Merge tag 'trace-v5.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-block.git] / fs / xfs / xfs_file.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
dda35b8f 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
1da177e4 13#include "xfs_inode.h"
239880ef 14#include "xfs_trans.h"
fd3200be 15#include "xfs_inode_item.h"
dda35b8f 16#include "xfs_bmap.h"
c24b5dfa 17#include "xfs_bmap_util.h"
2b9ab5ab 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_dir2_priv.h"
ddcd856d 20#include "xfs_ioctl.h"
dda35b8f 21#include "xfs_trace.h"
239880ef 22#include "xfs_log.h"
dc06f398 23#include "xfs_icache.h"
781355c6 24#include "xfs_pnfs.h"
68a9f5e7 25#include "xfs_iomap.h"
0613f16c 26#include "xfs_reflink.h"
1da177e4 27
2fe17c10 28#include <linux/falloc.h>
66114cad 29#include <linux/backing-dev.h>
a39e596b 30#include <linux/mman.h>
40144e49 31#include <linux/fadvise.h>
f736d93d 32#include <linux/mount.h>
1da177e4 33
f0f37e2f 34static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 35
25219dbf
DW
36/*
37 * Decide if the given file range is aligned to the size of the fundamental
38 * allocation unit for the file.
39 */
40static bool
41xfs_is_falloc_aligned(
42 struct xfs_inode *ip,
43 loff_t pos,
44 long long int len)
45{
46 struct xfs_mount *mp = ip->i_mount;
47 uint64_t mask;
48
49 if (XFS_IS_REALTIME_INODE(ip)) {
50 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
51 u64 rextbytes;
52 u32 mod;
53
54 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
55 div_u64_rem(pos, rextbytes, &mod);
56 if (mod)
57 return false;
58 div_u64_rem(len, rextbytes, &mod);
59 return mod == 0;
60 }
61 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
62 } else {
63 mask = mp->m_sb.sb_blocksize - 1;
64 }
65
66 return !((pos | len) & mask);
67}
68
8add71ca
CH
69int
70xfs_update_prealloc_flags(
71 struct xfs_inode *ip,
72 enum xfs_prealloc_flags flags)
73{
74 struct xfs_trans *tp;
75 int error;
76
253f4911
CH
77 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
78 0, 0, 0, &tp);
79 if (error)
8add71ca 80 return error;
8add71ca
CH
81
82 xfs_ilock(ip, XFS_ILOCK_EXCL);
83 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
84
85 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
86 VFS_I(ip)->i_mode &= ~S_ISUID;
87 if (VFS_I(ip)->i_mode & S_IXGRP)
88 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
89 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
90 }
91
92 if (flags & XFS_PREALLOC_SET)
db07349d 93 ip->i_diflags |= XFS_DIFLAG_PREALLOC;
8add71ca 94 if (flags & XFS_PREALLOC_CLEAR)
db07349d 95 ip->i_diflags &= ~XFS_DIFLAG_PREALLOC;
8add71ca
CH
96
97 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
98 if (flags & XFS_PREALLOC_SYNC)
99 xfs_trans_set_sync(tp);
70393313 100 return xfs_trans_commit(tp);
8add71ca
CH
101}
102
1da2f2db
CH
103/*
104 * Fsync operations on directories are much simpler than on regular files,
105 * as there is no file data to flush, and thus also no need for explicit
106 * cache flush operations, and there are no non-transaction metadata updates
107 * on directories either.
108 */
109STATIC int
110xfs_dir_fsync(
111 struct file *file,
112 loff_t start,
113 loff_t end,
114 int datasync)
115{
116 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
1da2f2db
CH
117
118 trace_xfs_dir_fsync(ip);
54fbdd10 119 return xfs_log_force_inode(ip);
1da2f2db
CH
120}
121
5f9b4b0d
DC
122static xfs_csn_t
123xfs_fsync_seq(
f22c7f87
CH
124 struct xfs_inode *ip,
125 bool datasync)
126{
127 if (!xfs_ipincount(ip))
128 return 0;
129 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
130 return 0;
5f9b4b0d 131 return ip->i_itemp->ili_commit_seq;
f22c7f87
CH
132}
133
134/*
135 * All metadata updates are logged, which means that we just have to flush the
136 * log up to the latest LSN that touched the inode.
137 *
138 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
139 * the log force before we clear the ili_fsync_fields field. This ensures that
140 * we don't get a racing sync operation that does not wait for the metadata to
141 * hit the journal before returning. If we race with clearing ili_fsync_fields,
142 * then all that will happen is the log force will do nothing as the lsn will
143 * already be on disk. We can't race with setting ili_fsync_fields because that
144 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
145 * shared until after the ili_fsync_fields is cleared.
146 */
147static int
148xfs_fsync_flush_log(
149 struct xfs_inode *ip,
150 bool datasync,
151 int *log_flushed)
152{
153 int error = 0;
5f9b4b0d 154 xfs_csn_t seq;
f22c7f87
CH
155
156 xfs_ilock(ip, XFS_ILOCK_SHARED);
5f9b4b0d
DC
157 seq = xfs_fsync_seq(ip, datasync);
158 if (seq) {
159 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
f22c7f87
CH
160 log_flushed);
161
162 spin_lock(&ip->i_itemp->ili_lock);
163 ip->i_itemp->ili_fsync_fields = 0;
164 spin_unlock(&ip->i_itemp->ili_lock);
165 }
166 xfs_iunlock(ip, XFS_ILOCK_SHARED);
167 return error;
168}
169
fd3200be
CH
170STATIC int
171xfs_file_fsync(
172 struct file *file,
02c24a82
JB
173 loff_t start,
174 loff_t end,
fd3200be
CH
175 int datasync)
176{
f22c7f87 177 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
a27a263b 178 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
179 int error = 0;
180 int log_flushed = 0;
181
cca28fb8 182 trace_xfs_file_fsync(ip);
fd3200be 183
1b180274 184 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
185 if (error)
186 return error;
187
75c8c50f 188 if (xfs_is_shutdown(mp))
b474c7ae 189 return -EIO;
fd3200be
CH
190
191 xfs_iflags_clear(ip, XFS_ITRUNCATED);
192
2291dab2
DC
193 /*
194 * If we have an RT and/or log subvolume we need to make sure to flush
195 * the write cache the device used for file data first. This is to
196 * ensure newly written file data make it to disk before logging the new
197 * inode size in case of an extending write.
198 */
199 if (XFS_IS_REALTIME_INODE(ip))
b5071ada 200 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
2291dab2 201 else if (mp->m_logdev_targp != mp->m_ddev_targp)
b5071ada 202 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
a27a263b 203
fd3200be 204 /*
ae29e422
CH
205 * Any inode that has dirty modifications in the log is pinned. The
206 * racy check here for a pinned inode while not catch modifications
207 * that happen concurrently to the fsync call, but fsync semantics
208 * only require to sync previously completed I/O.
fd3200be 209 */
ae29e422
CH
210 if (xfs_ipincount(ip))
211 error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
b1037058 212
a27a263b
CH
213 /*
214 * If we only have a single device, and the log force about was
215 * a no-op we might have to flush the data device cache here.
