xfs: don't dirty buffers beyond EOF
[linux-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_sb.h"
a844f451 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
57062787
DC
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
c24b5dfa 33#include "xfs_bmap_util.h"
1da177e4 34#include "xfs_error.h"
2b9ab5ab 35#include "xfs_dir2.h"
c24b5dfa 36#include "xfs_dir2_priv.h"
ddcd856d 37#include "xfs_ioctl.h"
dda35b8f 38#include "xfs_trace.h"
239880ef 39#include "xfs_log.h"
a4fbe6ab 40#include "xfs_dinode.h"
dc06f398 41#include "xfs_icache.h"
1da177e4 42
a27bb332 43#include <linux/aio.h>
1da177e4 44#include <linux/dcache.h>
2fe17c10 45#include <linux/falloc.h>
d126d43f 46#include <linux/pagevec.h>
1da177e4 47
f0f37e2f 48static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 49
487f84f3
DC
50/*
51 * Locking primitives for read and write IO paths to ensure we consistently use
52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 */
54static inline void
55xfs_rw_ilock(
56 struct xfs_inode *ip,
57 int type)
58{
59 if (type & XFS_IOLOCK_EXCL)
60 mutex_lock(&VFS_I(ip)->i_mutex);
61 xfs_ilock(ip, type);
62}
63
64static inline void
65xfs_rw_iunlock(
66 struct xfs_inode *ip,
67 int type)
68{
69 xfs_iunlock(ip, type);
70 if (type & XFS_IOLOCK_EXCL)
71 mutex_unlock(&VFS_I(ip)->i_mutex);
72}
73
74static inline void
75xfs_rw_ilock_demote(
76 struct xfs_inode *ip,
77 int type)
78{
79 xfs_ilock_demote(ip, type);
80 if (type & XFS_IOLOCK_EXCL)
81 mutex_unlock(&VFS_I(ip)->i_mutex);
82}
83
dda35b8f
CH
84/*
85 * xfs_iozero
86 *
87 * xfs_iozero clears the specified range of buffer supplied,
88 * and marks all the affected blocks as valid and modified. If
89 * an affected block is not allocated, it will be allocated. If
90 * an affected block is not completely overwritten, and is not
91 * valid before the operation, it will be read from disk before
92 * being partially zeroed.
93 */
ef9d8733 94int
dda35b8f
CH
95xfs_iozero(
96 struct xfs_inode *ip, /* inode */
97 loff_t pos, /* offset in file */
98 size_t count) /* size of data to zero */
99{
100 struct page *page;
101 struct address_space *mapping;
102 int status;
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 bytes = PAGE_CACHE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
113
114 status = pagecache_write_begin(NULL, mapping, pos, bytes,
115 AOP_FLAG_UNINTERRUPTIBLE,
116 &page, &fsdata);
117 if (status)
118 break;
119
120 zero_user(page, offset, bytes);
121
122 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
123 page, fsdata);
124 WARN_ON(status <= 0); /* can't return less than zero! */
125 pos += bytes;
126 count -= bytes;
127 status = 0;
128 } while (count);
129
130 return (-status);
131}
132
1da2f2db
CH
133/*
134 * Fsync operations on directories are much simpler than on regular files,
135 * as there is no file data to flush, and thus also no need for explicit
136 * cache flush operations, and there are no non-transaction metadata updates
137 * on directories either.
138 */
139STATIC int
140xfs_dir_fsync(
141 struct file *file,
142 loff_t start,
143 loff_t end,
144 int datasync)
145{
146 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
147 struct xfs_mount *mp = ip->i_mount;
148 xfs_lsn_t lsn = 0;
149
150 trace_xfs_dir_fsync(ip);
151
152 xfs_ilock(ip, XFS_ILOCK_SHARED);
153 if (xfs_ipincount(ip))
154 lsn = ip->i_itemp->ili_last_lsn;
155 xfs_iunlock(ip, XFS_ILOCK_SHARED);
156
157 if (!lsn)
158 return 0;
2451337d 159 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
160}
161
fd3200be
CH
162STATIC int
163xfs_file_fsync(
164 struct file *file,
02c24a82
JB
165 loff_t start,
166 loff_t end,
fd3200be
CH
167 int datasync)
168{
7ea80859
CH
169 struct inode *inode = file->f_mapping->host;
170 struct xfs_inode *ip = XFS_I(inode);
a27a263b 171 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
172 int error = 0;
173 int log_flushed = 0;
b1037058 174 xfs_lsn_t lsn = 0;
fd3200be 175
cca28fb8 176 trace_xfs_file_fsync(ip);
fd3200be 177
02c24a82
JB
178 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
179 if (error)
180 return error;
181
a27a263b 182 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 183 return -EIO;
fd3200be
CH
184
185 xfs_iflags_clear(ip, XFS_ITRUNCATED);
186
a27a263b
CH
187 if (mp->m_flags & XFS_MOUNT_BARRIER) {
188 /*
189 * If we have an RT and/or log subvolume we need to make sure
190 * to flush the write cache the device used for file data
191 * first. This is to ensure newly written file data make
192 * it to disk before logging the new inode size in case of
193 * an extending write.
194 */
195 if (XFS_IS_REALTIME_INODE(ip))
196 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
197 else if (mp->m_logdev_targp != mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 }
200
fd3200be 201 /*
8a9c9980
CH
202 * All metadata updates are logged, which means that we just have
203 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
204 */
205 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
206 if (xfs_ipincount(ip)) {
207 if (!datasync ||
208 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
209 lsn = ip->i_itemp->ili_last_lsn;
210 }
8a9c9980 211 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 212
8a9c9980 213 if (lsn)
b1037058
CH
214 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
215
a27a263b
CH
216 /*
217 * If we only have a single device, and the log force about was
218 * a no-op we might have to flush the data device cache here.
