afs: switch to ->write_iter()
[linux-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_sb.h"
a844f451 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
57062787
DC
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
c24b5dfa 33#include "xfs_bmap_util.h"
1da177e4 34#include "xfs_error.h"
2b9ab5ab 35#include "xfs_dir2.h"
c24b5dfa 36#include "xfs_dir2_priv.h"
ddcd856d 37#include "xfs_ioctl.h"
dda35b8f 38#include "xfs_trace.h"
239880ef 39#include "xfs_log.h"
a4fbe6ab 40#include "xfs_dinode.h"
1da177e4 41
a27bb332 42#include <linux/aio.h>
1da177e4 43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
1da177e4 46
f0f37e2f 47static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 48
487f84f3
DC
49/*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53static inline void
54xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57{
58 if (type & XFS_IOLOCK_EXCL)
59 mutex_lock(&VFS_I(ip)->i_mutex);
60 xfs_ilock(ip, type);
61}
62
63static inline void
64xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67{
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 mutex_unlock(&VFS_I(ip)->i_mutex);
71}
72
73static inline void
74xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77{
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 mutex_unlock(&VFS_I(ip)->i_mutex);
81}
82
dda35b8f
CH
83/*
84 * xfs_iozero
85 *
86 * xfs_iozero clears the specified range of buffer supplied,
87 * and marks all the affected blocks as valid and modified. If
88 * an affected block is not allocated, it will be allocated. If
89 * an affected block is not completely overwritten, and is not
90 * valid before the operation, it will be read from disk before
91 * being partially zeroed.
92 */
ef9d8733 93int
dda35b8f
CH
94xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98{
99 struct page *page;
100 struct address_space *mapping;
101 int status;
102
103 mapping = VFS_I(ip)->i_mapping;
104 do {
105 unsigned offset, bytes;
106 void *fsdata;
107
108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 bytes = PAGE_CACHE_SIZE - offset;
110 if (bytes > count)
111 bytes = count;
112
113 status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 AOP_FLAG_UNINTERRUPTIBLE,
115 &page, &fsdata);
116 if (status)
117 break;
118
119 zero_user(page, offset, bytes);
120
121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 page, fsdata);
123 WARN_ON(status <= 0); /* can't return less than zero! */
124 pos += bytes;
125 count -= bytes;
126 status = 0;
127 } while (count);
128
129 return (-status);
130}
131
1da2f2db
CH
132/*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138STATIC int
139xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144{
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159}
160
fd3200be
CH
161STATIC int
162xfs_file_fsync(
163 struct file *file,
02c24a82
JB
164 loff_t start,
165 loff_t end,
fd3200be
CH
166 int datasync)
167{
7ea80859
CH
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
a27a263b 170 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
171 int error = 0;
172 int log_flushed = 0;
b1037058 173 xfs_lsn_t lsn = 0;
fd3200be 174
cca28fb8 175 trace_xfs_file_fsync(ip);
fd3200be 176
02c24a82
JB
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
a27a263b 181 if (XFS_FORCED_SHUTDOWN(mp))
fd3200be
CH
182 return -XFS_ERROR(EIO);
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
a27a263b
CH
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
fd3200be 200 /*
8a9c9980
CH
201 * All metadata updates are logged, which means that we just have
202 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
203 */
204 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
205 if (xfs_ipincount(ip)) {
206 if (!datasync ||
207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 lsn = ip->i_itemp->ili_last_lsn;
209 }
8a9c9980 210 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 211
8a9c9980 212 if (lsn)
b1037058
CH
213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214
a27a263b
CH
215 /*
216 * If we only have a single device, and the log force about was
217 * a no-op we might have to flush the data device cache here.
218 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 * an already allocated file and thus do not have any metadata to
220 * commit.
221 */
222 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 mp->m_logdev_targp == mp->m_ddev_targp &&
224 !XFS_IS_REALTIME_INODE(ip) &&
225 !log_flushed)
226 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be
CH
227
228 return -error;
229}
230
00258e36 231STATIC ssize_t
b4f5d2c6 232xfs_file_read_iter(
dda35b8f 233 struct kiocb *iocb,
b4f5d2c6 234 struct iov_iter *to)
dda35b8f
CH
235{
236 struct file *file = iocb->ki_filp;
237 struct inode *inode = file->f_mapping->host;
00258e36
CH
238 struct xfs_inode *ip = XFS_I(inode);
239 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 240 size_t size = iov_iter_count(to);
dda35b8f 241 ssize_t ret = 0;
00258e36 242 int ioflags = 0;
dda35b8f 243 xfs_fsize_t n;
b4f5d2c6 244 loff_t pos = iocb->ki_pos;
dda35b8f 245
dda35b8f
CH
246 XFS_STATS_INC(xs_read_calls);
247
00258e36
CH
248 if (unlikely(file->f_flags & O_DIRECT))
249 ioflags |= IO_ISDIRECT;
250 if (file->f_mode & FMODE_NOCMTIME)
251 ioflags |= IO_INVIS;
252
dda35b8f
CH
253 if (unlikely(ioflags & IO_ISDIRECT)) {
254 xfs_buftarg_t *target =
255 XFS_IS_REALTIME_INODE(ip) ?
256 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
257 /* DIO must be aligned to device logical sector size */
258 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 259 if (pos == i_size_read(inode))
00258e36 260 return 0;
dda35b8f
CH
261 return -XFS_ERROR(EINVAL);
262 }
263 }
264
fb595814 265 n = mp->m_super->s_maxbytes - pos;
00258e36 266 if (n <= 0 || size == 0)
dda35b8f
CH
267 return 0;
268
269 if (n < size)
270 size = n;
271
272 if (XFS_FORCED_SHUTDOWN(mp))
273 return -EIO;
274
0c38a251
DC
275 /*
276 * Locking is a bit tricky here. If we take an exclusive lock
277 * for direct IO, we effectively serialise all new concurrent
278 * read IO to this file and block it behind IO that is currently in
279 * progress because IO in progress holds the IO lock shared. We only
280 * need to hold the lock exclusive to blow away the page cache, so
281 * only take lock exclusively if the page cache needs invalidation.
