xfs: cap the length of deduplication requests
[linux-2.6-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
0613f16c 41#include "xfs_reflink.h"
1da177e4
LT
42
43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
66114cad 46#include <linux/backing-dev.h>
a39e596b 47#include <linux/mman.h>
1da177e4 48
f0f37e2f 49static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 50
8add71ca
CH
51int
52xfs_update_prealloc_flags(
53 struct xfs_inode *ip,
54 enum xfs_prealloc_flags flags)
55{
56 struct xfs_trans *tp;
57 int error;
58
253f4911
CH
59 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
60 0, 0, 0, &tp);
61 if (error)
8add71ca 62 return error;
8add71ca
CH
63
64 xfs_ilock(ip, XFS_ILOCK_EXCL);
65 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
66
67 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
68 VFS_I(ip)->i_mode &= ~S_ISUID;
69 if (VFS_I(ip)->i_mode & S_IXGRP)
70 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
71 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
72 }
73
74 if (flags & XFS_PREALLOC_SET)
75 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
76 if (flags & XFS_PREALLOC_CLEAR)
77 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
78
79 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
80 if (flags & XFS_PREALLOC_SYNC)
81 xfs_trans_set_sync(tp);
70393313 82 return xfs_trans_commit(tp);
8add71ca
CH
83}
84
1da2f2db
CH
85/*
86 * Fsync operations on directories are much simpler than on regular files,
87 * as there is no file data to flush, and thus also no need for explicit
88 * cache flush operations, and there are no non-transaction metadata updates
89 * on directories either.
90 */
91STATIC int
92xfs_dir_fsync(
93 struct file *file,
94 loff_t start,
95 loff_t end,
96 int datasync)
97{
98 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
99 struct xfs_mount *mp = ip->i_mount;
100 xfs_lsn_t lsn = 0;
101
102 trace_xfs_dir_fsync(ip);
103
104 xfs_ilock(ip, XFS_ILOCK_SHARED);
105 if (xfs_ipincount(ip))
106 lsn = ip->i_itemp->ili_last_lsn;
107 xfs_iunlock(ip, XFS_ILOCK_SHARED);
108
109 if (!lsn)
110 return 0;
656de4ff 111 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
112}
113
fd3200be
CH
114STATIC int
115xfs_file_fsync(
116 struct file *file,
02c24a82
JB
117 loff_t start,
118 loff_t end,
fd3200be
CH
119 int datasync)
120{
7ea80859
CH
121 struct inode *inode = file->f_mapping->host;
122 struct xfs_inode *ip = XFS_I(inode);
a27a263b 123 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
124 int error = 0;
125 int log_flushed = 0;
b1037058 126 xfs_lsn_t lsn = 0;
fd3200be 127
cca28fb8 128 trace_xfs_file_fsync(ip);
fd3200be 129
1b180274 130 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
131 if (error)
132 return error;
133
a27a263b 134 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 135 return -EIO;
fd3200be
CH
136
137 xfs_iflags_clear(ip, XFS_ITRUNCATED);
138
2291dab2
DC
139 /*
140 * If we have an RT and/or log subvolume we need to make sure to flush
141 * the write cache the device used for file data first. This is to
142 * ensure newly written file data make it to disk before logging the new
143 * inode size in case of an extending write.
144 */
145 if (XFS_IS_REALTIME_INODE(ip))
146 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
147 else if (mp->m_logdev_targp != mp->m_ddev_targp)
148 xfs_blkdev_issue_flush(mp->m_ddev_targp);
a27a263b 149
fd3200be 150 /*
fc0561ce
DC
151 * All metadata updates are logged, which means that we just have to
152 * flush the log up to the latest LSN that touched the inode. If we have
153 * concurrent fsync/fdatasync() calls, we need them to all block on the
154 * log force before we clear the ili_fsync_fields field. This ensures
155 * that we don't get a racing sync operation that does not wait for the
156 * metadata to hit the journal before returning. If we race with
157 * clearing the ili_fsync_fields, then all that will happen is the log
158 * force will do nothing as the lsn will already be on disk. We can't
159 * race with setting ili_fsync_fields because that is done under
160 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
161 * until after the ili_fsync_fields is cleared.
fd3200be
CH
162 */
163 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
164 if (xfs_ipincount(ip)) {
165 if (!datasync ||
fc0561ce 166 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
167 lsn = ip->i_itemp->ili_last_lsn;
168 }
fd3200be 169
fc0561ce 170 if (lsn) {
656de4ff 171 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
172 ip->i_itemp->ili_fsync_fields = 0;
173 }
174 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 175
a27a263b
CH
176 /*
177 * If we only have a single device, and the log force about was
178 * a no-op we might have to flush the data device cache here.
179 * This can only happen for fdatasync/O_DSYNC if we were overwriting
180 * an already allocated file and thus do not have any metadata to
181 * commit.