219 * This can only happen for fdatasync/O_DSYNC if we were overwriting
220 * an already allocated file and thus do not have any metadata to
221 * commit.
222 */
223 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
224 mp->m_logdev_targp == mp->m_ddev_targp &&
225 !XFS_IS_REALTIME_INODE(ip) &&
226 !log_flushed)
227 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 228
2451337d 229 return error;
fd3200be
CH
230}
231
00258e36 232STATIC ssize_t
b4f5d2c6 233xfs_file_read_iter(
dda35b8f 234 struct kiocb *iocb,
b4f5d2c6 235 struct iov_iter *to)
dda35b8f
CH
236{
237 struct file *file = iocb->ki_filp;
238 struct inode *inode = file->f_mapping->host;
00258e36
CH
239 struct xfs_inode *ip = XFS_I(inode);
240 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 241 size_t size = iov_iter_count(to);
dda35b8f 242 ssize_t ret = 0;
00258e36 243 int ioflags = 0;
dda35b8f 244 xfs_fsize_t n;
b4f5d2c6 245 loff_t pos = iocb->ki_pos;
dda35b8f 246
dda35b8f
CH
247 XFS_STATS_INC(xs_read_calls);
248
00258e36 249 if (unlikely(file->f_flags & O_DIRECT))
b92cc59f 250 ioflags |= XFS_IO_ISDIRECT;
00258e36 251 if (file->f_mode & FMODE_NOCMTIME)
b92cc59f 252 ioflags |= XFS_IO_INVIS;
00258e36 253
b92cc59f 254 if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
dda35b8f
CH
255 xfs_buftarg_t *target =
256 XFS_IS_REALTIME_INODE(ip) ?
257 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
258 /* DIO must be aligned to device logical sector size */
259 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 260 if (pos == i_size_read(inode))
00258e36 261 return 0;
b474c7ae 262 return -EINVAL;
dda35b8f
CH
263 }
264 }
265
fb595814 266 n = mp->m_super->s_maxbytes - pos;
00258e36 267 if (n <= 0 || size == 0)
dda35b8f
CH
268 return 0;
269
270 if (n < size)
271 size = n;
272
273 if (XFS_FORCED_SHUTDOWN(mp))
274 return -EIO;
275
0c38a251
DC
276 /*
277 * Locking is a bit tricky here. If we take an exclusive lock
278 * for direct IO, we effectively serialise all new concurrent
279 * read IO to this file and block it behind IO that is currently in
280 * progress because IO in progress holds the IO lock shared. We only
281 * need to hold the lock exclusive to blow away the page cache, so
282 * only take lock exclusively if the page cache needs invalidation.
283 * This allows the normal direct IO case of no page cache pages to
284 * proceeed concurrently without serialisation.
285 */
286 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b92cc59f 287 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
0c38a251 288 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
289 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
290
00258e36 291 if (inode->i_mapping->nrpages) {
8ff1e670 292 ret = filemap_write_and_wait_range(
fb595814
DC
293 VFS_I(ip)->i_mapping,
294 pos, -1);
487f84f3
DC
295 if (ret) {
296 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
297 return ret;
298 }
fb595814 299 truncate_pagecache_range(VFS_I(ip), pos, -1);
00258e36 300 }
487f84f3 301 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 302 }
dda35b8f 303
fb595814 304 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 305
b4f5d2c6 306 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
307 if (ret > 0)
308 XFS_STATS_ADD(xs_read_bytes, ret);
309
487f84f3 310 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
311 return ret;
312}
313
00258e36
CH
314STATIC ssize_t
315xfs_file_splice_read(
dda35b8f
CH
316 struct file *infilp,
317 loff_t *ppos,
318 struct pipe_inode_info *pipe,
319 size_t count,
00258e36 320 unsigned int flags)
dda35b8f 321{
00258e36 322 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 323 int ioflags = 0;
dda35b8f
CH
324 ssize_t ret;
325
326 XFS_STATS_INC(xs_read_calls);
00258e36
CH
327
328 if (infilp->f_mode & FMODE_NOCMTIME)
b92cc59f 329 ioflags |= XFS_IO_INVIS;
00258e36 330
dda35b8f
CH
331 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
332 return -EIO;
333
487f84f3 334 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 335
dda35b8f
CH
336 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
337
338 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
339 if (ret > 0)
340 XFS_STATS_ADD(xs_read_bytes, ret);
341
487f84f3 342 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
343 return ret;
344}
345
dda35b8f 346/*
193aec10
CH
347 * This routine is called to handle zeroing any space in the last block of the
348 * file that is beyond the EOF. We do this since the size is being increased
349 * without writing anything to that block and we don't want to read the
350 * garbage on the disk.
dda35b8f
CH
351 */
352STATIC int /* error (positive) */
353xfs_zero_last_block(
193aec10
CH
354 struct xfs_inode *ip,
355 xfs_fsize_t offset,
356 xfs_fsize_t isize)
dda35b8f 357{
193aec10
CH
358 struct xfs_mount *mp = ip->i_mount;
359 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
360 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
361 int zero_len;
362 int nimaps = 1;
363 int error = 0;
364 struct xfs_bmbt_irec imap;
dda35b8f 365
193aec10 366 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 367 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 368 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 369 if (error)
dda35b8f 370 return error;
193aec10 371
dda35b8f 372 ASSERT(nimaps > 0);
193aec10 373
dda35b8f
CH
374 /*
375 * If the block underlying isize is just a hole, then there
376 * is nothing to zero.
377 */
193aec10 378 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 379 return 0;
dda35b8f
CH
380
381 zero_len = mp->m_sb.sb_blocksize - zero_offset;
382 if (isize + zero_len > offset)
383 zero_len = offset - isize;
193aec10 384 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
385}
386
387/*
193aec10
CH
388 * Zero any on disk space between the current EOF and the new, larger EOF.