282 * This allows the normal direct IO case of no page cache pages to
283 * proceeed concurrently without serialisation.
284 */
285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
289
00258e36 290 if (inode->i_mapping->nrpages) {
fb595814
DC
291 ret = -filemap_write_and_wait_range(
292 VFS_I(ip)->i_mapping,
293 pos, -1);
487f84f3
DC
294 if (ret) {
295 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
296 return ret;
297 }
fb595814 298 truncate_pagecache_range(VFS_I(ip), pos, -1);
00258e36 299 }
487f84f3 300 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 301 }
dda35b8f 302
fb595814 303 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 304
b4f5d2c6 305 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
306 if (ret > 0)
307 XFS_STATS_ADD(xs_read_bytes, ret);
308
487f84f3 309 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
310 return ret;
311}
312
00258e36
CH
313STATIC ssize_t
314xfs_file_splice_read(
dda35b8f
CH
315 struct file *infilp,
316 loff_t *ppos,
317 struct pipe_inode_info *pipe,
318 size_t count,
00258e36 319 unsigned int flags)
dda35b8f 320{
00258e36 321 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 322 int ioflags = 0;
dda35b8f
CH
323 ssize_t ret;
324
325 XFS_STATS_INC(xs_read_calls);
00258e36
CH
326
327 if (infilp->f_mode & FMODE_NOCMTIME)
328 ioflags |= IO_INVIS;
329
dda35b8f
CH
330 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
331 return -EIO;
332
487f84f3 333 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 334
dda35b8f
CH
335 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
336
337 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
338 if (ret > 0)
339 XFS_STATS_ADD(xs_read_bytes, ret);
340
487f84f3 341 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
342 return ret;
343}
344
487f84f3
DC
345/*
346 * xfs_file_splice_write() does not use xfs_rw_ilock() because
347 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
348 * couuld cause lock inversions between the aio_write path and the splice path
349 * if someone is doing concurrent splice(2) based writes and write(2) based
350 * writes to the same inode. The only real way to fix this is to re-implement
351 * the generic code here with correct locking orders.
352 */
00258e36
CH
353STATIC ssize_t
354xfs_file_splice_write(
dda35b8f
CH
355 struct pipe_inode_info *pipe,
356 struct file *outfilp,
357 loff_t *ppos,
358 size_t count,
00258e36 359 unsigned int flags)
dda35b8f 360{
dda35b8f 361 struct inode *inode = outfilp->f_mapping->host;
00258e36 362 struct xfs_inode *ip = XFS_I(inode);
00258e36
CH
363 int ioflags = 0;
364 ssize_t ret;
dda35b8f
CH
365
366 XFS_STATS_INC(xs_write_calls);
00258e36
CH
367
368 if (outfilp->f_mode & FMODE_NOCMTIME)
369 ioflags |= IO_INVIS;
370
dda35b8f
CH
371 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
372 return -EIO;
373
374 xfs_ilock(ip, XFS_IOLOCK_EXCL);
375
dda35b8f
CH
376 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
377
378 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
ce7ae151
CH
379 if (ret > 0)
380 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 381
dda35b8f
CH
382 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
383 return ret;
384}
385
386/*
193aec10
CH
387 * This routine is called to handle zeroing any space in the last block of the
388 * file that is beyond the EOF. We do this since the size is being increased
389 * without writing anything to that block and we don't want to read the
390 * garbage on the disk.
dda35b8f
CH
391 */
392STATIC int /* error (positive) */
393xfs_zero_last_block(
193aec10
CH
394 struct xfs_inode *ip,
395 xfs_fsize_t offset,
396 xfs_fsize_t isize)
dda35b8f 397{
193aec10
CH
398 struct xfs_mount *mp = ip->i_mount;
399 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
400 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
401 int zero_len;
402 int nimaps = 1;
403 int error = 0;
404 struct xfs_bmbt_irec imap;
dda35b8f 405
193aec10 406 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 407 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 408 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 409 if (error)
dda35b8f 410 return error;
193aec10 411
dda35b8f 412 ASSERT(nimaps > 0);
193aec10 413
dda35b8f
CH
414 /*
415 * If the block underlying isize is just a hole, then there
416 * is nothing to zero.
417 */
193aec10 418 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 419 return 0;
dda35b8f
CH
420
421 zero_len = mp->m_sb.sb_blocksize - zero_offset;
422 if (isize + zero_len > offset)
423 zero_len = offset - isize;
193aec10 424 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
425}
426
427/*
193aec10
CH
428 * Zero any on disk space between the current EOF and the new, larger EOF.
429 *
430 * This handles the normal case of zeroing the remainder of the last block in
431 * the file and the unusual case of zeroing blocks out beyond the size of the
432 * file. This second case only happens with fixed size extents and when the
433 * system crashes before the inode size was updated but after blocks were
434 * allocated.
435 *
436 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 437 */
dda35b8f
CH
438int /* error (positive) */
439xfs_zero_eof(
193aec10
CH
440 struct xfs_inode *ip,
441 xfs_off_t offset, /* starting I/O offset */
442 xfs_fsize_t isize) /* current inode size */
dda35b8f 443{
193aec10
CH
444 struct xfs_mount *mp = ip->i_mount;
445 xfs_fileoff_t start_zero_fsb;
446 xfs_fileoff_t end_zero_fsb;
447 xfs_fileoff_t zero_count_fsb;
448 xfs_fileoff_t last_fsb;
449 xfs_fileoff_t zero_off;
450 xfs_fsize_t zero_len;
451 int nimaps;
452 int error = 0;
453 struct xfs_bmbt_irec imap;
454
455 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
456 ASSERT(offset > isize);
457
458 /*
459 * First handle zeroing the block on which isize resides.