182 */
2291dab2
DC
183 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
184 mp->m_logdev_targp == mp->m_ddev_targp)
a27a263b 185 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 186
2451337d 187 return error;
fd3200be
CH
188}
189
00258e36 190STATIC ssize_t
bbc5a740 191xfs_file_dio_aio_read(
dda35b8f 192 struct kiocb *iocb,
b4f5d2c6 193 struct iov_iter *to)
dda35b8f 194{
acdda3aa 195 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
bbc5a740 196 size_t count = iov_iter_count(to);
acdda3aa 197 ssize_t ret;
dda35b8f 198
bbc5a740 199 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 200
f1285ff0
CH
201 if (!count)
202 return 0; /* skip atime */
dda35b8f 203
a447d7cd
CH
204 file_accessed(iocb->ki_filp);
205
65523218 206 xfs_ilock(ip, XFS_IOLOCK_SHARED);
acdda3aa 207 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
65523218 208 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 209
16d4d435
CH
210 return ret;
211}
212
f021bd07 213static noinline ssize_t
16d4d435
CH
214xfs_file_dax_read(
215 struct kiocb *iocb,
216 struct iov_iter *to)
217{
6c31f495 218 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
219 size_t count = iov_iter_count(to);
220 ssize_t ret = 0;
221
222 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
223
224 if (!count)
225 return 0; /* skip atime */
226
942491c9
CH
227 if (iocb->ki_flags & IOCB_NOWAIT) {
228 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
29a5d29e 229 return -EAGAIN;
942491c9 230 } else {
29a5d29e
GR
231 xfs_ilock(ip, XFS_IOLOCK_SHARED);
232 }
942491c9 233
11c59c92 234 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
65523218 235 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 236
f1285ff0 237 file_accessed(iocb->ki_filp);
bbc5a740
CH
238 return ret;
239}
240
241STATIC ssize_t
242xfs_file_buffered_aio_read(
243 struct kiocb *iocb,
244 struct iov_iter *to)
245{
246 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
247 ssize_t ret;
248
249 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 250
942491c9
CH
251 if (iocb->ki_flags & IOCB_NOWAIT) {
252 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
91f9943e 253 return -EAGAIN;
942491c9 254 } else {
91f9943e
CH
255 xfs_ilock(ip, XFS_IOLOCK_SHARED);
256 }
b4f5d2c6 257 ret = generic_file_read_iter(iocb, to);
65523218 258 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
259
260 return ret;
261}
262
263STATIC ssize_t
264xfs_file_read_iter(
265 struct kiocb *iocb,
266 struct iov_iter *to)
267{
16d4d435
CH
268 struct inode *inode = file_inode(iocb->ki_filp);
269 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
270 ssize_t ret = 0;
271
272 XFS_STATS_INC(mp, xs_read_calls);
273
274 if (XFS_FORCED_SHUTDOWN(mp))
275 return -EIO;
276
16d4d435
CH
277 if (IS_DAX(inode))
278 ret = xfs_file_dax_read(iocb, to);
279 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 280 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 281 else
bbc5a740 282 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 283
dda35b8f 284 if (ret > 0)
ff6d6af2 285 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
286 return ret;
287}
288
4d8d1581
DC
289/*
290 * Common pre-write limit and setup checks.
291 *
5bf1f262
CH
292 * Called with the iolocked held either shared and exclusive according to
293 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
294 * if called for a direct write beyond i_size.
4d8d1581
DC
295 */
296STATIC ssize_t
297xfs_file_aio_write_checks(
99733fa3
AV
298 struct kiocb *iocb,
299 struct iov_iter *from,
4d8d1581
DC
300 int *iolock)
301{
99733fa3 302 struct file *file = iocb->ki_filp;
4d8d1581
DC
303 struct inode *inode = file->f_mapping->host;
304 struct xfs_inode *ip = XFS_I(inode);
3309dd04 305 ssize_t error = 0;
99733fa3 306 size_t count = iov_iter_count(from);
3136e8bb 307 bool drained_dio = false;
f5c54717 308 loff_t isize;
4d8d1581 309
7271d243 310restart:
3309dd04
AV
311 error = generic_write_checks(iocb, from);
312 if (error <= 0)
4d8d1581 313 return error;
4d8d1581 314
65523218 315 error = xfs_break_layouts(inode, iolock);
781355c6
CH
316 if (error)
317 return error;
318
65523218
CH
319 /*
320 * For changing security info in file_remove_privs() we need i_rwsem
321 * exclusively.
322 */
a6de82ca 323 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 324 xfs_iunlock(ip, *iolock);
a6de82ca 325 *iolock = XFS_IOLOCK_EXCL;
65523218 326 xfs_ilock(ip, *iolock);
a6de82ca
JK
327 goto restart;
328 }
4d8d1581
DC
329 /*
330 * If the offset is beyond the size of the file, we need to zero any
331 * blocks that fall between the existing EOF and the start of this
2813d682 332 * write. If zeroing is needed and we are currently holding the
467f7899
CH
333 * iolock shared, we need to update it to exclusive which implies
334 * having to redo all checks before.
b9d59846
DC
335 *
336 * We need to serialise against EOF updates that occur in IO
337 * completions here. We want to make sure that nobody is changing the
338 * size while we do this check until we have placed an IO barrier (i.e.