389 *
390 * This handles the normal case of zeroing the remainder of the last block in
391 * the file and the unusual case of zeroing blocks out beyond the size of the
392 * file. This second case only happens with fixed size extents and when the
393 * system crashes before the inode size was updated but after blocks were
394 * allocated.
395 *
396 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 397 */
dda35b8f
CH
398int /* error (positive) */
399xfs_zero_eof(
193aec10
CH
400 struct xfs_inode *ip,
401 xfs_off_t offset, /* starting I/O offset */
402 xfs_fsize_t isize) /* current inode size */
dda35b8f 403{
193aec10
CH
404 struct xfs_mount *mp = ip->i_mount;
405 xfs_fileoff_t start_zero_fsb;
406 xfs_fileoff_t end_zero_fsb;
407 xfs_fileoff_t zero_count_fsb;
408 xfs_fileoff_t last_fsb;
409 xfs_fileoff_t zero_off;
410 xfs_fsize_t zero_len;
411 int nimaps;
412 int error = 0;
413 struct xfs_bmbt_irec imap;
414
415 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
416 ASSERT(offset > isize);
417
418 /*
419 * First handle zeroing the block on which isize resides.
193aec10 420 *
dda35b8f
CH
421 * We only zero a part of that block so it is handled specially.
422 */
193aec10
CH
423 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
424 error = xfs_zero_last_block(ip, offset, isize);
425 if (error)
426 return error;
dda35b8f
CH
427 }
428
429 /*
193aec10
CH
430 * Calculate the range between the new size and the old where blocks
431 * needing to be zeroed may exist.
432 *
433 * To get the block where the last byte in the file currently resides,
434 * we need to subtract one from the size and truncate back to a block
435 * boundary. We subtract 1 in case the size is exactly on a block
436 * boundary.
dda35b8f
CH
437 */
438 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
439 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
440 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
441 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
442 if (last_fsb == end_zero_fsb) {
443 /*
444 * The size was only incremented on its last block.
445 * We took care of that above, so just return.
446 */
447 return 0;
448 }
449
450 ASSERT(start_zero_fsb <= end_zero_fsb);
451 while (start_zero_fsb <= end_zero_fsb) {
452 nimaps = 1;
453 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
454
455 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
456 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
457 &imap, &nimaps, 0);
193aec10
CH
458 xfs_iunlock(ip, XFS_ILOCK_EXCL);
459 if (error)
dda35b8f 460 return error;
193aec10 461
dda35b8f
CH
462 ASSERT(nimaps > 0);
463
464 if (imap.br_state == XFS_EXT_UNWRITTEN ||
465 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
466 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
467 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
468 continue;
469 }
470
471 /*
472 * There are blocks we need to zero.
dda35b8f 473 */
dda35b8f
CH
474 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
475 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
476
477 if ((zero_off + zero_len) > offset)
478 zero_len = offset - zero_off;
479
480 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
481 if (error)
482 return error;
dda35b8f
CH
483
484 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
485 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
486 }
487
488 return 0;
dda35b8f
CH
489}
490
4d8d1581
DC
491/*
492 * Common pre-write limit and setup checks.
493 *
5bf1f262
CH
494 * Called with the iolocked held either shared and exclusive according to
495 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
496 * if called for a direct write beyond i_size.
4d8d1581
DC
497 */
498STATIC ssize_t
499xfs_file_aio_write_checks(
500 struct file *file,
501 loff_t *pos,
502 size_t *count,
503 int *iolock)
504{
505 struct inode *inode = file->f_mapping->host;
506 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
507 int error = 0;
508
7271d243 509restart:
4d8d1581 510 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 511 if (error)
4d8d1581 512 return error;
4d8d1581 513
4d8d1581
DC
514 /*
515 * If the offset is beyond the size of the file, we need to zero any
516 * blocks that fall between the existing EOF and the start of this
2813d682 517 * write. If zeroing is needed and we are currently holding the
467f7899
CH
518 * iolock shared, we need to update it to exclusive which implies
519 * having to redo all checks before.
4d8d1581 520 */
2813d682 521 if (*pos > i_size_read(inode)) {
7271d243 522 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 523 xfs_rw_iunlock(ip, *iolock);
7271d243 524 *iolock = XFS_IOLOCK_EXCL;
467f7899 525 xfs_rw_ilock(ip, *iolock);
7271d243
DC
526 goto restart;
527 }
2451337d 528 error = xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
529 if (error)
530 return error;
7271d243 531 }
4d8d1581 532
8a9c9980
CH
533 /*
534 * Updating the timestamps will grab the ilock again from
535 * xfs_fs_dirty_inode, so we have to call it after dropping the
536 * lock above. Eventually we should look into a way to avoid
537 * the pointless lock roundtrip.
538 */
c3b2da31
JB
539 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
540 error = file_update_time(file);
541 if (error)
542 return error;
543 }
8a9c9980 544
4d8d1581
DC
545 /*
546 * If we're writing the file then make sure to clear the setuid and
547 * setgid bits if the process is not being run by root. This keeps
548 * people from modifying setuid and setgid binaries.
549 */
550 return file_remove_suid(file);
4d8d1581
DC
551}
552
f0d26e86
DC
553/*
554 * xfs_file_dio_aio_write - handle direct IO writes
555 *
556 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 557 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
558 * follow locking changes and looping.
559 *
eda77982
DC
560 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
561 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
562 * pages are flushed out.
563 *
564 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
565 * allowing them to be done in parallel with reads and other direct IO writes.
566 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
567 * needs to do sub-block zeroing and that requires serialisation against other
568 * direct IOs to the same block. In this case we need to serialise the
569 * submission of the unaligned IOs so that we don't get racing block zeroing in
570 * the dio layer. To avoid the problem with aio, we also need to wait for
571 * outstanding IOs to complete so that unwritten extent conversion is completed
572 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 573 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 574 *
f0d26e86
DC
575 * Returns with locks held indicated by @iolock and errors indicated by
576 * negative return values.