193aec10 460 *
dda35b8f
CH
461 * We only zero a part of that block so it is handled specially.
462 */
193aec10
CH
463 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
464 error = xfs_zero_last_block(ip, offset, isize);
465 if (error)
466 return error;
dda35b8f
CH
467 }
468
469 /*
193aec10
CH
470 * Calculate the range between the new size and the old where blocks
471 * needing to be zeroed may exist.
472 *
473 * To get the block where the last byte in the file currently resides,
474 * we need to subtract one from the size and truncate back to a block
475 * boundary. We subtract 1 in case the size is exactly on a block
476 * boundary.
dda35b8f
CH
477 */
478 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
479 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
480 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
481 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
482 if (last_fsb == end_zero_fsb) {
483 /*
484 * The size was only incremented on its last block.
485 * We took care of that above, so just return.
486 */
487 return 0;
488 }
489
490 ASSERT(start_zero_fsb <= end_zero_fsb);
491 while (start_zero_fsb <= end_zero_fsb) {
492 nimaps = 1;
493 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
494
495 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
496 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
497 &imap, &nimaps, 0);
193aec10
CH
498 xfs_iunlock(ip, XFS_ILOCK_EXCL);
499 if (error)
dda35b8f 500 return error;
193aec10 501
dda35b8f
CH
502 ASSERT(nimaps > 0);
503
504 if (imap.br_state == XFS_EXT_UNWRITTEN ||
505 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
506 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
507 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
508 continue;
509 }
510
511 /*
512 * There are blocks we need to zero.
dda35b8f 513 */
dda35b8f
CH
514 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
515 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
516
517 if ((zero_off + zero_len) > offset)
518 zero_len = offset - zero_off;
519
520 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
521 if (error)
522 return error;
dda35b8f
CH
523
524 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
525 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
526 }
527
528 return 0;
dda35b8f
CH
529}
530
4d8d1581
DC
531/*
532 * Common pre-write limit and setup checks.
533 *
5bf1f262
CH
534 * Called with the iolocked held either shared and exclusive according to
535 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
536 * if called for a direct write beyond i_size.
4d8d1581
DC
537 */
538STATIC ssize_t
539xfs_file_aio_write_checks(
540 struct file *file,
541 loff_t *pos,
542 size_t *count,
543 int *iolock)
544{
545 struct inode *inode = file->f_mapping->host;
546 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
547 int error = 0;
548
7271d243 549restart:
4d8d1581 550 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 551 if (error)
4d8d1581 552 return error;
4d8d1581 553
4d8d1581
DC
554 /*
555 * If the offset is beyond the size of the file, we need to zero any
556 * blocks that fall between the existing EOF and the start of this
2813d682 557 * write. If zeroing is needed and we are currently holding the
467f7899
CH
558 * iolock shared, we need to update it to exclusive which implies
559 * having to redo all checks before.
4d8d1581 560 */
2813d682 561 if (*pos > i_size_read(inode)) {
7271d243 562 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 563 xfs_rw_iunlock(ip, *iolock);
7271d243 564 *iolock = XFS_IOLOCK_EXCL;
467f7899 565 xfs_rw_ilock(ip, *iolock);
7271d243
DC
566 goto restart;
567 }
ce7ae151 568 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
569 if (error)
570 return error;
7271d243 571 }
4d8d1581 572
8a9c9980
CH
573 /*
574 * Updating the timestamps will grab the ilock again from
575 * xfs_fs_dirty_inode, so we have to call it after dropping the
576 * lock above. Eventually we should look into a way to avoid
577 * the pointless lock roundtrip.
578 */
c3b2da31
JB
579 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
580 error = file_update_time(file);
581 if (error)
582 return error;
583 }
8a9c9980 584
4d8d1581
DC
585 /*
586 * If we're writing the file then make sure to clear the setuid and
587 * setgid bits if the process is not being run by root. This keeps
588 * people from modifying setuid and setgid binaries.
589 */
590 return file_remove_suid(file);
4d8d1581
DC
591}
592
f0d26e86
DC
593/*
594 * xfs_file_dio_aio_write - handle direct IO writes
595 *
596 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 597 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
598 * follow locking changes and looping.
599 *
eda77982
DC
600 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
601 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
602 * pages are flushed out.
603 *
604 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
605 * allowing them to be done in parallel with reads and other direct IO writes.
606 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
607 * needs to do sub-block zeroing and that requires serialisation against other
608 * direct IOs to the same block. In this case we need to serialise the
609 * submission of the unaligned IOs so that we don't get racing block zeroing in
610 * the dio layer. To avoid the problem with aio, we also need to wait for
611 * outstanding IOs to complete so that unwritten extent conversion is completed
612 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 613 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 614 *
f0d26e86
DC
615 * Returns with locks held indicated by @iolock and errors indicated by
616 * negative return values.