216 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 * an already allocated file and thus do not have any metadata to
218 * commit.
219 */
2291dab2
DC
220 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
221 mp->m_logdev_targp == mp->m_ddev_targp)
b5071ada 222 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
fd3200be 223
2451337d 224 return error;
fd3200be
CH
225}
226
f50b8f47
CH
227static int
228xfs_ilock_iocb(
229 struct kiocb *iocb,
230 unsigned int lock_mode)
231{
232 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
233
234 if (iocb->ki_flags & IOCB_NOWAIT) {
235 if (!xfs_ilock_nowait(ip, lock_mode))
236 return -EAGAIN;
237 } else {
238 xfs_ilock(ip, lock_mode);
239 }
240
241 return 0;
242}
243
00258e36 244STATIC ssize_t
ee1b218b 245xfs_file_dio_read(
dda35b8f 246 struct kiocb *iocb,
b4f5d2c6 247 struct iov_iter *to)
dda35b8f 248{
acdda3aa 249 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
acdda3aa 250 ssize_t ret;
dda35b8f 251
3e40b13c 252 trace_xfs_file_direct_read(iocb, to);
dda35b8f 253
3e40b13c 254 if (!iov_iter_count(to))
f1285ff0 255 return 0; /* skip atime */
dda35b8f 256
a447d7cd
CH
257 file_accessed(iocb->ki_filp);
258
f50b8f47
CH
259 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
260 if (ret)
261 return ret;
2f632965 262 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0);
65523218 263 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 264
16d4d435
CH
265 return ret;
266}
267
f021bd07 268static noinline ssize_t
16d4d435
CH
269xfs_file_dax_read(
270 struct kiocb *iocb,
271 struct iov_iter *to)
272{
6c31f495 273 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
274 ssize_t ret = 0;
275
3e40b13c 276 trace_xfs_file_dax_read(iocb, to);
16d4d435 277
3e40b13c 278 if (!iov_iter_count(to))
16d4d435
CH
279 return 0; /* skip atime */
280
f50b8f47
CH
281 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
282 if (ret)
283 return ret;
690c2a38 284 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
65523218 285 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 286
f1285ff0 287 file_accessed(iocb->ki_filp);
bbc5a740
CH
288 return ret;
289}
290
291STATIC ssize_t
ee1b218b 292xfs_file_buffered_read(
bbc5a740
CH
293 struct kiocb *iocb,
294 struct iov_iter *to)
295{
296 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
297 ssize_t ret;
298
3e40b13c 299 trace_xfs_file_buffered_read(iocb, to);
dda35b8f 300
f50b8f47
CH
301 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
302 if (ret)
303 return ret;
b4f5d2c6 304 ret = generic_file_read_iter(iocb, to);
65523218 305 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
306
307 return ret;
308}
309
310STATIC ssize_t
311xfs_file_read_iter(
312 struct kiocb *iocb,
313 struct iov_iter *to)
314{
16d4d435
CH
315 struct inode *inode = file_inode(iocb->ki_filp);
316 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
317 ssize_t ret = 0;
318
319 XFS_STATS_INC(mp, xs_read_calls);
320
75c8c50f 321 if (xfs_is_shutdown(mp))
bbc5a740
CH
322 return -EIO;
323
16d4d435
CH
324 if (IS_DAX(inode))
325 ret = xfs_file_dax_read(iocb, to);
326 else if (iocb->ki_flags & IOCB_DIRECT)
ee1b218b 327 ret = xfs_file_dio_read(iocb, to);
3176c3e0 328 else
ee1b218b 329 ret = xfs_file_buffered_read(iocb, to);
dda35b8f 330
dda35b8f 331 if (ret > 0)
ff6d6af2 332 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
333 return ret;
334}
335
4d8d1581
DC
336/*
337 * Common pre-write limit and setup checks.
338 *
5bf1f262
CH
339 * Called with the iolocked held either shared and exclusive according to
340 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
341 * if called for a direct write beyond i_size.
4d8d1581
DC
342 */
343STATIC ssize_t
ee1b218b 344xfs_file_write_checks(
99733fa3
AV
345 struct kiocb *iocb,
346 struct iov_iter *from,
4d8d1581
DC
347 int *iolock)
348{
99733fa3 349 struct file *file = iocb->ki_filp;
4d8d1581
DC
350 struct inode *inode = file->f_mapping->host;
351 struct xfs_inode *ip = XFS_I(inode);
3309dd04 352 ssize_t error = 0;
99733fa3 353 size_t count = iov_iter_count(from);
3136e8bb 354 bool drained_dio = false;
f5c54717 355 loff_t isize;
4d8d1581 356
7271d243 357restart:
3309dd04
AV
358 error = generic_write_checks(iocb, from);
359 if (error <= 0)
4d8d1581 360 return error;
4d8d1581 361
354be7e3
CH
362 if (iocb->ki_flags & IOCB_NOWAIT) {
363 error = break_layout(inode, false);
364 if (error == -EWOULDBLOCK)
365 error = -EAGAIN;
366 } else {
367 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
368 }
369
781355c6
CH
370 if (error)
371 return error;
372
65523218
CH
373 /*
374 * For changing security info in file_remove_privs() we need i_rwsem
375 * exclusively.
376 */
a6de82ca 377 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 378 xfs_iunlock(ip, *iolock);
a6de82ca 379 *iolock = XFS_IOLOCK_EXCL;
354be7e3
CH
380 error = xfs_ilock_iocb(iocb, *iolock);
381 if (error) {
382 *iolock = 0;
383 return error;
384 }
a6de82ca
JK
385 goto restart;
386 }
977ec4dd 387
4d8d1581
DC
388 /*
389 * If the offset is beyond the size of the file, we need to zero any
390 * blocks that fall between the existing EOF and the start of this
977ec4dd
DC
391 * write. If zeroing is needed and we are currently holding the iolock
392 * shared, we need to update it to exclusive which implies having to
393 * redo all checks before.
394 *
395 * We need to serialise against EOF updates that occur in IO completions
396 * here. We want to make sure that nobody is changing the size while we
397 * do this check until we have placed an IO barrier (i.e. hold the
398 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
399 * spinlock effectively forms a memory barrier once we have the
400 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
401 * hence be able to correctly determine if we need to run zeroing.
b9d59846 402 *
977ec4dd
DC
403 * We can do an unlocked check here safely as IO completion can only
404 * extend EOF. Truncate is locked out at this point, so the EOF can
405 * not move backwards, only forwards. Hence we only need to take the
406 * slow path and spin locks when we are at or beyond the current EOF.