577 */
578STATIC ssize_t
579xfs_file_dio_aio_write(
580 struct kiocb *iocb,
b3188919 581 struct iov_iter *from)
f0d26e86
DC
582{
583 struct file *file = iocb->ki_filp;
584 struct address_space *mapping = file->f_mapping;
585 struct inode *inode = mapping->host;
586 struct xfs_inode *ip = XFS_I(inode);
587 struct xfs_mount *mp = ip->i_mount;
588 ssize_t ret = 0;
eda77982 589 int unaligned_io = 0;
d0606464 590 int iolock;
b3188919
AV
591 size_t count = iov_iter_count(from);
592 loff_t pos = iocb->ki_pos;
f0d26e86
DC
593 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
594 mp->m_rtdev_targp : mp->m_ddev_targp;
595
7c71ee78
ES
596 /* DIO must be aligned to device logical sector size */
597 if ((pos | count) & target->bt_logical_sectormask)
b474c7ae 598 return -EINVAL;
f0d26e86 599
7c71ee78 600 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
601 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
602 unaligned_io = 1;
603
7271d243
DC
604 /*
605 * We don't need to take an exclusive lock unless there page cache needs
606 * to be invalidated or unaligned IO is being executed. We don't need to
607 * consider the EOF extension case here because
608 * xfs_file_aio_write_checks() will relock the inode as necessary for
609 * EOF zeroing cases and fill out the new inode size as appropriate.
610 */
611 if (unaligned_io || mapping->nrpages)
d0606464 612 iolock = XFS_IOLOCK_EXCL;
f0d26e86 613 else
d0606464
CH
614 iolock = XFS_IOLOCK_SHARED;
615 xfs_rw_ilock(ip, iolock);
c58cb165
CH
616
617 /*
618 * Recheck if there are cached pages that need invalidate after we got
619 * the iolock to protect against other threads adding new pages while
620 * we were waiting for the iolock.
621 */
d0606464
CH
622 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
623 xfs_rw_iunlock(ip, iolock);
624 iolock = XFS_IOLOCK_EXCL;
625 xfs_rw_ilock(ip, iolock);
c58cb165 626 }
f0d26e86 627
d0606464 628 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 629 if (ret)
d0606464 630 goto out;
b3188919 631 iov_iter_truncate(from, count);
f0d26e86
DC
632
633 if (mapping->nrpages) {
07d5035a 634 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
fb595814 635 pos, -1);
f0d26e86 636 if (ret)
d0606464 637 goto out;
fb595814 638 truncate_pagecache_range(VFS_I(ip), pos, -1);
f0d26e86
DC
639 }
640
eda77982
DC
641 /*
642 * If we are doing unaligned IO, wait for all other IO to drain,
643 * otherwise demote the lock if we had to flush cached pages
644 */
645 if (unaligned_io)
4a06fd26 646 inode_dio_wait(inode);
d0606464 647 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 648 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 649 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
650 }
651
652 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
b3188919 653 ret = generic_file_direct_write(iocb, from, pos);
f0d26e86 654
d0606464
CH
655out:
656 xfs_rw_iunlock(ip, iolock);
657
f0d26e86
DC
658 /* No fallback to buffered IO on errors for XFS. */
659 ASSERT(ret < 0 || ret == count);
660 return ret;
661}
662
00258e36 663STATIC ssize_t
637bbc75 664xfs_file_buffered_aio_write(
dda35b8f 665 struct kiocb *iocb,
b3188919 666 struct iov_iter *from)
dda35b8f
CH
667{
668 struct file *file = iocb->ki_filp;
669 struct address_space *mapping = file->f_mapping;
670 struct inode *inode = mapping->host;
00258e36 671 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
672 ssize_t ret;
673 int enospc = 0;
d0606464 674 int iolock = XFS_IOLOCK_EXCL;
b3188919
AV
675 loff_t pos = iocb->ki_pos;
676 size_t count = iov_iter_count(from);
dda35b8f 677
d0606464 678 xfs_rw_ilock(ip, iolock);
dda35b8f 679
d0606464 680 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 681 if (ret)
d0606464 682 goto out;
dda35b8f 683
b3188919 684 iov_iter_truncate(from, count);
dda35b8f
CH
685 /* We can write back this queue in page reclaim */
686 current->backing_dev_info = mapping->backing_dev_info;
687
dda35b8f 688write_retry:
637bbc75 689 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
b3188919 690 ret = generic_perform_write(file, from, pos);
0a64bc2c
AV
691 if (likely(ret >= 0))
692 iocb->ki_pos = pos + ret;
dc06f398 693
637bbc75 694 /*
dc06f398
BF
695 * If we hit a space limit, try to free up some lingering preallocated
696 * space before returning an error. In the case of ENOSPC, first try to
697 * write back all dirty inodes to free up some of the excess reserved
698 * metadata space. This reduces the chances that the eofblocks scan
699 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
700 * also behaves as a filter to prevent too many eofblocks scans from
701 * running at the same time.