617 */
618STATIC ssize_t
619xfs_file_dio_aio_write(
620 struct kiocb *iocb,
b3188919 621 struct iov_iter *from)
f0d26e86
DC
622{
623 struct file *file = iocb->ki_filp;
624 struct address_space *mapping = file->f_mapping;
625 struct inode *inode = mapping->host;
626 struct xfs_inode *ip = XFS_I(inode);
627 struct xfs_mount *mp = ip->i_mount;
628 ssize_t ret = 0;
eda77982 629 int unaligned_io = 0;
d0606464 630 int iolock;
b3188919
AV
631 size_t count = iov_iter_count(from);
632 loff_t pos = iocb->ki_pos;
f0d26e86
DC
633 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
634 mp->m_rtdev_targp : mp->m_ddev_targp;
635
7c71ee78
ES
636 /* DIO must be aligned to device logical sector size */
637 if ((pos | count) & target->bt_logical_sectormask)
f0d26e86
DC
638 return -XFS_ERROR(EINVAL);
639
7c71ee78 640 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
641 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
642 unaligned_io = 1;
643
7271d243
DC
644 /*
645 * We don't need to take an exclusive lock unless there page cache needs
646 * to be invalidated or unaligned IO is being executed. We don't need to
647 * consider the EOF extension case here because
648 * xfs_file_aio_write_checks() will relock the inode as necessary for
649 * EOF zeroing cases and fill out the new inode size as appropriate.
650 */
651 if (unaligned_io || mapping->nrpages)
d0606464 652 iolock = XFS_IOLOCK_EXCL;
f0d26e86 653 else
d0606464
CH
654 iolock = XFS_IOLOCK_SHARED;
655 xfs_rw_ilock(ip, iolock);
c58cb165
CH
656
657 /*
658 * Recheck if there are cached pages that need invalidate after we got
659 * the iolock to protect against other threads adding new pages while
660 * we were waiting for the iolock.
661 */
d0606464
CH
662 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
663 xfs_rw_iunlock(ip, iolock);
664 iolock = XFS_IOLOCK_EXCL;
665 xfs_rw_ilock(ip, iolock);
c58cb165 666 }
f0d26e86 667
d0606464 668 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 669 if (ret)
d0606464 670 goto out;
b3188919 671 iov_iter_truncate(from, count);
f0d26e86
DC
672
673 if (mapping->nrpages) {
07d5035a 674 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
fb595814 675 pos, -1);
f0d26e86 676 if (ret)
d0606464 677 goto out;
fb595814 678 truncate_pagecache_range(VFS_I(ip), pos, -1);
f0d26e86
DC
679 }
680
eda77982
DC
681 /*
682 * If we are doing unaligned IO, wait for all other IO to drain,
683 * otherwise demote the lock if we had to flush cached pages
684 */
685 if (unaligned_io)
4a06fd26 686 inode_dio_wait(inode);
d0606464 687 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 688 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 689 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
690 }
691
692 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
b3188919 693 ret = generic_file_direct_write(iocb, from, pos);
f0d26e86 694
d0606464
CH
695out:
696 xfs_rw_iunlock(ip, iolock);
697
f0d26e86
DC
698 /* No fallback to buffered IO on errors for XFS. */
699 ASSERT(ret < 0 || ret == count);
700 return ret;
701}
702
00258e36 703STATIC ssize_t
637bbc75 704xfs_file_buffered_aio_write(
dda35b8f 705 struct kiocb *iocb,
b3188919 706 struct iov_iter *from)
dda35b8f
CH
707{
708 struct file *file = iocb->ki_filp;
709 struct address_space *mapping = file->f_mapping;
710 struct inode *inode = mapping->host;
00258e36 711 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
712 ssize_t ret;
713 int enospc = 0;
d0606464 714 int iolock = XFS_IOLOCK_EXCL;
b3188919
AV
715 loff_t pos = iocb->ki_pos;
716 size_t count = iov_iter_count(from);
dda35b8f 717
d0606464 718 xfs_rw_ilock(ip, iolock);
dda35b8f 719
d0606464 720 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 721 if (ret)
d0606464 722 goto out;
dda35b8f 723
b3188919 724 iov_iter_truncate(from, count);
dda35b8f
CH
725 /* We can write back this queue in page reclaim */
726 current->backing_dev_info = mapping->backing_dev_info;
727
dda35b8f 728write_retry:
637bbc75 729 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
b3188919 730 ret = generic_perform_write(file, from, pos);
0a64bc2c
AV
731 if (likely(ret >= 0))
732 iocb->ki_pos = pos + ret;
637bbc75 733 /*
9aa05000
DC
734 * If we just got an ENOSPC, try to write back all dirty inodes to
735 * convert delalloc space to free up some of the excess reserved
736 * metadata space.