4d8d1581 407 */
977ec4dd
DC
408 if (iocb->ki_pos <= i_size_read(inode))
409 goto out;
410
b9d59846 411 spin_lock(&ip->i_flags_lock);
f5c54717
CH
412 isize = i_size_read(inode);
413 if (iocb->ki_pos > isize) {
b9d59846 414 spin_unlock(&ip->i_flags_lock);
354be7e3
CH
415
416 if (iocb->ki_flags & IOCB_NOWAIT)
417 return -EAGAIN;
418
3136e8bb
BF
419 if (!drained_dio) {
420 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 421 xfs_iunlock(ip, *iolock);
3136e8bb 422 *iolock = XFS_IOLOCK_EXCL;
65523218 423 xfs_ilock(ip, *iolock);
3136e8bb
BF
424 iov_iter_reexpand(from, count);
425 }
40c63fbc
DC
426 /*
427 * We now have an IO submission barrier in place, but
428 * AIO can do EOF updates during IO completion and hence
429 * we now need to wait for all of them to drain. Non-AIO
430 * DIO will have drained before we are given the
431 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
432 * no-op.
433 */
434 inode_dio_wait(inode);
3136e8bb 435 drained_dio = true;
7271d243
DC
436 goto restart;
437 }
977ec4dd 438
f5c54717
CH
439 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
440 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
f150b423 441 NULL, &xfs_buffered_write_iomap_ops);
467f7899
CH
442 if (error)
443 return error;
b9d59846
DC
444 } else
445 spin_unlock(&ip->i_flags_lock);
4d8d1581 446
977ec4dd 447out:
8c3f406c 448 return file_modified(file);
4d8d1581
DC
449}
450
acdda3aa
CH
451static int
452xfs_dio_write_end_io(
453 struct kiocb *iocb,
454 ssize_t size,
6fe7b990 455 int error,
acdda3aa
CH
456 unsigned flags)
457{
458 struct inode *inode = file_inode(iocb->ki_filp);
459 struct xfs_inode *ip = XFS_I(inode);
460 loff_t offset = iocb->ki_pos;
73d30d48 461 unsigned int nofs_flag;
acdda3aa
CH
462
463 trace_xfs_end_io_direct_write(ip, offset, size);
464
75c8c50f 465 if (xfs_is_shutdown(ip->i_mount))
acdda3aa
CH
466 return -EIO;
467
6fe7b990
MB
468 if (error)
469 return error;
470 if (!size)
471 return 0;
acdda3aa 472
ed5c3e66
DC
473 /*
474 * Capture amount written on completion as we can't reliably account
475 * for it on submission.
476 */
477 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
478
73d30d48
CH
479 /*
480 * We can allocate memory here while doing writeback on behalf of
481 * memory reclaim. To avoid memory allocation deadlocks set the
482 * task-wide nofs context for the following operations.
483 */
484 nofs_flag = memalloc_nofs_save();
485
ee70daab
EG
486 if (flags & IOMAP_DIO_COW) {
487 error = xfs_reflink_end_cow(ip, offset, size);
488 if (error)
73d30d48 489 goto out;
ee70daab
EG
490 }
491
492 /*
493 * Unwritten conversion updates the in-core isize after extent
494 * conversion but before updating the on-disk size. Updating isize any
495 * earlier allows a racing dio read to find unwritten extents before
496 * they are converted.
497 */
73d30d48
CH
498 if (flags & IOMAP_DIO_UNWRITTEN) {
499 error = xfs_iomap_write_unwritten(ip, offset, size, true);
500 goto out;
501 }
ee70daab 502
acdda3aa
CH
503 /*
504 * We need to update the in-core inode size here so that we don't end up
505 * with the on-disk inode size being outside the in-core inode size. We
506 * have no other method of updating EOF for AIO, so always do it here
507 * if necessary.
508 *
509 * We need to lock the test/set EOF update as we can be racing with
510 * other IO completions here to update the EOF. Failing to serialise
511 * here can result in EOF moving backwards and Bad Things Happen when
512 * that occurs.
977ec4dd
DC
513 *
514 * As IO completion only ever extends EOF, we can do an unlocked check
515 * here to avoid taking the spinlock. If we land within the current EOF,
516 * then we do not need to do an extending update at all, and we don't
517 * need to take the lock to check this. If we race with an update moving
518 * EOF, then we'll either still be beyond EOF and need to take the lock,
519 * or we'll be within EOF and we don't need to take it at all.
acdda3aa 520 */
977ec4dd
DC
521 if (offset + size <= i_size_read(inode))
522 goto out;
523
acdda3aa
CH
524 spin_lock(&ip->i_flags_lock);
525 if (offset + size > i_size_read(inode)) {
526 i_size_write(inode, offset + size);
ee70daab 527 spin_unlock(&ip->i_flags_lock);
acdda3aa 528 error = xfs_setfilesize(ip, offset, size);
ee70daab
EG
529 } else {
530 spin_unlock(&ip->i_flags_lock);
531 }
acdda3aa 532
73d30d48
CH
533out:
534 memalloc_nofs_restore(nofs_flag);
acdda3aa
CH
535 return error;
536}
537
838c4f3d
CH
538static const struct iomap_dio_ops xfs_dio_write_ops = {
539 .end_io = xfs_dio_write_end_io,
540};
541
f0d26e86 542/*
caa89dbc 543 * Handle block aligned direct I/O writes
f0d26e86 544 */
caa89dbc
DC
545static noinline ssize_t
546xfs_file_dio_write_aligned(
547 struct xfs_inode *ip,
f0d26e86 548 struct kiocb *iocb,
b3188919 549 struct iov_iter *from)
f0d26e86 550{
caa89dbc
DC
551 int iolock = XFS_IOLOCK_SHARED;
552 ssize_t ret;
f0d26e86 553
caa89dbc
DC
554 ret = xfs_ilock_iocb(iocb, iolock);
555 if (ret)
556 return ret;
557 ret = xfs_file_write_checks(iocb, from, &iolock);
558 if (ret)
559 goto out_unlock;
f0d26e86 560
7271d243 561 /*
caa89dbc
DC
562 * We don't need to hold the IOLOCK exclusively across the IO, so demote
563 * the iolock back to shared if we had to take the exclusive lock in
564 * xfs_file_write_checks() for other reasons.