339 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
340 * The spinlock effectively forms a memory barrier once we have the
341 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
342 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 343 */
b9d59846 344 spin_lock(&ip->i_flags_lock);
f5c54717
CH
345 isize = i_size_read(inode);
346 if (iocb->ki_pos > isize) {
b9d59846 347 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
348 if (!drained_dio) {
349 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 350 xfs_iunlock(ip, *iolock);
3136e8bb 351 *iolock = XFS_IOLOCK_EXCL;
65523218 352 xfs_ilock(ip, *iolock);
3136e8bb
BF
353 iov_iter_reexpand(from, count);
354 }
40c63fbc
DC
355 /*
356 * We now have an IO submission barrier in place, but
357 * AIO can do EOF updates during IO completion and hence
358 * we now need to wait for all of them to drain. Non-AIO
359 * DIO will have drained before we are given the
360 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
361 * no-op.
362 */
363 inode_dio_wait(inode);
3136e8bb 364 drained_dio = true;
7271d243
DC
365 goto restart;
366 }
f5c54717
CH
367
368 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
369 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
370 NULL, &xfs_iomap_ops);
467f7899
CH
371 if (error)
372 return error;
b9d59846
DC
373 } else
374 spin_unlock(&ip->i_flags_lock);
4d8d1581 375
8a9c9980
CH
376 /*
377 * Updating the timestamps will grab the ilock again from
378 * xfs_fs_dirty_inode, so we have to call it after dropping the
379 * lock above. Eventually we should look into a way to avoid
380 * the pointless lock roundtrip.
381 */
c3b2da31
JB
382 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
383 error = file_update_time(file);
384 if (error)
385 return error;
386 }
8a9c9980 387
4d8d1581
DC
388 /*
389 * If we're writing the file then make sure to clear the setuid and
390 * setgid bits if the process is not being run by root. This keeps
391 * people from modifying setuid and setgid binaries.
392 */
a6de82ca
JK
393 if (!IS_NOSEC(inode))
394 return file_remove_privs(file);
395 return 0;
4d8d1581
DC
396}
397
acdda3aa
CH
398static int
399xfs_dio_write_end_io(
400 struct kiocb *iocb,
401 ssize_t size,
402 unsigned flags)
403{
404 struct inode *inode = file_inode(iocb->ki_filp);
405 struct xfs_inode *ip = XFS_I(inode);
406 loff_t offset = iocb->ki_pos;
acdda3aa
CH
407 int error = 0;
408
409 trace_xfs_end_io_direct_write(ip, offset, size);
410
411 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
412 return -EIO;
413
414 if (size <= 0)
415 return size;
416
ee70daab
EG
417 if (flags & IOMAP_DIO_COW) {
418 error = xfs_reflink_end_cow(ip, offset, size);
419 if (error)
420 return error;
421 }
422
423 /*
424 * Unwritten conversion updates the in-core isize after extent
425 * conversion but before updating the on-disk size. Updating isize any
426 * earlier allows a racing dio read to find unwritten extents before
427 * they are converted.
428 */
429 if (flags & IOMAP_DIO_UNWRITTEN)
430 return xfs_iomap_write_unwritten(ip, offset, size, true);
431
acdda3aa
CH
432 /*
433 * We need to update the in-core inode size here so that we don't end up
434 * with the on-disk inode size being outside the in-core inode size. We
435 * have no other method of updating EOF for AIO, so always do it here
436 * if necessary.
437 *
438 * We need to lock the test/set EOF update as we can be racing with
439 * other IO completions here to update the EOF. Failing to serialise
440 * here can result in EOF moving backwards and Bad Things Happen when
441 * that occurs.
442 */
443 spin_lock(&ip->i_flags_lock);
444 if (offset + size > i_size_read(inode)) {
445 i_size_write(inode, offset + size);
ee70daab 446 spin_unlock(&ip->i_flags_lock);
acdda3aa 447 error = xfs_setfilesize(ip, offset, size);
ee70daab
EG
448 } else {
449 spin_unlock(&ip->i_flags_lock);
450 }
acdda3aa
CH
451
452 return error;
453}
454
f0d26e86
DC
455/*
456 * xfs_file_dio_aio_write - handle direct IO writes
457 *
458 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 459 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
460 * follow locking changes and looping.
461 *
eda77982
DC
462 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
463 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
464 * pages are flushed out.
465 *
466 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
467 * allowing them to be done in parallel with reads and other direct IO writes.
468 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
469 * needs to do sub-block zeroing and that requires serialisation against other
470 * direct IOs to the same block. In this case we need to serialise the
471 * submission of the unaligned IOs so that we don't get racing block zeroing in
472 * the dio layer. To avoid the problem with aio, we also need to wait for
473 * outstanding IOs to complete so that unwritten extent conversion is completed
474 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 475 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 476 *
f0d26e86
DC
477 * Returns with locks held indicated by @iolock and errors indicated by
478 * negative return values.