637bbc75
DC
737 */
738 if (ret == -ENOSPC && !enospc) {
637bbc75 739 enospc = 1;
9aa05000
DC
740 xfs_flush_inodes(ip->i_mount);
741 goto write_retry;
dda35b8f 742 }
d0606464 743
dda35b8f 744 current->backing_dev_info = NULL;
d0606464
CH
745out:
746 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
747 return ret;
748}
749
750STATIC ssize_t
751xfs_file_aio_write(
752 struct kiocb *iocb,
753 const struct iovec *iovp,
754 unsigned long nr_segs,
755 loff_t pos)
756{
757 struct file *file = iocb->ki_filp;
758 struct address_space *mapping = file->f_mapping;
759 struct inode *inode = mapping->host;
760 struct xfs_inode *ip = XFS_I(inode);
761 ssize_t ret;
637bbc75 762 size_t ocount = 0;
b3188919 763 struct iov_iter from;
637bbc75
DC
764
765 XFS_STATS_INC(xs_write_calls);
766
767 BUG_ON(iocb->ki_pos != pos);
768
cb66a7a1 769 ocount = iov_length(iovp, nr_segs);
637bbc75
DC
770 if (ocount == 0)
771 return 0;
b3188919 772 iov_iter_init(&from, WRITE, iovp, nr_segs, ocount);
637bbc75 773
d9457dc0
JK
774 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
775 ret = -EIO;
776 goto out;
777 }
637bbc75
DC
778
779 if (unlikely(file->f_flags & O_DIRECT))
b3188919 780 ret = xfs_file_dio_aio_write(iocb, &from);
637bbc75 781 else
b3188919 782 ret = xfs_file_buffered_aio_write(iocb, &from);
dda35b8f 783
d0606464
CH
784 if (ret > 0) {
785 ssize_t err;
dda35b8f 786
d0606464 787 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 788
d0606464 789 /* Handle various SYNC-type writes */
d311d79d 790 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
791 if (err < 0)
792 ret = err;
dda35b8f
CH
793 }
794
d9457dc0 795out:
a363f0c2 796 return ret;
dda35b8f
CH
797}
798
2fe17c10
CH
799STATIC long
800xfs_file_fallocate(
83aee9e4
CH
801 struct file *file,
802 int mode,
803 loff_t offset,
804 loff_t len)
2fe17c10 805{
83aee9e4
CH
806 struct inode *inode = file_inode(file);
807 struct xfs_inode *ip = XFS_I(inode);
808 struct xfs_trans *tp;
809 long error;
810 loff_t new_size = 0;
2fe17c10 811
83aee9e4
CH
812 if (!S_ISREG(inode->i_mode))
813 return -EINVAL;
e1d8fb88 814 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
376ba313 815 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
816 return -EOPNOTSUPP;
817
2fe17c10 818 xfs_ilock(ip, XFS_IOLOCK_EXCL);
83aee9e4
CH
819 if (mode & FALLOC_FL_PUNCH_HOLE) {
820 error = xfs_free_file_space(ip, offset, len);
821 if (error)
822 goto out_unlock;
e1d8fb88
NJ
823 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
824 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
825
826 if (offset & blksize_mask || len & blksize_mask) {
827 error = -EINVAL;
828 goto out_unlock;
829 }
830
23fffa92
LC
831 /*
832 * There is no need to overlap collapse range with EOF,
833 * in which case it is effectively a truncate operation
834 */
835 if (offset + len >= i_size_read(inode)) {
836 error = -EINVAL;
837 goto out_unlock;
838 }
839
e1d8fb88
NJ
840 new_size = i_size_read(inode) - len;
841
842 error = xfs_collapse_file_space(ip, offset, len);
843 if (error)
844 goto out_unlock;
83aee9e4
CH
845 } else {
846 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
847 offset + len > i_size_read(inode)) {
848 new_size = offset + len;
849 error = -inode_newsize_ok(inode, new_size);
850 if (error)
851 goto out_unlock;
852 }
2fe17c10 853
376ba313
LC
854 if (mode & FALLOC_FL_ZERO_RANGE)
855 error = xfs_zero_file_space(ip, offset, len);
856 else
857 error = xfs_alloc_file_space(ip, offset, len,
858 XFS_BMAPI_PREALLOC);
2fe17c10
CH
859 if (error)
860 goto out_unlock;
861 }
862
83aee9e4
CH
863 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
864 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
865 if (error) {
866 xfs_trans_cancel(tp, 0);
867 goto out_unlock;
868 }
869
870 xfs_ilock(ip, XFS_ILOCK_EXCL);
871 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
872 ip->i_d.di_mode &= ~S_ISUID;
873 if (ip->i_d.di_mode & S_IXGRP)
874 ip->i_d.di_mode &= ~S_ISGID;
82878897 875
e1d8fb88 876 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
83aee9e4
CH
877 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
878
879 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
880 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
881
882 if (file->f_flags & O_DSYNC)
883 xfs_trans_set_sync(tp);
884 error = xfs_trans_commit(tp, 0);
2fe17c10
CH
885 if (error)
886 goto out_unlock;
887
888 /* Change file size if needed */
889 if (new_size) {
890 struct iattr iattr;
891
892 iattr.ia_valid = ATTR_SIZE;
893 iattr.ia_size = new_size;
83aee9e4 894 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
895 }
896
897out_unlock:
898 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
83aee9e4 899 return -error;
2fe17c10
CH
900}
901
902
1da177e4 903STATIC int
3562fd45 904xfs_file_open(
1da177e4 905 struct inode *inode,
f999a5bf 906 struct file *file)
1da177e4 907{
f999a5bf 908 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 909 return -EFBIG;
f999a5bf
CH
910 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
911 return -EIO;
912 return 0;
913}
914
915STATIC int
916xfs_dir_open(
917 struct inode *inode,
918 struct file *file)
919{
920 struct xfs_inode *ip = XFS_I(inode);
921 int mode;
922 int error;
923
924 error = xfs_file_open(inode, file);
925 if (error)
926 return error;
927
928 /*
929 * If there are any blocks, read-ahead block 0 as we're almost
930 * certain to have the next operation be a read there.
931 */
309ecac8 932 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 933 if (ip->i_d.di_nextents > 0)
33363fee 934 xfs_dir3_data_readahead(NULL, ip, 0, -1);
f999a5bf
CH
935 xfs_iunlock(ip, mode);
936 return 0;
1da177e4
LT
937}
938
1da177e4 939STATIC int
3562fd45 940xfs_file_release(
1da177e4
LT
941 struct inode *inode,
942 struct file *filp)
943{
739bfb2a 944 return -xfs_release(XFS_I(inode));
1da177e4
LT
945}
946
1da177e4 947STATIC int
3562fd45 948xfs_file_readdir(
b8227554
AV
949 struct file *file,
950 struct dir_context *ctx)
1da177e4 951{
b8227554 952 struct inode *inode = file_inode(file);
739bfb2a 953 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
954 int error;
955 size_t bufsize;
956
957 /*
958 * The Linux API doesn't pass down the total size of the buffer
959 * we read into down to the filesystem. With the filldir concept
960 * it's not needed for correct information, but the XFS dir2 leaf
961 * code wants an estimate of the buffer size to calculate it's
962 * readahead window and size the buffers used for mapping to
963 * physical blocks.