7271d243 565 */
caa89dbc
DC
566 if (iolock == XFS_IOLOCK_EXCL) {
567 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 568 iolock = XFS_IOLOCK_SHARED;
c58cb165 569 }
caa89dbc
DC
570 trace_xfs_file_direct_write(iocb, from);
571 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
572 &xfs_dio_write_ops, 0);
573out_unlock:
574 if (iolock)
575 xfs_iunlock(ip, iolock);
576 return ret;
577}
f0d26e86 578
caa89dbc
DC
579/*
580 * Handle block unaligned direct I/O writes
581 *
582 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
583 * them to be done in parallel with reads and other direct I/O writes. However,
584 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
585 * to do sub-block zeroing and that requires serialisation against other direct
586 * I/O to the same block. In this case we need to serialise the submission of
587 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
ed1128c2
DC
588 * In the case where sub-block zeroing is not required, we can do concurrent
589 * sub-block dios to the same block successfully.
caa89dbc 590 *
ed1128c2
DC
591 * Optimistically submit the I/O using the shared lock first, but use the
592 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
593 * if block allocation or partial block zeroing would be required. In that case
594 * we try again with the exclusive lock.
caa89dbc
DC
595 */
596static noinline ssize_t
597xfs_file_dio_write_unaligned(
598 struct xfs_inode *ip,
599 struct kiocb *iocb,
600 struct iov_iter *from)
601{
ed1128c2
DC
602 size_t isize = i_size_read(VFS_I(ip));
603 size_t count = iov_iter_count(from);
604 int iolock = XFS_IOLOCK_SHARED;
605 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
caa89dbc
DC
606 ssize_t ret;
607
ed1128c2
DC
608 /*
609 * Extending writes need exclusivity because of the sub-block zeroing
610 * that the DIO code always does for partial tail blocks beyond EOF, so
611 * don't even bother trying the fast path in this case.
612 */
613 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
614retry_exclusive:
615 if (iocb->ki_flags & IOCB_NOWAIT)
616 return -EAGAIN;
617 iolock = XFS_IOLOCK_EXCL;
618 flags = IOMAP_DIO_FORCE_WAIT;
619 }
620
621 ret = xfs_ilock_iocb(iocb, iolock);
622 if (ret)
623 return ret;
caa89dbc
DC
624
625 /*
626 * We can't properly handle unaligned direct I/O to reflink files yet,
627 * as we can't unshare a partial block.
628 */
629 if (xfs_is_cow_inode(ip)) {
630 trace_xfs_reflink_bounce_dio_write(iocb, from);
631 ret = -ENOTBLK;
632 goto out_unlock;
29a5d29e 633 }
0ee7a3f6 634
ee1b218b 635 ret = xfs_file_write_checks(iocb, from, &iolock);
4d8d1581 636 if (ret)
caa89dbc 637 goto out_unlock;
f0d26e86 638
eda77982 639 /*
ed1128c2
DC
640 * If we are doing exclusive unaligned I/O, this must be the only I/O
641 * in-flight. Otherwise we risk data corruption due to unwritten extent
642 * conversions from the AIO end_io handler. Wait for all other I/O to
643 * drain first.
eda77982 644 */
ed1128c2
DC
645 if (flags & IOMAP_DIO_FORCE_WAIT)
646 inode_dio_wait(VFS_I(ip));
f0d26e86 647
3e40b13c 648 trace_xfs_file_direct_write(iocb, from);
f150b423 649 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
ed1128c2
DC
650 &xfs_dio_write_ops, flags);
651
652 /*
653 * Retry unaligned I/O with exclusive blocking semantics if the DIO
654 * layer rejected it for mapping or locking reasons. If we are doing
655 * nonblocking user I/O, propagate the error.
656 */
657 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
658 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
659 xfs_iunlock(ip, iolock);
660 goto retry_exclusive;
661 }
662
caa89dbc 663out_unlock:
354be7e3
CH
664 if (iolock)
665 xfs_iunlock(ip, iolock);
16d4d435
CH
666 return ret;
667}
668
caa89dbc
DC
669static ssize_t
670xfs_file_dio_write(
671 struct kiocb *iocb,
672 struct iov_iter *from)
673{
674 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
675 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
676 size_t count = iov_iter_count(from);
677
678 /* direct I/O must be aligned to device logical sector size */
679 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
680 return -EINVAL;
681 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
682 return xfs_file_dio_write_unaligned(ip, iocb, from);
683 return xfs_file_dio_write_aligned(ip, iocb, from);
684}
685
f021bd07 686static noinline ssize_t
16d4d435
CH
687xfs_file_dax_write(
688 struct kiocb *iocb,
689 struct iov_iter *from)
690{
6c31f495 691 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 692 struct xfs_inode *ip = XFS_I(inode);
17879e8f 693 int iolock = XFS_IOLOCK_EXCL;
6c31f495 694 ssize_t ret, error = 0;
6c31f495 695 loff_t pos;
16d4d435 696
f50b8f47
CH
697 ret = xfs_ilock_iocb(iocb, iolock);
698 if (ret)
699 return ret;
ee1b218b 700 ret = xfs_file_write_checks(iocb, from, &iolock);
16d4d435
CH
701 if (ret)
702 goto out;
703
6c31f495 704 pos = iocb->ki_pos;
8b2180b3 705
3e40b13c 706 trace_xfs_file_dax_write(iocb, from);
f150b423 707 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
6c31f495
CH
708 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
709 i_size_write(inode, iocb->ki_pos);
710 error = xfs_setfilesize(ip, pos, ret);
16d4d435 711 }
16d4d435 712out:
354be7e3
CH
713 if (iolock)
714 xfs_iunlock(ip, iolock);
ed5c3e66
DC
715 if (error)
716 return error;
717
718 if (ret > 0) {
719 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
720
721 /* Handle various SYNC-type writes */
722 ret = generic_write_sync(iocb, ret);
723 }
724 return ret;
f0d26e86
DC
725}
726
00258e36 727STATIC ssize_t
ee1b218b 728xfs_file_buffered_write(
dda35b8f 729 struct kiocb *iocb,
b3188919 730 struct iov_iter *from)
dda35b8f
CH
731{
732 struct file *file = iocb->ki_filp;
733 struct address_space *mapping = file->f_mapping;
734 struct inode *inode = mapping->host;
00258e36 735 struct xfs_inode *ip = XFS_I(inode);
637bbc75 736 ssize_t ret;
a636b1d1 737 bool cleared_space = false;
c3155097 738 int iolock;
dda35b8f 739
91f9943e
CH
740 if (iocb->ki_flags & IOCB_NOWAIT)
741 return -EOPNOTSUPP;
742
c3155097
BF
743write_retry:
744 iolock = XFS_IOLOCK_EXCL;
65523218 745 xfs_ilock(ip, iolock);
dda35b8f 746
ee1b218b 747 ret = xfs_file_write_checks(iocb, from, &iolock);
4d8d1581 748 if (ret)
d0606464 749 goto out;
dda35b8f
CH
750
751 /* We can write back this queue in page reclaim */
de1414a6 752 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 753
3e40b13c 754 trace_xfs_file_buffered_write(iocb, from);
f150b423
CH
755 ret = iomap_file_buffered_write(iocb, from,
756 &xfs_buffered_write_iomap_ops);
0a64bc2c 757 if (likely(ret >= 0))
99733fa3 758 iocb->ki_pos += ret;
dc06f398 759
637bbc75 760 /*
dc06f398
BF
761 * If we hit a space limit, try to free up some lingering preallocated
762 * space before returning an error. In the case of ENOSPC, first try to
763 * write back all dirty inodes to free up some of the excess reserved
764 * metadata space. This reduces the chances that the eofblocks scan
765 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
766 * also behaves as a filter to prevent too many eofblocks scans from
111068f8
DW
767 * running at the same time. Use a synchronous scan to increase the
768 * effectiveness of the scan.
