dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / fs / xfs / xfs_file.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
dda35b8f 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
1da177e4 13#include "xfs_inode.h"
239880ef 14#include "xfs_trans.h"
fd3200be 15#include "xfs_inode_item.h"
dda35b8f 16#include "xfs_bmap.h"
c24b5dfa 17#include "xfs_bmap_util.h"
2b9ab5ab 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_dir2_priv.h"
ddcd856d 20#include "xfs_ioctl.h"
dda35b8f 21#include "xfs_trace.h"
239880ef 22#include "xfs_log.h"
dc06f398 23#include "xfs_icache.h"
781355c6 24#include "xfs_pnfs.h"
68a9f5e7 25#include "xfs_iomap.h"
0613f16c 26#include "xfs_reflink.h"
1da177e4 27
ea6c49b7 28#include <linux/dax.h>
2fe17c10 29#include <linux/falloc.h>
66114cad 30#include <linux/backing-dev.h>
a39e596b 31#include <linux/mman.h>
40144e49 32#include <linux/fadvise.h>
f736d93d 33#include <linux/mount.h>
1da177e4 34
f0f37e2f 35static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 36
25219dbf
DW
37/*
38 * Decide if the given file range is aligned to the size of the fundamental
39 * allocation unit for the file.
40 */
41static bool
42xfs_is_falloc_aligned(
43 struct xfs_inode *ip,
44 loff_t pos,
45 long long int len)
46{
47 struct xfs_mount *mp = ip->i_mount;
48 uint64_t mask;
49
50 if (XFS_IS_REALTIME_INODE(ip)) {
51 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
52 u64 rextbytes;
53 u32 mod;
54
55 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
56 div_u64_rem(pos, rextbytes, &mod);
57 if (mod)
58 return false;
59 div_u64_rem(len, rextbytes, &mod);
60 return mod == 0;
61 }
62 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
63 } else {
64 mask = mp->m_sb.sb_blocksize - 1;
65 }
66
67 return !((pos | len) & mask);
68}
69
1da2f2db
CH
70/*
71 * Fsync operations on directories are much simpler than on regular files,
72 * as there is no file data to flush, and thus also no need for explicit
73 * cache flush operations, and there are no non-transaction metadata updates
74 * on directories either.
75 */
76STATIC int
77xfs_dir_fsync(
78 struct file *file,
79 loff_t start,
80 loff_t end,
81 int datasync)
82{
83 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
1da2f2db
CH
84
85 trace_xfs_dir_fsync(ip);
54fbdd10 86 return xfs_log_force_inode(ip);
1da2f2db
CH
87}
88
5f9b4b0d
DC
89static xfs_csn_t
90xfs_fsync_seq(
f22c7f87
CH
91 struct xfs_inode *ip,
92 bool datasync)
93{
94 if (!xfs_ipincount(ip))
95 return 0;
96 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
97 return 0;
5f9b4b0d 98 return ip->i_itemp->ili_commit_seq;
f22c7f87
CH
99}
100
101/*
102 * All metadata updates are logged, which means that we just have to flush the
103 * log up to the latest LSN that touched the inode.
104 *
105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
106 * the log force before we clear the ili_fsync_fields field. This ensures that
107 * we don't get a racing sync operation that does not wait for the metadata to
108 * hit the journal before returning. If we race with clearing ili_fsync_fields,
109 * then all that will happen is the log force will do nothing as the lsn will
110 * already be on disk. We can't race with setting ili_fsync_fields because that
111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
112 * shared until after the ili_fsync_fields is cleared.
113 */
114static int
115xfs_fsync_flush_log(
116 struct xfs_inode *ip,
117 bool datasync,
118 int *log_flushed)
119{
120 int error = 0;
5f9b4b0d 121 xfs_csn_t seq;
f22c7f87
CH
122
123 xfs_ilock(ip, XFS_ILOCK_SHARED);
5f9b4b0d
DC
124 seq = xfs_fsync_seq(ip, datasync);
125 if (seq) {
126 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
f22c7f87
CH
127 log_flushed);
128
129 spin_lock(&ip->i_itemp->ili_lock);
130 ip->i_itemp->ili_fsync_fields = 0;
131 spin_unlock(&ip->i_itemp->ili_lock);
132 }
133 xfs_iunlock(ip, XFS_ILOCK_SHARED);
134 return error;
135}
136
fd3200be
CH
137STATIC int
138xfs_file_fsync(
139 struct file *file,
02c24a82
JB
140 loff_t start,
141 loff_t end,
fd3200be
CH
142 int datasync)
143{
f22c7f87 144 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
a27a263b 145 struct xfs_mount *mp = ip->i_mount;
7d839e32 146 int error, err2;
fd3200be
CH
147 int log_flushed = 0;
148
cca28fb8 149 trace_xfs_file_fsync(ip);
fd3200be 150
1b180274 151 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
152 if (error)
153 return error;
154
75c8c50f 155 if (xfs_is_shutdown(mp))
b474c7ae 156 return -EIO;
fd3200be
CH
157
158 xfs_iflags_clear(ip, XFS_ITRUNCATED);
159
2291dab2
DC
160 /*
161 * If we have an RT and/or log subvolume we need to make sure to flush
162 * the write cache the device used for file data first. This is to
163 * ensure newly written file data make it to disk before logging the new
164 * inode size in case of an extending write.
165 */
166 if (XFS_IS_REALTIME_INODE(ip))
7d839e32 167 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
2291dab2 168 else if (mp->m_logdev_targp != mp->m_ddev_targp)
7d839e32 169 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
a27a263b 170
fd3200be 171 /*
ae29e422 172 * Any inode that has dirty modifications in the log is pinned. The
7d839e32 173 * racy check here for a pinned inode will not catch modifications
ae29e422
CH
174 * that happen concurrently to the fsync call, but fsync semantics
175 * only require to sync previously completed I/O.
fd3200be 176 */
7d839e32
DW
177 if (xfs_ipincount(ip)) {
178 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
179 if (err2 && !error)
180 error = err2;
181 }
b1037058 182
a27a263b
CH
183 /*
184 * If we only have a single device, and the log force about was
185 * a no-op we might have to flush the data device cache here.
186 * This can only happen for fdatasync/O_DSYNC if we were overwriting
187 * an already allocated file and thus do not have any metadata to
188 * commit.