964 *
965 * Try to give it an estimate that's good enough, maybe at some
966 * point we can change the ->readdir prototype to include the
a9cc799e 967 * buffer size. For now we use the current glibc buffer size.
051e7cd4 968 */
a9cc799e 969 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 970
b8227554 971 error = xfs_readdir(ip, ctx, bufsize);
051e7cd4
CH
972 if (error)
973 return -error;
974 return 0;
1da177e4
LT
975}
976
1da177e4 977STATIC int
3562fd45 978xfs_file_mmap(
1da177e4
LT
979 struct file *filp,
980 struct vm_area_struct *vma)
981{
3562fd45 982 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 983
fbc1462b 984 file_accessed(filp);
1da177e4
LT
985 return 0;
986}
987
4f57dbc6
DC
988/*
989 * mmap()d file has taken write protection fault and is being made
990 * writable. We can set the page state up correctly for a writable
991 * page, which means we can do correct delalloc accounting (ENOSPC
992 * checking!) and unwritten extent mapping.
993 */
994STATIC int
995xfs_vm_page_mkwrite(
996 struct vm_area_struct *vma,
c2ec175c 997 struct vm_fault *vmf)
4f57dbc6 998{
c2ec175c 999 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
1000}
1001
d126d43f
JL
1002/*
1003 * This type is designed to indicate the type of offset we would like
1004 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1005 */
1006enum {
1007 HOLE_OFF = 0,
1008 DATA_OFF,
1009};
1010
1011/*
1012 * Lookup the desired type of offset from the given page.
1013 *
1014 * On success, return true and the offset argument will point to the
1015 * start of the region that was found. Otherwise this function will
1016 * return false and keep the offset argument unchanged.
1017 */
1018STATIC bool
1019xfs_lookup_buffer_offset(
1020 struct page *page,
1021 loff_t *offset,
1022 unsigned int type)
1023{
1024 loff_t lastoff = page_offset(page);
1025 bool found = false;
1026 struct buffer_head *bh, *head;
1027
1028 bh = head = page_buffers(page);
1029 do {
1030 /*
1031 * Unwritten extents that have data in the page
1032 * cache covering them can be identified by the
1033 * BH_Unwritten state flag. Pages with multiple
1034 * buffers might have a mix of holes, data and
1035 * unwritten extents - any buffer with valid
1036 * data in it should have BH_Uptodate flag set
1037 * on it.
1038 */
1039 if (buffer_unwritten(bh) ||
1040 buffer_uptodate(bh)) {
1041 if (type == DATA_OFF)
1042 found = true;
1043 } else {
1044 if (type == HOLE_OFF)
1045 found = true;
1046 }
1047
1048 if (found) {
1049 *offset = lastoff;
1050 break;
1051 }
1052 lastoff += bh->b_size;
1053 } while ((bh = bh->b_this_page) != head);
1054
1055 return found;
1056}
1057
1058/*
1059 * This routine is called to find out and return a data or hole offset
1060 * from the page cache for unwritten extents according to the desired
1061 * type for xfs_seek_data() or xfs_seek_hole().
1062 *
1063 * The argument offset is used to tell where we start to search from the
1064 * page cache. Map is used to figure out the end points of the range to
1065 * lookup pages.
1066 *
1067 * Return true if the desired type of offset was found, and the argument
1068 * offset is filled with that address. Otherwise, return false and keep
1069 * offset unchanged.
1070 */
1071STATIC bool
1072xfs_find_get_desired_pgoff(
1073 struct inode *inode,
1074 struct xfs_bmbt_irec *map,
1075 unsigned int type,
1076 loff_t *offset)
1077{
1078 struct xfs_inode *ip = XFS_I(inode);
1079 struct xfs_mount *mp = ip->i_mount;
1080 struct pagevec pvec;
1081 pgoff_t index;
1082 pgoff_t end;
1083 loff_t endoff;
1084 loff_t startoff = *offset;
1085 loff_t lastoff = startoff;
1086 bool found = false;
1087
1088 pagevec_init(&pvec, 0);
1089
1090 index = startoff >> PAGE_CACHE_SHIFT;
1091 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1092 end = endoff >> PAGE_CACHE_SHIFT;
1093 do {
1094 int want;
1095 unsigned nr_pages;
1096 unsigned int i;
1097
1098 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1099 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1100 want);
1101 /*
1102 * No page mapped into given range. If we are searching holes
1103 * and if this is the first time we got into the loop, it means
1104 * that the given offset is landed in a hole, return it.
1105 *
1106 * If we have already stepped through some block buffers to find
1107 * holes but they all contains data. In this case, the last
1108 * offset is already updated and pointed to the end of the last
1109 * mapped page, if it does not reach the endpoint to search,
1110 * that means there should be a hole between them.
1111 */
1112 if (nr_pages == 0) {
1113 /* Data search found nothing */
1114 if (type == DATA_OFF)
1115 break;
1116
1117 ASSERT(type == HOLE_OFF);
1118 if (lastoff == startoff || lastoff < endoff) {
1119 found = true;
1120 *offset = lastoff;
1121 }
1122 break;
1123 }
1124
1125 /*
1126 * At lease we found one page. If this is the first time we
1127 * step into the loop, and if the first page index offset is
1128 * greater than the given search offset, a hole was found.