637bbc75 769 */
a636b1d1 770 if (ret == -EDQUOT && !cleared_space) {
c3155097 771 xfs_iunlock(ip, iolock);
2d53f66b 772 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
111068f8
DW
773 cleared_space = true;
774 goto write_retry;
a636b1d1 775 } else if (ret == -ENOSPC && !cleared_space) {
b26b2bf1 776 struct xfs_icwalk icw = {0};
dc06f398 777
a636b1d1 778 cleared_space = true;
9aa05000 779 xfs_flush_inodes(ip->i_mount);
c3155097
BF
780
781 xfs_iunlock(ip, iolock);
b26b2bf1
DW
782 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
783 xfs_blockgc_free_space(ip->i_mount, &icw);
9aa05000 784 goto write_retry;
dda35b8f 785 }
d0606464 786
dda35b8f 787 current->backing_dev_info = NULL;
d0606464 788out:
c3155097
BF
789 if (iolock)
790 xfs_iunlock(ip, iolock);
ed5c3e66
DC
791
792 if (ret > 0) {
793 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
794 /* Handle various SYNC-type writes */
795 ret = generic_write_sync(iocb, ret);
796 }
637bbc75
DC
797 return ret;
798}
799
800STATIC ssize_t
bf97f3bc 801xfs_file_write_iter(
637bbc75 802 struct kiocb *iocb,
bf97f3bc 803 struct iov_iter *from)
637bbc75
DC
804{
805 struct file *file = iocb->ki_filp;
806 struct address_space *mapping = file->f_mapping;
807 struct inode *inode = mapping->host;
808 struct xfs_inode *ip = XFS_I(inode);
809 ssize_t ret;
bf97f3bc 810 size_t ocount = iov_iter_count(from);
637bbc75 811
ff6d6af2 812 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 813
637bbc75
DC
814 if (ocount == 0)
815 return 0;
816
75c8c50f 817 if (xfs_is_shutdown(ip->i_mount))
bf97f3bc 818 return -EIO;
637bbc75 819
16d4d435 820 if (IS_DAX(inode))
ed5c3e66
DC
821 return xfs_file_dax_write(iocb, from);
822
823 if (iocb->ki_flags & IOCB_DIRECT) {
0613f16c
DW
824 /*
825 * Allow a directio write to fall back to a buffered
826 * write *only* in the case that we're doing a reflink
827 * CoW. In all other directio scenarios we do not
828 * allow an operation to fall back to buffered mode.
829 */
ee1b218b 830 ret = xfs_file_dio_write(iocb, from);
80e543ae 831 if (ret != -ENOTBLK)
ed5c3e66 832 return ret;
0613f16c 833 }
dda35b8f 834
ee1b218b 835 return xfs_file_buffered_write(iocb, from);
dda35b8f
CH
836}
837
d6dc57e2
DW
838static void
839xfs_wait_dax_page(
e25ff835 840 struct inode *inode)
d6dc57e2
DW
841{
842 struct xfs_inode *ip = XFS_I(inode);
843
d6dc57e2
DW
844 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
845 schedule();
846 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
847}
848
849static int
850xfs_break_dax_layouts(
851 struct inode *inode,
e25ff835 852 bool *retry)
d6dc57e2
DW
853{
854 struct page *page;
855
856 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
857
858 page = dax_layout_busy_page(inode->i_mapping);
859 if (!page)
860 return 0;
861
e25ff835 862 *retry = true;
d6dc57e2
DW
863 return ___wait_var_event(&page->_refcount,
864 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
e25ff835 865 0, 0, xfs_wait_dax_page(inode));
d6dc57e2
DW
866}
867
69eb5fa1
DW
868int
869xfs_break_layouts(
870 struct inode *inode,
871 uint *iolock,
872 enum layout_break_reason reason)
873{
874 bool retry;
d6dc57e2 875 int error;
69eb5fa1
DW
876
877 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
878
d6dc57e2
DW
879 do {
880 retry = false;
881 switch (reason) {
882 case BREAK_UNMAP:
a4722a64 883 error = xfs_break_dax_layouts(inode, &retry);
d6dc57e2
DW
884 if (error || retry)
885 break;
53004ee7 886 fallthrough;
d6dc57e2
DW
887 case BREAK_WRITE:
888 error = xfs_break_leased_layouts(inode, iolock, &retry);
889 break;
890 default:
891 WARN_ON_ONCE(1);
892 error = -EINVAL;
893 }
894 } while (error == 0 && retry);
895
896 return error;
69eb5fa1
DW
897}
898
a904b1ca
NJ
899#define XFS_FALLOC_FL_SUPPORTED \
900 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
901 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 902 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 903
2fe17c10
CH
904STATIC long
905xfs_file_fallocate(
83aee9e4
CH
906 struct file *file,
907 int mode,
908 loff_t offset,
909 loff_t len)
2fe17c10 910{
83aee9e4
CH
911 struct inode *inode = file_inode(file);
912 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 913 long error;
8add71ca 914 enum xfs_prealloc_flags flags = 0;
c63a8eae 915 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
83aee9e4 916 loff_t new_size = 0;
749f24f3 917 bool do_file_insert = false;
2fe17c10 918
83aee9e4
CH
919 if (!S_ISREG(inode->i_mode))
920 return -EINVAL;
a904b1ca 921 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
922 return -EOPNOTSUPP;
923
781355c6 924 xfs_ilock(ip, iolock);
69eb5fa1 925 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
781355c6
CH
926 if (error)
927 goto out_unlock;
928
249bd908
DC
929 /*
930 * Must wait for all AIO to complete before we continue as AIO can
931 * change the file size on completion without holding any locks we
932 * currently hold. We must do this first because AIO can update both
933 * the on disk and in memory inode sizes, and the operations that follow
934 * require the in-memory size to be fully up-to-date.
935 */
936 inode_dio_wait(inode);
937
938 /*
939 * Now AIO and DIO has drained we flush and (if necessary) invalidate
940 * the cached range over the first operation we are about to run.
941 *
942 * We care about zero and collapse here because they both run a hole
943 * punch over the range first. Because that can zero data, and the range
944 * of invalidation for the shift operations is much larger, we still do
945 * the required flush for collapse in xfs_prepare_shift().
