mm/memunmap: don't access uninitialized memmap in memunmap_pages()
[linux-2.6-block.git] / fs / xfs / xfs_file.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
dda35b8f 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
1da177e4 13#include "xfs_inode.h"
239880ef 14#include "xfs_trans.h"
fd3200be 15#include "xfs_inode_item.h"
dda35b8f 16#include "xfs_bmap.h"
c24b5dfa 17#include "xfs_bmap_util.h"
2b9ab5ab 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_dir2_priv.h"
ddcd856d 20#include "xfs_ioctl.h"
dda35b8f 21#include "xfs_trace.h"
239880ef 22#include "xfs_log.h"
dc06f398 23#include "xfs_icache.h"
781355c6 24#include "xfs_pnfs.h"
68a9f5e7 25#include "xfs_iomap.h"
0613f16c 26#include "xfs_reflink.h"
1da177e4 27
2fe17c10 28#include <linux/falloc.h>
66114cad 29#include <linux/backing-dev.h>
a39e596b 30#include <linux/mman.h>
40144e49 31#include <linux/fadvise.h>
1da177e4 32
f0f37e2f 33static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 34
8add71ca
CH
35int
36xfs_update_prealloc_flags(
37 struct xfs_inode *ip,
38 enum xfs_prealloc_flags flags)
39{
40 struct xfs_trans *tp;
41 int error;
42
253f4911
CH
43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 0, 0, 0, &tp);
45 if (error)
8add71ca 46 return error;
8add71ca
CH
47
48 xfs_ilock(ip, XFS_ILOCK_EXCL);
49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50
51 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
52 VFS_I(ip)->i_mode &= ~S_ISUID;
53 if (VFS_I(ip)->i_mode & S_IXGRP)
54 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 }
57
58 if (flags & XFS_PREALLOC_SET)
59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 if (flags & XFS_PREALLOC_CLEAR)
61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62
63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 if (flags & XFS_PREALLOC_SYNC)
65 xfs_trans_set_sync(tp);
70393313 66 return xfs_trans_commit(tp);
8add71ca
CH
67}
68
1da2f2db
CH
69/*
70 * Fsync operations on directories are much simpler than on regular files,
71 * as there is no file data to flush, and thus also no need for explicit
72 * cache flush operations, and there are no non-transaction metadata updates
73 * on directories either.
74 */
75STATIC int
76xfs_dir_fsync(
77 struct file *file,
78 loff_t start,
79 loff_t end,
80 int datasync)
81{
82 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
83 struct xfs_mount *mp = ip->i_mount;
84 xfs_lsn_t lsn = 0;
85
86 trace_xfs_dir_fsync(ip);
87
88 xfs_ilock(ip, XFS_ILOCK_SHARED);
89 if (xfs_ipincount(ip))
90 lsn = ip->i_itemp->ili_last_lsn;
91 xfs_iunlock(ip, XFS_ILOCK_SHARED);
92
93 if (!lsn)
94 return 0;
656de4ff 95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
96}
97
fd3200be
CH
98STATIC int
99xfs_file_fsync(
100 struct file *file,
02c24a82
JB
101 loff_t start,
102 loff_t end,
fd3200be
CH
103 int datasync)
104{
7ea80859
CH
105 struct inode *inode = file->f_mapping->host;
106 struct xfs_inode *ip = XFS_I(inode);
a27a263b 107 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
108 int error = 0;
109 int log_flushed = 0;
b1037058 110 xfs_lsn_t lsn = 0;
fd3200be 111
cca28fb8 112 trace_xfs_file_fsync(ip);
fd3200be 113
1b180274 114 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
115 if (error)
116 return error;
117
a27a263b 118 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 119 return -EIO;
fd3200be
CH
120
121 xfs_iflags_clear(ip, XFS_ITRUNCATED);
122
2291dab2
DC
123 /*
124 * If we have an RT and/or log subvolume we need to make sure to flush
125 * the write cache the device used for file data first. This is to
126 * ensure newly written file data make it to disk before logging the new
127 * inode size in case of an extending write.
128 */
129 if (XFS_IS_REALTIME_INODE(ip))
130 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 xfs_blkdev_issue_flush(mp->m_ddev_targp);
a27a263b 133
fd3200be 134 /*
fc0561ce
DC
135 * All metadata updates are logged, which means that we just have to
136 * flush the log up to the latest LSN that touched the inode. If we have
137 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 * log force before we clear the ili_fsync_fields field. This ensures
139 * that we don't get a racing sync operation that does not wait for the
140 * metadata to hit the journal before returning. If we race with
141 * clearing the ili_fsync_fields, then all that will happen is the log
142 * force will do nothing as the lsn will already be on disk. We can't
143 * race with setting ili_fsync_fields because that is done under
144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 * until after the ili_fsync_fields is cleared.
fd3200be
CH
146 */
147 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
148 if (xfs_ipincount(ip)) {
149 if (!datasync ||
fc0561ce 150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
151 lsn = ip->i_itemp->ili_last_lsn;
152 }
fd3200be 153
fc0561ce 154 if (lsn) {
656de4ff 155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
156 ip->i_itemp->ili_fsync_fields = 0;
157 }
158 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 159
a27a263b
CH
160 /*
161 * If we only have a single device, and the log force about was
162 * a no-op we might have to flush the data device cache here.
163 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 * an already allocated file and thus do not have any metadata to
165 * commit.