637bbc75 702 */
dc06f398
BF
703 if (ret == -EDQUOT && !enospc) {
704 enospc = xfs_inode_free_quota_eofblocks(ip);
705 if (enospc)
706 goto write_retry;
707 } else if (ret == -ENOSPC && !enospc) {
708 struct xfs_eofblocks eofb = {0};
709
637bbc75 710 enospc = 1;
9aa05000 711 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
712 eofb.eof_scan_owner = ip->i_ino; /* for locking */
713 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
714 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 715 goto write_retry;
dda35b8f 716 }
d0606464 717
dda35b8f 718 current->backing_dev_info = NULL;
d0606464
CH
719out:
720 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
721 return ret;
722}
723
724STATIC ssize_t
bf97f3bc 725xfs_file_write_iter(
637bbc75 726 struct kiocb *iocb,
bf97f3bc 727 struct iov_iter *from)
637bbc75
DC
728{
729 struct file *file = iocb->ki_filp;
730 struct address_space *mapping = file->f_mapping;
731 struct inode *inode = mapping->host;
732 struct xfs_inode *ip = XFS_I(inode);
733 ssize_t ret;
bf97f3bc 734 size_t ocount = iov_iter_count(from);
637bbc75
DC
735
736 XFS_STATS_INC(xs_write_calls);
737
637bbc75
DC
738 if (ocount == 0)
739 return 0;
740
bf97f3bc
AV
741 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
742 return -EIO;
637bbc75
DC
743
744 if (unlikely(file->f_flags & O_DIRECT))
bf97f3bc 745 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 746 else
bf97f3bc 747 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 748
d0606464
CH
749 if (ret > 0) {
750 ssize_t err;
dda35b8f 751
d0606464 752 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 753
d0606464 754 /* Handle various SYNC-type writes */
d311d79d 755 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
756 if (err < 0)
757 ret = err;
dda35b8f 758 }
a363f0c2 759 return ret;
dda35b8f
CH
760}
761
2fe17c10
CH
762STATIC long
763xfs_file_fallocate(
83aee9e4
CH
764 struct file *file,
765 int mode,
766 loff_t offset,
767 loff_t len)
2fe17c10 768{
83aee9e4
CH
769 struct inode *inode = file_inode(file);
770 struct xfs_inode *ip = XFS_I(inode);
771 struct xfs_trans *tp;
772 long error;
773 loff_t new_size = 0;
2fe17c10 774
83aee9e4
CH
775 if (!S_ISREG(inode->i_mode))
776 return -EINVAL;
e1d8fb88 777 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
376ba313 778 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
779 return -EOPNOTSUPP;
780
2fe17c10 781 xfs_ilock(ip, XFS_IOLOCK_EXCL);
83aee9e4
CH
782 if (mode & FALLOC_FL_PUNCH_HOLE) {
783 error = xfs_free_file_space(ip, offset, len);
784 if (error)
785 goto out_unlock;
e1d8fb88
NJ
786 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
787 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
788
789 if (offset & blksize_mask || len & blksize_mask) {
2451337d 790 error = -EINVAL;
e1d8fb88
NJ
791 goto out_unlock;
792 }
793
23fffa92
LC
794 /*
795 * There is no need to overlap collapse range with EOF,
796 * in which case it is effectively a truncate operation
797 */
798 if (offset + len >= i_size_read(inode)) {
2451337d 799 error = -EINVAL;
23fffa92
LC
800 goto out_unlock;
801 }
802
e1d8fb88
NJ
803 new_size = i_size_read(inode) - len;
804
805 error = xfs_collapse_file_space(ip, offset, len);
806 if (error)
807 goto out_unlock;
83aee9e4
CH
808 } else {
809 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
810 offset + len > i_size_read(inode)) {
811 new_size = offset + len;
2451337d 812 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
813 if (error)
814 goto out_unlock;
815 }
2fe17c10 816
376ba313
LC
817 if (mode & FALLOC_FL_ZERO_RANGE)
818 error = xfs_zero_file_space(ip, offset, len);
819 else
820 error = xfs_alloc_file_space(ip, offset, len,
821 XFS_BMAPI_PREALLOC);
2fe17c10
CH
822 if (error)
823 goto out_unlock;
824 }
825
83aee9e4
CH
826 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
827 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
828 if (error) {
829 xfs_trans_cancel(tp, 0);
830 goto out_unlock;
831 }
832
833 xfs_ilock(ip, XFS_ILOCK_EXCL);
834 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
835 ip->i_d.di_mode &= ~S_ISUID;
836 if (ip->i_d.di_mode & S_IXGRP)
837 ip->i_d.di_mode &= ~S_ISGID;
82878897 838
e1d8fb88 839 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
83aee9e4
CH
840 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
841
842 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
843 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
844
845 if (file->f_flags & O_DSYNC)
846 xfs_trans_set_sync(tp);
847 error = xfs_trans_commit(tp, 0);
2fe17c10
CH
848 if (error)
849 goto out_unlock;
850
851 /* Change file size if needed */
852 if (new_size) {
853 struct iattr iattr;
854
855 iattr.ia_valid = ATTR_SIZE;
856 iattr.ia_size = new_size;
83aee9e4 857 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
858 }
859
860out_unlock:
861 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
2451337d 862 return error;
2fe17c10
CH
863}
864
865
1da177e4 866STATIC int
3562fd45 867xfs_file_open(
1da177e4 868 struct inode *inode,
f999a5bf 869 struct file *file)
1da177e4 870{
f999a5bf 871 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 872 return -EFBIG;
f999a5bf
CH
873 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
874 return -EIO;
875 return 0;
876}
877
878STATIC int
879xfs_dir_open(
880 struct inode *inode,
881 struct file *file)
882{
883 struct xfs_inode *ip = XFS_I(inode);
884 int mode;
885 int error;
886
887 error = xfs_file_open(inode, file);
888 if (error)
889 return error;
890
891 /*
892 * If there are any blocks, read-ahead block 0 as we're almost
893 * certain to have the next operation be a read there.
894 */
309ecac8 895 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 896 if (ip->i_d.di_nextents > 0)
9df2dd0b 897 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
898 xfs_iunlock(ip, mode);
899 return 0;
1da177e4
LT
900}
901
1da177e4 902STATIC int
3562fd45 903xfs_file_release(
1da177e4
LT
904 struct inode *inode,
905 struct file *filp)
906{
2451337d 907 return xfs_release(XFS_I(inode));
1da177e4
LT
908}
909
1da177e4 910STATIC int
3562fd45 911xfs_file_readdir(
b8227554
AV
912 struct file *file,
913 struct dir_context *ctx)
1da177e4 914{
b8227554 915 struct inode *inode = file_inode(file);
739bfb2a 916 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
917 int error;
918 size_t bufsize;
919
920 /*
921 * The Linux API doesn't pass down the total size of the buffer
922 * we read into down to the filesystem. With the filldir concept
923 * it's not needed for correct information, but the XFS dir2 leaf
924 * code wants an estimate of the buffer size to calculate it's
925 * readahead window and size the buffers used for mapping to
926 * physical blocks.