479 */
480STATIC ssize_t
481xfs_file_dio_aio_write(
482 struct kiocb *iocb,
b3188919 483 struct iov_iter *from)
f0d26e86
DC
484{
485 struct file *file = iocb->ki_filp;
486 struct address_space *mapping = file->f_mapping;
487 struct inode *inode = mapping->host;
488 struct xfs_inode *ip = XFS_I(inode);
489 struct xfs_mount *mp = ip->i_mount;
490 ssize_t ret = 0;
eda77982 491 int unaligned_io = 0;
d0606464 492 int iolock;
b3188919 493 size_t count = iov_iter_count(from);
acdda3aa 494 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
f0d26e86
DC
495 mp->m_rtdev_targp : mp->m_ddev_targp;
496
7c71ee78 497 /* DIO must be aligned to device logical sector size */
16d4d435 498 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 499 return -EINVAL;
f0d26e86 500
7271d243 501 /*
0ee7a3f6
CH
502 * Don't take the exclusive iolock here unless the I/O is unaligned to
503 * the file system block size. We don't need to consider the EOF
504 * extension case here because xfs_file_aio_write_checks() will relock
505 * the inode as necessary for EOF zeroing cases and fill out the new
506 * inode size as appropriate.
7271d243 507 */
0ee7a3f6
CH
508 if ((iocb->ki_pos & mp->m_blockmask) ||
509 ((iocb->ki_pos + count) & mp->m_blockmask)) {
510 unaligned_io = 1;
54a4ef8a
CH
511
512 /*
513 * We can't properly handle unaligned direct I/O to reflink
514 * files yet, as we can't unshare a partial block.
515 */
516 if (xfs_is_reflink_inode(ip)) {
517 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
518 return -EREMCHG;
519 }
d0606464 520 iolock = XFS_IOLOCK_EXCL;
0ee7a3f6 521 } else {
d0606464 522 iolock = XFS_IOLOCK_SHARED;
c58cb165 523 }
f0d26e86 524
942491c9
CH
525 if (iocb->ki_flags & IOCB_NOWAIT) {
526 if (!xfs_ilock_nowait(ip, iolock))
29a5d29e 527 return -EAGAIN;
942491c9 528 } else {
29a5d29e
GR
529 xfs_ilock(ip, iolock);
530 }
0ee7a3f6 531
99733fa3 532 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 533 if (ret)
d0606464 534 goto out;
99733fa3 535 count = iov_iter_count(from);
f0d26e86 536
eda77982
DC
537 /*
538 * If we are doing unaligned IO, wait for all other IO to drain,
0ee7a3f6
CH
539 * otherwise demote the lock if we had to take the exclusive lock
540 * for other reasons in xfs_file_aio_write_checks.
eda77982 541 */
29a5d29e
GR
542 if (unaligned_io) {
543 /* If we are going to wait for other DIO to finish, bail */
544 if (iocb->ki_flags & IOCB_NOWAIT) {
545 if (atomic_read(&inode->i_dio_count))
546 return -EAGAIN;
547 } else {
548 inode_dio_wait(inode);
549 }
550 } else if (iolock == XFS_IOLOCK_EXCL) {
65523218 551 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 552 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
553 }
554
3176c3e0 555 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
acdda3aa 556 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
d0606464 557out:
65523218 558 xfs_iunlock(ip, iolock);
d0606464 559
6b698ede 560 /*
16d4d435
CH
561 * No fallback to buffered IO on errors for XFS, direct IO will either
562 * complete fully or fail.
