Merge tag 'vfs-6.10.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[linux-block.git] / fs / xfs / xfs_file.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
dda35b8f 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
1da177e4 13#include "xfs_inode.h"
239880ef 14#include "xfs_trans.h"
fd3200be 15#include "xfs_inode_item.h"
dda35b8f 16#include "xfs_bmap.h"
c24b5dfa 17#include "xfs_bmap_util.h"
2b9ab5ab 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_dir2_priv.h"
ddcd856d 20#include "xfs_ioctl.h"
dda35b8f 21#include "xfs_trace.h"
239880ef 22#include "xfs_log.h"
dc06f398 23#include "xfs_icache.h"
781355c6 24#include "xfs_pnfs.h"
68a9f5e7 25#include "xfs_iomap.h"
0613f16c 26#include "xfs_reflink.h"
1da177e4 27
ea6c49b7 28#include <linux/dax.h>
2fe17c10 29#include <linux/falloc.h>
66114cad 30#include <linux/backing-dev.h>
a39e596b 31#include <linux/mman.h>
40144e49 32#include <linux/fadvise.h>
f736d93d 33#include <linux/mount.h>
1da177e4 34
f0f37e2f 35static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 36
25219dbf
DW
37/*
38 * Decide if the given file range is aligned to the size of the fundamental
39 * allocation unit for the file.
40 */
41static bool
42xfs_is_falloc_aligned(
43 struct xfs_inode *ip,
44 loff_t pos,
45 long long int len)
46{
47 struct xfs_mount *mp = ip->i_mount;
48 uint64_t mask;
49
50 if (XFS_IS_REALTIME_INODE(ip)) {
51 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
52 u64 rextbytes;
53 u32 mod;
54
55 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
56 div_u64_rem(pos, rextbytes, &mod);
57 if (mod)
58 return false;
59 div_u64_rem(len, rextbytes, &mod);
60 return mod == 0;
61 }
62 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
63 } else {
64 mask = mp->m_sb.sb_blocksize - 1;
65 }
66
67 return !((pos | len) & mask);
68}
69
1da2f2db
CH
70/*
71 * Fsync operations on directories are much simpler than on regular files,
72 * as there is no file data to flush, and thus also no need for explicit
73 * cache flush operations, and there are no non-transaction metadata updates
74 * on directories either.
75 */
76STATIC int
77xfs_dir_fsync(
78 struct file *file,
79 loff_t start,
80 loff_t end,
81 int datasync)
82{
83 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
1da2f2db
CH
84
85 trace_xfs_dir_fsync(ip);
54fbdd10 86 return xfs_log_force_inode(ip);
1da2f2db
CH
87}
88
5f9b4b0d
DC
89static xfs_csn_t
90xfs_fsync_seq(
f22c7f87
CH
91 struct xfs_inode *ip,
92 bool datasync)
93{
94 if (!xfs_ipincount(ip))
95 return 0;
96 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
97 return 0;
5f9b4b0d 98 return ip->i_itemp->ili_commit_seq;
f22c7f87
CH
99}
100
101/*
102 * All metadata updates are logged, which means that we just have to flush the
103 * log up to the latest LSN that touched the inode.
104 *
105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
106 * the log force before we clear the ili_fsync_fields field. This ensures that
107 * we don't get a racing sync operation that does not wait for the metadata to
108 * hit the journal before returning. If we race with clearing ili_fsync_fields,
109 * then all that will happen is the log force will do nothing as the lsn will
110 * already be on disk. We can't race with setting ili_fsync_fields because that
111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
112 * shared until after the ili_fsync_fields is cleared.
113 */
114static int
115xfs_fsync_flush_log(
116 struct xfs_inode *ip,
117 bool datasync,
118 int *log_flushed)
119{
120 int error = 0;
5f9b4b0d 121 xfs_csn_t seq;
f22c7f87
CH
122
123 xfs_ilock(ip, XFS_ILOCK_SHARED);
5f9b4b0d
DC
124 seq = xfs_fsync_seq(ip, datasync);
125 if (seq) {
126 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
f22c7f87
CH
127 log_flushed);
128
129 spin_lock(&ip->i_itemp->ili_lock);
130 ip->i_itemp->ili_fsync_fields = 0;
131 spin_unlock(&ip->i_itemp->ili_lock);
132 }
133 xfs_iunlock(ip, XFS_ILOCK_SHARED);
134 return error;
135}
136
fd3200be
CH
137STATIC int
138xfs_file_fsync(
139 struct file *file,
02c24a82
JB
140 loff_t start,
141 loff_t end,
fd3200be
CH
142 int datasync)
143{
f22c7f87 144 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
a27a263b 145 struct xfs_mount *mp = ip->i_mount;
7d839e32 146 int error, err2;
fd3200be
CH
147 int log_flushed = 0;
148
cca28fb8 149 trace_xfs_file_fsync(ip);
fd3200be 150
1b180274 151 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
152 if (error)
153 return error;
154
75c8c50f 155 if (xfs_is_shutdown(mp))
b474c7ae 156 return -EIO;
fd3200be
CH
157
158 xfs_iflags_clear(ip, XFS_ITRUNCATED);
159
2291dab2
DC
160 /*
161 * If we have an RT and/or log subvolume we need to make sure to flush
162 * the write cache the device used for file data first. This is to
163 * ensure newly written file data make it to disk before logging the new
164 * inode size in case of an extending write.
165 */
166 if (XFS_IS_REALTIME_INODE(ip))
7d839e32 167 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
2291dab2 168 else if (mp->m_logdev_targp != mp->m_ddev_targp)
7d839e32 169 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
a27a263b 170
fd3200be 171 /*
ae29e422 172 * Any inode that has dirty modifications in the log is pinned. The
7d839e32 173 * racy check here for a pinned inode will not catch modifications
ae29e422
CH
174 * that happen concurrently to the fsync call, but fsync semantics
175 * only require to sync previously completed I/O.
fd3200be 176 */
7d839e32
DW
177 if (xfs_ipincount(ip)) {
178 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
179 if (err2 && !error)
180 error = err2;
181 }
b1037058 182
a27a263b
CH
183 /*
184 * If we only have a single device, and the log force about was
185 * a no-op we might have to flush the data device cache here.
186 * This can only happen for fdatasync/O_DSYNC if we were overwriting
187 * an already allocated file and thus do not have any metadata to
188 * commit.