166 */
2291dab2
DC
167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 mp->m_logdev_targp == mp->m_ddev_targp)
a27a263b 169 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 170
2451337d 171 return error;
fd3200be
CH
172}
173
00258e36 174STATIC ssize_t
bbc5a740 175xfs_file_dio_aio_read(
dda35b8f 176 struct kiocb *iocb,
b4f5d2c6 177 struct iov_iter *to)
dda35b8f 178{
acdda3aa 179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
bbc5a740 180 size_t count = iov_iter_count(to);
acdda3aa 181 ssize_t ret;
dda35b8f 182
bbc5a740 183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 184
f1285ff0
CH
185 if (!count)
186 return 0; /* skip atime */
dda35b8f 187
a447d7cd
CH
188 file_accessed(iocb->ki_filp);
189
65523218 190 xfs_ilock(ip, XFS_IOLOCK_SHARED);
acdda3aa 191 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
65523218 192 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 193
16d4d435
CH
194 return ret;
195}
196
f021bd07 197static noinline ssize_t
16d4d435
CH
198xfs_file_dax_read(
199 struct kiocb *iocb,
200 struct iov_iter *to)
201{
6c31f495 202 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
203 size_t count = iov_iter_count(to);
204 ssize_t ret = 0;
205
206 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
207
208 if (!count)
209 return 0; /* skip atime */
210
942491c9
CH
211 if (iocb->ki_flags & IOCB_NOWAIT) {
212 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
29a5d29e 213 return -EAGAIN;
942491c9 214 } else {
29a5d29e
GR
215 xfs_ilock(ip, XFS_IOLOCK_SHARED);
216 }
942491c9 217
11c59c92 218 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
65523218 219 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 220
f1285ff0 221 file_accessed(iocb->ki_filp);
bbc5a740
CH
222 return ret;
223}
224
225STATIC ssize_t
226xfs_file_buffered_aio_read(
227 struct kiocb *iocb,
228 struct iov_iter *to)
229{
230 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
231 ssize_t ret;
232
233 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 234
942491c9
CH
235 if (iocb->ki_flags & IOCB_NOWAIT) {
236 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
91f9943e 237 return -EAGAIN;
942491c9 238 } else {
91f9943e
CH
239 xfs_ilock(ip, XFS_IOLOCK_SHARED);
240 }
b4f5d2c6 241 ret = generic_file_read_iter(iocb, to);
65523218 242 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
243
244 return ret;
245}
246
247STATIC ssize_t
248xfs_file_read_iter(
249 struct kiocb *iocb,
250 struct iov_iter *to)
251{
16d4d435
CH
252 struct inode *inode = file_inode(iocb->ki_filp);
253 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
254 ssize_t ret = 0;
255
256 XFS_STATS_INC(mp, xs_read_calls);
257
258 if (XFS_FORCED_SHUTDOWN(mp))
259 return -EIO;
260
16d4d435
CH
261 if (IS_DAX(inode))
262 ret = xfs_file_dax_read(iocb, to);
263 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 264 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 265 else
bbc5a740 266 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 267
dda35b8f 268 if (ret > 0)
ff6d6af2 269 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
270 return ret;
271}
272
4d8d1581
DC
273/*
274 * Common pre-write limit and setup checks.
275 *
5bf1f262
CH
276 * Called with the iolocked held either shared and exclusive according to
277 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
278 * if called for a direct write beyond i_size.
4d8d1581
DC
279 */
280STATIC ssize_t
281xfs_file_aio_write_checks(
99733fa3
AV
282 struct kiocb *iocb,
283 struct iov_iter *from,
4d8d1581
DC
284 int *iolock)
285{
99733fa3 286 struct file *file = iocb->ki_filp;
4d8d1581
DC
287 struct inode *inode = file->f_mapping->host;
288 struct xfs_inode *ip = XFS_I(inode);
3309dd04 289 ssize_t error = 0;
99733fa3 290 size_t count = iov_iter_count(from);
3136e8bb 291 bool drained_dio = false;
f5c54717 292 loff_t isize;
4d8d1581 293
7271d243 294restart:
3309dd04
AV
295 error = generic_write_checks(iocb, from);
296 if (error <= 0)
4d8d1581 297 return error;
4d8d1581 298
69eb5fa1 299 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
781355c6
CH
300 if (error)
301 return error;
302
65523218
CH
303 /*
304 * For changing security info in file_remove_privs() we need i_rwsem
305 * exclusively.
306 */
a6de82ca 307 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 308 xfs_iunlock(ip, *iolock);
a6de82ca 309 *iolock = XFS_IOLOCK_EXCL;
65523218 310 xfs_ilock(ip, *iolock);
a6de82ca
JK
311 goto restart;
312 }
4d8d1581
DC
313 /*
314 * If the offset is beyond the size of the file, we need to zero any
315 * blocks that fall between the existing EOF and the start of this
2813d682 316 * write. If zeroing is needed and we are currently holding the
467f7899
CH
317 * iolock shared, we need to update it to exclusive which implies
318 * having to redo all checks before.
b9d59846
DC
319 *
320 * We need to serialise against EOF updates that occur in IO
321 * completions here. We want to make sure that nobody is changing the
322 * size while we do this check until we have placed an IO barrier (i.e.
323 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
324 * The spinlock effectively forms a memory barrier once we have the
325 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
326 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 327 */
b9d59846 328 spin_lock(&ip->i_flags_lock);
f5c54717
CH
329 isize = i_size_read(inode);
330 if (iocb->ki_pos > isize) {
b9d59846 331 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
332 if (!drained_dio) {
333 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 334 xfs_iunlock(ip, *iolock);
3136e8bb 335 *iolock = XFS_IOLOCK_EXCL;
65523218 336 xfs_ilock(ip, *iolock);
3136e8bb
BF
337 iov_iter_reexpand(from, count);
338 }
40c63fbc
DC
339 /*
340 * We now have an IO submission barrier in place, but
341 * AIO can do EOF updates during IO completion and hence
342 * we now need to wait for all of them to drain. Non-AIO
343 * DIO will have drained before we are given the
344 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
345 * no-op.