946 *
947 * Insert has the same range requirements as collapse, and we extend the
948 * file first which can zero data. Hence insert has the same
949 * flush/invalidate requirements as collapse and so they are both
950 * handled at the right time by xfs_prepare_shift().
951 */
952 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
953 FALLOC_FL_COLLAPSE_RANGE)) {
954 error = xfs_flush_unmap_range(ip, offset, len);
955 if (error)
956 goto out_unlock;
957 }
958
83aee9e4
CH
959 if (mode & FALLOC_FL_PUNCH_HOLE) {
960 error = xfs_free_file_space(ip, offset, len);
961 if (error)
962 goto out_unlock;
e1d8fb88 963 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
25219dbf 964 if (!xfs_is_falloc_aligned(ip, offset, len)) {
2451337d 965 error = -EINVAL;
e1d8fb88
NJ
966 goto out_unlock;
967 }
968
23fffa92
LC
969 /*
970 * There is no need to overlap collapse range with EOF,
971 * in which case it is effectively a truncate operation
972 */
973 if (offset + len >= i_size_read(inode)) {
2451337d 974 error = -EINVAL;
23fffa92
LC
975 goto out_unlock;
976 }
977
e1d8fb88
NJ
978 new_size = i_size_read(inode) - len;
979
980 error = xfs_collapse_file_space(ip, offset, len);
981 if (error)
982 goto out_unlock;
a904b1ca 983 } else if (mode & FALLOC_FL_INSERT_RANGE) {
7d83fb14 984 loff_t isize = i_size_read(inode);
a904b1ca 985
25219dbf 986 if (!xfs_is_falloc_aligned(ip, offset, len)) {
a904b1ca
NJ
987 error = -EINVAL;
988 goto out_unlock;
989 }
990
7d83fb14
DW
991 /*
992 * New inode size must not exceed ->s_maxbytes, accounting for
993 * possible signed overflow.
994 */
995 if (inode->i_sb->s_maxbytes - isize < len) {
a904b1ca
NJ
996 error = -EFBIG;
997 goto out_unlock;
998 }
7d83fb14 999 new_size = isize + len;
a904b1ca
NJ
1000
1001 /* Offset should be less than i_size */
7d83fb14 1002 if (offset >= isize) {
a904b1ca
NJ
1003 error = -EINVAL;
1004 goto out_unlock;
1005 }
749f24f3 1006 do_file_insert = true;
83aee9e4 1007 } else {
8add71ca
CH
1008 flags |= XFS_PREALLOC_SET;
1009
83aee9e4
CH
1010 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1011 offset + len > i_size_read(inode)) {
1012 new_size = offset + len;
2451337d 1013 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
1014 if (error)
1015 goto out_unlock;
1016 }
2fe17c10 1017
66ae56a5 1018 if (mode & FALLOC_FL_ZERO_RANGE) {
360c09c0
CH
1019 /*
1020 * Punch a hole and prealloc the range. We use a hole
1021 * punch rather than unwritten extent conversion for two
1022 * reasons:
1023 *
1024 * 1.) Hole punch handles partial block zeroing for us.
1025 * 2.) If prealloc returns ENOSPC, the file range is
1026 * still zero-valued by virtue of the hole punch.
1027 */
1028 unsigned int blksize = i_blocksize(inode);
1029
1030 trace_xfs_zero_file_space(ip);
1031
1032 error = xfs_free_file_space(ip, offset, len);
1033 if (error)
1034 goto out_unlock;
1035
1036 len = round_up(offset + len, blksize) -
1037 round_down(offset, blksize);
1038 offset = round_down(offset, blksize);
66ae56a5
CH
1039 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1040 error = xfs_reflink_unshare(ip, offset, len);
1041 if (error)
1042 goto out_unlock;
66ae56a5
CH
1043 } else {
1044 /*
1045 * If always_cow mode we can't use preallocations and
1046 * thus should not create them.
1047 */
1048 if (xfs_is_always_cow_inode(ip)) {
1049 error = -EOPNOTSUPP;
1050 goto out_unlock;
1051 }
360c09c0 1052 }
66ae56a5 1053
360c09c0 1054 if (!xfs_is_always_cow_inode(ip)) {
376ba313
LC
1055 error = xfs_alloc_file_space(ip, offset, len,
1056 XFS_BMAPI_PREALLOC);
360c09c0
CH
1057 if (error)
1058 goto out_unlock;
98cc2db5 1059 }
2fe17c10
CH
1060 }
1061
83aee9e4 1062 if (file->f_flags & O_DSYNC)
8add71ca
CH
1063 flags |= XFS_PREALLOC_SYNC;
1064
1065 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
1066 if (error)
1067 goto out_unlock;
1068
1069 /* Change file size if needed */
1070 if (new_size) {
1071 struct iattr iattr;
1072
1073 iattr.ia_valid = ATTR_SIZE;
1074 iattr.ia_size = new_size;
f736d93d
CH
1075 error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1076 file_dentry(file), &iattr);
a904b1ca
NJ
1077 if (error)
1078 goto out_unlock;
2fe17c10
CH
1079 }
1080
a904b1ca
NJ
1081 /*
1082 * Perform hole insertion now that the file size has been
1083 * updated so that if we crash during the operation we don't
1084 * leave shifted extents past EOF and hence losing access to
1085 * the data that is contained within them.