189 */
2291dab2 190 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
7d839e32
DW
191 mp->m_logdev_targp == mp->m_ddev_targp) {
192 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
193 if (err2 && !error)
194 error = err2;
195 }
fd3200be 196
2451337d 197 return error;
fd3200be
CH
198}
199
f50b8f47
CH
200static int
201xfs_ilock_iocb(
202 struct kiocb *iocb,
203 unsigned int lock_mode)
204{
205 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
206
207 if (iocb->ki_flags & IOCB_NOWAIT) {
208 if (!xfs_ilock_nowait(ip, lock_mode))
209 return -EAGAIN;
210 } else {
211 xfs_ilock(ip, lock_mode);
212 }
213
214 return 0;
215}
216
00258e36 217STATIC ssize_t
ee1b218b 218xfs_file_dio_read(
dda35b8f 219 struct kiocb *iocb,
b4f5d2c6 220 struct iov_iter *to)
dda35b8f 221{
acdda3aa 222 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
acdda3aa 223 ssize_t ret;
dda35b8f 224
3e40b13c 225 trace_xfs_file_direct_read(iocb, to);
dda35b8f 226
3e40b13c 227 if (!iov_iter_count(to))
f1285ff0 228 return 0; /* skip atime */
dda35b8f 229
a447d7cd
CH
230 file_accessed(iocb->ki_filp);
231
f50b8f47
CH
232 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
233 if (ret)
234 return ret;
786f847f 235 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
65523218 236 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 237
16d4d435
CH
238 return ret;
239}
240
f021bd07 241static noinline ssize_t
16d4d435
CH
242xfs_file_dax_read(
243 struct kiocb *iocb,
244 struct iov_iter *to)
245{
6c31f495 246 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
247 ssize_t ret = 0;
248
3e40b13c 249 trace_xfs_file_dax_read(iocb, to);
16d4d435 250
3e40b13c 251 if (!iov_iter_count(to))
16d4d435
CH
252 return 0; /* skip atime */
253
f50b8f47
CH
254 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
255 if (ret)
256 return ret;
690c2a38 257 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
65523218 258 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 259
f1285ff0 260 file_accessed(iocb->ki_filp);
bbc5a740
CH
261 return ret;
262}
263
264STATIC ssize_t
ee1b218b 265xfs_file_buffered_read(
bbc5a740
CH
266 struct kiocb *iocb,
267 struct iov_iter *to)
268{
269 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
270 ssize_t ret;
271
3e40b13c 272 trace_xfs_file_buffered_read(iocb, to);
dda35b8f 273
f50b8f47
CH
274 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
275 if (ret)
276 return ret;
b4f5d2c6 277 ret = generic_file_read_iter(iocb, to);
65523218 278 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
279
280 return ret;
281}
282
283STATIC ssize_t
284xfs_file_read_iter(
285 struct kiocb *iocb,
286 struct iov_iter *to)
287{
16d4d435
CH
288 struct inode *inode = file_inode(iocb->ki_filp);
289 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
290 ssize_t ret = 0;
291
292 XFS_STATS_INC(mp, xs_read_calls);
293
75c8c50f 294 if (xfs_is_shutdown(mp))
bbc5a740
CH
295 return -EIO;
296
16d4d435
CH
297 if (IS_DAX(inode))
298 ret = xfs_file_dax_read(iocb, to);
299 else if (iocb->ki_flags & IOCB_DIRECT)
ee1b218b 300 ret = xfs_file_dio_read(iocb, to);
3176c3e0 301 else
ee1b218b 302 ret = xfs_file_buffered_read(iocb, to);
dda35b8f 303
dda35b8f 304 if (ret > 0)
ff6d6af2 305 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
306 return ret;
307}
308
54919f94
DH
309STATIC ssize_t
310xfs_file_splice_read(
311 struct file *in,
312 loff_t *ppos,
313 struct pipe_inode_info *pipe,
314 size_t len,
315 unsigned int flags)
316{
317 struct inode *inode = file_inode(in);
318 struct xfs_inode *ip = XFS_I(inode);
319 struct xfs_mount *mp = ip->i_mount;
320 ssize_t ret = 0;
321
322 XFS_STATS_INC(mp, xs_read_calls);
323
324 if (xfs_is_shutdown(mp))
325 return -EIO;
326
327 trace_xfs_file_splice_read(ip, *ppos, len);
328
329 xfs_ilock(ip, XFS_IOLOCK_SHARED);
330 ret = filemap_splice_read(in, ppos, pipe, len, flags);
331 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
332 if (ret > 0)
333 XFS_STATS_ADD(mp, xs_read_bytes, ret);
334 return ret;
335}
336
4d8d1581
DC
337/*
338 * Common pre-write limit and setup checks.
339 *
5bf1f262
CH
340 * Called with the iolocked held either shared and exclusive according to
341 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
342 * if called for a direct write beyond i_size.
4d8d1581
DC
343 */
344STATIC ssize_t
ee1b218b 345xfs_file_write_checks(
99733fa3
AV
346 struct kiocb *iocb,
347 struct iov_iter *from,
a1033753 348 unsigned int *iolock)
4d8d1581 349{
99733fa3 350 struct file *file = iocb->ki_filp;
4d8d1581
DC
351 struct inode *inode = file->f_mapping->host;
352 struct xfs_inode *ip = XFS_I(inode);
3309dd04 353 ssize_t error = 0;
99733fa3 354 size_t count = iov_iter_count(from);
3136e8bb 355 bool drained_dio = false;
f5c54717 356 loff_t isize;
4d8d1581 357
7271d243 358restart:
3309dd04
AV
359 error = generic_write_checks(iocb, from);
360 if (error <= 0)
4d8d1581 361 return error;
4d8d1581 362
354be7e3
CH
363 if (iocb->ki_flags & IOCB_NOWAIT) {
364 error = break_layout(inode, false);
365 if (error == -EWOULDBLOCK)
366 error = -EAGAIN;
367 } else {
368 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
369 }
370
781355c6
CH
371 if (error)
372 return error;
373
65523218
CH
374 /*
375 * For changing security info in file_remove_privs() we need i_rwsem
376 * exclusively.
377 */
a6de82ca 378 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 379 xfs_iunlock(ip, *iolock);
a6de82ca 380 *iolock = XFS_IOLOCK_EXCL;
354be7e3
CH
381 error = xfs_ilock_iocb(iocb, *iolock);
382 if (error) {
383 *iolock = 0;
384 return error;
385 }
a6de82ca
JK
386 goto restart;
387 }
977ec4dd 388
4d8d1581
DC
389 /*
390 * If the offset is beyond the size of the file, we need to zero any
391 * blocks that fall between the existing EOF and the start of this
977ec4dd
DC
392 * write. If zeroing is needed and we are currently holding the iolock
393 * shared, we need to update it to exclusive which implies having to
394 * redo all checks before.
395 *
396 * We need to serialise against EOF updates that occur in IO completions
397 * here. We want to make sure that nobody is changing the size while we
398 * do this check until we have placed an IO barrier (i.e. hold the
399 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
400 * spinlock effectively forms a memory barrier once we have the
401 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
402 * hence be able to correctly determine if we need to run zeroing.
b9d59846 403 *
977ec4dd
DC
404 * We can do an unlocked check here safely as IO completion can only
405 * extend EOF. Truncate is locked out at this point, so the EOF can
406 * not move backwards, only forwards. Hence we only need to take the
407 * slow path and spin locks when we are at or beyond the current EOF.