346 */
347 inode_dio_wait(inode);
3136e8bb 348 drained_dio = true;
7271d243
DC
349 goto restart;
350 }
f5c54717
CH
351
352 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
353 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
354 NULL, &xfs_iomap_ops);
467f7899
CH
355 if (error)
356 return error;
b9d59846
DC
357 } else
358 spin_unlock(&ip->i_flags_lock);
4d8d1581 359
8a9c9980
CH
360 /*
361 * Updating the timestamps will grab the ilock again from
362 * xfs_fs_dirty_inode, so we have to call it after dropping the
363 * lock above. Eventually we should look into a way to avoid
364 * the pointless lock roundtrip.
365 */
8c3f406c 366 return file_modified(file);
4d8d1581
DC
367}
368
acdda3aa
CH
369static int
370xfs_dio_write_end_io(
371 struct kiocb *iocb,
372 ssize_t size,
6fe7b990 373 int error,
acdda3aa
CH
374 unsigned flags)
375{
376 struct inode *inode = file_inode(iocb->ki_filp);
377 struct xfs_inode *ip = XFS_I(inode);
378 loff_t offset = iocb->ki_pos;
73d30d48 379 unsigned int nofs_flag;
acdda3aa
CH
380
381 trace_xfs_end_io_direct_write(ip, offset, size);
382
383 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
384 return -EIO;
385
6fe7b990
MB
386 if (error)
387 return error;
388 if (!size)
389 return 0;
acdda3aa 390
ed5c3e66
DC
391 /*
392 * Capture amount written on completion as we can't reliably account
393 * for it on submission.
394 */
395 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
396
73d30d48
CH
397 /*
398 * We can allocate memory here while doing writeback on behalf of
399 * memory reclaim. To avoid memory allocation deadlocks set the
400 * task-wide nofs context for the following operations.
401 */
402 nofs_flag = memalloc_nofs_save();
403
ee70daab
EG
404 if (flags & IOMAP_DIO_COW) {
405 error = xfs_reflink_end_cow(ip, offset, size);
406 if (error)
73d30d48 407 goto out;
ee70daab
EG
408 }
409
410 /*
411 * Unwritten conversion updates the in-core isize after extent
412 * conversion but before updating the on-disk size. Updating isize any
413 * earlier allows a racing dio read to find unwritten extents before
414 * they are converted.
415 */
73d30d48
CH
416 if (flags & IOMAP_DIO_UNWRITTEN) {
417 error = xfs_iomap_write_unwritten(ip, offset, size, true);
418 goto out;
419 }
ee70daab 420
acdda3aa
CH
421 /*
422 * We need to update the in-core inode size here so that we don't end up
423 * with the on-disk inode size being outside the in-core inode size. We
424 * have no other method of updating EOF for AIO, so always do it here
425 * if necessary.
426 *
427 * We need to lock the test/set EOF update as we can be racing with
428 * other IO completions here to update the EOF. Failing to serialise
429 * here can result in EOF moving backwards and Bad Things Happen when
430 * that occurs.
431 */
432 spin_lock(&ip->i_flags_lock);
433 if (offset + size > i_size_read(inode)) {
434 i_size_write(inode, offset + size);
ee70daab 435 spin_unlock(&ip->i_flags_lock);
acdda3aa 436 error = xfs_setfilesize(ip, offset, size);
ee70daab
EG
437 } else {
438 spin_unlock(&ip->i_flags_lock);
439 }
acdda3aa 440
73d30d48
CH
441out:
442 memalloc_nofs_restore(nofs_flag);
acdda3aa
CH
443 return error;
444}
445
838c4f3d
CH
446static const struct iomap_dio_ops xfs_dio_write_ops = {
447 .end_io = xfs_dio_write_end_io,
448};
449
f0d26e86
DC
450/*
451 * xfs_file_dio_aio_write - handle direct IO writes
452 *
453 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 454 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
455 * follow locking changes and looping.
456 *
eda77982
DC
457 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
458 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
459 * pages are flushed out.
460 *
461 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
462 * allowing them to be done in parallel with reads and other direct IO writes.
463 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
464 * needs to do sub-block zeroing and that requires serialisation against other
465 * direct IOs to the same block. In this case we need to serialise the
466 * submission of the unaligned IOs so that we don't get racing block zeroing in
467 * the dio layer. To avoid the problem with aio, we also need to wait for
468 * outstanding IOs to complete so that unwritten extent conversion is completed
469 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 470 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 471 *
f0d26e86
DC
472 * Returns with locks held indicated by @iolock and errors indicated by
473 * negative return values.
474 */
475STATIC ssize_t
476xfs_file_dio_aio_write(
477 struct kiocb *iocb,
b3188919 478 struct iov_iter *from)
f0d26e86
DC
479{
480 struct file *file = iocb->ki_filp;
481 struct address_space *mapping = file->f_mapping;
482 struct inode *inode = mapping->host;
483 struct xfs_inode *ip = XFS_I(inode);
484 struct xfs_mount *mp = ip->i_mount;
485 ssize_t ret = 0;
eda77982 486 int unaligned_io = 0;
d0606464 487 int iolock;
b3188919 488 size_t count = iov_iter_count(from);
acdda3aa 489 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
f0d26e86
DC
490 mp->m_rtdev_targp : mp->m_ddev_targp;
491
7c71ee78 492 /* DIO must be aligned to device logical sector size */
16d4d435 493 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 494 return -EINVAL;
f0d26e86 495
7271d243 496 /*
0ee7a3f6
CH
497 * Don't take the exclusive iolock here unless the I/O is unaligned to
498 * the file system block size. We don't need to consider the EOF
499 * extension case here because xfs_file_aio_write_checks() will relock
500 * the inode as necessary for EOF zeroing cases and fill out the new
501 * inode size as appropriate.