927 *
928 * Try to give it an estimate that's good enough, maybe at some
929 * point we can change the ->readdir prototype to include the
a9cc799e 930 * buffer size. For now we use the current glibc buffer size.
051e7cd4 931 */
a9cc799e 932 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 933
b8227554 934 error = xfs_readdir(ip, ctx, bufsize);
051e7cd4 935 if (error)
2451337d 936 return error;
051e7cd4 937 return 0;
1da177e4
LT
938}
939
1da177e4 940STATIC int
3562fd45 941xfs_file_mmap(
1da177e4
LT
942 struct file *filp,
943 struct vm_area_struct *vma)
944{
3562fd45 945 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 946
fbc1462b 947 file_accessed(filp);
1da177e4
LT
948 return 0;
949}
950
4f57dbc6
DC
951/*
952 * mmap()d file has taken write protection fault and is being made
953 * writable. We can set the page state up correctly for a writable
954 * page, which means we can do correct delalloc accounting (ENOSPC
955 * checking!) and unwritten extent mapping.
956 */
957STATIC int
958xfs_vm_page_mkwrite(
959 struct vm_area_struct *vma,
c2ec175c 960 struct vm_fault *vmf)
4f57dbc6 961{
c2ec175c 962 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
963}
964
d126d43f
JL
965/*
966 * This type is designed to indicate the type of offset we would like
967 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
968 */
969enum {
970 HOLE_OFF = 0,
971 DATA_OFF,
972};
973
974/*
975 * Lookup the desired type of offset from the given page.
976 *
977 * On success, return true and the offset argument will point to the
978 * start of the region that was found. Otherwise this function will
979 * return false and keep the offset argument unchanged.
980 */
981STATIC bool
982xfs_lookup_buffer_offset(
983 struct page *page,
984 loff_t *offset,
985 unsigned int type)
986{
987 loff_t lastoff = page_offset(page);
988 bool found = false;
989 struct buffer_head *bh, *head;
990
991 bh = head = page_buffers(page);
992 do {
993 /*
994 * Unwritten extents that have data in the page
995 * cache covering them can be identified by the
996 * BH_Unwritten state flag. Pages with multiple
997 * buffers might have a mix of holes, data and
998 * unwritten extents - any buffer with valid
999 * data in it should have BH_Uptodate flag set
1000 * on it.
1001 */
1002 if (buffer_unwritten(bh) ||
1003 buffer_uptodate(bh)) {
1004 if (type == DATA_OFF)
1005 found = true;
1006 } else {
1007 if (type == HOLE_OFF)
1008 found = true;
1009 }
1010
1011 if (found) {
1012 *offset = lastoff;
1013 break;
1014 }
1015 lastoff += bh->b_size;
1016 } while ((bh = bh->b_this_page) != head);
1017
1018 return found;
1019}
1020
1021/*
1022 * This routine is called to find out and return a data or hole offset
1023 * from the page cache for unwritten extents according to the desired
1024 * type for xfs_seek_data() or xfs_seek_hole().
1025 *
1026 * The argument offset is used to tell where we start to search from the
1027 * page cache. Map is used to figure out the end points of the range to
1028 * lookup pages.
1029 *
1030 * Return true if the desired type of offset was found, and the argument
1031 * offset is filled with that address. Otherwise, return false and keep
1032 * offset unchanged.
1033 */
1034STATIC bool
1035xfs_find_get_desired_pgoff(
1036 struct inode *inode,
1037 struct xfs_bmbt_irec *map,
1038 unsigned int type,
1039 loff_t *offset)
1040{
1041 struct xfs_inode *ip = XFS_I(inode);
1042 struct xfs_mount *mp = ip->i_mount;
1043 struct pagevec pvec;
1044 pgoff_t index;
1045 pgoff_t end;
1046 loff_t endoff;
1047 loff_t startoff = *offset;
1048 loff_t lastoff = startoff;
1049 bool found = false;
1050
1051 pagevec_init(&pvec, 0);
1052
1053 index = startoff >> PAGE_CACHE_SHIFT;
1054 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1055 end = endoff >> PAGE_CACHE_SHIFT;
1056 do {
1057 int want;
1058 unsigned nr_pages;
1059 unsigned int i;
1060
1061 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1062 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1063 want);
1064 /*
1065 * No page mapped into given range. If we are searching holes
1066 * and if this is the first time we got into the loop, it means
1067 * that the given offset is landed in a hole, return it.
1068 *
1069 * If we have already stepped through some block buffers to find
1070 * holes but they all contains data. In this case, the last
1071 * offset is already updated and pointed to the end of the last
1072 * mapped page, if it does not reach the endpoint to search,
1073 * that means there should be a hole between them.
1074 */
1075 if (nr_pages == 0) {
1076 /* Data search found nothing */
1077 if (type == DATA_OFF)
1078 break;
1079
1080 ASSERT(type == HOLE_OFF);
1081 if (lastoff == startoff || lastoff < endoff) {
1082 found = true;
1083 *offset = lastoff;
1084 }
1085 break;
1086 }
1087
1088 /*
1089 * At lease we found one page. If this is the first time we
1090 * step into the loop, and if the first page index offset is
1091 * greater than the given search offset, a hole was found.