6b698ede 563 */
16d4d435
CH
564 ASSERT(ret < 0 || ret == count);
565 return ret;
566}
567
f021bd07 568static noinline ssize_t
16d4d435
CH
569xfs_file_dax_write(
570 struct kiocb *iocb,
571 struct iov_iter *from)
572{
6c31f495 573 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 574 struct xfs_inode *ip = XFS_I(inode);
17879e8f 575 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
576 ssize_t ret, error = 0;
577 size_t count;
578 loff_t pos;
16d4d435 579
942491c9
CH
580 if (iocb->ki_flags & IOCB_NOWAIT) {
581 if (!xfs_ilock_nowait(ip, iolock))
29a5d29e 582 return -EAGAIN;
942491c9 583 } else {
29a5d29e
GR
584 xfs_ilock(ip, iolock);
585 }
586
16d4d435
CH
587 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
588 if (ret)
589 goto out;
590
6c31f495
CH
591 pos = iocb->ki_pos;
592 count = iov_iter_count(from);
8b2180b3 593
6c31f495 594 trace_xfs_file_dax_write(ip, count, pos);
11c59c92 595 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
6c31f495
CH
596 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
597 i_size_write(inode, iocb->ki_pos);
598 error = xfs_setfilesize(ip, pos, ret);
16d4d435 599 }
16d4d435 600out:
65523218 601 xfs_iunlock(ip, iolock);
6c31f495 602 return error ? error : ret;
f0d26e86
DC
603}
604
00258e36 605STATIC ssize_t
637bbc75 606xfs_file_buffered_aio_write(
dda35b8f 607 struct kiocb *iocb,
b3188919 608 struct iov_iter *from)
dda35b8f
CH
609{
610 struct file *file = iocb->ki_filp;
611 struct address_space *mapping = file->f_mapping;
612 struct inode *inode = mapping->host;
00258e36 613 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
614 ssize_t ret;
615 int enospc = 0;
c3155097 616 int iolock;
dda35b8f 617
91f9943e
CH
618 if (iocb->ki_flags & IOCB_NOWAIT)
619 return -EOPNOTSUPP;
620
c3155097
BF
621write_retry:
622 iolock = XFS_IOLOCK_EXCL;
65523218 623 xfs_ilock(ip, iolock);
dda35b8f 624
99733fa3 625 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 626 if (ret)
d0606464 627 goto out;
dda35b8f
CH
628
629 /* We can write back this queue in page reclaim */
de1414a6 630 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 631
3176c3e0 632 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 633 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 634 if (likely(ret >= 0))
99733fa3 635 iocb->ki_pos += ret;
dc06f398 636
637bbc75 637 /*
dc06f398
BF
638 * If we hit a space limit, try to free up some lingering preallocated
639 * space before returning an error. In the case of ENOSPC, first try to
640 * write back all dirty inodes to free up some of the excess reserved
641 * metadata space. This reduces the chances that the eofblocks scan
642 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
643 * also behaves as a filter to prevent too many eofblocks scans from
644 * running at the same time.
637bbc75 645 */
dc06f398 646 if (ret == -EDQUOT && !enospc) {
c3155097 647 xfs_iunlock(ip, iolock);
dc06f398
BF
648 enospc = xfs_inode_free_quota_eofblocks(ip);
649 if (enospc)
650 goto write_retry;
83104d44
DW
651 enospc = xfs_inode_free_quota_cowblocks(ip);
652 if (enospc)
653 goto write_retry;
c3155097 654 iolock = 0;
dc06f398
BF
655 } else if (ret == -ENOSPC && !enospc) {
656 struct xfs_eofblocks eofb = {0};
657
637bbc75 658 enospc = 1;
9aa05000 659 xfs_flush_inodes(ip->i_mount);
c3155097
BF
660
661 xfs_iunlock(ip, iolock);
dc06f398
BF
662 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
663 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
cf2cb784 664 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
9aa05000 665 goto write_retry;
dda35b8f 666 }
d0606464 667
dda35b8f 668 current->backing_dev_info = NULL;
d0606464 669out:
c3155097
BF
670 if (iolock)
671 xfs_iunlock(ip, iolock);
637bbc75
DC
672 return ret;
673}
674
675STATIC ssize_t
bf97f3bc 676xfs_file_write_iter(
637bbc75 677 struct kiocb *iocb,
bf97f3bc 678 struct iov_iter *from)
637bbc75
DC
679{
680 struct file *file = iocb->ki_filp;
681 struct address_space *mapping = file->f_mapping;
682 struct inode *inode = mapping->host;
683 struct xfs_inode *ip = XFS_I(inode);
684 ssize_t ret;
bf97f3bc 685 size_t ocount = iov_iter_count(from);
637bbc75 686
ff6d6af2 687 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 688
637bbc75
DC
689 if (ocount == 0)
690 return 0;
691
bf97f3bc
AV
692 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
693 return -EIO;
637bbc75 694
16d4d435
CH
695 if (IS_DAX(inode))
696 ret = xfs_file_dax_write(iocb, from);
0613f16c
DW
697 else if (iocb->ki_flags & IOCB_DIRECT) {
698 /*
699 * Allow a directio write to fall back to a buffered
700 * write *only* in the case that we're doing a reflink
701 * CoW. In all other directio scenarios we do not
702 * allow an operation to fall back to buffered mode.