189 */
2291dab2 190 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
7d839e32
DW
191 mp->m_logdev_targp == mp->m_ddev_targp) {
192 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
193 if (err2 && !error)
194 error = err2;
195 }
fd3200be 196
2451337d 197 return error;
fd3200be
CH
198}
199
f50b8f47
CH
200static int
201xfs_ilock_iocb(
202 struct kiocb *iocb,
203 unsigned int lock_mode)
204{
205 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
206
207 if (iocb->ki_flags & IOCB_NOWAIT) {
208 if (!xfs_ilock_nowait(ip, lock_mode))
209 return -EAGAIN;
210 } else {
211 xfs_ilock(ip, lock_mode);
212 }
213
214 return 0;
215}
216
14a53798
CH
217static int
218xfs_ilock_iocb_for_write(
219 struct kiocb *iocb,
220 unsigned int *lock_mode)
221{
222 ssize_t ret;
223 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
224
225 ret = xfs_ilock_iocb(iocb, *lock_mode);
226 if (ret)
227 return ret;
228
229 if (*lock_mode == XFS_IOLOCK_EXCL)
230 return 0;
231 if (!xfs_iflags_test(ip, XFS_IREMAPPING))
232 return 0;
233
234 xfs_iunlock(ip, *lock_mode);
235 *lock_mode = XFS_IOLOCK_EXCL;
236 return xfs_ilock_iocb(iocb, *lock_mode);
237}
238
239static unsigned int
240xfs_ilock_for_write_fault(
241 struct xfs_inode *ip)
242{
243 /* get a shared lock if no remapping in progress */
244 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
245 if (!xfs_iflags_test(ip, XFS_IREMAPPING))
246 return XFS_MMAPLOCK_SHARED;
247
248 /* wait for remapping to complete */
249 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
250 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
251 return XFS_MMAPLOCK_EXCL;
252}
253
00258e36 254STATIC ssize_t
ee1b218b 255xfs_file_dio_read(
dda35b8f 256 struct kiocb *iocb,
b4f5d2c6 257 struct iov_iter *to)
dda35b8f 258{
acdda3aa 259 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
acdda3aa 260 ssize_t ret;
dda35b8f 261
3e40b13c 262 trace_xfs_file_direct_read(iocb, to);
dda35b8f 263
3e40b13c 264 if (!iov_iter_count(to))
f1285ff0 265 return 0; /* skip atime */
dda35b8f 266
a447d7cd
CH
267 file_accessed(iocb->ki_filp);
268
f50b8f47
CH
269 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
270 if (ret)
271 return ret;
786f847f 272 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
65523218 273 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 274
16d4d435
CH
275 return ret;
276}
277
f021bd07 278static noinline ssize_t
16d4d435
CH
279xfs_file_dax_read(
280 struct kiocb *iocb,
281 struct iov_iter *to)
282{
6c31f495 283 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
284 ssize_t ret = 0;
285
3e40b13c 286 trace_xfs_file_dax_read(iocb, to);
16d4d435 287
3e40b13c 288 if (!iov_iter_count(to))
16d4d435
CH
289 return 0; /* skip atime */
290
f50b8f47
CH
291 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
292 if (ret)
293 return ret;
690c2a38 294 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
65523218 295 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 296
f1285ff0 297 file_accessed(iocb->ki_filp);
bbc5a740
CH
298 return ret;
299}
300
301STATIC ssize_t
ee1b218b 302xfs_file_buffered_read(
bbc5a740
CH
303 struct kiocb *iocb,
304 struct iov_iter *to)
305{
306 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
307 ssize_t ret;
308
3e40b13c 309 trace_xfs_file_buffered_read(iocb, to);
dda35b8f 310
f50b8f47
CH
311 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
312 if (ret)
313 return ret;
b4f5d2c6 314 ret = generic_file_read_iter(iocb, to);
65523218 315 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
316
317 return ret;
318}
319
320STATIC ssize_t
321xfs_file_read_iter(
322 struct kiocb *iocb,
323 struct iov_iter *to)
324{
16d4d435
CH
325 struct inode *inode = file_inode(iocb->ki_filp);
326 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
327 ssize_t ret = 0;
328
329 XFS_STATS_INC(mp, xs_read_calls);
330
75c8c50f 331 if (xfs_is_shutdown(mp))
bbc5a740
CH
332 return -EIO;
333
16d4d435
CH
334 if (IS_DAX(inode))
335 ret = xfs_file_dax_read(iocb, to);
336 else if (iocb->ki_flags & IOCB_DIRECT)
ee1b218b 337 ret = xfs_file_dio_read(iocb, to);
3176c3e0 338 else
ee1b218b 339 ret = xfs_file_buffered_read(iocb, to);
dda35b8f 340
dda35b8f 341 if (ret > 0)
ff6d6af2 342 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
343 return ret;
344}
345
54919f94
DH
346STATIC ssize_t
347xfs_file_splice_read(
348 struct file *in,
349 loff_t *ppos,
350 struct pipe_inode_info *pipe,
351 size_t len,
352 unsigned int flags)
353{
354 struct inode *inode = file_inode(in);
355 struct xfs_inode *ip = XFS_I(inode);
356 struct xfs_mount *mp = ip->i_mount;
357 ssize_t ret = 0;
358
359 XFS_STATS_INC(mp, xs_read_calls);
360
361 if (xfs_is_shutdown(mp))
362 return -EIO;
363
364 trace_xfs_file_splice_read(ip, *ppos, len);
365
366 xfs_ilock(ip, XFS_IOLOCK_SHARED);
367 ret = filemap_splice_read(in, ppos, pipe, len, flags);
368 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
369 if (ret > 0)
370 XFS_STATS_ADD(mp, xs_read_bytes, ret);
371 return ret;
372}
373
4d8d1581
DC
374/*
375 * Common pre-write limit and setup checks.
376 *
5bf1f262
CH
377 * Called with the iolocked held either shared and exclusive according to
378 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
379 * if called for a direct write beyond i_size.
4d8d1581
DC
380 */
381STATIC ssize_t
ee1b218b 382xfs_file_write_checks(
99733fa3
AV
383 struct kiocb *iocb,
384 struct iov_iter *from,
a1033753 385 unsigned int *iolock)
4d8d1581 386{
99733fa3 387 struct file *file = iocb->ki_filp;
4d8d1581
DC
388 struct inode *inode = file->f_mapping->host;
389 struct xfs_inode *ip = XFS_I(inode);
3309dd04 390 ssize_t error = 0;
99733fa3 391 size_t count = iov_iter_count(from);
3136e8bb 392 bool drained_dio = false;
f5c54717 393 loff_t isize;
4d8d1581 394
7271d243 395restart:
3309dd04
AV
396 error = generic_write_checks(iocb, from);
397 if (error <= 0)
4d8d1581 398 return error;
4d8d1581 399
354be7e3
CH
400 if (iocb->ki_flags & IOCB_NOWAIT) {
401 error = break_layout(inode, false);
402 if (error == -EWOULDBLOCK)
403 error = -EAGAIN;
404 } else {
405 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
406 }
407
781355c6
CH
408 if (error)
409 return error;
410
65523218
CH
411 /*
412 * For changing security info in file_remove_privs() we need i_rwsem
413 * exclusively.
414 */
a6de82ca 415 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 416 xfs_iunlock(ip, *iolock);
a6de82ca 417 *iolock = XFS_IOLOCK_EXCL;
354be7e3
CH
418 error = xfs_ilock_iocb(iocb, *iolock);
419 if (error) {
420 *iolock = 0;
421 return error;
422 }
a6de82ca
JK
423 goto restart;
424 }
977ec4dd 425
4d8d1581
DC
426 /*
427 * If the offset is beyond the size of the file, we need to zero any
428 * blocks that fall between the existing EOF and the start of this
977ec4dd
DC
429 * write. If zeroing is needed and we are currently holding the iolock
430 * shared, we need to update it to exclusive which implies having to
431 * redo all checks before.