1092 */
1093 if (type == HOLE_OFF && lastoff == startoff &&
1094 lastoff < page_offset(pvec.pages[0])) {
1095 found = true;
1096 break;
1097 }
1098
1099 for (i = 0; i < nr_pages; i++) {
1100 struct page *page = pvec.pages[i];
1101 loff_t b_offset;
1102
1103 /*
1104 * At this point, the page may be truncated or
1105 * invalidated (changing page->mapping to NULL),
1106 * or even swizzled back from swapper_space to tmpfs
1107 * file mapping. However, page->index will not change
1108 * because we have a reference on the page.
1109 *
1110 * Searching done if the page index is out of range.
1111 * If the current offset is not reaches the end of
1112 * the specified search range, there should be a hole
1113 * between them.
1114 */
1115 if (page->index > end) {
1116 if (type == HOLE_OFF && lastoff < endoff) {
1117 *offset = lastoff;
1118 found = true;
1119 }
1120 goto out;
1121 }
1122
1123 lock_page(page);
1124 /*
1125 * Page truncated or invalidated(page->mapping == NULL).
1126 * We can freely skip it and proceed to check the next
1127 * page.
1128 */
1129 if (unlikely(page->mapping != inode->i_mapping)) {
1130 unlock_page(page);
1131 continue;
1132 }
1133
1134 if (!page_has_buffers(page)) {
1135 unlock_page(page);
1136 continue;
1137 }
1138
1139 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1140 if (found) {
1141 /*
1142 * The found offset may be less than the start
1143 * point to search if this is the first time to
1144 * come here.
1145 */
1146 *offset = max_t(loff_t, startoff, b_offset);
1147 unlock_page(page);
1148 goto out;
1149 }
1150
1151 /*
1152 * We either searching data but nothing was found, or
1153 * searching hole but found a data buffer. In either
1154 * case, probably the next page contains the desired
1155 * things, update the last offset to it so.
1156 */
1157 lastoff = page_offset(page) + PAGE_SIZE;
1158 unlock_page(page);
1159 }
1160
1161 /*
1162 * The number of returned pages less than our desired, search
1163 * done. In this case, nothing was found for searching data,
1164 * but we found a hole behind the last offset.
1165 */
1166 if (nr_pages < want) {
1167 if (type == HOLE_OFF) {
1168 *offset = lastoff;
1169 found = true;
1170 }
1171 break;
1172 }
1173
1174 index = pvec.pages[i - 1]->index + 1;
1175 pagevec_release(&pvec);
1176 } while (index <= end);
1177
1178out:
1179 pagevec_release(&pvec);
1180 return found;
1181}
1182
3fe3e6b1
JL
1183STATIC loff_t
1184xfs_seek_data(
1185 struct file *file,
834ab122 1186 loff_t start)
3fe3e6b1
JL
1187{
1188 struct inode *inode = file->f_mapping->host;
1189 struct xfs_inode *ip = XFS_I(inode);
1190 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1191 loff_t uninitialized_var(offset);
1192 xfs_fsize_t isize;
1193 xfs_fileoff_t fsbno;
1194 xfs_filblks_t end;
1195 uint lock;
1196 int error;
1197
309ecac8 1198 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1199
1200 isize = i_size_read(inode);
1201 if (start >= isize) {
2451337d 1202 error = -ENXIO;
3fe3e6b1
JL
1203 goto out_unlock;
1204 }
1205
3fe3e6b1
JL
1206 /*
1207 * Try to read extents from the first block indicated
1208 * by fsbno to the end block of the file.
1209 */
52f1acc8 1210 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1211 end = XFS_B_TO_FSB(mp, isize);
52f1acc8
JL
1212 for (;;) {
1213 struct xfs_bmbt_irec map[2];
1214 int nmap = 2;
1215 unsigned int i;
3fe3e6b1 1216
52f1acc8
JL
1217 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1218 XFS_BMAPI_ENTIRE);
1219 if (error)
1220 goto out_unlock;
3fe3e6b1 1221
52f1acc8
JL
1222 /* No extents at given offset, must be beyond EOF */
1223 if (nmap == 0) {
2451337d 1224 error = -ENXIO;
52f1acc8
JL
1225 goto out_unlock;
1226 }
1227
1228 for (i = 0; i < nmap; i++) {
1229 offset = max_t(loff_t, start,
1230 XFS_FSB_TO_B(mp, map[i].br_startoff));
1231
1232 /* Landed in a data extent */
1233 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1234 (map[i].br_state == XFS_EXT_NORM &&
1235 !isnullstartblock(map[i].br_startblock)))
1236 goto out;
1237
1238 /*
1239 * Landed in an unwritten extent, try to search data
1240 * from page cache.
1241 */
1242 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1243 if (xfs_find_get_desired_pgoff(inode, &map[i],
1244 DATA_OFF, &offset))
1245 goto out;
1246 }
1247 }
1248
1249 /*
1250 * map[0] is hole or its an unwritten extent but
1251 * without data in page cache. Probably means that
1252 * we are reading after EOF if nothing in map[1].
1253 */
3fe3e6b1 1254 if (nmap == 1) {
2451337d 1255 error = -ENXIO;
3fe3e6b1
JL
1256 goto out_unlock;
1257 }
1258
52f1acc8
JL
1259 ASSERT(i > 1);
1260
1261 /*
1262 * Nothing was found, proceed to the next round of search
1263 * if reading offset not beyond or hit EOF.