703 */
bf97f3bc 704 ret = xfs_file_dio_aio_write(iocb, from);
0613f16c
DW
705 if (ret == -EREMCHG)
706 goto buffered;
707 } else {
708buffered:
bf97f3bc 709 ret = xfs_file_buffered_aio_write(iocb, from);
0613f16c 710 }
dda35b8f 711
d0606464 712 if (ret > 0) {
ff6d6af2 713 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 714
d0606464 715 /* Handle various SYNC-type writes */
e2592217 716 ret = generic_write_sync(iocb, ret);
dda35b8f 717 }
a363f0c2 718 return ret;
dda35b8f
CH
719}
720
a904b1ca
NJ
721#define XFS_FALLOC_FL_SUPPORTED \
722 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
723 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 724 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 725
2fe17c10
CH
726STATIC long
727xfs_file_fallocate(
83aee9e4
CH
728 struct file *file,
729 int mode,
730 loff_t offset,
731 loff_t len)
2fe17c10 732{
83aee9e4
CH
733 struct inode *inode = file_inode(file);
734 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 735 long error;
8add71ca 736 enum xfs_prealloc_flags flags = 0;
781355c6 737 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 738 loff_t new_size = 0;
749f24f3 739 bool do_file_insert = false;
2fe17c10 740
83aee9e4
CH
741 if (!S_ISREG(inode->i_mode))
742 return -EINVAL;
a904b1ca 743 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
744 return -EOPNOTSUPP;
745
781355c6 746 xfs_ilock(ip, iolock);
65523218 747 error = xfs_break_layouts(inode, &iolock);
781355c6
CH
748 if (error)
749 goto out_unlock;
750
e8e9ad42
DC
751 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
752 iolock |= XFS_MMAPLOCK_EXCL;
753
83aee9e4
CH
754 if (mode & FALLOC_FL_PUNCH_HOLE) {
755 error = xfs_free_file_space(ip, offset, len);
756 if (error)
757 goto out_unlock;
e1d8fb88 758 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
93407472 759 unsigned int blksize_mask = i_blocksize(inode) - 1;
e1d8fb88
NJ
760
761 if (offset & blksize_mask || len & blksize_mask) {
2451337d 762 error = -EINVAL;
e1d8fb88
NJ
763 goto out_unlock;
764 }
765
23fffa92
LC
766 /*
767 * There is no need to overlap collapse range with EOF,
768 * in which case it is effectively a truncate operation
769 */
770 if (offset + len >= i_size_read(inode)) {
2451337d 771 error = -EINVAL;
23fffa92
LC
772 goto out_unlock;
773 }
774
e1d8fb88
NJ
775 new_size = i_size_read(inode) - len;
776
777 error = xfs_collapse_file_space(ip, offset, len);
778 if (error)
779 goto out_unlock;
a904b1ca 780 } else if (mode & FALLOC_FL_INSERT_RANGE) {
7d83fb14
DW
781 unsigned int blksize_mask = i_blocksize(inode) - 1;
782 loff_t isize = i_size_read(inode);
a904b1ca 783
a904b1ca
NJ
784 if (offset & blksize_mask || len & blksize_mask) {
785 error = -EINVAL;
786 goto out_unlock;
787 }
788
7d83fb14
DW
789 /*
790 * New inode size must not exceed ->s_maxbytes, accounting for
791 * possible signed overflow.
792 */
793 if (inode->i_sb->s_maxbytes - isize < len) {
a904b1ca
NJ
794 error = -EFBIG;
795 goto out_unlock;
796 }
7d83fb14 797 new_size = isize + len;
a904b1ca
NJ
798
799 /* Offset should be less than i_size */
7d83fb14 800 if (offset >= isize) {
a904b1ca
NJ
801 error = -EINVAL;
802 goto out_unlock;
803 }
749f24f3 804 do_file_insert = true;
83aee9e4 805 } else {
8add71ca
CH
806 flags |= XFS_PREALLOC_SET;
807
83aee9e4
CH
808 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
809 offset + len > i_size_read(inode)) {
810 new_size = offset + len;
2451337d 811 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
812 if (error)
813 goto out_unlock;
814 }
2fe17c10 815
376ba313
LC
816 if (mode & FALLOC_FL_ZERO_RANGE)
817 error = xfs_zero_file_space(ip, offset, len);
98cc2db5
DW
818 else {
819 if (mode & FALLOC_FL_UNSHARE_RANGE) {
820 error = xfs_reflink_unshare(ip, offset, len);
821 if (error)
822 goto out_unlock;
823 }
376ba313
LC
824 error = xfs_alloc_file_space(ip, offset, len,
825 XFS_BMAPI_PREALLOC);
98cc2db5 826 }
2fe17c10
CH
827 if (error)
828 goto out_unlock;
829 }
830
83aee9e4 831 if (file->f_flags & O_DSYNC)
8add71ca
CH
832 flags |= XFS_PREALLOC_SYNC;
833
834 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
835 if (error)
836 goto out_unlock;
837
838 /* Change file size if needed */
839 if (new_size) {
840 struct iattr iattr;
841
842 iattr.ia_valid = ATTR_SIZE;
843 iattr.ia_size = new_size;
69bca807 844 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
845 if (error)
846 goto out_unlock;
2fe17c10
CH
847 }
848
a904b1ca
NJ
849 /*
850 * Perform hole insertion now that the file size has been
851 * updated so that if we crash during the operation we don't
852 * leave shifted extents past EOF and hence losing access to
853 * the data that is contained within them.