4d8d1581 408 */
977ec4dd
DC
409 if (iocb->ki_pos <= i_size_read(inode))
410 goto out;
411
b9d59846 412 spin_lock(&ip->i_flags_lock);
f5c54717
CH
413 isize = i_size_read(inode);
414 if (iocb->ki_pos > isize) {
b9d59846 415 spin_unlock(&ip->i_flags_lock);
354be7e3
CH
416
417 if (iocb->ki_flags & IOCB_NOWAIT)
418 return -EAGAIN;
419
3136e8bb
BF
420 if (!drained_dio) {
421 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 422 xfs_iunlock(ip, *iolock);
3136e8bb 423 *iolock = XFS_IOLOCK_EXCL;
65523218 424 xfs_ilock(ip, *iolock);
3136e8bb
BF
425 iov_iter_reexpand(from, count);
426 }
40c63fbc
DC
427 /*
428 * We now have an IO submission barrier in place, but
429 * AIO can do EOF updates during IO completion and hence
430 * we now need to wait for all of them to drain. Non-AIO
431 * DIO will have drained before we are given the
432 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
433 * no-op.
434 */
435 inode_dio_wait(inode);
3136e8bb 436 drained_dio = true;
7271d243
DC
437 goto restart;
438 }
977ec4dd 439
f5c54717 440 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
f1ba5faf 441 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
467f7899
CH
442 if (error)
443 return error;
b9d59846
DC
444 } else
445 spin_unlock(&ip->i_flags_lock);
4d8d1581 446
977ec4dd 447out:
1aa91d9c 448 return kiocb_modified(iocb);
4d8d1581
DC
449}
450
acdda3aa
CH
451static int
452xfs_dio_write_end_io(
453 struct kiocb *iocb,
454 ssize_t size,
6fe7b990 455 int error,
acdda3aa
CH
456 unsigned flags)
457{
458 struct inode *inode = file_inode(iocb->ki_filp);
459 struct xfs_inode *ip = XFS_I(inode);
460 loff_t offset = iocb->ki_pos;
73d30d48 461 unsigned int nofs_flag;
acdda3aa
CH
462
463 trace_xfs_end_io_direct_write(ip, offset, size);
464
75c8c50f 465 if (xfs_is_shutdown(ip->i_mount))
acdda3aa
CH
466 return -EIO;
467
6fe7b990
MB
468 if (error)
469 return error;
470 if (!size)
471 return 0;
acdda3aa 472
ed5c3e66
DC
473 /*
474 * Capture amount written on completion as we can't reliably account
475 * for it on submission.
476 */
477 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
478
73d30d48
CH
479 /*
480 * We can allocate memory here while doing writeback on behalf of
481 * memory reclaim. To avoid memory allocation deadlocks set the
482 * task-wide nofs context for the following operations.
483 */
484 nofs_flag = memalloc_nofs_save();
485
ee70daab
EG
486 if (flags & IOMAP_DIO_COW) {
487 error = xfs_reflink_end_cow(ip, offset, size);
488 if (error)
73d30d48 489 goto out;
ee70daab
EG
490 }
491
492 /*
493 * Unwritten conversion updates the in-core isize after extent
494 * conversion but before updating the on-disk size. Updating isize any
495 * earlier allows a racing dio read to find unwritten extents before
496 * they are converted.
497 */
73d30d48
CH
498 if (flags & IOMAP_DIO_UNWRITTEN) {
499 error = xfs_iomap_write_unwritten(ip, offset, size, true);
500 goto out;
501 }
ee70daab 502
acdda3aa
CH
503 /*
504 * We need to update the in-core inode size here so that we don't end up
505 * with the on-disk inode size being outside the in-core inode size. We
506 * have no other method of updating EOF for AIO, so always do it here
507 * if necessary.
508 *
509 * We need to lock the test/set EOF update as we can be racing with
510 * other IO completions here to update the EOF. Failing to serialise
511 * here can result in EOF moving backwards and Bad Things Happen when
512 * that occurs.
977ec4dd
DC
513 *
514 * As IO completion only ever extends EOF, we can do an unlocked check
515 * here to avoid taking the spinlock. If we land within the current EOF,
516 * then we do not need to do an extending update at all, and we don't
517 * need to take the lock to check this. If we race with an update moving
518 * EOF, then we'll either still be beyond EOF and need to take the lock,
519 * or we'll be within EOF and we don't need to take it at all.
acdda3aa 520 */
977ec4dd
DC
521 if (offset + size <= i_size_read(inode))
522 goto out;
523
acdda3aa
CH
524 spin_lock(&ip->i_flags_lock);
525 if (offset + size > i_size_read(inode)) {
526 i_size_write(inode, offset + size);
ee70daab 527 spin_unlock(&ip->i_flags_lock);
acdda3aa 528 error = xfs_setfilesize(ip, offset, size);
ee70daab
EG
529 } else {
530 spin_unlock(&ip->i_flags_lock);
531 }
acdda3aa 532
73d30d48
CH
533out:
534 memalloc_nofs_restore(nofs_flag);
acdda3aa
CH
535 return error;
536}
537
838c4f3d
CH
538static const struct iomap_dio_ops xfs_dio_write_ops = {
539 .end_io = xfs_dio_write_end_io,
540};
541
f0d26e86 542/*
caa89dbc 543 * Handle block aligned direct I/O writes
f0d26e86 544 */
caa89dbc
DC
545static noinline ssize_t
546xfs_file_dio_write_aligned(
547 struct xfs_inode *ip,
f0d26e86 548 struct kiocb *iocb,
b3188919 549 struct iov_iter *from)
f0d26e86 550{
a1033753 551 unsigned int iolock = XFS_IOLOCK_SHARED;
caa89dbc 552 ssize_t ret;
f0d26e86 553
caa89dbc
DC
554 ret = xfs_ilock_iocb(iocb, iolock);
555 if (ret)
556 return ret;
557 ret = xfs_file_write_checks(iocb, from, &iolock);
558 if (ret)
559 goto out_unlock;
f0d26e86 560
7271d243 561 /*
caa89dbc
DC
562 * We don't need to hold the IOLOCK exclusively across the IO, so demote
563 * the iolock back to shared if we had to take the exclusive lock in
564 * xfs_file_write_checks() for other reasons.