7271d243 502 */
0ee7a3f6
CH
503 if ((iocb->ki_pos & mp->m_blockmask) ||
504 ((iocb->ki_pos + count) & mp->m_blockmask)) {
505 unaligned_io = 1;
54a4ef8a
CH
506
507 /*
508 * We can't properly handle unaligned direct I/O to reflink
509 * files yet, as we can't unshare a partial block.
510 */
66ae56a5 511 if (xfs_is_cow_inode(ip)) {
54a4ef8a
CH
512 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
513 return -EREMCHG;
514 }
d0606464 515 iolock = XFS_IOLOCK_EXCL;
0ee7a3f6 516 } else {
d0606464 517 iolock = XFS_IOLOCK_SHARED;
c58cb165 518 }
f0d26e86 519
942491c9 520 if (iocb->ki_flags & IOCB_NOWAIT) {
1fdeaea4
DW
521 /* unaligned dio always waits, bail */
522 if (unaligned_io)
523 return -EAGAIN;
942491c9 524 if (!xfs_ilock_nowait(ip, iolock))
29a5d29e 525 return -EAGAIN;
942491c9 526 } else {
29a5d29e
GR
527 xfs_ilock(ip, iolock);
528 }
0ee7a3f6 529
99733fa3 530 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 531 if (ret)
d0606464 532 goto out;
99733fa3 533 count = iov_iter_count(from);
f0d26e86 534
eda77982 535 /*
2032a8a2
BF
536 * If we are doing unaligned IO, we can't allow any other overlapping IO
537 * in-flight at the same time or we risk data corruption. Wait for all
538 * other IO to drain before we submit. If the IO is aligned, demote the
539 * iolock if we had to take the exclusive lock in
540 * xfs_file_aio_write_checks() for other reasons.
eda77982 541 */
29a5d29e 542 if (unaligned_io) {
2032a8a2 543 inode_dio_wait(inode);
29a5d29e 544 } else if (iolock == XFS_IOLOCK_EXCL) {
65523218 545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 546 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
547 }
548
3176c3e0 549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
838c4f3d 550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
2032a8a2
BF
551
552 /*
553 * If unaligned, this is the only IO in-flight. If it has not yet
554 * completed, wait on it before we release the iolock to prevent
555 * subsequent overlapping IO.
556 */
557 if (ret == -EIOCBQUEUED && unaligned_io)
558 inode_dio_wait(inode);
d0606464 559out:
65523218 560 xfs_iunlock(ip, iolock);
d0606464 561
6b698ede 562 /*
16d4d435
CH
563 * No fallback to buffered IO on errors for XFS, direct IO will either
564 * complete fully or fail.
6b698ede 565 */
16d4d435
CH
566 ASSERT(ret < 0 || ret == count);
567 return ret;
568}
569
f021bd07 570static noinline ssize_t
16d4d435
CH
571xfs_file_dax_write(
572 struct kiocb *iocb,
573 struct iov_iter *from)
574{
6c31f495 575 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 576 struct xfs_inode *ip = XFS_I(inode);
17879e8f 577 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
578 ssize_t ret, error = 0;
579 size_t count;
580 loff_t pos;
16d4d435 581
942491c9
CH
582 if (iocb->ki_flags & IOCB_NOWAIT) {
583 if (!xfs_ilock_nowait(ip, iolock))
29a5d29e 584 return -EAGAIN;
942491c9 585 } else {
29a5d29e
GR
586 xfs_ilock(ip, iolock);
587 }
588
16d4d435
CH
589 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
590 if (ret)
591 goto out;
592
6c31f495
CH
593 pos = iocb->ki_pos;
594 count = iov_iter_count(from);
8b2180b3 595
6c31f495 596 trace_xfs_file_dax_write(ip, count, pos);
11c59c92 597 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
6c31f495
CH
598 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
599 i_size_write(inode, iocb->ki_pos);
600 error = xfs_setfilesize(ip, pos, ret);
16d4d435 601 }
16d4d435 602out:
65523218 603 xfs_iunlock(ip, iolock);
ed5c3e66
DC
604 if (error)
605 return error;
606
607 if (ret > 0) {
608 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
609
610 /* Handle various SYNC-type writes */
611 ret = generic_write_sync(iocb, ret);
612 }
613 return ret;
f0d26e86
DC
614}
615
00258e36 616STATIC ssize_t
637bbc75 617xfs_file_buffered_aio_write(
dda35b8f 618 struct kiocb *iocb,
b3188919 619 struct iov_iter *from)
dda35b8f
CH
620{
621 struct file *file = iocb->ki_filp;
622 struct address_space *mapping = file->f_mapping;
623 struct inode *inode = mapping->host;
00258e36 624 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
625 ssize_t ret;
626 int enospc = 0;
c3155097 627 int iolock;
dda35b8f 628
91f9943e
CH
629 if (iocb->ki_flags & IOCB_NOWAIT)
630 return -EOPNOTSUPP;
631
c3155097
BF
632write_retry:
633 iolock = XFS_IOLOCK_EXCL;
65523218 634 xfs_ilock(ip, iolock);
dda35b8f 635
99733fa3 636 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 637 if (ret)
d0606464 638 goto out;
dda35b8f
CH
639
640 /* We can write back this queue in page reclaim */
de1414a6 641 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 642
3176c3e0 643 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 644 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 645 if (likely(ret >= 0))
99733fa3 646 iocb->ki_pos += ret;
dc06f398 647
637bbc75 648 /*
dc06f398
BF
649 * If we hit a space limit, try to free up some lingering preallocated
650 * space before returning an error. In the case of ENOSPC, first try to
651 * write back all dirty inodes to free up some of the excess reserved
652 * metadata space. This reduces the chances that the eofblocks scan
653 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
654 * also behaves as a filter to prevent too many eofblocks scans from
655 * running at the same time.