432 *
433 * We need to serialise against EOF updates that occur in IO completions
434 * here. We want to make sure that nobody is changing the size while we
435 * do this check until we have placed an IO barrier (i.e. hold the
436 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
437 * spinlock effectively forms a memory barrier once we have the
438 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
439 * hence be able to correctly determine if we need to run zeroing.
b9d59846 440 *
977ec4dd
DC
441 * We can do an unlocked check here safely as IO completion can only
442 * extend EOF. Truncate is locked out at this point, so the EOF can
443 * not move backwards, only forwards. Hence we only need to take the
444 * slow path and spin locks when we are at or beyond the current EOF.
4d8d1581 445 */
977ec4dd
DC
446 if (iocb->ki_pos <= i_size_read(inode))
447 goto out;
448
b9d59846 449 spin_lock(&ip->i_flags_lock);
f5c54717
CH
450 isize = i_size_read(inode);
451 if (iocb->ki_pos > isize) {
b9d59846 452 spin_unlock(&ip->i_flags_lock);
354be7e3
CH
453
454 if (iocb->ki_flags & IOCB_NOWAIT)
455 return -EAGAIN;
456
3136e8bb
BF
457 if (!drained_dio) {
458 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 459 xfs_iunlock(ip, *iolock);
3136e8bb 460 *iolock = XFS_IOLOCK_EXCL;
65523218 461 xfs_ilock(ip, *iolock);
3136e8bb
BF
462 iov_iter_reexpand(from, count);
463 }
40c63fbc
DC
464 /*
465 * We now have an IO submission barrier in place, but
466 * AIO can do EOF updates during IO completion and hence
467 * we now need to wait for all of them to drain. Non-AIO
468 * DIO will have drained before we are given the
469 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
470 * no-op.
471 */
472 inode_dio_wait(inode);
3136e8bb 473 drained_dio = true;
7271d243
DC
474 goto restart;
475 }
977ec4dd 476
f5c54717 477 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
f1ba5faf 478 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
467f7899
CH
479 if (error)
480 return error;
b9d59846
DC
481 } else
482 spin_unlock(&ip->i_flags_lock);
4d8d1581 483
977ec4dd 484out:
1aa91d9c 485 return kiocb_modified(iocb);
4d8d1581
DC
486}
487
acdda3aa
CH
488static int
489xfs_dio_write_end_io(
490 struct kiocb *iocb,
491 ssize_t size,
6fe7b990 492 int error,
acdda3aa
CH
493 unsigned flags)
494{
495 struct inode *inode = file_inode(iocb->ki_filp);
496 struct xfs_inode *ip = XFS_I(inode);
497 loff_t offset = iocb->ki_pos;
73d30d48 498 unsigned int nofs_flag;
acdda3aa
CH
499
500 trace_xfs_end_io_direct_write(ip, offset, size);
501
75c8c50f 502 if (xfs_is_shutdown(ip->i_mount))
acdda3aa
CH
503 return -EIO;
504
6fe7b990
MB
505 if (error)
506 return error;
507 if (!size)
508 return 0;
acdda3aa 509
ed5c3e66
DC
510 /*
511 * Capture amount written on completion as we can't reliably account
512 * for it on submission.
513 */
514 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
515
73d30d48
CH
516 /*
517 * We can allocate memory here while doing writeback on behalf of
518 * memory reclaim. To avoid memory allocation deadlocks set the
519 * task-wide nofs context for the following operations.
520 */
521 nofs_flag = memalloc_nofs_save();
522
ee70daab
EG
523 if (flags & IOMAP_DIO_COW) {
524 error = xfs_reflink_end_cow(ip, offset, size);
525 if (error)
73d30d48 526 goto out;
ee70daab
EG
527 }
528
529 /*
530 * Unwritten conversion updates the in-core isize after extent
531 * conversion but before updating the on-disk size. Updating isize any
532 * earlier allows a racing dio read to find unwritten extents before
533 * they are converted.
534 */
73d30d48
CH
535 if (flags & IOMAP_DIO_UNWRITTEN) {
536 error = xfs_iomap_write_unwritten(ip, offset, size, true);
537 goto out;
538 }
ee70daab 539
acdda3aa
CH
540 /*
541 * We need to update the in-core inode size here so that we don't end up
542 * with the on-disk inode size being outside the in-core inode size. We
543 * have no other method of updating EOF for AIO, so always do it here
544 * if necessary.
545 *
546 * We need to lock the test/set EOF update as we can be racing with
547 * other IO completions here to update the EOF. Failing to serialise
548 * here can result in EOF moving backwards and Bad Things Happen when
549 * that occurs.
977ec4dd
DC
550 *
551 * As IO completion only ever extends EOF, we can do an unlocked check
552 * here to avoid taking the spinlock. If we land within the current EOF,
553 * then we do not need to do an extending update at all, and we don't
554 * need to take the lock to check this. If we race with an update moving
555 * EOF, then we'll either still be beyond EOF and need to take the lock,
556 * or we'll be within EOF and we don't need to take it at all.
acdda3aa 557 */
977ec4dd
DC
558 if (offset + size <= i_size_read(inode))
559 goto out;
560
acdda3aa
CH
561 spin_lock(&ip->i_flags_lock);
562 if (offset + size > i_size_read(inode)) {
563 i_size_write(inode, offset + size);
ee70daab 564 spin_unlock(&ip->i_flags_lock);
acdda3aa 565 error = xfs_setfilesize(ip, offset, size);
ee70daab
EG
566 } else {
567 spin_unlock(&ip->i_flags_lock);
568 }
acdda3aa 569
73d30d48
CH
570out:
571 memalloc_nofs_restore(nofs_flag);
acdda3aa
CH
572 return error;
573}
574
838c4f3d
CH
575static const struct iomap_dio_ops xfs_dio_write_ops = {
576 .end_io = xfs_dio_write_end_io,
577};
578
f0d26e86 579/*
caa89dbc 580 * Handle block aligned direct I/O writes
f0d26e86 581 */
caa89dbc
DC
582static noinline ssize_t
583xfs_file_dio_write_aligned(
584 struct xfs_inode *ip,
f0d26e86 585 struct kiocb *iocb,
b3188919 586 struct iov_iter *from)
f0d26e86 587{
a1033753 588 unsigned int iolock = XFS_IOLOCK_SHARED;
caa89dbc 589 ssize_t ret;
f0d26e86 590
14a53798 591 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
caa89dbc
DC
592 if (ret)
593 return ret;
594 ret = xfs_file_write_checks(iocb, from, &iolock);
595 if (ret)
596 goto out_unlock;
f0d26e86 597
7271d243 598 /*
caa89dbc
DC
599 * We don't need to hold the IOLOCK exclusively across the IO, so demote
600 * the iolock back to shared if we had to take the exclusive lock in
601 * xfs_file_write_checks() for other reasons.