7271d243 565 */
caa89dbc
DC
566 if (iolock == XFS_IOLOCK_EXCL) {
567 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 568 iolock = XFS_IOLOCK_SHARED;
c58cb165 569 }
caa89dbc
DC
570 trace_xfs_file_direct_write(iocb, from);
571 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
786f847f 572 &xfs_dio_write_ops, 0, NULL, 0);
caa89dbc
DC
573out_unlock:
574 if (iolock)
575 xfs_iunlock(ip, iolock);
576 return ret;
577}
f0d26e86 578
caa89dbc
DC
579/*
580 * Handle block unaligned direct I/O writes
581 *
582 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
583 * them to be done in parallel with reads and other direct I/O writes. However,
584 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
585 * to do sub-block zeroing and that requires serialisation against other direct
586 * I/O to the same block. In this case we need to serialise the submission of
587 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
ed1128c2
DC
588 * In the case where sub-block zeroing is not required, we can do concurrent
589 * sub-block dios to the same block successfully.
caa89dbc 590 *
ed1128c2
DC
591 * Optimistically submit the I/O using the shared lock first, but use the
592 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
593 * if block allocation or partial block zeroing would be required. In that case
594 * we try again with the exclusive lock.
caa89dbc
DC
595 */
596static noinline ssize_t
597xfs_file_dio_write_unaligned(
598 struct xfs_inode *ip,
599 struct kiocb *iocb,
600 struct iov_iter *from)
601{
ed1128c2
DC
602 size_t isize = i_size_read(VFS_I(ip));
603 size_t count = iov_iter_count(from);
a1033753 604 unsigned int iolock = XFS_IOLOCK_SHARED;
ed1128c2 605 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
caa89dbc
DC
606 ssize_t ret;
607
ed1128c2
DC
608 /*
609 * Extending writes need exclusivity because of the sub-block zeroing
610 * that the DIO code always does for partial tail blocks beyond EOF, so
611 * don't even bother trying the fast path in this case.
612 */
613 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
ed1128c2
DC
614 if (iocb->ki_flags & IOCB_NOWAIT)
615 return -EAGAIN;
93e6aa43 616retry_exclusive:
ed1128c2
DC
617 iolock = XFS_IOLOCK_EXCL;
618 flags = IOMAP_DIO_FORCE_WAIT;
619 }
620
621 ret = xfs_ilock_iocb(iocb, iolock);
622 if (ret)
623 return ret;
caa89dbc
DC
624
625 /*
626 * We can't properly handle unaligned direct I/O to reflink files yet,
627 * as we can't unshare a partial block.
628 */
629 if (xfs_is_cow_inode(ip)) {
630 trace_xfs_reflink_bounce_dio_write(iocb, from);
631 ret = -ENOTBLK;
632 goto out_unlock;
29a5d29e 633 }
0ee7a3f6 634
ee1b218b 635 ret = xfs_file_write_checks(iocb, from, &iolock);
4d8d1581 636 if (ret)
caa89dbc 637 goto out_unlock;
f0d26e86 638
eda77982 639 /*
ed1128c2
DC
640 * If we are doing exclusive unaligned I/O, this must be the only I/O
641 * in-flight. Otherwise we risk data corruption due to unwritten extent
642 * conversions from the AIO end_io handler. Wait for all other I/O to
643 * drain first.
eda77982 644 */
ed1128c2
DC
645 if (flags & IOMAP_DIO_FORCE_WAIT)
646 inode_dio_wait(VFS_I(ip));
f0d26e86 647
3e40b13c 648 trace_xfs_file_direct_write(iocb, from);
f150b423 649 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
786f847f 650 &xfs_dio_write_ops, flags, NULL, 0);
ed1128c2
DC
651
652 /*
653 * Retry unaligned I/O with exclusive blocking semantics if the DIO
654 * layer rejected it for mapping or locking reasons. If we are doing
655 * nonblocking user I/O, propagate the error.
656 */
657 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
658 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
659 xfs_iunlock(ip, iolock);
660 goto retry_exclusive;
661 }
662
caa89dbc 663out_unlock:
354be7e3
CH
664 if (iolock)
665 xfs_iunlock(ip, iolock);
16d4d435
CH
666 return ret;
667}
668
caa89dbc
DC
669static ssize_t
670xfs_file_dio_write(
671 struct kiocb *iocb,
672 struct iov_iter *from)
673{
674 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
675 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
676 size_t count = iov_iter_count(from);
677
678 /* direct I/O must be aligned to device logical sector size */
679 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
680 return -EINVAL;
681 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
682 return xfs_file_dio_write_unaligned(ip, iocb, from);
683 return xfs_file_dio_write_aligned(ip, iocb, from);
684}
685
f021bd07 686static noinline ssize_t
16d4d435
CH
687xfs_file_dax_write(
688 struct kiocb *iocb,
689 struct iov_iter *from)
690{
6c31f495 691 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 692 struct xfs_inode *ip = XFS_I(inode);
a1033753 693 unsigned int iolock = XFS_IOLOCK_EXCL;
6c31f495 694 ssize_t ret, error = 0;
6c31f495 695 loff_t pos;
16d4d435 696
f50b8f47
CH
697 ret = xfs_ilock_iocb(iocb, iolock);
698 if (ret)
699 return ret;
ee1b218b 700 ret = xfs_file_write_checks(iocb, from, &iolock);
16d4d435
CH
701 if (ret)
702 goto out;
703
6c31f495 704 pos = iocb->ki_pos;
8b2180b3 705
3e40b13c 706 trace_xfs_file_dax_write(iocb, from);
ea6c49b7 707 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
6c31f495
CH
708 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
709 i_size_write(inode, iocb->ki_pos);
710 error = xfs_setfilesize(ip, pos, ret);
16d4d435 711 }
16d4d435 712out:
354be7e3
CH
713 if (iolock)
714 xfs_iunlock(ip, iolock);
ed5c3e66
DC
715 if (error)
716 return error;
717
718 if (ret > 0) {
719 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
720
721 /* Handle various SYNC-type writes */
722 ret = generic_write_sync(iocb, ret);
723 }
724 return ret;
f0d26e86
DC
725}
726
00258e36 727STATIC ssize_t
ee1b218b 728xfs_file_buffered_write(
dda35b8f 729 struct kiocb *iocb,
b3188919 730 struct iov_iter *from)
dda35b8f 731{
2d9ac431 732 struct inode *inode = iocb->ki_filp->f_mapping->host;
00258e36 733 struct xfs_inode *ip = XFS_I(inode);
637bbc75 734 ssize_t ret;
a636b1d1 735 bool cleared_space = false;
a1033753 736 unsigned int iolock;
dda35b8f 737
c3155097
BF
738write_retry:
739 iolock = XFS_IOLOCK_EXCL;
1aa91d9c
SR
740 ret = xfs_ilock_iocb(iocb, iolock);
741 if (ret)
742 return ret;
dda35b8f 743
ee1b218b 744 ret = xfs_file_write_checks(iocb, from, &iolock);
4d8d1581 745 if (ret)
d0606464 746 goto out;
dda35b8f
CH
747
748 /* We can write back this queue in page reclaim */
de1414a6 749 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 750
3e40b13c 751 trace_xfs_file_buffered_write(iocb, from);
f150b423
CH
752 ret = iomap_file_buffered_write(iocb, from,
753 &xfs_buffered_write_iomap_ops);
0a64bc2c 754 if (likely(ret >= 0))
99733fa3 755 iocb->ki_pos += ret;
dc06f398 756
637bbc75 757 /*
dc06f398
BF
758 * If we hit a space limit, try to free up some lingering preallocated
759 * space before returning an error. In the case of ENOSPC, first try to
760 * write back all dirty inodes to free up some of the excess reserved
761 * metadata space. This reduces the chances that the eofblocks scan
762 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
763 * also behaves as a filter to prevent too many eofblocks scans from
111068f8
DW
764 * running at the same time. Use a synchronous scan to increase the
765 * effectiveness of the scan.