637bbc75 656 */
dc06f398 657 if (ret == -EDQUOT && !enospc) {
c3155097 658 xfs_iunlock(ip, iolock);
dc06f398
BF
659 enospc = xfs_inode_free_quota_eofblocks(ip);
660 if (enospc)
661 goto write_retry;
83104d44
DW
662 enospc = xfs_inode_free_quota_cowblocks(ip);
663 if (enospc)
664 goto write_retry;
c3155097 665 iolock = 0;
dc06f398
BF
666 } else if (ret == -ENOSPC && !enospc) {
667 struct xfs_eofblocks eofb = {0};
668
637bbc75 669 enospc = 1;
9aa05000 670 xfs_flush_inodes(ip->i_mount);
c3155097
BF
671
672 xfs_iunlock(ip, iolock);
dc06f398
BF
673 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
674 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
cf2cb784 675 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
9aa05000 676 goto write_retry;
dda35b8f 677 }
d0606464 678
dda35b8f 679 current->backing_dev_info = NULL;
d0606464 680out:
c3155097
BF
681 if (iolock)
682 xfs_iunlock(ip, iolock);
ed5c3e66
DC
683
684 if (ret > 0) {
685 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
686 /* Handle various SYNC-type writes */
687 ret = generic_write_sync(iocb, ret);
688 }
637bbc75
DC
689 return ret;
690}
691
692STATIC ssize_t
bf97f3bc 693xfs_file_write_iter(
637bbc75 694 struct kiocb *iocb,
bf97f3bc 695 struct iov_iter *from)
637bbc75
DC
696{
697 struct file *file = iocb->ki_filp;
698 struct address_space *mapping = file->f_mapping;
699 struct inode *inode = mapping->host;
700 struct xfs_inode *ip = XFS_I(inode);
701 ssize_t ret;
bf97f3bc 702 size_t ocount = iov_iter_count(from);
637bbc75 703
ff6d6af2 704 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 705
637bbc75
DC
706 if (ocount == 0)
707 return 0;
708
bf97f3bc
AV
709 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
710 return -EIO;
637bbc75 711
16d4d435 712 if (IS_DAX(inode))
ed5c3e66
DC
713 return xfs_file_dax_write(iocb, from);
714
715 if (iocb->ki_flags & IOCB_DIRECT) {
0613f16c
DW
716 /*
717 * Allow a directio write to fall back to a buffered
718 * write *only* in the case that we're doing a reflink
719 * CoW. In all other directio scenarios we do not
720 * allow an operation to fall back to buffered mode.
721 */
bf97f3bc 722 ret = xfs_file_dio_aio_write(iocb, from);
ed5c3e66
DC
723 if (ret != -EREMCHG)
724 return ret;
0613f16c 725 }
dda35b8f 726
ed5c3e66 727 return xfs_file_buffered_aio_write(iocb, from);
dda35b8f
CH
728}
729
d6dc57e2
DW
730static void
731xfs_wait_dax_page(
e25ff835 732 struct inode *inode)
d6dc57e2
DW
733{
734 struct xfs_inode *ip = XFS_I(inode);
735
d6dc57e2
DW
736 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
737 schedule();
738 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
739}
740
741static int
742xfs_break_dax_layouts(
743 struct inode *inode,
e25ff835 744 bool *retry)
d6dc57e2
DW
745{
746 struct page *page;
747
748 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
749
750 page = dax_layout_busy_page(inode->i_mapping);
751 if (!page)
752 return 0;
753
e25ff835 754 *retry = true;
d6dc57e2
DW
755 return ___wait_var_event(&page->_refcount,
756 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
e25ff835 757 0, 0, xfs_wait_dax_page(inode));
d6dc57e2
DW
758}
759
69eb5fa1
DW
760int
761xfs_break_layouts(
762 struct inode *inode,
763 uint *iolock,
764 enum layout_break_reason reason)
765{
766 bool retry;
d6dc57e2 767 int error;
69eb5fa1
DW
768
769 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
770
d6dc57e2
DW
771 do {
772 retry = false;
773 switch (reason) {
774 case BREAK_UNMAP:
a4722a64 775 error = xfs_break_dax_layouts(inode, &retry);
d6dc57e2
DW
776 if (error || retry)
777 break;
778 /* fall through */
779 case BREAK_WRITE:
780 error = xfs_break_leased_layouts(inode, iolock, &retry);
781 break;
782 default:
783 WARN_ON_ONCE(1);
784 error = -EINVAL;
785 }
786 } while (error == 0 && retry);
787
788 return error;
69eb5fa1
DW
789}
790
a904b1ca
NJ
791#define XFS_FALLOC_FL_SUPPORTED \
792 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
793 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 794 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 795
2fe17c10
CH
796STATIC long
797xfs_file_fallocate(
83aee9e4
CH
798 struct file *file,