7271d243 602 */
caa89dbc
DC
603 if (iolock == XFS_IOLOCK_EXCL) {
604 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 605 iolock = XFS_IOLOCK_SHARED;
c58cb165 606 }
caa89dbc
DC
607 trace_xfs_file_direct_write(iocb, from);
608 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
786f847f 609 &xfs_dio_write_ops, 0, NULL, 0);
caa89dbc
DC
610out_unlock:
611 if (iolock)
612 xfs_iunlock(ip, iolock);
613 return ret;
614}
f0d26e86 615
caa89dbc
DC
616/*
617 * Handle block unaligned direct I/O writes
618 *
619 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
620 * them to be done in parallel with reads and other direct I/O writes. However,
621 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
622 * to do sub-block zeroing and that requires serialisation against other direct
623 * I/O to the same block. In this case we need to serialise the submission of
624 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
ed1128c2
DC
625 * In the case where sub-block zeroing is not required, we can do concurrent
626 * sub-block dios to the same block successfully.
caa89dbc 627 *
ed1128c2
DC
628 * Optimistically submit the I/O using the shared lock first, but use the
629 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
630 * if block allocation or partial block zeroing would be required. In that case
631 * we try again with the exclusive lock.
caa89dbc
DC
632 */
633static noinline ssize_t
634xfs_file_dio_write_unaligned(
635 struct xfs_inode *ip,
636 struct kiocb *iocb,
637 struct iov_iter *from)
638{
ed1128c2
DC
639 size_t isize = i_size_read(VFS_I(ip));
640 size_t count = iov_iter_count(from);
a1033753 641 unsigned int iolock = XFS_IOLOCK_SHARED;
ed1128c2 642 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
caa89dbc
DC
643 ssize_t ret;
644
ed1128c2
DC
645 /*
646 * Extending writes need exclusivity because of the sub-block zeroing
647 * that the DIO code always does for partial tail blocks beyond EOF, so
648 * don't even bother trying the fast path in this case.
649 */
650 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
ed1128c2
DC
651 if (iocb->ki_flags & IOCB_NOWAIT)
652 return -EAGAIN;
93e6aa43 653retry_exclusive:
ed1128c2
DC
654 iolock = XFS_IOLOCK_EXCL;
655 flags = IOMAP_DIO_FORCE_WAIT;
656 }
657
14a53798 658 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
ed1128c2
DC
659 if (ret)
660 return ret;
caa89dbc
DC
661
662 /*
663 * We can't properly handle unaligned direct I/O to reflink files yet,
664 * as we can't unshare a partial block.
665 */
666 if (xfs_is_cow_inode(ip)) {
667 trace_xfs_reflink_bounce_dio_write(iocb, from);
668 ret = -ENOTBLK;
669 goto out_unlock;
29a5d29e 670 }
0ee7a3f6 671
ee1b218b 672 ret = xfs_file_write_checks(iocb, from, &iolock);
4d8d1581 673 if (ret)
caa89dbc 674 goto out_unlock;
f0d26e86 675
eda77982 676 /*
ed1128c2
DC
677 * If we are doing exclusive unaligned I/O, this must be the only I/O
678 * in-flight. Otherwise we risk data corruption due to unwritten extent
679 * conversions from the AIO end_io handler. Wait for all other I/O to
680 * drain first.
eda77982 681 */
ed1128c2
DC
682 if (flags & IOMAP_DIO_FORCE_WAIT)
683 inode_dio_wait(VFS_I(ip));
f0d26e86 684
3e40b13c 685 trace_xfs_file_direct_write(iocb, from);
f150b423 686 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
786f847f 687 &xfs_dio_write_ops, flags, NULL, 0);
ed1128c2
DC
688
689 /*
690 * Retry unaligned I/O with exclusive blocking semantics if the DIO
691 * layer rejected it for mapping or locking reasons. If we are doing
692 * nonblocking user I/O, propagate the error.
693 */
694 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
695 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
696 xfs_iunlock(ip, iolock);
697 goto retry_exclusive;
698 }
699
caa89dbc 700out_unlock:
354be7e3
CH
701 if (iolock)
702 xfs_iunlock(ip, iolock);
16d4d435
CH
703 return ret;
704}
705
caa89dbc
DC
706static ssize_t
707xfs_file_dio_write(
708 struct kiocb *iocb,
709 struct iov_iter *from)
710{
711 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
712 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
713 size_t count = iov_iter_count(from);
714
715 /* direct I/O must be aligned to device logical sector size */
716 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
717 return -EINVAL;
718 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
719 return xfs_file_dio_write_unaligned(ip, iocb, from);
720 return xfs_file_dio_write_aligned(ip, iocb, from);
721}
722
f021bd07 723static noinline ssize_t
16d4d435
CH
724xfs_file_dax_write(
725 struct kiocb *iocb,
726 struct iov_iter *from)
727{
6c31f495 728 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 729 struct xfs_inode *ip = XFS_I(inode);
a1033753 730 unsigned int iolock = XFS_IOLOCK_EXCL;
6c31f495 731 ssize_t ret, error = 0;
6c31f495 732 loff_t pos;
16d4d435 733
f50b8f47
CH
734 ret = xfs_ilock_iocb(iocb, iolock);
735 if (ret)
736 return ret;
ee1b218b 737 ret = xfs_file_write_checks(iocb, from, &iolock);
16d4d435
CH
738 if (ret)
739 goto out;
740
6c31f495 741 pos = iocb->ki_pos;
8b2180b3 742
3e40b13c 743 trace_xfs_file_dax_write(iocb, from);
ea6c49b7 744 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
6c31f495
CH
745 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
746 i_size_write(inode, iocb->ki_pos);
747 error = xfs_setfilesize(ip, pos, ret);
16d4d435 748 }
16d4d435 749out:
354be7e3
CH
750 if (iolock)
751 xfs_iunlock(ip, iolock);
ed5c3e66
DC
752 if (error)
753 return error;
754
755 if (ret > 0) {
756 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
757
758 /* Handle various SYNC-type writes */
759 ret = generic_write_sync(iocb, ret);
760 }
761 return ret;
f0d26e86
DC
762}
763
00258e36 764STATIC ssize_t
ee1b218b 765xfs_file_buffered_write(
dda35b8f 766 struct kiocb *iocb,
b3188919 767 struct iov_iter *from)
dda35b8f 768{
2d9ac431 769 struct inode *inode = iocb->ki_filp->f_mapping->host;
00258e36 770 struct xfs_inode *ip = XFS_I(inode);
637bbc75 771 ssize_t ret;
a636b1d1 772 bool cleared_space = false;
a1033753 773 unsigned int iolock;
dda35b8f 774
c3155097
BF
775write_retry:
776 iolock = XFS_IOLOCK_EXCL;
1aa91d9c
SR
777 ret = xfs_ilock_iocb(iocb, iolock);
778 if (ret)
779 return ret;
dda35b8f 780
ee1b218b 781 ret = xfs_file_write_checks(iocb, from, &iolock);
4d8d1581 782 if (ret)
d0606464 783 goto out;
dda35b8f 784
3e40b13c 785 trace_xfs_file_buffered_write(iocb, from);
f150b423
CH
786 ret = iomap_file_buffered_write(iocb, from,
787 &xfs_buffered_write_iomap_ops);
dc06f398 788
637bbc75 789 /*
dc06f398
BF
790 * If we hit a space limit, try to free up some lingering preallocated
791 * space before returning an error. In the case of ENOSPC, first try to
792 * write back all dirty inodes to free up some of the excess reserved
793 * metadata space. This reduces the chances that the eofblocks scan
794 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
795 * also behaves as a filter to prevent too many eofblocks scans from
111068f8
DW
796 * running at the same time. Use a synchronous scan to increase the
797 * effectiveness of the scan.