637bbc75 766 */
a636b1d1 767 if (ret == -EDQUOT && !cleared_space) {
c3155097 768 xfs_iunlock(ip, iolock);
2d53f66b 769 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
111068f8
DW
770 cleared_space = true;
771 goto write_retry;
a636b1d1 772 } else if (ret == -ENOSPC && !cleared_space) {
b26b2bf1 773 struct xfs_icwalk icw = {0};
dc06f398 774
a636b1d1 775 cleared_space = true;
9aa05000 776 xfs_flush_inodes(ip->i_mount);
c3155097
BF
777
778 xfs_iunlock(ip, iolock);
b26b2bf1
DW
779 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
780 xfs_blockgc_free_space(ip->i_mount, &icw);
9aa05000 781 goto write_retry;
dda35b8f 782 }
d0606464 783
dda35b8f 784 current->backing_dev_info = NULL;
d0606464 785out:
c3155097
BF
786 if (iolock)
787 xfs_iunlock(ip, iolock);
ed5c3e66
DC
788
789 if (ret > 0) {
790 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
791 /* Handle various SYNC-type writes */
792 ret = generic_write_sync(iocb, ret);
793 }
637bbc75
DC
794 return ret;
795}
796
797STATIC ssize_t
bf97f3bc 798xfs_file_write_iter(
637bbc75 799 struct kiocb *iocb,
bf97f3bc 800 struct iov_iter *from)
637bbc75 801{
2d9ac431 802 struct inode *inode = iocb->ki_filp->f_mapping->host;
637bbc75
DC
803 struct xfs_inode *ip = XFS_I(inode);
804 ssize_t ret;
bf97f3bc 805 size_t ocount = iov_iter_count(from);
637bbc75 806
ff6d6af2 807 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 808
637bbc75
DC
809 if (ocount == 0)
810 return 0;
811
75c8c50f 812 if (xfs_is_shutdown(ip->i_mount))
bf97f3bc 813 return -EIO;
637bbc75 814
16d4d435 815 if (IS_DAX(inode))
ed5c3e66
DC
816 return xfs_file_dax_write(iocb, from);
817
818 if (iocb->ki_flags & IOCB_DIRECT) {
0613f16c
DW
819 /*
820 * Allow a directio write to fall back to a buffered
821 * write *only* in the case that we're doing a reflink
822 * CoW. In all other directio scenarios we do not
823 * allow an operation to fall back to buffered mode.
824 */
ee1b218b 825 ret = xfs_file_dio_write(iocb, from);
80e543ae 826 if (ret != -ENOTBLK)
ed5c3e66 827 return ret;
0613f16c 828 }
dda35b8f 829
ee1b218b 830 return xfs_file_buffered_write(iocb, from);
dda35b8f
CH
831}
832
d6dc57e2
DW
833static void
834xfs_wait_dax_page(
e25ff835 835 struct inode *inode)
d6dc57e2
DW
836{
837 struct xfs_inode *ip = XFS_I(inode);
838
d6dc57e2
DW
839 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
840 schedule();
841 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
842}
843
13f9e267 844int
d6dc57e2
DW
845xfs_break_dax_layouts(
846 struct inode *inode,
e25ff835 847 bool *retry)
d6dc57e2
DW
848{
849 struct page *page;
850
851 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
852
853 page = dax_layout_busy_page(inode->i_mapping);
854 if (!page)
855 return 0;
856
e25ff835 857 *retry = true;
d6dc57e2
DW
858 return ___wait_var_event(&page->_refcount,
859 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
e25ff835 860 0, 0, xfs_wait_dax_page(inode));
d6dc57e2
DW
861}
862
69eb5fa1
DW
863int
864xfs_break_layouts(
865 struct inode *inode,
866 uint *iolock,
867 enum layout_break_reason reason)
868{
869 bool retry;
d6dc57e2 870 int error;
69eb5fa1
DW
871
872 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
873
d6dc57e2
DW
874 do {
875 retry = false;
876 switch (reason) {
877 case BREAK_UNMAP:
a4722a64 878 error = xfs_break_dax_layouts(inode, &retry);
d6dc57e2
DW
879 if (error || retry)
880 break;
53004ee7 881 fallthrough;
d6dc57e2
DW
882 case BREAK_WRITE:
883 error = xfs_break_leased_layouts(inode, iolock, &retry);
884 break;
885 default:
886 WARN_ON_ONCE(1);
887 error = -EINVAL;
888 }
889 } while (error == 0 && retry);
890
891 return error;
69eb5fa1
DW
892}
893
cea267c2
DC
894/* Does this file, inode, or mount want synchronous writes? */
895static inline bool xfs_file_sync_writes(struct file *filp)
896{
897 struct xfs_inode *ip = XFS_I(file_inode(filp));
898
899 if (xfs_has_wsync(ip->i_mount))
900 return true;
901 if (filp->f_flags & (__O_SYNC | O_DSYNC))
902 return true;
903 if (IS_SYNC(file_inode(filp)))
904 return true;
905
906 return false;
907}
908
a904b1ca
NJ
909#define XFS_FALLOC_FL_SUPPORTED \
910 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
911 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 912 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 913
2fe17c10
CH
914STATIC long
915xfs_file_fallocate(
83aee9e4
CH
916 struct file *file,
917 int mode,
918 loff_t offset,
919 loff_t len)
2fe17c10 920{
83aee9e4
CH
921 struct inode *inode = file_inode(file);
922 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 923 long error;
c63a8eae 924 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
83aee9e4 925 loff_t new_size = 0;
749f24f3 926 bool do_file_insert = false;
2fe17c10 927
83aee9e4
CH
928 if (!S_ISREG(inode->i_mode))
929 return -EINVAL;
a904b1ca 930 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
931 return -EOPNOTSUPP;
932
781355c6 933 xfs_ilock(ip, iolock);
69eb5fa1 934 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
781355c6
CH
935 if (error)
936 goto out_unlock;
937
249bd908
DC
938 /*
939 * Must wait for all AIO to complete before we continue as AIO can
940 * change the file size on completion without holding any locks we
941 * currently hold. We must do this first because AIO can update both
942 * the on disk and in memory inode sizes, and the operations that follow
943 * require the in-memory size to be fully up-to-date.
944 */
945 inode_dio_wait(inode);
946
947 /*
948 * Now AIO and DIO has drained we flush and (if necessary) invalidate
949 * the cached range over the first operation we are about to run.