1264 */
1265 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1266 start = XFS_FSB_TO_B(mp, fsbno);
1267 if (start >= isize) {
2451337d 1268 error = -ENXIO;
52f1acc8
JL
1269 goto out_unlock;
1270 }
3fe3e6b1
JL
1271 }
1272
52f1acc8 1273out:
46a1c2c7 1274 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1275
1276out_unlock:
01f4f327 1277 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1278
1279 if (error)
2451337d 1280 return error;
3fe3e6b1
JL
1281 return offset;
1282}
1283
1284STATIC loff_t
1285xfs_seek_hole(
1286 struct file *file,
834ab122 1287 loff_t start)
3fe3e6b1
JL
1288{
1289 struct inode *inode = file->f_mapping->host;
1290 struct xfs_inode *ip = XFS_I(inode);
1291 struct xfs_mount *mp = ip->i_mount;
1292 loff_t uninitialized_var(offset);
3fe3e6b1
JL
1293 xfs_fsize_t isize;
1294 xfs_fileoff_t fsbno;
b686d1f7 1295 xfs_filblks_t end;
3fe3e6b1
JL
1296 uint lock;
1297 int error;
1298
1299 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1300 return -EIO;
3fe3e6b1 1301
309ecac8 1302 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1303
1304 isize = i_size_read(inode);
1305 if (start >= isize) {
2451337d 1306 error = -ENXIO;
3fe3e6b1
JL
1307 goto out_unlock;
1308 }
1309
1310 fsbno = XFS_B_TO_FSBT(mp, start);
b686d1f7
JL
1311 end = XFS_B_TO_FSB(mp, isize);
1312
1313 for (;;) {
1314 struct xfs_bmbt_irec map[2];
1315 int nmap = 2;
1316 unsigned int i;
1317
1318 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1319 XFS_BMAPI_ENTIRE);
1320 if (error)
1321 goto out_unlock;
1322
1323 /* No extents at given offset, must be beyond EOF */
1324 if (nmap == 0) {
2451337d 1325 error = -ENXIO;
b686d1f7
JL
1326 goto out_unlock;
1327 }
1328
1329 for (i = 0; i < nmap; i++) {
1330 offset = max_t(loff_t, start,
1331 XFS_FSB_TO_B(mp, map[i].br_startoff));
1332
1333 /* Landed in a hole */
1334 if (map[i].br_startblock == HOLESTARTBLOCK)
1335 goto out;
1336
1337 /*
1338 * Landed in an unwritten extent, try to search hole
1339 * from page cache.
1340 */
1341 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1342 if (xfs_find_get_desired_pgoff(inode, &map[i],
1343 HOLE_OFF, &offset))
1344 goto out;
1345 }
1346 }
3fe3e6b1 1347
3fe3e6b1 1348 /*
b686d1f7
JL
1349 * map[0] contains data or its unwritten but contains
1350 * data in page cache, probably means that we are
1351 * reading after EOF. We should fix offset to point
1352 * to the end of the file(i.e., there is an implicit
1353 * hole at the end of any file).
3fe3e6b1 1354 */
b686d1f7
JL
1355 if (nmap == 1) {
1356 offset = isize;
1357 break;
1358 }
1359
1360 ASSERT(i > 1);
1361
1362 /*
1363 * Both mappings contains data, proceed to the next round of
1364 * search if the current reading offset not beyond or hit EOF.
1365 */
1366 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1367 start = XFS_FSB_TO_B(mp, fsbno);
1368 if (start >= isize) {
1369 offset = isize;
1370 break;
1371 }
3fe3e6b1
JL
1372 }
1373
b686d1f7
JL
1374out:
1375 /*
1376 * At this point, we must have found a hole. However, the returned
1377 * offset may be bigger than the file size as it may be aligned to
1378 * page boundary for unwritten extents, we need to deal with this
1379 * situation in particular.
1380 */
1381 offset = min_t(loff_t, offset, isize);
46a1c2c7 1382 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1383
1384out_unlock:
01f4f327 1385 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1386
1387 if (error)
2451337d 1388 return error;
3fe3e6b1
JL
1389 return offset;
1390}
1391
1392STATIC loff_t
1393xfs_file_llseek(
1394 struct file *file,
1395 loff_t offset,
1396 int origin)
1397{
1398 switch (origin) {
1399 case SEEK_END:
1400 case SEEK_CUR:
1401 case SEEK_SET:
1402 return generic_file_llseek(file, offset, origin);
1403 case SEEK_DATA:
834ab122 1404 return xfs_seek_data(file, offset);
3fe3e6b1 1405 case SEEK_HOLE:
834ab122 1406 return xfs_seek_hole(file, offset);
3fe3e6b1
JL
1407 default:
1408 return -EINVAL;
1409 }
1410}
1411
4b6f5d20 1412const struct file_operations xfs_file_operations = {
3fe3e6b1 1413 .llseek = xfs_file_llseek,
b4f5d2c6 1414 .read = new_sync_read,
bf97f3bc 1415 .write = new_sync_write,
b4f5d2c6 1416 .read_iter = xfs_file_read_iter,
bf97f3bc 1417 .write_iter = xfs_file_write_iter,
1b895840 1418 .splice_read = xfs_file_splice_read,
8d020765 1419 .splice_write = iter_file_splice_write,
3562fd45 1420 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1421#ifdef CONFIG_COMPAT
3562fd45 1422 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1423#endif
3562fd45
NS
1424 .mmap = xfs_file_mmap,
1425 .open = xfs_file_open,
1426 .release = xfs_file_release,
1427 .fsync = xfs_file_fsync,
2fe17c10 1428 .fallocate = xfs_file_fallocate,
1da177e4
LT
1429};
1430
4b6f5d20 1431const struct file_operations xfs_dir_file_operations = {
f999a5bf 1432 .open = xfs_dir_open,
1da177e4 1433 .read = generic_read_dir,
b8227554 1434 .iterate = xfs_file_readdir,
59af1584 1435 .llseek = generic_file_llseek,
3562fd45 1436 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1437#ifdef CONFIG_COMPAT
3562fd45 1438 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1439#endif
1da2f2db 1440 .fsync = xfs_dir_fsync,
1da177e4
LT
1441};
1442
f0f37e2f 1443static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1444 .fault = filemap_fault,
f1820361 1445 .map_pages = filemap_map_pages,
4f57dbc6 1446 .page_mkwrite = xfs_vm_page_mkwrite,
0b173bc4 1447 .remap_pages = generic_file_remap_pages,
6fac0cb4 1448};