854 */
855 if (do_file_insert)
856 error = xfs_insert_file_space(ip, offset, len);
857
2fe17c10 858out_unlock:
781355c6 859 xfs_iunlock(ip, iolock);
2451337d 860 return error;
2fe17c10
CH
861}
862
9fe26045
DW
863STATIC int
864xfs_file_clone_range(
865 struct file *file_in,
866 loff_t pos_in,
867 struct file *file_out,
868 loff_t pos_out,
869 u64 len)
870{
5faaf4fa 871 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660
DW
872 len, false);
873}
874
cc714660
DW
875STATIC ssize_t
876xfs_file_dedupe_range(
877 struct file *src_file,
878 u64 loff,
879 u64 len,
880 struct file *dst_file,
881 u64 dst_loff)
882{
021ba8e9
DW
883 struct inode *srci = file_inode(src_file);
884 u64 max_dedupe;
cc714660
DW
885 int error;
886
021ba8e9
DW
887 /*
888 * Since we have to read all these pages in to compare them, cut
889 * it off at MAX_RW_COUNT/2 rounded down to the nearest block.
890 * That means we won't do more than MAX_RW_COUNT IO per request.
891 */
892 max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1);
893 if (len > max_dedupe)
894 len = max_dedupe;
5faaf4fa 895 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
cc714660
DW
896 len, true);
897 if (error)
898 return error;
899 return len;
9fe26045 900}
2fe17c10 901
1da177e4 902STATIC int
3562fd45 903xfs_file_open(
1da177e4 904 struct inode *inode,
f999a5bf 905 struct file *file)
1da177e4 906{
f999a5bf 907 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 908 return -EFBIG;
f999a5bf
CH
909 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
910 return -EIO;
91f9943e 911 file->f_mode |= FMODE_NOWAIT;
f999a5bf
CH
912 return 0;
913}
914
915STATIC int
916xfs_dir_open(
917 struct inode *inode,
918 struct file *file)
919{
920 struct xfs_inode *ip = XFS_I(inode);
921 int mode;
922 int error;
923
924 error = xfs_file_open(inode, file);
925 if (error)
926 return error;
927
928 /*
929 * If there are any blocks, read-ahead block 0 as we're almost
930 * certain to have the next operation be a read there.
931 */
309ecac8 932 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 933 if (ip->i_d.di_nextents > 0)
7a652bbe 934 error = xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf 935 xfs_iunlock(ip, mode);
7a652bbe 936 return error;
1da177e4
LT
937}
938
1da177e4 939STATIC int
3562fd45 940xfs_file_release(
1da177e4
LT
941 struct inode *inode,
942 struct file *filp)
943{
2451337d 944 return xfs_release(XFS_I(inode));
1da177e4
LT
945}
946
1da177e4 947STATIC int
3562fd45 948xfs_file_readdir(
b8227554
AV
949 struct file *file,
950 struct dir_context *ctx)
1da177e4 951{
b8227554 952 struct inode *inode = file_inode(file);
739bfb2a 953 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
954 size_t bufsize;
955
956 /*
957 * The Linux API doesn't pass down the total size of the buffer
958 * we read into down to the filesystem. With the filldir concept
959 * it's not needed for correct information, but the XFS dir2 leaf
960 * code wants an estimate of the buffer size to calculate it's
961 * readahead window and size the buffers used for mapping to
962 * physical blocks.
963 *
964 * Try to give it an estimate that's good enough, maybe at some
965 * point we can change the ->readdir prototype to include the
a9cc799e 966 * buffer size. For now we use the current glibc buffer size.
051e7cd4 967 */
a5c46e5e 968 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
051e7cd4 969
acb9553c 970 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
971}
972
973STATIC loff_t
974xfs_file_llseek(
975 struct file *file,
976 loff_t offset,
59f9c004 977 int whence)
3fe3e6b1 978{
9b2970aa
CH
979 struct inode *inode = file->f_mapping->host;
980
981 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
982 return -EIO;
983
59f9c004 984 switch (whence) {
9b2970aa 985 default:
59f9c004 986 return generic_file_llseek(file, offset, whence);
3fe3e6b1 987 case SEEK_HOLE:
9b2970aa
CH
988 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
989 break;
49c69591 990 case SEEK_DATA:
9b2970aa
CH
991 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
992 break;
3fe3e6b1 993 }
9b2970aa
CH
994
995 if (offset < 0)
996 return offset;
997 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
998}
999
de0e8c20
DC
1000/*
1001 * Locking for serialisation of IO during page faults. This results in a lock
1002 * ordering of:
1003 *
1004 * mmap_sem (MM)
6b698ede 1005 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1006 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1007 * page_lock (MM)
1008 * i_lock (XFS - extent map serialisation)
de0e8c20 1009 */
d522d569
CH
1010static int
1011__xfs_filemap_fault(
1012 struct vm_fault *vmf,
1013 enum page_entry_size pe_size,
1014 bool write_fault)
de0e8c20 1015{