950 *
951 * We care about zero and collapse here because they both run a hole
952 * punch over the range first. Because that can zero data, and the range
953 * of invalidation for the shift operations is much larger, we still do
954 * the required flush for collapse in xfs_prepare_shift().
955 *
956 * Insert has the same range requirements as collapse, and we extend the
957 * file first which can zero data. Hence insert has the same
958 * flush/invalidate requirements as collapse and so they are both
959 * handled at the right time by xfs_prepare_shift().
960 */
961 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
962 FALLOC_FL_COLLAPSE_RANGE)) {
963 error = xfs_flush_unmap_range(ip, offset, len);
964 if (error)
965 goto out_unlock;
966 }
967
fbe7e520
DC
968 error = file_modified(file);
969 if (error)
970 goto out_unlock;
971
83aee9e4
CH
972 if (mode & FALLOC_FL_PUNCH_HOLE) {
973 error = xfs_free_file_space(ip, offset, len);
974 if (error)
975 goto out_unlock;
e1d8fb88 976 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
25219dbf 977 if (!xfs_is_falloc_aligned(ip, offset, len)) {
2451337d 978 error = -EINVAL;
e1d8fb88
NJ
979 goto out_unlock;
980 }
981
23fffa92
LC
982 /*
983 * There is no need to overlap collapse range with EOF,
984 * in which case it is effectively a truncate operation
985 */
986 if (offset + len >= i_size_read(inode)) {
2451337d 987 error = -EINVAL;
23fffa92
LC
988 goto out_unlock;
989 }
990
e1d8fb88
NJ
991 new_size = i_size_read(inode) - len;
992
993 error = xfs_collapse_file_space(ip, offset, len);
994 if (error)
995 goto out_unlock;
a904b1ca 996 } else if (mode & FALLOC_FL_INSERT_RANGE) {
7d83fb14 997 loff_t isize = i_size_read(inode);
a904b1ca 998
25219dbf 999 if (!xfs_is_falloc_aligned(ip, offset, len)) {
a904b1ca
NJ
1000 error = -EINVAL;
1001 goto out_unlock;
1002 }
1003
7d83fb14
DW
1004 /*
1005 * New inode size must not exceed ->s_maxbytes, accounting for
1006 * possible signed overflow.
1007 */
1008 if (inode->i_sb->s_maxbytes - isize < len) {
a904b1ca
NJ
1009 error = -EFBIG;
1010 goto out_unlock;
1011 }
7d83fb14 1012 new_size = isize + len;
a904b1ca
NJ
1013
1014 /* Offset should be less than i_size */
7d83fb14 1015 if (offset >= isize) {
a904b1ca
NJ
1016 error = -EINVAL;
1017 goto out_unlock;
1018 }
749f24f3 1019 do_file_insert = true;
83aee9e4
CH
1020 } else {
1021 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1022 offset + len > i_size_read(inode)) {
1023 new_size = offset + len;
2451337d 1024 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
1025 if (error)
1026 goto out_unlock;
1027 }
2fe17c10 1028
66ae56a5 1029 if (mode & FALLOC_FL_ZERO_RANGE) {
360c09c0
CH
1030 /*
1031 * Punch a hole and prealloc the range. We use a hole
1032 * punch rather than unwritten extent conversion for two
1033 * reasons:
1034 *
1035 * 1.) Hole punch handles partial block zeroing for us.
1036 * 2.) If prealloc returns ENOSPC, the file range is
1037 * still zero-valued by virtue of the hole punch.
1038 */
1039 unsigned int blksize = i_blocksize(inode);
1040
1041 trace_xfs_zero_file_space(ip);
1042
1043 error = xfs_free_file_space(ip, offset, len);
1044 if (error)
1045 goto out_unlock;
1046
1047 len = round_up(offset + len, blksize) -
1048 round_down(offset, blksize);
1049 offset = round_down(offset, blksize);
66ae56a5
CH
1050 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1051 error = xfs_reflink_unshare(ip, offset, len);
1052 if (error)
1053 goto out_unlock;
66ae56a5
CH
1054 } else {
1055 /*
1056 * If always_cow mode we can't use preallocations and
1057 * thus should not create them.
1058 */
1059 if (xfs_is_always_cow_inode(ip)) {
1060 error = -EOPNOTSUPP;
1061 goto out_unlock;
1062 }
360c09c0 1063 }
66ae56a5 1064
360c09c0 1065 if (!xfs_is_always_cow_inode(ip)) {
4d1b97f9 1066 error = xfs_alloc_file_space(ip, offset, len);
360c09c0
CH
1067 if (error)
1068 goto out_unlock;
98cc2db5 1069 }
fbe7e520 1070 }
2fe17c10
CH
1071
1072 /* Change file size if needed */
1073 if (new_size) {
1074 struct iattr iattr;
1075
1076 iattr.ia_valid = ATTR_SIZE;
1077 iattr.ia_size = new_size;
c1632a0f 1078 error = xfs_vn_setattr_size(file_mnt_idmap(file),
f736d93d 1079 file_dentry(file), &iattr);
a904b1ca
NJ
1080 if (error)
1081 goto out_unlock;
2fe17c10
CH
1082 }
1083
a904b1ca
NJ
1084 /*
1085 * Perform hole insertion now that the file size has been
1086 * updated so that if we crash during the operation we don't
1087 * leave shifted extents past EOF and hence losing access to
1088 * the data that is contained within them.