799 int mode,
800 loff_t offset,
801 loff_t len)
2fe17c10 802{
83aee9e4
CH
803 struct inode *inode = file_inode(file);
804 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 805 long error;
8add71ca 806 enum xfs_prealloc_flags flags = 0;
c63a8eae 807 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
83aee9e4 808 loff_t new_size = 0;
749f24f3 809 bool do_file_insert = false;
2fe17c10 810
83aee9e4
CH
811 if (!S_ISREG(inode->i_mode))
812 return -EINVAL;
a904b1ca 813 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
814 return -EOPNOTSUPP;
815
781355c6 816 xfs_ilock(ip, iolock);
69eb5fa1 817 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
781355c6
CH
818 if (error)
819 goto out_unlock;
820
83aee9e4
CH
821 if (mode & FALLOC_FL_PUNCH_HOLE) {
822 error = xfs_free_file_space(ip, offset, len);
823 if (error)
824 goto out_unlock;
e1d8fb88 825 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
93407472 826 unsigned int blksize_mask = i_blocksize(inode) - 1;
e1d8fb88
NJ
827
828 if (offset & blksize_mask || len & blksize_mask) {
2451337d 829 error = -EINVAL;
e1d8fb88
NJ
830 goto out_unlock;
831 }
832
23fffa92
LC
833 /*
834 * There is no need to overlap collapse range with EOF,
835 * in which case it is effectively a truncate operation
836 */
837 if (offset + len >= i_size_read(inode)) {
2451337d 838 error = -EINVAL;
23fffa92
LC
839 goto out_unlock;
840 }
841
e1d8fb88
NJ
842 new_size = i_size_read(inode) - len;
843
844 error = xfs_collapse_file_space(ip, offset, len);
845 if (error)
846 goto out_unlock;
a904b1ca 847 } else if (mode & FALLOC_FL_INSERT_RANGE) {
7d83fb14
DW
848 unsigned int blksize_mask = i_blocksize(inode) - 1;
849 loff_t isize = i_size_read(inode);
a904b1ca 850
a904b1ca
NJ
851 if (offset & blksize_mask || len & blksize_mask) {
852 error = -EINVAL;
853 goto out_unlock;
854 }
855
7d83fb14
DW
856 /*
857 * New inode size must not exceed ->s_maxbytes, accounting for
858 * possible signed overflow.
859 */
860 if (inode->i_sb->s_maxbytes - isize < len) {
a904b1ca
NJ
861 error = -EFBIG;
862 goto out_unlock;
863 }
7d83fb14 864 new_size = isize + len;
a904b1ca
NJ
865
866 /* Offset should be less than i_size */
7d83fb14 867 if (offset >= isize) {
a904b1ca
NJ
868 error = -EINVAL;
869 goto out_unlock;
870 }
749f24f3 871 do_file_insert = true;
83aee9e4 872 } else {
8add71ca
CH
873 flags |= XFS_PREALLOC_SET;
874
83aee9e4
CH
875 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
876 offset + len > i_size_read(inode)) {
877 new_size = offset + len;
2451337d 878 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
879 if (error)
880 goto out_unlock;
881 }
2fe17c10 882
66ae56a5 883 if (mode & FALLOC_FL_ZERO_RANGE) {
376ba313 884 error = xfs_zero_file_space(ip, offset, len);
66ae56a5
CH
885 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
886 error = xfs_reflink_unshare(ip, offset, len);
887 if (error)
888 goto out_unlock;
889
890 if (!xfs_is_always_cow_inode(ip)) {
891 error = xfs_alloc_file_space(ip, offset, len,
892 XFS_BMAPI_PREALLOC);
98cc2db5 893 }
66ae56a5
CH
894 } else {
895 /*
896 * If always_cow mode we can't use preallocations and
897 * thus should not create them.
898 */
899 if (xfs_is_always_cow_inode(ip)) {
900 error = -EOPNOTSUPP;
901 goto out_unlock;
902 }
903
376ba313
LC
904 error = xfs_alloc_file_space(ip, offset, len,
905 XFS_BMAPI_PREALLOC);
98cc2db5 906 }
2fe17c10
CH
907 if (error)
908 goto out_unlock;
909 }
910
83aee9e4 911 if (file->f_flags & O_DSYNC)
8add71ca
CH
912 flags |= XFS_PREALLOC_SYNC;
913
914 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
915 if (error)
916 goto out_unlock;
917
918 /* Change file size if needed */
919 if (new_size) {
920 struct iattr iattr;
921
922 iattr.ia_valid = ATTR_SIZE;
923 iattr.ia_size = new_size;
69bca807 924 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
925 if (error)
926 goto out_unlock;
2fe17c10
CH
927 }
928
a904b1ca
NJ
929 /*
930 * Perform hole insertion now that the file size has been
931 * updated so that if we crash during the operation we don't
932 * leave shifted extents past EOF and hence losing access to
933 * the data that is contained within them.
