ede 1501 return xfs_filemap_page_mkwrite(vma, vmf);
075a924d 1502
b2442c5a
DC
1503 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1504 if (IS_DAX(inode)) {
1505 /*
1506 * we do not want to trigger unwritten extent conversion on read
1507 * faults - that is unnecessary overhead and would also require
1508 * changes to xfs_get_blocks_direct() to map unwritten extent
1509 * ioend for conversion on read-only mappings.
1510 */
6c31f495 1511 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
b2442c5a
DC
1512 } else
1513 ret = filemap_fault(vma, vmf);
1514 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1515
6b698ede
DC
1516 return ret;
1517}
1518
13ad4fe3
DC
1519/*
1520 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1521 * both read and write faults. Hence we need to handle both cases. There is no
1522 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1523 * handle both cases here. @flags carries the information on the type of fault
1524 * occuring.
1525 */
acd76e74
MW
1526STATIC int
1527xfs_filemap_pmd_fault(
1528 struct vm_area_struct *vma,
1529 unsigned long addr,
1530 pmd_t *pmd,
1531 unsigned int flags)
1532{
1533 struct inode *inode = file_inode(vma->vm_file);
1534 struct xfs_inode *ip = XFS_I(inode);
1535 int ret;
1536
1537 if (!IS_DAX(inode))
1538 return VM_FAULT_FALLBACK;
1539
1540 trace_xfs_filemap_pmd_fault(ip);
1541
13ad4fe3
DC
1542 if (flags & FAULT_FLAG_WRITE) {
1543 sb_start_pagefault(inode->i_sb);
1544 file_update_time(vma->vm_file);
1545 }
1546
acd76e74 1547 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b524995 1548 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
acd76e74 1549 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acd76e74 1550
13ad4fe3
DC
1551 if (flags & FAULT_FLAG_WRITE)
1552 sb_end_pagefault(inode->i_sb);
acd76e74
MW
1553
1554 return ret;
1555}
1556
3af49285
DC
1557/*
1558 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1559 * updates on write faults. In reality, it's need to serialise against
5eb88dca
RZ
1560 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1561 * to ensure we serialise the fault barrier in place.
3af49285
DC
1562 */
1563static int
1564xfs_filemap_pfn_mkwrite(
1565 struct vm_area_struct *vma,
1566 struct vm_fault *vmf)
1567{
1568
1569 struct inode *inode = file_inode(vma->vm_file);
1570 struct xfs_inode *ip = XFS_I(inode);
1571 int ret = VM_FAULT_NOPAGE;
1572 loff_t size;
1573
1574 trace_xfs_filemap_pfn_mkwrite(ip);
1575
1576 sb_start_pagefault(inode->i_sb);
1577 file_update_time(vma->vm_file);
1578
1579 /* check if the faulting page hasn't raced with truncate */
1580 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1581 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1582 if (vmf->pgoff >= size)
1583 ret = VM_FAULT_SIGBUS;
5eb88dca
RZ
1584 else if (IS_DAX(inode))
1585 ret = dax_pfn_mkwrite(vma, vmf);
3af49285
DC
1586 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1587 sb_end_pagefault(inode->i_sb);
acd76e74 1588 return ret;
3af49285 1589
acd76e74
MW
1590}
1591
6b698ede
DC
1592static const struct vm_operations_struct xfs_file_vm_ops = {
1593 .fault = xfs_filemap_fault,
acd76e74 1594 .pmd_fault = xfs_filemap_pmd_fault,
6b698ede
DC
1595 .map_pages = filemap_map_pages,
1596 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1597 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1598};
1599
1600STATIC int
1601xfs_file_mmap(
1602 struct file *filp,
1603 struct vm_area_struct *vma)
1604{
1605 file_accessed(filp);
1606 vma->vm_ops = &xfs_file_vm_ops;
1607 if (IS_DAX(file_inode(filp)))
acd76e74 1608 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1609 return 0;
075a924d
DC
1610}
1611
4b6f5d20 1612const struct file_operations xfs_file_operations = {
3fe3e6b1 1613 .llseek = xfs_file_llseek,
b4f5d2c6 1614 .read_iter = xfs_file_read_iter,
bf97f3bc 1615 .write_iter = xfs_file_write_iter,
82c156f8 1616 .splice_read = generic_file_splice_read,
8d020765 1617 .splice_write = iter_file_splice_write,
3562fd45 1618 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1619#ifdef CONFIG_COMPAT
3562fd45 1620 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1621#endif
3562fd45
NS
1622 .mmap = xfs_file_mmap,
1623 .open = xfs_file_open,
1624 .release = xfs_file_release,
1625 .fsync = xfs_file_fsync,
dbe6ec81 1626 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1627 .fallocate = xfs_file_fallocate,
9fe26045
DW
1628 .copy_file_range = xfs_file_copy_range,
1629 .clone_file_range = xfs_file_clone_range,
cc714660 1630 .dedupe_file_range = xfs_file_dedupe_range,
1da177e4
LT
1631};
1632
4b6f5d20 1633const struct file_operations xfs_dir_file_operations = {
f999a5bf 1634 .open = xfs_dir_open,
1da177e4 1635 .read = generic_read_dir,
3b0a3c1a 1636 .iterate_shared = xfs_file_readdir,
59af1584 1637 .llseek = generic_file_llseek,
3562fd45 1638 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1639#ifdef CONFIG_COMPAT
3562fd45 1640 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1641#endif
1da2f2db 1642 .fsync = xfs_dir_fsync,
1da177e4 1643};