1089 */
472c6e46 1090 if (do_file_insert) {
a904b1ca 1091 error = xfs_insert_file_space(ip, offset, len);
472c6e46
DC
1092 if (error)
1093 goto out_unlock;
1094 }
1095
cea267c2 1096 if (xfs_file_sync_writes(file))
472c6e46 1097 error = xfs_log_force_inode(ip);
a904b1ca 1098
2fe17c10 1099out_unlock:
781355c6 1100 xfs_iunlock(ip, iolock);
2451337d 1101 return error;
2fe17c10
CH
1102}
1103
40144e49
JK
1104STATIC int
1105xfs_file_fadvise(
1106 struct file *file,
1107 loff_t start,
1108 loff_t end,
1109 int advice)
1110{
1111 struct xfs_inode *ip = XFS_I(file_inode(file));
1112 int ret;
1113 int lockflags = 0;
1114
1115 /*
1116 * Operations creating pages in page cache need protection from hole
1117 * punching and similar ops
1118 */
1119 if (advice == POSIX_FADV_WILLNEED) {
1120 lockflags = XFS_IOLOCK_SHARED;
1121 xfs_ilock(ip, lockflags);
1122 }
1123 ret = generic_fadvise(file, start, end, advice);
1124 if (lockflags)
1125 xfs_iunlock(ip, lockflags);
1126 return ret;
1127}
3fc9f5e4 1128
da034bcc 1129STATIC loff_t
2e5dfc99 1130xfs_file_remap_range(
3fc9f5e4
DW
1131 struct file *file_in,
1132 loff_t pos_in,
1133 struct file *file_out,
1134 loff_t pos_out,
1135 loff_t len,
1136 unsigned int remap_flags)
9fe26045 1137{
3fc9f5e4
DW
1138 struct inode *inode_in = file_inode(file_in);
1139 struct xfs_inode *src = XFS_I(inode_in);
1140 struct inode *inode_out = file_inode(file_out);
1141 struct xfs_inode *dest = XFS_I(inode_out);
1142 struct xfs_mount *mp = src->i_mount;
1143 loff_t remapped = 0;
1144 xfs_extlen_t cowextsize;
1145 int ret;
1146
2e5dfc99
DW
1147 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1148 return -EINVAL;
cc714660 1149
38c26bfd 1150 if (!xfs_has_reflink(mp))
3fc9f5e4
DW
1151 return -EOPNOTSUPP;
1152
75c8c50f 1153 if (xfs_is_shutdown(mp))
3fc9f5e4
DW
1154 return -EIO;
1155
1156 /* Prepare and then clone file data. */
1157 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1158 &len, remap_flags);
451d34ee 1159 if (ret || len == 0)
3fc9f5e4
DW
1160 return ret;
1161
1162 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1163
1164 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1165 &remapped);
1166 if (ret)
1167 goto out_unlock;
1168
1169 /*
1170 * Carry the cowextsize hint from src to dest if we're sharing the
1171 * entire source file to the entire destination file, the source file
1172 * has a cowextsize hint, and the destination file does not.
1173 */
1174 cowextsize = 0;
1175 if (pos_in == 0 && len == i_size_read(inode_in) &&
3e09ab8f 1176 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
3fc9f5e4 1177 pos_out == 0 && len >= i_size_read(inode_out) &&
3e09ab8f 1178 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
b33ce57d 1179 cowextsize = src->i_cowextsize;
3fc9f5e4
DW
1180
1181 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1182 remap_flags);
5833112d
CH
1183 if (ret)
1184 goto out_unlock;
3fc9f5e4 1185
5ffce3cc 1186 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
5833112d 1187 xfs_log_force_inode(dest);
3fc9f5e4 1188out_unlock:
e2aaee9c 1189 xfs_iunlock2_io_mmap(src, dest);
3fc9f5e4
DW
1190 if (ret)
1191 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1192 return remapped > 0 ? remapped : ret;
9fe26045 1193}
2fe17c10 1194
1da177e4 1195STATIC int
3562fd45 1196xfs_file_open(
1da177e4 1197 struct inode *inode,
f999a5bf 1198 struct file *file)
1da177e4 1199{
75c8c50f 1200 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
f999a5bf 1201 return -EIO;
d8aeb44a
JA
1202 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
1203 FMODE_DIO_PARALLEL_WRITE;
f3bf67c6 1204 return generic_file_open(inode, file);
f999a5bf
CH
1205}
1206
1207STATIC int
1208xfs_dir_open(
1209 struct inode *inode,
1210 struct file *file)
1211{
1212 struct xfs_inode *ip = XFS_I(inode);
a1033753 1213 unsigned int mode;
f999a5bf
CH
1214 int error;
1215
1216 error = xfs_file_open(inode, file);
1217 if (error)
1218 return error;
1219
1220 /*
1221 * If there are any blocks, read-ahead block 0 as we're almost
1222 * certain to have the next operation be a read there.
1223 */
309ecac8 1224 mode = xfs_ilock_data_map_shared(ip);
daf83964 1225 if (ip->i_df.if_nextents > 0)
06566fda 1226 error = xfs_dir3_data_readahead(ip, 0, 0);
f999a5bf 1227 xfs_iunlock(ip, mode);
7a652bbe 1228 return error;
1da177e4
LT
1229}
1230
1da177e4 1231STATIC int
3562fd45 1232xfs_file_release(
1da177e4
LT
1233 struct inode *inode,
1234 struct file *filp)
1235{
2451337d 1236 return xfs_release(XFS_I(inode));
1da177e4
LT
1237}
1238
1da177e4 1239STATIC int
3562fd45 1240xfs_file_readdir(
b8227554
AV
1241 struct file *file,
1242 struct dir_context *ctx)
1da177e4 1243{
b8227554 1244 struct inode *inode = file_inode(file);
739bfb2a 1245 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1246 size_t bufsize;
1247
1248 /*
1249 * The Linux API doesn't pass down the total size of the buffer
1250 * we read into down to the filesystem. With the filldir concept
1251 * it's not needed for correct information, but the XFS dir2 leaf
1252 * code wants an estimate of the buffer size to calculate it's
1253 * readahead window and size the buffers used for mapping to
1254 * physical blocks.
1255 *
1256 * Try to give it an estimate that's good enough, maybe at some
1257 * point we can change the ->readdir prototype to include the
a9cc799e 1258 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1259 */
13d2c10b 1260 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
051e7cd4 1261
acb9553c 1262 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
1263}
1264
1265STATIC loff_t
1266xfs_file_llseek(
1267 struct file *file,
1268 loff_t offset,
59f9c004 1269 int whence)
3fe3e6b1 1270{
9b2970aa
CH
1271 struct inode *inode = file->f_mapping->host;
1272
75c8c50f 1273 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
9b2970aa
CH
1274 return -EIO;
1275
59f9c004 1276 switch (whence) {
9b2970aa 1277 default:
59f9c004 1278 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1279 case SEEK_HOLE:
60271ab7 1280 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1281 break;
49c69591 1282 case SEEK_DATA:
60271ab7 1283 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
9b2970aa 1284 break;
3fe3e6b1 1285 }
9b2970aa
CH
1286
1287 if (offset < 0)
1288 return offset;
1289 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1290}
1291
ea6c49b7 1292#ifdef CONFIG_FS_DAX
47ba8cc7 1293static inline vm_fault_t
ea6c49b7
SR
1294xfs_dax_fault(
1295 struct vm_fault *vmf,
1296 enum page_entry_size pe_size,
1297 bool write_fault,
1298 pfn_t *pfn)
1299{
1300 return dax_iomap_fault(vmf, pe_size, pfn, NULL,
1301 (write_fault && !vmf->cow_page) ?