934 */
935 if (do_file_insert)
936 error = xfs_insert_file_space(ip, offset, len);
937
2fe17c10 938out_unlock:
781355c6 939 xfs_iunlock(ip, iolock);
2451337d 940 return error;
2fe17c10
CH
941}
942
40144e49
JK
943STATIC int
944xfs_file_fadvise(
945 struct file *file,
946 loff_t start,
947 loff_t end,
948 int advice)
949{
950 struct xfs_inode *ip = XFS_I(file_inode(file));
951 int ret;
952 int lockflags = 0;
953
954 /*
955 * Operations creating pages in page cache need protection from hole
956 * punching and similar ops
957 */
958 if (advice == POSIX_FADV_WILLNEED) {
959 lockflags = XFS_IOLOCK_SHARED;
960 xfs_ilock(ip, lockflags);
961 }
962 ret = generic_fadvise(file, start, end, advice);
963 if (lockflags)
964 xfs_iunlock(ip, lockflags);
965 return ret;
966}
3fc9f5e4 967
da034bcc 968STATIC loff_t
2e5dfc99 969xfs_file_remap_range(
3fc9f5e4
DW
970 struct file *file_in,
971 loff_t pos_in,
972 struct file *file_out,
973 loff_t pos_out,
974 loff_t len,
975 unsigned int remap_flags)
9fe26045 976{
3fc9f5e4
DW
977 struct inode *inode_in = file_inode(file_in);
978 struct xfs_inode *src = XFS_I(inode_in);
979 struct inode *inode_out = file_inode(file_out);
980 struct xfs_inode *dest = XFS_I(inode_out);
981 struct xfs_mount *mp = src->i_mount;
982 loff_t remapped = 0;
983 xfs_extlen_t cowextsize;
984 int ret;
985
2e5dfc99
DW
986 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
987 return -EINVAL;
cc714660 988
3fc9f5e4
DW
989 if (!xfs_sb_version_hasreflink(&mp->m_sb))
990 return -EOPNOTSUPP;
991
992 if (XFS_FORCED_SHUTDOWN(mp))
993 return -EIO;
994
995 /* Prepare and then clone file data. */
996 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
997 &len, remap_flags);
998 if (ret < 0 || len == 0)
999 return ret;
1000
1001 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1002
1003 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1004 &remapped);
1005 if (ret)
1006 goto out_unlock;
1007
1008 /*
1009 * Carry the cowextsize hint from src to dest if we're sharing the
1010 * entire source file to the entire destination file, the source file
1011 * has a cowextsize hint, and the destination file does not.
1012 */
1013 cowextsize = 0;
1014 if (pos_in == 0 && len == i_size_read(inode_in) &&
1015 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1016 pos_out == 0 && len >= i_size_read(inode_out) &&
1017 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1018 cowextsize = src->i_d.di_cowextsize;
1019
1020 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1021 remap_flags);
1022
1023out_unlock:
1024 xfs_reflink_remap_unlock(file_in, file_out);
1025 if (ret)
1026 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1027 return remapped > 0 ? remapped : ret;
9fe26045 1028}
2fe17c10 1029
1da177e4 1030STATIC int
3562fd45 1031xfs_file_open(
1da177e4 1032 struct inode *inode,
f999a5bf 1033 struct file *file)
1da177e4 1034{
f999a5bf 1035 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1036 return -EFBIG;
f999a5bf
CH
1037 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1038 return -EIO;
91f9943e 1039 file->f_mode |= FMODE_NOWAIT;
f999a5bf
CH
1040 return 0;
1041}
1042
1043STATIC int
1044xfs_dir_open(
1045 struct inode *inode,
1046 struct file *file)
1047{
1048 struct xfs_inode *ip = XFS_I(inode);
1049 int mode;
1050 int error;
1051
1052 error = xfs_file_open(inode, file);
1053 if (error)
1054 return error;
1055
1056 /*
1057 * If there are any blocks, read-ahead block 0 as we're almost
1058 * certain to have the next operation be a read there.
1059 */
309ecac8 1060 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 1061 if (ip->i_d.di_nextents > 0)
7a652bbe 1062 error = xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf 1063 xfs_iunlock(ip, mode);
7a652bbe 1064 return error;
1da177e4
LT
1065}
1066
1da177e4 1067STATIC int
3562fd45 1068xfs_file_release(
1da177e4
LT
1069 struct inode *inode,
1070 struct file *filp)
1071{
2451337d 1072 return xfs_release(XFS_I(inode));
1da177e4
LT
1073}
1074
1da177e4 1075STATIC int
3562fd45 1076xfs_file_readdir(
b8227554
AV
1077 struct file *file,
1078 struct dir_context *ctx)
1da177e4 1079{
b8227554 1080 struct inode *inode = file_inode(file);
739bfb2a 1081 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1082 size_t bufsize;
1083
1084 /*
1085 * The Linux API doesn't pass down the total size of the buffer
1086 * we read into down to the filesystem. With the filldir concept
1087 * it's not needed for correct information, but the XFS dir2 leaf
1088 * code wants an estimate of the buffer size to calculate it's
1089 * readahead window and size the buffers used for mapping to
1090 * physical blocks.