637bbc75 798 */
a636b1d1 799 if (ret == -EDQUOT && !cleared_space) {
c3155097 800 xfs_iunlock(ip, iolock);
2d53f66b 801 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
111068f8
DW
802 cleared_space = true;
803 goto write_retry;
a636b1d1 804 } else if (ret == -ENOSPC && !cleared_space) {
b26b2bf1 805 struct xfs_icwalk icw = {0};
dc06f398 806
a636b1d1 807 cleared_space = true;
9aa05000 808 xfs_flush_inodes(ip->i_mount);
c3155097
BF
809
810 xfs_iunlock(ip, iolock);
b26b2bf1
DW
811 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
812 xfs_blockgc_free_space(ip->i_mount, &icw);
9aa05000 813 goto write_retry;
dda35b8f 814 }
d0606464 815
d0606464 816out:
c3155097
BF
817 if (iolock)
818 xfs_iunlock(ip, iolock);
ed5c3e66
DC
819
820 if (ret > 0) {
821 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
822 /* Handle various SYNC-type writes */
823 ret = generic_write_sync(iocb, ret);
824 }
637bbc75
DC
825 return ret;
826}
827
828STATIC ssize_t
bf97f3bc 829xfs_file_write_iter(
637bbc75 830 struct kiocb *iocb,
bf97f3bc 831 struct iov_iter *from)
637bbc75 832{
2d9ac431 833 struct inode *inode = iocb->ki_filp->f_mapping->host;
637bbc75
DC
834 struct xfs_inode *ip = XFS_I(inode);
835 ssize_t ret;
bf97f3bc 836 size_t ocount = iov_iter_count(from);
637bbc75 837
ff6d6af2 838 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 839
637bbc75
DC
840 if (ocount == 0)
841 return 0;
842
75c8c50f 843 if (xfs_is_shutdown(ip->i_mount))
bf97f3bc 844 return -EIO;
637bbc75 845
16d4d435 846 if (IS_DAX(inode))
ed5c3e66
DC
847 return xfs_file_dax_write(iocb, from);
848
849 if (iocb->ki_flags & IOCB_DIRECT) {
0613f16c
DW
850 /*
851 * Allow a directio write to fall back to a buffered
852 * write *only* in the case that we're doing a reflink
853 * CoW. In all other directio scenarios we do not
854 * allow an operation to fall back to buffered mode.
855 */
ee1b218b 856 ret = xfs_file_dio_write(iocb, from);
80e543ae 857 if (ret != -ENOTBLK)
ed5c3e66 858 return ret;
0613f16c 859 }
dda35b8f 860
ee1b218b 861 return xfs_file_buffered_write(iocb, from);
dda35b8f
CH
862}
863
d6dc57e2
DW
864static void
865xfs_wait_dax_page(
e25ff835 866 struct inode *inode)
d6dc57e2
DW
867{
868 struct xfs_inode *ip = XFS_I(inode);
869
d6dc57e2
DW
870 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
871 schedule();
872 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
873}
874
13f9e267 875int
d6dc57e2
DW
876xfs_break_dax_layouts(
877 struct inode *inode,
e25ff835 878 bool *retry)
d6dc57e2
DW
879{
880 struct page *page;
881
3fed24ff 882 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
d6dc57e2
DW
883
884 page = dax_layout_busy_page(inode->i_mapping);
885 if (!page)
886 return 0;
887
e25ff835 888 *retry = true;
d6dc57e2
DW
889 return ___wait_var_event(&page->_refcount,
890 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
e25ff835 891 0, 0, xfs_wait_dax_page(inode));
d6dc57e2
DW
892}
893
69eb5fa1
DW
894int
895xfs_break_layouts(
896 struct inode *inode,
897 uint *iolock,
898 enum layout_break_reason reason)
899{
900 bool retry;
d6dc57e2 901 int error;
69eb5fa1 902
3fed24ff 903 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
69eb5fa1 904
d6dc57e2
DW
905 do {
906 retry = false;
907 switch (reason) {
908 case BREAK_UNMAP:
a4722a64 909 error = xfs_break_dax_layouts(inode, &retry);
d6dc57e2
DW
910 if (error || retry)
911 break;
53004ee7 912 fallthrough;
d6dc57e2
DW
913 case BREAK_WRITE:
914 error = xfs_break_leased_layouts(inode, iolock, &retry);
915 break;
916 default:
917 WARN_ON_ONCE(1);
918 error = -EINVAL;
919 }
920 } while (error == 0 && retry);
921
922 return error;
69eb5fa1
DW
923}
924
cea267c2
DC
925/* Does this file, inode, or mount want synchronous writes? */
926static inline bool xfs_file_sync_writes(struct file *filp)
927{
928 struct xfs_inode *ip = XFS_I(file_inode(filp));
929
930 if (xfs_has_wsync(ip->i_mount))
931 return true;
932 if (filp->f_flags & (__O_SYNC | O_DSYNC))
933 return true;
934 if (IS_SYNC(file_inode(filp)))
935 return true;
936
937 return false;
938}
939
a904b1ca
NJ
940#define XFS_FALLOC_FL_SUPPORTED \
941 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
942 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 943 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 944
2fe17c10
CH
945STATIC long
946xfs_file_fallocate(
83aee9e4
CH
947 struct file *file,
948 int mode,
949 loff_t offset,
950 loff_t len)
2fe17c10 951{
83aee9e4
CH
952 struct inode *inode = file_inode(file);
953 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 954 long error;
c63a8eae 955 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
83aee9e4 956 loff_t new_size = 0;
749f24f3 957 bool do_file_insert = false;
2fe17c10 958
83aee9e4
CH
959 if (!S_ISREG(inode->i_mode))
960 return -EINVAL;
a904b1ca 961 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
962 return -EOPNOTSUPP;
963
781355c6 964 xfs_ilock(ip, iolock);
69eb5fa1 965 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
781355c6
CH
966 if (error)
967 goto out_unlock;
968
249bd908
DC
969 /*
970 * Must wait for all AIO to complete before we continue as AIO can
971 * change the file size on completion without holding any locks we
972 * currently hold. We must do this first because AIO can update both
973 * the on disk and in memory inode sizes, and the operations that follow
974 * require the in-memory size to be fully up-to-date.
975 */
976 inode_dio_wait(inode);
977
978 /*
979 * Now AIO and DIO has drained we flush and (if necessary) invalidate
980 * the cached range over the first operation we are about to run.