1086 */
1087 if (do_file_insert)
1088 error = xfs_insert_file_space(ip, offset, len);
1089
2fe17c10 1090out_unlock:
781355c6 1091 xfs_iunlock(ip, iolock);
2451337d 1092 return error;
2fe17c10
CH
1093}
1094
40144e49
JK
1095STATIC int
1096xfs_file_fadvise(
1097 struct file *file,
1098 loff_t start,
1099 loff_t end,
1100 int advice)
1101{
1102 struct xfs_inode *ip = XFS_I(file_inode(file));
1103 int ret;
1104 int lockflags = 0;
1105
1106 /*
1107 * Operations creating pages in page cache need protection from hole
1108 * punching and similar ops
1109 */
1110 if (advice == POSIX_FADV_WILLNEED) {
1111 lockflags = XFS_IOLOCK_SHARED;
1112 xfs_ilock(ip, lockflags);
1113 }
1114 ret = generic_fadvise(file, start, end, advice);
1115 if (lockflags)
1116 xfs_iunlock(ip, lockflags);
1117 return ret;
1118}
3fc9f5e4 1119
5ffce3cc
DW
1120/* Does this file, inode, or mount want synchronous writes? */
1121static inline bool xfs_file_sync_writes(struct file *filp)
1122{
1123 struct xfs_inode *ip = XFS_I(file_inode(filp));
1124
0560f31a 1125 if (xfs_has_wsync(ip->i_mount))
5ffce3cc
DW
1126 return true;
1127 if (filp->f_flags & (__O_SYNC | O_DSYNC))
1128 return true;
1129 if (IS_SYNC(file_inode(filp)))
1130 return true;
1131
1132 return false;
1133}
1134
da034bcc 1135STATIC loff_t
2e5dfc99 1136xfs_file_remap_range(
3fc9f5e4
DW
1137 struct file *file_in,
1138 loff_t pos_in,
1139 struct file *file_out,
1140 loff_t pos_out,
1141 loff_t len,
1142 unsigned int remap_flags)
9fe26045 1143{
3fc9f5e4
DW
1144 struct inode *inode_in = file_inode(file_in);
1145 struct xfs_inode *src = XFS_I(inode_in);
1146 struct inode *inode_out = file_inode(file_out);
1147 struct xfs_inode *dest = XFS_I(inode_out);
1148 struct xfs_mount *mp = src->i_mount;
1149 loff_t remapped = 0;
1150 xfs_extlen_t cowextsize;
1151 int ret;
1152
2e5dfc99
DW
1153 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1154 return -EINVAL;
cc714660 1155
38c26bfd 1156 if (!xfs_has_reflink(mp))
3fc9f5e4
DW
1157 return -EOPNOTSUPP;
1158
75c8c50f 1159 if (xfs_is_shutdown(mp))
3fc9f5e4
DW
1160 return -EIO;
1161
1162 /* Prepare and then clone file data. */
1163 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1164 &len, remap_flags);
451d34ee 1165 if (ret || len == 0)
3fc9f5e4
DW
1166 return ret;
1167
1168 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1169
1170 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1171 &remapped);
1172 if (ret)
1173 goto out_unlock;
1174
1175 /*
1176 * Carry the cowextsize hint from src to dest if we're sharing the
1177 * entire source file to the entire destination file, the source file
1178 * has a cowextsize hint, and the destination file does not.
1179 */
1180 cowextsize = 0;
1181 if (pos_in == 0 && len == i_size_read(inode_in) &&
3e09ab8f 1182 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
3fc9f5e4 1183 pos_out == 0 && len >= i_size_read(inode_out) &&
3e09ab8f 1184 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
b33ce57d 1185 cowextsize = src->i_cowextsize;
3fc9f5e4
DW
1186
1187 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1188 remap_flags);
5833112d
CH
1189 if (ret)
1190 goto out_unlock;
3fc9f5e4 1191
5ffce3cc 1192 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
5833112d 1193 xfs_log_force_inode(dest);
3fc9f5e4 1194out_unlock:
e2aaee9c 1195 xfs_iunlock2_io_mmap(src, dest);
3fc9f5e4
DW
1196 if (ret)
1197 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1198 return remapped > 0 ? remapped : ret;
9fe26045 1199}
2fe17c10 1200
1da177e4 1201STATIC int
3562fd45 1202xfs_file_open(
1da177e4 1203 struct inode *inode,
f999a5bf 1204 struct file *file)
1da177e4 1205{
f999a5bf 1206 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1207 return -EFBIG;
75c8c50f 1208 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
f999a5bf 1209 return -EIO;
f89fb730 1210 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
f999a5bf
CH
1211 return 0;
1212}
1213
1214STATIC int
1215xfs_dir_open(
1216 struct inode *inode,
1217 struct file *file)
1218{
1219 struct xfs_inode *ip = XFS_I(inode);
1220 int mode;
1221 int error;
1222
1223 error = xfs_file_open(inode, file);
1224 if (error)
1225 return error;
1226
1227 /*
1228 * If there are any blocks, read-ahead block 0 as we're almost
1229 * certain to have the next operation be a read there.
1230 */
309ecac8 1231 mode = xfs_ilock_data_map_shared(ip);
daf83964 1232 if (ip->i_df.if_nextents > 0)
06566fda 1233 error = xfs_dir3_data_readahead(ip, 0, 0);
f999a5bf 1234 xfs_iunlock(ip, mode);
7a652bbe 1235 return error;
1da177e4
LT
1236}
1237
1da177e4 1238STATIC int
3562fd45 1239xfs_file_release(
1da177e4
LT
1240 struct inode *inode,
1241 struct file *filp)
1242{
2451337d 1243 return xfs_release(XFS_I(inode));
1da177e4
LT
1244}
1245
1da177e4 1246STATIC int
3562fd45 1247xfs_file_readdir(
b8227554
AV
1248 struct file *file,
1249 struct dir_context *ctx)
1da177e4 1250{
b8227554 1251 struct inode *inode = file_inode(file);
739bfb2a 1252 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1253 size_t bufsize;
1254
1255 /*
1256 * The Linux API doesn't pass down the total size of the buffer
1257 * we read into down to the filesystem. With the filldir concept
1258 * it's not needed for correct information, but the XFS dir2 leaf
1259 * code wants an estimate of the buffer size to calculate it's
1260 * readahead window and size the buffers used for mapping to
1261 * physical blocks.
1262 *
1263 * Try to give it an estimate that's good enough, maybe at some
1264 * point we can change the ->readdir prototype to include the
a9cc799e 1265 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1266 */
13d2c10b 1267 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
051e7cd4 1268
acb9553c 1269 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
1270}
1271
1272STATIC loff_t
1273xfs_file_llseek(
1274 struct file *file,
1275 loff_t offset,
59f9c004 1276 int whence)
3fe3e6b1 1277{
9b2970aa
CH
1278 struct inode *inode = file->f_mapping->host;
1279
75c8c50f 1280 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
9b2970aa
CH
1281 return -EIO;
1282
59f9c004 1283 switch (whence) {
9b2970aa 1284 default:
59f9c004 1285 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1286 case SEEK_HOLE:
60271ab7 1287 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1288 break;
49c69591 1289 case SEEK_DATA:
60271ab7 1290 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1291 break;
3fe3e6b1 1292 }
9b2970aa
CH
1293
1294 if (offset < 0)
1295 return offset;
1296 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1297}
1298
de0e8c20
DC
1299/*
1300 * Locking for serialisation of IO during page faults. This results in a lock
1301 * ordering of:
1302 *
c1e8d7c6 1303 * mmap_lock (MM)
6b698ede 1304 * sb_start_pagefault(vfs, freeze)
2433480a 1305 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
6b698ede
DC
1306 * page_lock (MM)
1307 * i_lock (XFS - extent map serialisation)
de0e8c20 1308 */
05edd888 1309static vm_fault_t
d522d569
CH
1310__xfs_filemap_fault(
1311 struct vm_fault *vmf,
1312 enum page_entry_size pe_size,
1313 bool write_fault)
de0e8c20 1314{
11bac800 1315 struct inode *inode = file_inode(vmf->vma->vm_file);
d522d569 1316 struct xfs_inode *ip = XFS_I(inode);
05edd888 1317 vm_fault_t ret;
de0e8c20 1318
d522d569 1319 trace_xfs_filemap_fault(ip, pe_size, write_fault);
de0e8c20 1320
d522d569
CH
1321 if (write_fault) {
1322 sb_start_pagefault(inode->i_sb);
1323 file_update_time(vmf->vma->vm_file);
1324 }
de0e8c20 1325
6b698ede 1326 if (IS_DAX(inode)) {
a39e596b
CH
1327 pfn_t pfn;
1328
2433480a 1329 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
690c2a38
CH
1330 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1331 (write_fault && !vmf->cow_page) ?