1091 *
1092 * Try to give it an estimate that's good enough, maybe at some
1093 * point we can change the ->readdir prototype to include the
a9cc799e 1094 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1095 */
a5c46e5e 1096 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
051e7cd4 1097
acb9553c 1098 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
1099}
1100
1101STATIC loff_t
1102xfs_file_llseek(
1103 struct file *file,
1104 loff_t offset,
59f9c004 1105 int whence)
3fe3e6b1 1106{
9b2970aa
CH
1107 struct inode *inode = file->f_mapping->host;
1108
1109 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1110 return -EIO;
1111
59f9c004 1112 switch (whence) {
9b2970aa 1113 default:
59f9c004 1114 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1115 case SEEK_HOLE:
60271ab7 1116 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1117 break;
49c69591 1118 case SEEK_DATA:
60271ab7 1119 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1120 break;
3fe3e6b1 1121 }
9b2970aa
CH
1122
1123 if (offset < 0)
1124 return offset;
1125 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1126}
1127
de0e8c20
DC
1128/*
1129 * Locking for serialisation of IO during page faults. This results in a lock
1130 * ordering of:
1131 *
1132 * mmap_sem (MM)
6b698ede 1133 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1134 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1135 * page_lock (MM)
1136 * i_lock (XFS - extent map serialisation)
de0e8c20 1137 */
05edd888 1138static vm_fault_t
d522d569
CH
1139__xfs_filemap_fault(
1140 struct vm_fault *vmf,
1141 enum page_entry_size pe_size,
1142 bool write_fault)
de0e8c20 1143{
11bac800 1144 struct inode *inode = file_inode(vmf->vma->vm_file);
d522d569 1145 struct xfs_inode *ip = XFS_I(inode);
05edd888 1146 vm_fault_t ret;
de0e8c20 1147
d522d569 1148 trace_xfs_filemap_fault(ip, pe_size, write_fault);
de0e8c20 1149
d522d569
CH
1150 if (write_fault) {
1151 sb_start_pagefault(inode->i_sb);
1152 file_update_time(vmf->vma->vm_file);
1153 }
de0e8c20 1154
d522d569 1155 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1156 if (IS_DAX(inode)) {
a39e596b
CH
1157 pfn_t pfn;
1158
c0b24625 1159 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
a39e596b
CH
1160 if (ret & VM_FAULT_NEEDDSYNC)
1161 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
6b698ede 1162 } else {
d522d569
CH
1163 if (write_fault)
1164 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1165 else
1166 ret = filemap_fault(vmf);
6b698ede 1167 }
6b698ede 1168 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1169
d522d569
CH
1170 if (write_fault)
1171 sb_end_pagefault(inode->i_sb);
6b698ede 1172 return ret;
de0e8c20
DC
1173}
1174
05edd888 1175static vm_fault_t
6b698ede 1176xfs_filemap_fault(
075a924d
DC
1177 struct vm_fault *vmf)
1178{
6b698ede 1179 /* DAX can shortcut the normal fault path on write faults! */
d522d569
CH
1180 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1181 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1182 (vmf->flags & FAULT_FLAG_WRITE));
6b698ede
DC
1183}
1184
05edd888 1185static vm_fault_t
a2d58167 1186xfs_filemap_huge_fault(
c791ace1
DJ
1187 struct vm_fault *vmf,
1188 enum page_entry_size pe_size)
acd76e74 1189{
d522d569 1190 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
acd76e74
MW
1191 return VM_FAULT_FALLBACK;
1192
d522d569
CH
1193 /* DAX can shortcut the normal fault path on write faults! */
1194 return __xfs_filemap_fault(vmf, pe_size,
1195 (vmf->flags & FAULT_FLAG_WRITE));
1196}
acd76e74 1197
05edd888 1198static vm_fault_t
d522d569
CH
1199xfs_filemap_page_mkwrite(
1200 struct vm_fault *vmf)
1201{
1202 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1203}
1204
3af49285 1205/*
7b565c9f
JK
1206 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1207 * on write faults. In reality, it needs to serialise against truncate and
1208 * prepare memory for writing so handle is as standard write fault.
3af49285 1209 */
05edd888 1210static vm_fault_t
3af49285 1211xfs_filemap_pfn_mkwrite(
3af49285
DC
1212 struct vm_fault *vmf)
1213{
1214
7b565c9f 1215 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1216}
1217
6b698ede
DC
1218static const struct vm_operations_struct xfs_file_vm_ops = {
1219 .fault = xfs_filemap_fault,
a2d58167 1220 .huge_fault = xfs_filemap_huge_fault,
6b698ede
DC
1221 .map_pages = filemap_map_pages,
1222 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1223 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1224};
1225
1226STATIC int
1227xfs_file_mmap(
1228 struct file *filp,
1229 struct vm_area_struct *vma)
1230{
b21fec41
PG
1231 struct dax_device *dax_dev;
1232
1233 dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
a39e596b 1234 /*
b21fec41
PG
1235 * We don't support synchronous mappings for non-DAX files and
1236 * for DAX files if underneath dax_device is not synchronous.
a39e596b 1237 */
b21fec41 1238 if (!daxdev_mapping_supported(vma, dax_dev))
a39e596b
CH
1239 return -EOPNOTSUPP;
1240
6b698ede
DC
1241 file_accessed(filp);
1242 vma->vm_ops = &xfs_file_vm_ops;
1243 if (IS_DAX(file_inode(filp)))
e1fb4a08 1244 vma->vm_flags |= VM_HUGEPAGE;
6b698ede 1245 return 0;
075a924d
DC
1246}
1247
4b6f5d20 1248const struct file_operations xfs_file_operations = {
3fe3e6b1 1249 .llseek = xfs_file_llseek,
b4f5d2c6 1250 .read_iter = xfs_file_read_iter,
bf97f3bc 1251 .write_iter = xfs_file_write_iter,
82c156f8 1252 .splice_read = generic_file_splice_read,
8d020765 1253 .splice_write = iter_file_splice_write,
81214bab 1254 .iopoll = iomap_dio_iopoll,
3562fd45 1255 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1256#ifdef CONFIG_COMPAT
3562fd45 1257 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1258#endif
3562fd45 1259 .mmap = xfs_file_mmap,
a39e596b 1260 .mmap_supported_flags = MAP_SYNC,
3562fd45
NS
1261 .open = xfs_file_open,
1262 .release = xfs_file_release,
1263 .fsync = xfs_file_fsync,
dbe6ec81 1264 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1265 .fallocate = xfs_file_fallocate,
40144e49 1266 .fadvise = xfs_file_fadvise,
2e5dfc99 1267 .remap_file_range = xfs_file_remap_range,
1da177e4
LT
1268};
1269
4b6f5d20 1270const struct file_operations xfs_dir_file_operations = {
f999a5bf 1271 .open = xfs_dir_open,
1da177e4 1272 .read = generic_read_dir,
3b0a3c1a 1273 .iterate_shared = xfs_file_readdir,
59af1584 1274 .llseek = generic_file_llseek,
3562fd45 1275 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1276#ifdef CONFIG_COMPAT
3562fd45 1277 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1278#endif
1da2f2db 1279 .fsync = xfs_dir_fsync,
1da177e4 1280};