1302 &xfs_dax_write_iomap_ops :
1303 &xfs_read_iomap_ops);
1304}
1305#else
47ba8cc7 1306static inline vm_fault_t
ea6c49b7
SR
1307xfs_dax_fault(
1308 struct vm_fault *vmf,
1309 enum page_entry_size pe_size,
1310 bool write_fault,
1311 pfn_t *pfn)
1312{
47ba8cc7
DW
1313 ASSERT(0);
1314 return VM_FAULT_SIGBUS;
ea6c49b7
SR
1315}
1316#endif
1317
de0e8c20
DC
1318/*
1319 * Locking for serialisation of IO during page faults. This results in a lock
1320 * ordering of:
1321 *
c1e8d7c6 1322 * mmap_lock (MM)
6b698ede 1323 * sb_start_pagefault(vfs, freeze)
2433480a 1324 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
6b698ede
DC
1325 * page_lock (MM)
1326 * i_lock (XFS - extent map serialisation)
de0e8c20 1327 */
05edd888 1328static vm_fault_t
d522d569
CH
1329__xfs_filemap_fault(
1330 struct vm_fault *vmf,
1331 enum page_entry_size pe_size,
1332 bool write_fault)
de0e8c20 1333{
11bac800 1334 struct inode *inode = file_inode(vmf->vma->vm_file);
d522d569 1335 struct xfs_inode *ip = XFS_I(inode);
05edd888 1336 vm_fault_t ret;
de0e8c20 1337
d522d569 1338 trace_xfs_filemap_fault(ip, pe_size, write_fault);
de0e8c20 1339
d522d569
CH
1340 if (write_fault) {
1341 sb_start_pagefault(inode->i_sb);
1342 file_update_time(vmf->vma->vm_file);
1343 }
de0e8c20 1344
6b698ede 1345 if (IS_DAX(inode)) {
a39e596b
CH
1346 pfn_t pfn;
1347
2433480a 1348 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
ea6c49b7 1349 ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn);
a39e596b
CH
1350 if (ret & VM_FAULT_NEEDDSYNC)
1351 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
2433480a 1352 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1353 } else {
2433480a
JK
1354 if (write_fault) {
1355 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
f150b423 1356 ret = iomap_page_mkwrite(vmf,
118e021b 1357 &xfs_page_mkwrite_iomap_ops);
2433480a
JK
1358 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1359 } else {
d522d569 1360 ret = filemap_fault(vmf);
2433480a 1361 }
6b698ede 1362 }
6b698ede 1363
d522d569
CH
1364 if (write_fault)
1365 sb_end_pagefault(inode->i_sb);
6b698ede 1366 return ret;
de0e8c20
DC
1367}
1368
b17164e2
MP
1369static inline bool
1370xfs_is_write_fault(
1371 struct vm_fault *vmf)
1372{
1373 return (vmf->flags & FAULT_FLAG_WRITE) &&
1374 (vmf->vma->vm_flags & VM_SHARED);
1375}
1376
05edd888 1377static vm_fault_t
6b698ede 1378xfs_filemap_fault(
075a924d
DC
1379 struct vm_fault *vmf)
1380{
6b698ede 1381 /* DAX can shortcut the normal fault path on write faults! */
d522d569
CH
1382 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1383 IS_DAX(file_inode(vmf->vma->vm_file)) &&
b17164e2 1384 xfs_is_write_fault(vmf));
6b698ede
DC
1385}
1386
05edd888 1387static vm_fault_t
a2d58167 1388xfs_filemap_huge_fault(
c791ace1
DJ
1389 struct vm_fault *vmf,
1390 enum page_entry_size pe_size)
acd76e74 1391{
d522d569 1392 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
acd76e74
MW
1393 return VM_FAULT_FALLBACK;
1394
d522d569
CH
1395 /* DAX can shortcut the normal fault path on write faults! */
1396 return __xfs_filemap_fault(vmf, pe_size,
b17164e2 1397 xfs_is_write_fault(vmf));
d522d569 1398}
acd76e74 1399
05edd888 1400static vm_fault_t
d522d569
CH
1401xfs_filemap_page_mkwrite(
1402 struct vm_fault *vmf)
1403{
1404 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1405}
1406
3af49285 1407/*
7b565c9f
JK
1408 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1409 * on write faults. In reality, it needs to serialise against truncate and
1410 * prepare memory for writing so handle is as standard write fault.
3af49285 1411 */
05edd888 1412static vm_fault_t
3af49285 1413xfs_filemap_pfn_mkwrite(
3af49285
DC
1414 struct vm_fault *vmf)
1415{
1416
7b565c9f 1417 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1418}
1419
6b698ede
DC
1420static const struct vm_operations_struct xfs_file_vm_ops = {
1421 .fault = xfs_filemap_fault,
a2d58167 1422 .huge_fault = xfs_filemap_huge_fault,
945ea457 1423 .map_pages = filemap_map_pages,
6b698ede 1424 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1425 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1426};
1427
1428STATIC int
1429xfs_file_mmap(
30fa529e
CH
1430 struct file *file,
1431 struct vm_area_struct *vma)
6b698ede 1432{
30fa529e
CH
1433 struct inode *inode = file_inode(file);
1434 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
b21fec41 1435
a39e596b 1436 /*
b21fec41
PG
1437 * We don't support synchronous mappings for non-DAX files and
1438 * for DAX files if underneath dax_device is not synchronous.
a39e596b 1439 */
30fa529e 1440 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
a39e596b
CH
1441 return -EOPNOTSUPP;
1442
30fa529e 1443 file_accessed(file);
6b698ede 1444 vma->vm_ops = &xfs_file_vm_ops;
30fa529e 1445 if (IS_DAX(inode))
1c71222e 1446 vm_flags_set(vma, VM_HUGEPAGE);
6b698ede 1447 return 0;
075a924d
DC
1448}
1449
4b6f5d20 1450const struct file_operations xfs_file_operations = {
3fe3e6b1 1451 .llseek = xfs_file_llseek,
b4f5d2c6 1452 .read_iter = xfs_file_read_iter,
bf97f3bc 1453 .write_iter = xfs_file_write_iter,
54919f94 1454 .splice_read = xfs_file_splice_read,
8d020765 1455 .splice_write = iter_file_splice_write,
3e08773c 1456 .iopoll = iocb_bio_iopoll,
3562fd45 1457 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1458#ifdef CONFIG_COMPAT
3562fd45 1459 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1460#endif
3562fd45 1461 .mmap = xfs_file_mmap,
a39e596b 1462 .mmap_supported_flags = MAP_SYNC,
3562fd45
NS
1463 .open = xfs_file_open,
1464 .release = xfs_file_release,
1465 .fsync = xfs_file_fsync,
dbe6ec81 1466 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1467 .fallocate = xfs_file_fallocate,
40144e49 1468 .fadvise = xfs_file_fadvise,
2e5dfc99 1469 .remap_file_range = xfs_file_remap_range,
1da177e4
LT
1470};
1471
4b6f5d20 1472const struct file_operations xfs_dir_file_operations = {
f999a5bf 1473 .open = xfs_dir_open,
1da177e4 1474 .read = generic_read_dir,
3b0a3c1a 1475 .iterate_shared = xfs_file_readdir,
59af1584 1476 .llseek = generic_file_llseek,
3562fd45 1477 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1478#ifdef CONFIG_COMPAT
3562fd45 1479 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1480#endif
1da2f2db 1481 .fsync = xfs_dir_fsync,
1da177e4 1482};