981 *
982 * We care about zero and collapse here because they both run a hole
983 * punch over the range first. Because that can zero data, and the range
984 * of invalidation for the shift operations is much larger, we still do
985 * the required flush for collapse in xfs_prepare_shift().
986 *
987 * Insert has the same range requirements as collapse, and we extend the
988 * file first which can zero data. Hence insert has the same
989 * flush/invalidate requirements as collapse and so they are both
990 * handled at the right time by xfs_prepare_shift().
991 */
992 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
993 FALLOC_FL_COLLAPSE_RANGE)) {
994 error = xfs_flush_unmap_range(ip, offset, len);
995 if (error)
996 goto out_unlock;
997 }
998
fbe7e520
DC
999 error = file_modified(file);
1000 if (error)
1001 goto out_unlock;
1002
83aee9e4
CH
1003 if (mode & FALLOC_FL_PUNCH_HOLE) {
1004 error = xfs_free_file_space(ip, offset, len);
1005 if (error)
1006 goto out_unlock;
e1d8fb88 1007 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
25219dbf 1008 if (!xfs_is_falloc_aligned(ip, offset, len)) {
2451337d 1009 error = -EINVAL;
e1d8fb88
NJ
1010 goto out_unlock;
1011 }
1012
23fffa92
LC
1013 /*
1014 * There is no need to overlap collapse range with EOF,
1015 * in which case it is effectively a truncate operation
1016 */
1017 if (offset + len >= i_size_read(inode)) {
2451337d 1018 error = -EINVAL;
23fffa92
LC
1019 goto out_unlock;
1020 }
1021
e1d8fb88
NJ
1022 new_size = i_size_read(inode) - len;
1023
1024 error = xfs_collapse_file_space(ip, offset, len);
1025 if (error)
1026 goto out_unlock;
a904b1ca 1027 } else if (mode & FALLOC_FL_INSERT_RANGE) {
7d83fb14 1028 loff_t isize = i_size_read(inode);
a904b1ca 1029
25219dbf 1030 if (!xfs_is_falloc_aligned(ip, offset, len)) {
a904b1ca
NJ
1031 error = -EINVAL;
1032 goto out_unlock;
1033 }
1034
7d83fb14
DW
1035 /*
1036 * New inode size must not exceed ->s_maxbytes, accounting for
1037 * possible signed overflow.
1038 */
1039 if (inode->i_sb->s_maxbytes - isize < len) {
a904b1ca
NJ
1040 error = -EFBIG;
1041 goto out_unlock;
1042 }
7d83fb14 1043 new_size = isize + len;
a904b1ca
NJ
1044
1045 /* Offset should be less than i_size */
7d83fb14 1046 if (offset >= isize) {
a904b1ca
NJ
1047 error = -EINVAL;
1048 goto out_unlock;
1049 }
749f24f3 1050 do_file_insert = true;
83aee9e4
CH
1051 } else {
1052 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1053 offset + len > i_size_read(inode)) {
1054 new_size = offset + len;
2451337d 1055 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
1056 if (error)
1057 goto out_unlock;
1058 }
2fe17c10 1059
66ae56a5 1060 if (mode & FALLOC_FL_ZERO_RANGE) {
360c09c0
CH
1061 /*
1062 * Punch a hole and prealloc the range. We use a hole
1063 * punch rather than unwritten extent conversion for two
1064 * reasons:
1065 *
1066 * 1.) Hole punch handles partial block zeroing for us.
1067 * 2.) If prealloc returns ENOSPC, the file range is
1068 * still zero-valued by virtue of the hole punch.
1069 */
1070 unsigned int blksize = i_blocksize(inode);
1071
1072 trace_xfs_zero_file_space(ip);
1073
1074 error = xfs_free_file_space(ip, offset, len);
1075 if (error)
1076 goto out_unlock;
1077
1078 len = round_up(offset + len, blksize) -
1079 round_down(offset, blksize);
1080 offset = round_down(offset, blksize);
66ae56a5
CH
1081 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1082 error = xfs_reflink_unshare(ip, offset, len);
1083 if (error)
1084 goto out_unlock;
66ae56a5
CH
1085 } else {
1086 /*
1087 * If always_cow mode we can't use preallocations and
1088 * thus should not create them.
1089 */
1090 if (xfs_is_always_cow_inode(ip)) {
1091 error = -EOPNOTSUPP;
1092 goto out_unlock;
1093 }
360c09c0 1094 }
66ae56a5 1095
360c09c0 1096 if (!xfs_is_always_cow_inode(ip)) {
4d1b97f9 1097 error = xfs_alloc_file_space(ip, offset, len);
360c09c0
CH
1098 if (error)
1099 goto out_unlock;
98cc2db5 1100 }
fbe7e520 1101 }
2fe17c10
CH
1102
1103 /* Change file size if needed */
1104 if (new_size) {
1105 struct iattr iattr;
1106
1107 iattr.ia_valid = ATTR_SIZE;
1108 iattr.ia_size = new_size;
c1632a0f 1109 error = xfs_vn_setattr_size(file_mnt_idmap(file),
f736d93d 1110 file_dentry(file), &iattr);
a904b1ca
NJ
1111 if (error)
1112 goto out_unlock;
2fe17c10
CH
1113 }
1114
a904b1ca
NJ
1115 /*
1116 * Perform hole insertion now that the file size has been
1117 * updated so that if we crash during the operation we don't
1118 * leave shifted extents past EOF and hence losing access to
1119 * the data that is contained within them.
1120 */
472c6e46 1121 if (do_file_insert) {
a904b1ca 1122 error = xfs_insert_file_space(ip, offset, len);
472c6e46
DC
1123 if (error)
1124 goto out_unlock;
1125 }
1126
cea267c2 1127 if (xfs_file_sync_writes(file))
472c6e46 1128 error = xfs_log_force_inode(ip);
a904b1ca 1129
2fe17c10 1130out_unlock:
781355c6 1131 xfs_iunlock(ip, iolock);
2451337d 1132 return error;
2fe17c10
CH
1133}
1134
40144e49
JK
1135STATIC int
1136xfs_file_fadvise(
1137 struct file *file,
1138 loff_t start,
1139 loff_t end,
1140 int advice)
1141{
1142 struct xfs_inode *ip = XFS_I(file_inode(file));
1143 int ret;
1144 int lockflags = 0;
1145
1146 /*
1147 * Operations creating pages in page cache need protection from hole
1148 * punching and similar ops
1149 */
1150 if (advice == POSIX_FADV_WILLNEED) {
1151 lockflags = XFS_IOLOCK_SHARED;
1152 xfs_ilock(ip, lockflags);
1153 }
1154 ret = generic_fadvise(file, start, end, advice);
1155 if (lockflags)
1156 xfs_iunlock(ip, lockflags);
1157 return ret;
1158}
3fc9f5e4 1159
da034bcc 1160STATIC loff_t
2e5dfc99 1161xfs_file_remap_range(
3fc9f5e4
DW
1162 struct file *file_in,
1163 loff_t pos_in,
1164 struct file *file_out,
1165 loff_t pos_out,
1166 loff_t len,
1167 unsigned int remap_flags)
9fe26045 1168{
3fc9f5e4
DW
1169 struct inode *inode_in = file_inode(file_in);
1170 struct xfs_inode *src = XFS_I(inode_in);
1171 struct inode *inode_out = file_inode(file_out);
1172 struct xfs_inode *dest = XFS_I(inode_out);
1173 struct xfs_mount *mp = src->i_mount;
1174 loff_t remapped = 0;
1175 xfs_extlen_t cowextsize;
1176 int ret;
1177
2e5dfc99
DW
1178 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1179 return -EINVAL;
cc714660 1180
38c26bfd 1181 if (!xfs_has_reflink(mp))
3fc9f5e4
DW
1182 return -EOPNOTSUPP;
1183
75c8c50f 1184 if (xfs_is_shutdown(mp))
3fc9f5e4
DW
1185 return -EIO;
1186
1187 /* Prepare and then clone file data. */
1188 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1189 &len, remap_flags);
451d34ee 1190 if (ret || len == 0)
3fc9f5e4
DW
1191 return ret;
1192
1193 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1194
1195 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1196 &remapped);
1197 if (ret)
1198 goto out_unlock;
1199
1200 /*
1201 * Carry the cowextsize hint from src to dest if we're sharing the
1202 * entire source file to the entire destination file, the source file
1203 * has a cowextsize hint, and the destination file does not.