11bac800 1016 struct inode *inode = file_inode(vmf->vma->vm_file);
d522d569 1017 struct xfs_inode *ip = XFS_I(inode);
ec56b1f1 1018 int ret;
de0e8c20 1019
d522d569 1020 trace_xfs_filemap_fault(ip, pe_size, write_fault);
de0e8c20 1021
d522d569
CH
1022 if (write_fault) {
1023 sb_start_pagefault(inode->i_sb);
1024 file_update_time(vmf->vma->vm_file);
1025 }
de0e8c20 1026
d522d569 1027 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1028 if (IS_DAX(inode)) {
a39e596b
CH
1029 pfn_t pfn;
1030
c0b24625 1031 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
a39e596b
CH
1032 if (ret & VM_FAULT_NEEDDSYNC)
1033 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
6b698ede 1034 } else {
d522d569
CH
1035 if (write_fault)
1036 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1037 else
1038 ret = filemap_fault(vmf);
6b698ede 1039 }
6b698ede 1040 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1041
d522d569
CH
1042 if (write_fault)
1043 sb_end_pagefault(inode->i_sb);
6b698ede 1044 return ret;
de0e8c20
DC
1045}
1046
d522d569 1047static int
6b698ede 1048xfs_filemap_fault(
075a924d
DC
1049 struct vm_fault *vmf)
1050{
6b698ede 1051 /* DAX can shortcut the normal fault path on write faults! */
d522d569
CH
1052 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1053 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1054 (vmf->flags & FAULT_FLAG_WRITE));
6b698ede
DC
1055}
1056
d522d569 1057static int
a2d58167 1058xfs_filemap_huge_fault(
c791ace1
DJ
1059 struct vm_fault *vmf,
1060 enum page_entry_size pe_size)
acd76e74 1061{
d522d569 1062 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
acd76e74
MW
1063 return VM_FAULT_FALLBACK;
1064
d522d569
CH
1065 /* DAX can shortcut the normal fault path on write faults! */
1066 return __xfs_filemap_fault(vmf, pe_size,
1067 (vmf->flags & FAULT_FLAG_WRITE));
1068}
acd76e74 1069
d522d569
CH
1070static int
1071xfs_filemap_page_mkwrite(
1072 struct vm_fault *vmf)
1073{
1074 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1075}
1076
3af49285 1077/*
7b565c9f
JK
1078 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1079 * on write faults. In reality, it needs to serialise against truncate and
1080 * prepare memory for writing so handle is as standard write fault.
3af49285
DC
1081 */
1082static int
1083xfs_filemap_pfn_mkwrite(
3af49285
DC
1084 struct vm_fault *vmf)
1085{
1086
7b565c9f 1087 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1088}
1089
6b698ede
DC
1090static const struct vm_operations_struct xfs_file_vm_ops = {
1091 .fault = xfs_filemap_fault,
a2d58167 1092 .huge_fault = xfs_filemap_huge_fault,
6b698ede
DC
1093 .map_pages = filemap_map_pages,
1094 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1095 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1096};
1097
1098STATIC int
1099xfs_file_mmap(
1100 struct file *filp,
1101 struct vm_area_struct *vma)
1102{
a39e596b
CH
1103 /*
1104 * We don't support synchronous mappings for non-DAX files. At least
1105 * until someone comes with a sensible use case.
1106 */
1107 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1108 return -EOPNOTSUPP;
1109
6b698ede
DC
1110 file_accessed(filp);
1111 vma->vm_ops = &xfs_file_vm_ops;
1112 if (IS_DAX(file_inode(filp)))
acd76e74 1113 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1114 return 0;
075a924d
DC
1115}
1116
4b6f5d20 1117const struct file_operations xfs_file_operations = {
3fe3e6b1 1118 .llseek = xfs_file_llseek,
b4f5d2c6 1119 .read_iter = xfs_file_read_iter,
bf97f3bc 1120 .write_iter = xfs_file_write_iter,
82c156f8 1121 .splice_read = generic_file_splice_read,
8d020765 1122 .splice_write = iter_file_splice_write,
3562fd45 1123 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1124#ifdef CONFIG_COMPAT
3562fd45 1125 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1126#endif
3562fd45 1127 .mmap = xfs_file_mmap,
a39e596b 1128 .mmap_supported_flags = MAP_SYNC,
3562fd45
NS
1129 .open = xfs_file_open,
1130 .release = xfs_file_release,
1131 .fsync = xfs_file_fsync,
dbe6ec81 1132 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1133 .fallocate = xfs_file_fallocate,
9fe26045 1134 .clone_file_range = xfs_file_clone_range,
cc714660 1135 .dedupe_file_range = xfs_file_dedupe_range,
1da177e4
LT
1136};
1137
4b6f5d20 1138const struct file_operations xfs_dir_file_operations = {
f999a5bf 1139 .open = xfs_dir_open,
1da177e4 1140 .read = generic_read_dir,
3b0a3c1a 1141 .iterate_shared = xfs_file_readdir,
59af1584 1142 .llseek = generic_file_llseek,
3562fd45 1143 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1144#ifdef CONFIG_COMPAT
3562fd45 1145 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1146#endif
1da2f2db 1147 .fsync = xfs_dir_fsync,
1da177e4 1148};