1129 */
1130 if (type == HOLE_OFF && lastoff == startoff &&
1131 lastoff < page_offset(pvec.pages[0])) {
1132 found = true;
1133 break;
1134 }
1135
1136 for (i = 0; i < nr_pages; i++) {
1137 struct page *page = pvec.pages[i];
1138 loff_t b_offset;
1139
1140 /*
1141 * At this point, the page may be truncated or
1142 * invalidated (changing page->mapping to NULL),
1143 * or even swizzled back from swapper_space to tmpfs
1144 * file mapping. However, page->index will not change
1145 * because we have a reference on the page.
1146 *
1147 * Searching done if the page index is out of range.
1148 * If the current offset is not reaches the end of
1149 * the specified search range, there should be a hole
1150 * between them.
1151 */
1152 if (page->index > end) {
1153 if (type == HOLE_OFF && lastoff < endoff) {
1154 *offset = lastoff;
1155 found = true;
1156 }
1157 goto out;
1158 }
1159
1160 lock_page(page);
1161 /*
1162 * Page truncated or invalidated(page->mapping == NULL).
1163 * We can freely skip it and proceed to check the next
1164 * page.
1165 */
1166 if (unlikely(page->mapping != inode->i_mapping)) {
1167 unlock_page(page);
1168 continue;
1169 }
1170
1171 if (!page_has_buffers(page)) {
1172 unlock_page(page);
1173 continue;
1174 }
1175
1176 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1177 if (found) {
1178 /*
1179 * The found offset may be less than the start
1180 * point to search if this is the first time to
1181 * come here.
1182 */
1183 *offset = max_t(loff_t, startoff, b_offset);
1184 unlock_page(page);
1185 goto out;
1186 }
1187
1188 /*
1189 * We either searching data but nothing was found, or
1190 * searching hole but found a data buffer. In either
1191 * case, probably the next page contains the desired
1192 * things, update the last offset to it so.
1193 */
1194 lastoff = page_offset(page) + PAGE_SIZE;
1195 unlock_page(page);
1196 }
1197
1198 /*
1199 * The number of returned pages less than our desired, search
1200 * done. In this case, nothing was found for searching data,
1201 * but we found a hole behind the last offset.
1202 */
1203 if (nr_pages < want) {
1204 if (type == HOLE_OFF) {
1205 *offset = lastoff;
1206 found = true;
1207 }
1208 break;
1209 }
1210
1211 index = pvec.pages[i - 1]->index + 1;
1212 pagevec_release(&pvec);
1213 } while (index <= end);
1214
1215out:
1216 pagevec_release(&pvec);
1217 return found;
1218}
1219
3fe3e6b1
JL
1220STATIC loff_t
1221xfs_seek_data(
1222 struct file *file,
834ab122 1223 loff_t start)
3fe3e6b1
JL
1224{
1225 struct inode *inode = file->f_mapping->host;
1226 struct xfs_inode *ip = XFS_I(inode);
1227 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1228 loff_t uninitialized_var(offset);
1229 xfs_fsize_t isize;
1230 xfs_fileoff_t fsbno;
1231 xfs_filblks_t end;
1232 uint lock;
1233 int error;
1234
309ecac8 1235 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1236
1237 isize = i_size_read(inode);
1238 if (start >= isize) {
1239 error = ENXIO;
1240 goto out_unlock;
1241 }
1242
3fe3e6b1
JL
1243 /*
1244 * Try to read extents from the first block indicated
1245 * by fsbno to the end block of the file.
1246 */
52f1acc8 1247 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1248 end = XFS_B_TO_FSB(mp, isize);
52f1acc8
JL
1249 for (;;) {
1250 struct xfs_bmbt_irec map[2];
1251 int nmap = 2;
1252 unsigned int i;
3fe3e6b1 1253
52f1acc8
JL
1254 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1255 XFS_BMAPI_ENTIRE);
1256 if (error)
1257 goto out_unlock;
3fe3e6b1 1258
52f1acc8
JL
1259 /* No extents at given offset, must be beyond EOF */
1260 if (nmap == 0) {
1261 error = ENXIO;
1262 goto out_unlock;
1263 }
1264
1265 for (i = 0; i < nmap; i++) {
1266 offset = max_t(loff_t, start,
1267 XFS_FSB_TO_B(mp, map[i].br_startoff));
1268
1269 /* Landed in a data extent */
1270 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1271 (map[i].br_state == XFS_EXT_NORM &&
1272 !isnullstartblock(map[i].br_startblock)))
1273 goto out;
1274
1275 /*
1276 * Landed in an unwritten extent, try to search data
1277 * from page cache.
1278 */
1279 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1280 if (xfs_find_get_desired_pgoff(inode, &map[i],
1281 DATA_OFF, &offset))
1282 goto out;
1283 }
1284 }
1285
1286 /*
1287 * map[0] is hole or its an unwritten extent but
1288 * without data in page cache. Probably means that
1289 * we are reading after EOF if nothing in map[1].
1290 */
3fe3e6b1
JL
1291 if (nmap == 1) {
1292 error = ENXIO;
1293 goto out_unlock;
1294 }
1295
52f1acc8
JL
1296 ASSERT(i > 1);
1297
1298 /*
1299 * Nothing was found, proceed to the next round of search
1300 * if reading offset not beyond or hit EOF.