f150b423
CH
1332 &xfs_direct_write_iomap_ops :
1333 &xfs_read_iomap_ops);
a39e596b
CH
1334 if (ret & VM_FAULT_NEEDDSYNC)
1335 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
2433480a 1336 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1337 } else {
2433480a
JK
1338 if (write_fault) {
1339 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
f150b423
CH
1340 ret = iomap_page_mkwrite(vmf,
1341 &xfs_buffered_write_iomap_ops);
2433480a
JK
1342 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1343 } else {
d522d569 1344 ret = filemap_fault(vmf);
2433480a 1345 }
6b698ede 1346 }
6b698ede 1347
d522d569
CH
1348 if (write_fault)
1349 sb_end_pagefault(inode->i_sb);
6b698ede 1350 return ret;
de0e8c20
DC
1351}
1352
b17164e2
MP
1353static inline bool
1354xfs_is_write_fault(
1355 struct vm_fault *vmf)
1356{
1357 return (vmf->flags & FAULT_FLAG_WRITE) &&
1358 (vmf->vma->vm_flags & VM_SHARED);
1359}
1360
05edd888 1361static vm_fault_t
6b698ede 1362xfs_filemap_fault(
075a924d
DC
1363 struct vm_fault *vmf)
1364{
6b698ede 1365 /* DAX can shortcut the normal fault path on write faults! */
d522d569
CH
1366 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1367 IS_DAX(file_inode(vmf->vma->vm_file)) &&
b17164e2 1368 xfs_is_write_fault(vmf));
6b698ede
DC
1369}
1370
05edd888 1371static vm_fault_t
a2d58167 1372xfs_filemap_huge_fault(
c791ace1
DJ
1373 struct vm_fault *vmf,
1374 enum page_entry_size pe_size)
acd76e74 1375{
d522d569 1376 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
acd76e74
MW
1377 return VM_FAULT_FALLBACK;
1378
d522d569
CH
1379 /* DAX can shortcut the normal fault path on write faults! */
1380 return __xfs_filemap_fault(vmf, pe_size,
b17164e2 1381 xfs_is_write_fault(vmf));
d522d569 1382}
acd76e74 1383
05edd888 1384static vm_fault_t
d522d569
CH
1385xfs_filemap_page_mkwrite(
1386 struct vm_fault *vmf)
1387{
1388 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1389}
1390
3af49285 1391/*
7b565c9f
JK
1392 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1393 * on write faults. In reality, it needs to serialise against truncate and
1394 * prepare memory for writing so handle is as standard write fault.
3af49285 1395 */
05edd888 1396static vm_fault_t
3af49285 1397xfs_filemap_pfn_mkwrite(
3af49285
DC
1398 struct vm_fault *vmf)
1399{
1400
7b565c9f 1401 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1402}
1403
f9ce0be7 1404static vm_fault_t
cd647d56
DC
1405xfs_filemap_map_pages(
1406 struct vm_fault *vmf,
1407 pgoff_t start_pgoff,
1408 pgoff_t end_pgoff)
1409{
1410 struct inode *inode = file_inode(vmf->vma->vm_file);
f9ce0be7 1411 vm_fault_t ret;
cd647d56
DC
1412
1413 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
f9ce0be7 1414 ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
cd647d56 1415 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
f9ce0be7 1416 return ret;
cd647d56
DC
1417}
1418
6b698ede
DC
1419static const struct vm_operations_struct xfs_file_vm_ops = {
1420 .fault = xfs_filemap_fault,
a2d58167 1421 .huge_fault = xfs_filemap_huge_fault,
cd647d56 1422 .map_pages = xfs_filemap_map_pages,
6b698ede 1423 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1424 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1425};
1426
1427STATIC int
1428xfs_file_mmap(
30fa529e
CH
1429 struct file *file,
1430 struct vm_area_struct *vma)
6b698ede 1431{
30fa529e
CH
1432 struct inode *inode = file_inode(file);
1433 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
b21fec41 1434
a39e596b 1435 /*
b21fec41
PG
1436 * We don't support synchronous mappings for non-DAX files and
1437 * for DAX files if underneath dax_device is not synchronous.
a39e596b 1438 */
30fa529e 1439 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
a39e596b
CH
1440 return -EOPNOTSUPP;
1441
30fa529e 1442 file_accessed(file);
6b698ede 1443 vma->vm_ops = &xfs_file_vm_ops;
30fa529e 1444 if (IS_DAX(inode))
e1fb4a08 1445 vma->vm_flags |= VM_HUGEPAGE;
6b698ede 1446 return 0;
075a924d
DC
1447}
1448
4b6f5d20 1449const struct file_operations xfs_file_operations = {
3fe3e6b1 1450 .llseek = xfs_file_llseek,
b4f5d2c6 1451 .read_iter = xfs_file_read_iter,
bf97f3bc 1452 .write_iter = xfs_file_write_iter,
82c156f8 1453 .splice_read = generic_file_splice_read,
8d020765 1454 .splice_write = iter_file_splice_write,
81214bab 1455 .iopoll = iomap_dio_iopoll,
3562fd45 1456 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1457#ifdef CONFIG_COMPAT
3562fd45 1458 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1459#endif
3562fd45 1460 .mmap = xfs_file_mmap,
a39e596b 1461 .mmap_supported_flags = MAP_SYNC,
3562fd45
NS
1462 .open = xfs_file_open,
1463 .release = xfs_file_release,
1464 .fsync = xfs_file_fsync,
dbe6ec81 1465 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1466 .fallocate = xfs_file_fallocate,
40144e49 1467 .fadvise = xfs_file_fadvise,
2e5dfc99 1468 .remap_file_range = xfs_file_remap_range,
1da177e4
LT
1469};
1470
4b6f5d20 1471const struct file_operations xfs_dir_file_operations = {
f999a5bf 1472 .open = xfs_dir_open,
1da177e4 1473 .read = generic_read_dir,
3b0a3c1a 1474 .iterate_shared = xfs_file_readdir,
59af1584 1475 .llseek = generic_file_llseek,
3562fd45 1476 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1477#ifdef CONFIG_COMPAT
3562fd45 1478 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1479#endif
1da2f2db 1480 .fsync = xfs_dir_fsync,
1da177e4 1481};