1204 */
1205 cowextsize = 0;
1206 if (pos_in == 0 && len == i_size_read(inode_in) &&
3e09ab8f 1207 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
3fc9f5e4 1208 pos_out == 0 && len >= i_size_read(inode_out) &&
3e09ab8f 1209 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
b33ce57d 1210 cowextsize = src->i_cowextsize;
3fc9f5e4
DW
1211
1212 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1213 remap_flags);
5833112d
CH
1214 if (ret)
1215 goto out_unlock;
3fc9f5e4 1216
5ffce3cc 1217 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
5833112d 1218 xfs_log_force_inode(dest);
3fc9f5e4 1219out_unlock:
14a53798 1220 xfs_iunlock2_remapping(src, dest);
3fc9f5e4
DW
1221 if (ret)
1222 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1223 return remapped > 0 ? remapped : ret;
9fe26045 1224}
2fe17c10 1225
1da177e4 1226STATIC int
3562fd45 1227xfs_file_open(
1da177e4 1228 struct inode *inode,
f999a5bf 1229 struct file *file)
1da177e4 1230{
75c8c50f 1231 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
f999a5bf 1232 return -EIO;
210a03c9 1233 file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
f3bf67c6 1234 return generic_file_open(inode, file);
f999a5bf
CH
1235}
1236
1237STATIC int
1238xfs_dir_open(
1239 struct inode *inode,
1240 struct file *file)
1241{
1242 struct xfs_inode *ip = XFS_I(inode);
a1033753 1243 unsigned int mode;
f999a5bf
CH
1244 int error;
1245
652efdec
CH
1246 if (xfs_is_shutdown(ip->i_mount))
1247 return -EIO;
1248 error = generic_file_open(inode, file);
f999a5bf
CH
1249 if (error)
1250 return error;
1251
1252 /*
1253 * If there are any blocks, read-ahead block 0 as we're almost
1254 * certain to have the next operation be a read there.
1255 */
309ecac8 1256 mode = xfs_ilock_data_map_shared(ip);
daf83964 1257 if (ip->i_df.if_nextents > 0)
06566fda 1258 error = xfs_dir3_data_readahead(ip, 0, 0);
f999a5bf 1259 xfs_iunlock(ip, mode);
7a652bbe 1260 return error;
1da177e4
LT
1261}
1262
1da177e4 1263STATIC int
3562fd45 1264xfs_file_release(
1da177e4
LT
1265 struct inode *inode,
1266 struct file *filp)
1267{
2451337d 1268 return xfs_release(XFS_I(inode));
1da177e4
LT
1269}
1270
1da177e4 1271STATIC int
3562fd45 1272xfs_file_readdir(
b8227554
AV
1273 struct file *file,
1274 struct dir_context *ctx)
1da177e4 1275{
b8227554 1276 struct inode *inode = file_inode(file);
739bfb2a 1277 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1278 size_t bufsize;
1279
1280 /*
1281 * The Linux API doesn't pass down the total size of the buffer
1282 * we read into down to the filesystem. With the filldir concept
1283 * it's not needed for correct information, but the XFS dir2 leaf
1284 * code wants an estimate of the buffer size to calculate it's
1285 * readahead window and size the buffers used for mapping to
1286 * physical blocks.
1287 *
1288 * Try to give it an estimate that's good enough, maybe at some
1289 * point we can change the ->readdir prototype to include the
a9cc799e 1290 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1291 */
13d2c10b 1292 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
051e7cd4 1293
acb9553c 1294 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
1295}
1296
1297STATIC loff_t
1298xfs_file_llseek(
1299 struct file *file,
1300 loff_t offset,
59f9c004 1301 int whence)
3fe3e6b1 1302{
9b2970aa
CH
1303 struct inode *inode = file->f_mapping->host;
1304
75c8c50f 1305 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
9b2970aa
CH
1306 return -EIO;
1307
59f9c004 1308 switch (whence) {
9b2970aa 1309 default:
59f9c004 1310 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1311 case SEEK_HOLE:
60271ab7 1312 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1313 break;
49c69591 1314 case SEEK_DATA:
60271ab7 1315 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1316 break;
3fe3e6b1 1317 }
9b2970aa
CH
1318
1319 if (offset < 0)
1320 return offset;
1321 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1322}
1323
ea6c49b7 1324#ifdef CONFIG_FS_DAX
47ba8cc7 1325static inline vm_fault_t
ea6c49b7
SR
1326xfs_dax_fault(
1327 struct vm_fault *vmf,
1d024e7a 1328 unsigned int order,
ea6c49b7
SR
1329 bool write_fault,
1330 pfn_t *pfn)
1331{
1d024e7a 1332 return dax_iomap_fault(vmf, order, pfn, NULL,
ea6c49b7
SR
1333 (write_fault && !vmf->cow_page) ?