1301 */
1302 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1303 start = XFS_FSB_TO_B(mp, fsbno);
1304 if (start >= isize) {
1305 error = ENXIO;
1306 goto out_unlock;
1307 }
3fe3e6b1
JL
1308 }
1309
52f1acc8 1310out:
46a1c2c7 1311 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1312
1313out_unlock:
01f4f327 1314 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1315
1316 if (error)
1317 return -error;
1318 return offset;
1319}
1320
1321STATIC loff_t
1322xfs_seek_hole(
1323 struct file *file,
834ab122 1324 loff_t start)
3fe3e6b1
JL
1325{
1326 struct inode *inode = file->f_mapping->host;
1327 struct xfs_inode *ip = XFS_I(inode);
1328 struct xfs_mount *mp = ip->i_mount;
1329 loff_t uninitialized_var(offset);
3fe3e6b1
JL
1330 xfs_fsize_t isize;
1331 xfs_fileoff_t fsbno;
b686d1f7 1332 xfs_filblks_t end;
3fe3e6b1
JL
1333 uint lock;
1334 int error;
1335
1336 if (XFS_FORCED_SHUTDOWN(mp))
1337 return -XFS_ERROR(EIO);
1338
309ecac8 1339 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1340
1341 isize = i_size_read(inode);
1342 if (start >= isize) {
1343 error = ENXIO;
1344 goto out_unlock;
1345 }
1346
1347 fsbno = XFS_B_TO_FSBT(mp, start);
b686d1f7
JL
1348 end = XFS_B_TO_FSB(mp, isize);
1349
1350 for (;;) {
1351 struct xfs_bmbt_irec map[2];
1352 int nmap = 2;
1353 unsigned int i;
1354
1355 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1356 XFS_BMAPI_ENTIRE);
1357 if (error)
1358 goto out_unlock;
1359
1360 /* No extents at given offset, must be beyond EOF */
1361 if (nmap == 0) {
1362 error = ENXIO;
1363 goto out_unlock;
1364 }
1365
1366 for (i = 0; i < nmap; i++) {
1367 offset = max_t(loff_t, start,
1368 XFS_FSB_TO_B(mp, map[i].br_startoff));
1369
1370 /* Landed in a hole */
1371 if (map[i].br_startblock == HOLESTARTBLOCK)
1372 goto out;
1373
1374 /*
1375 * Landed in an unwritten extent, try to search hole
1376 * from page cache.
1377 */
1378 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1379 if (xfs_find_get_desired_pgoff(inode, &map[i],
1380 HOLE_OFF, &offset))
1381 goto out;
1382 }
1383 }
3fe3e6b1 1384
3fe3e6b1 1385 /*
b686d1f7
JL
1386 * map[0] contains data or its unwritten but contains
1387 * data in page cache, probably means that we are
1388 * reading after EOF. We should fix offset to point
1389 * to the end of the file(i.e., there is an implicit
1390 * hole at the end of any file).
3fe3e6b1 1391 */
b686d1f7
JL
1392 if (nmap == 1) {
1393 offset = isize;
1394 break;
1395 }
1396
1397 ASSERT(i > 1);
1398
1399 /*
1400 * Both mappings contains data, proceed to the next round of
1401 * search if the current reading offset not beyond or hit EOF.
1402 */
1403 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1404 start = XFS_FSB_TO_B(mp, fsbno);
1405 if (start >= isize) {
1406 offset = isize;
1407 break;
1408 }
3fe3e6b1
JL
1409 }
1410
b686d1f7
JL
1411out:
1412 /*
1413 * At this point, we must have found a hole. However, the returned
1414 * offset may be bigger than the file size as it may be aligned to
1415 * page boundary for unwritten extents, we need to deal with this
1416 * situation in particular.
1417 */
1418 offset = min_t(loff_t, offset, isize);
46a1c2c7 1419 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1420
1421out_unlock:
01f4f327 1422 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1423
1424 if (error)
1425 return -error;
1426 return offset;
1427}
1428
1429STATIC loff_t
1430xfs_file_llseek(
1431 struct file *file,
1432 loff_t offset,
1433 int origin)
1434{
1435 switch (origin) {
1436 case SEEK_END:
1437 case SEEK_CUR:
1438 case SEEK_SET:
1439 return generic_file_llseek(file, offset, origin);
1440 case SEEK_DATA:
834ab122 1441 return xfs_seek_data(file, offset);
3fe3e6b1 1442 case SEEK_HOLE:
834ab122 1443 return xfs_seek_hole(file, offset);
3fe3e6b1
JL
1444 default:
1445 return -EINVAL;
1446 }
1447}
1448
4b6f5d20 1449const struct file_operations xfs_file_operations = {
3fe3e6b1 1450 .llseek = xfs_file_llseek,
b4f5d2c6 1451 .read = new_sync_read,
bb3f724e 1452 .write = do_sync_write,
b4f5d2c6 1453 .read_iter = xfs_file_read_iter,
3562fd45 1454 .aio_write = xfs_file_aio_write,
1b895840
NS
1455 .splice_read = xfs_file_splice_read,
1456 .splice_write = xfs_file_splice_write,
3562fd45 1457 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1458#ifdef CONFIG_COMPAT
3562fd45 1459 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1460#endif
3562fd45
NS
1461 .mmap = xfs_file_mmap,
1462 .open = xfs_file_open,
1463 .release = xfs_file_release,
1464 .fsync = xfs_file_fsync,
2fe17c10 1465 .fallocate = xfs_file_fallocate,
1da177e4
LT
1466};
1467
4b6f5d20 1468const struct file_operations xfs_dir_file_operations = {
f999a5bf 1469 .open = xfs_dir_open,
1da177e4 1470 .read = generic_read_dir,
b8227554 1471 .iterate = xfs_file_readdir,
59af1584 1472 .llseek = generic_file_llseek,
3562fd45 1473 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1474#ifdef CONFIG_COMPAT
3562fd45 1475 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1476#endif
1da2f2db 1477 .fsync = xfs_dir_fsync,
1da177e4
LT
1478};
1479
f0f37e2f 1480static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1481 .fault = filemap_fault,
f1820361 1482 .map_pages = filemap_map_pages,
4f57dbc6 1483 .page_mkwrite = xfs_vm_page_mkwrite,
0b173bc4 1484 .remap_pages = generic_file_remap_pages,
6fac0cb4 1485};