1334 &xfs_dax_write_iomap_ops :
1335 &xfs_read_iomap_ops);
1336}
1337#else
47ba8cc7 1338static inline vm_fault_t
ea6c49b7
SR
1339xfs_dax_fault(
1340 struct vm_fault *vmf,
1d024e7a 1341 unsigned int order,
ea6c49b7
SR
1342 bool write_fault,
1343 pfn_t *pfn)
1344{
47ba8cc7
DW
1345 ASSERT(0);
1346 return VM_FAULT_SIGBUS;
ea6c49b7
SR
1347}
1348#endif
1349
de0e8c20
DC
1350/*
1351 * Locking for serialisation of IO during page faults. This results in a lock
1352 * ordering of:
1353 *
c1e8d7c6 1354 * mmap_lock (MM)
6b698ede 1355 * sb_start_pagefault(vfs, freeze)
2433480a 1356 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
6b698ede
DC
1357 * page_lock (MM)
1358 * i_lock (XFS - extent map serialisation)
de0e8c20 1359 */
05edd888 1360static vm_fault_t
d522d569
CH
1361__xfs_filemap_fault(
1362 struct vm_fault *vmf,
1d024e7a 1363 unsigned int order,
d522d569 1364 bool write_fault)
de0e8c20 1365{
11bac800 1366 struct inode *inode = file_inode(vmf->vma->vm_file);
d522d569 1367 struct xfs_inode *ip = XFS_I(inode);
05edd888 1368 vm_fault_t ret;
14a53798 1369 unsigned int lock_mode = 0;
de0e8c20 1370
1d024e7a 1371 trace_xfs_filemap_fault(ip, order, write_fault);
de0e8c20 1372
d522d569
CH
1373 if (write_fault) {
1374 sb_start_pagefault(inode->i_sb);
1375 file_update_time(vmf->vma->vm_file);
1376 }
de0e8c20 1377
14a53798
CH
1378 if (IS_DAX(inode) || write_fault)
1379 lock_mode = xfs_ilock_for_write_fault(XFS_I(inode));
1380
6b698ede 1381 if (IS_DAX(inode)) {
a39e596b
CH
1382 pfn_t pfn;
1383
1d024e7a 1384 ret = xfs_dax_fault(vmf, order, write_fault, &pfn);
a39e596b 1385 if (ret & VM_FAULT_NEEDDSYNC)
1d024e7a 1386 ret = dax_finish_sync_fault(vmf, order, pfn);
14a53798
CH
1387 } else if (write_fault) {
1388 ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops);
6b698ede 1389 } else {
14a53798 1390 ret = filemap_fault(vmf);
6b698ede 1391 }
6b698ede 1392
14a53798
CH
1393 if (lock_mode)
1394 xfs_iunlock(XFS_I(inode), lock_mode);
1395
d522d569
CH
1396 if (write_fault)
1397 sb_end_pagefault(inode->i_sb);
6b698ede 1398 return ret;
de0e8c20
DC
1399}
1400
b17164e2
MP
1401static inline bool
1402xfs_is_write_fault(
1403 struct vm_fault *vmf)
1404{
1405 return (vmf->flags & FAULT_FLAG_WRITE) &&
1406 (vmf->vma->vm_flags & VM_SHARED);
1407}
1408
05edd888 1409static vm_fault_t
6b698ede 1410xfs_filemap_fault(
075a924d
DC
1411 struct vm_fault *vmf)
1412{
6b698ede 1413 /* DAX can shortcut the normal fault path on write faults! */
1d024e7a 1414 return __xfs_filemap_fault(vmf, 0,
d522d569 1415 IS_DAX(file_inode(vmf->vma->vm_file)) &&
b17164e2 1416 xfs_is_write_fault(vmf));
6b698ede
DC
1417}
1418
05edd888 1419static vm_fault_t
a2d58167 1420xfs_filemap_huge_fault(
c791ace1 1421 struct vm_fault *vmf,
1d024e7a 1422 unsigned int order)
acd76e74 1423{
d522d569 1424 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
acd76e74
MW
1425 return VM_FAULT_FALLBACK;
1426
d522d569 1427 /* DAX can shortcut the normal fault path on write faults! */
1d024e7a 1428 return __xfs_filemap_fault(vmf, order,
b17164e2 1429 xfs_is_write_fault(vmf));
d522d569 1430}
acd76e74 1431
05edd888 1432static vm_fault_t
d522d569
CH
1433xfs_filemap_page_mkwrite(
1434 struct vm_fault *vmf)
1435{
1d024e7a 1436 return __xfs_filemap_fault(vmf, 0, true);
acd76e74
MW
1437}
1438
3af49285 1439/*
7b565c9f
JK
1440 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1441 * on write faults. In reality, it needs to serialise against truncate and
1442 * prepare memory for writing so handle is as standard write fault.
3af49285 1443 */
05edd888 1444static vm_fault_t
3af49285 1445xfs_filemap_pfn_mkwrite(
3af49285
DC
1446 struct vm_fault *vmf)
1447{
1448
1d024e7a 1449 return __xfs_filemap_fault(vmf, 0, true);
acd76e74
MW
1450}
1451
6b698ede
DC
1452static const struct vm_operations_struct xfs_file_vm_ops = {
1453 .fault = xfs_filemap_fault,
a2d58167 1454 .huge_fault = xfs_filemap_huge_fault,
945ea457 1455 .map_pages = filemap_map_pages,
6b698ede 1456 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1457 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1458};
1459
1460STATIC int
1461xfs_file_mmap(
30fa529e
CH
1462 struct file *file,
1463 struct vm_area_struct *vma)
6b698ede 1464{
30fa529e
CH
1465 struct inode *inode = file_inode(file);
1466 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
b21fec41 1467
a39e596b 1468 /*
b21fec41
PG
1469 * We don't support synchronous mappings for non-DAX files and
1470 * for DAX files if underneath dax_device is not synchronous.
a39e596b 1471 */
30fa529e 1472 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
a39e596b
CH
1473 return -EOPNOTSUPP;
1474
30fa529e 1475 file_accessed(file);
6b698ede 1476 vma->vm_ops = &xfs_file_vm_ops;
30fa529e 1477 if (IS_DAX(inode))
1c71222e 1478 vm_flags_set(vma, VM_HUGEPAGE);
6b698ede 1479 return 0;
075a924d
DC
1480}
1481
4b6f5d20 1482const struct file_operations xfs_file_operations = {
3fe3e6b1 1483 .llseek = xfs_file_llseek,
b4f5d2c6 1484 .read_iter = xfs_file_read_iter,
bf97f3bc 1485 .write_iter = xfs_file_write_iter,
54919f94 1486 .splice_read = xfs_file_splice_read,
8d020765 1487 .splice_write = iter_file_splice_write,
3e08773c 1488 .iopoll = iocb_bio_iopoll,
3562fd45 1489 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1490#ifdef CONFIG_COMPAT
3562fd45 1491 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1492#endif
3562fd45
NS
1493 .mmap = xfs_file_mmap,
1494 .open = xfs_file_open,
1495 .release = xfs_file_release,
1496 .fsync = xfs_file_fsync,
dbe6ec81 1497 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1498 .fallocate = xfs_file_fallocate,
40144e49 1499 .fadvise = xfs_file_fadvise,
2e5dfc99 1500 .remap_file_range = xfs_file_remap_range,
19e04864
CH
1501 .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
1502 FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE,
1da177e4
LT
1503};
1504
4b6f5d20 1505const struct file_operations xfs_dir_file_operations = {
f999a5bf 1506 .open = xfs_dir_open,
1da177e4 1507 .read = generic_read_dir,
3b0a3c1a 1508 .iterate_shared = xfs_file_readdir,
59af1584 1509 .llseek = generic_file_llseek,
3562fd45 1510 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1511#ifdef CONFIG_COMPAT
3562fd45 1512 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1513#endif
1da2f2db 1514 .fsync = xfs_dir_fsync,
1da177e4 1515};