xfs: validate btree records on retrieval
[linux-block.git] / fs / xfs / xfs_extfree_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
4fb6e8ad 20#include "xfs_format.h"
239880ef
DC
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
dc42375d 23#include "xfs_bit.h"
1da177e4 24#include "xfs_mount.h"
239880ef 25#include "xfs_trans.h"
1da177e4 26#include "xfs_trans_priv.h"
239880ef 27#include "xfs_buf_item.h"
1da177e4 28#include "xfs_extfree_item.h"
1234351c 29#include "xfs_log.h"
340785cc
DW
30#include "xfs_btree.h"
31#include "xfs_rmap.h"
1da177e4
LT
32
33
34kmem_zone_t *xfs_efi_zone;
35kmem_zone_t *xfs_efd_zone;
36
7bfa31d8
CH
37static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
38{
39 return container_of(lip, struct xfs_efi_log_item, efi_item);
40}
1da177e4 41
7d795ca3 42void
7bfa31d8
CH
43xfs_efi_item_free(
44 struct xfs_efi_log_item *efip)
7d795ca3 45{
b1c5ebb2 46 kmem_free(efip->efi_item.li_lv_shadow);
7bfa31d8 47 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
f0e2d93c 48 kmem_free(efip);
7bfa31d8 49 else
7d795ca3 50 kmem_zone_free(xfs_efi_zone, efip);
7d795ca3 51}
1da177e4 52
0612d116
DC
53/*
54 * Freeing the efi requires that we remove it from the AIL if it has already
55 * been placed there. However, the EFI may not yet have been placed in the AIL
56 * when called by xfs_efi_release() from EFD processing due to the ordering of
57 * committed vs unpin operations in bulk insert operations. Hence the reference
58 * count to ensure only the last caller frees the EFI.
59 */
60void
61xfs_efi_release(
62 struct xfs_efi_log_item *efip)
63{
64 ASSERT(atomic_read(&efip->efi_refcount) > 0);
65 if (atomic_dec_and_test(&efip->efi_refcount)) {
66 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
67 xfs_efi_item_free(efip);
68 }
69}
70
1da177e4
LT
71/*
72 * This returns the number of iovecs needed to log the given efi item.
73 * We only need 1 iovec for an efi item. It just logs the efi_log_format
74 * structure.
75 */
166d1368
DC
76static inline int
77xfs_efi_item_sizeof(
78 struct xfs_efi_log_item *efip)
79{
80 return sizeof(struct xfs_efi_log_format) +
81 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
82}
83
84STATIC void
7bfa31d8 85xfs_efi_item_size(
166d1368
DC
86 struct xfs_log_item *lip,
87 int *nvecs,
88 int *nbytes)
1da177e4 89{
166d1368
DC
90 *nvecs += 1;
91 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
1da177e4
LT
92}
93
94/*
95 * This is called to fill in the vector of log iovecs for the
96 * given efi log item. We use only 1 iovec, and we point that
97 * at the efi_log_format structure embedded in the efi item.
98 * It is at this point that we assert that all of the extent
99 * slots in the efi item have been filled.
100 */
101STATIC void
7bfa31d8
CH
102xfs_efi_item_format(
103 struct xfs_log_item *lip,
bde7cff6 104 struct xfs_log_vec *lv)
1da177e4 105{
7bfa31d8 106 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
bde7cff6 107 struct xfs_log_iovec *vecp = NULL;
1da177e4 108
b199c8a4
DC
109 ASSERT(atomic_read(&efip->efi_next_extent) ==
110 efip->efi_format.efi_nextents);
1da177e4
LT
111
112 efip->efi_format.efi_type = XFS_LI_EFI;
1da177e4
LT
113 efip->efi_format.efi_size = 1;
114
bde7cff6 115 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
1234351c
CH
116 &efip->efi_format,
117 xfs_efi_item_sizeof(efip));
1da177e4
LT
118}
119
120
121/*
122 * Pinning has no meaning for an efi item, so just return.
123 */
1da177e4 124STATIC void
7bfa31d8
CH
125xfs_efi_item_pin(
126 struct xfs_log_item *lip)
1da177e4 127{
1da177e4
LT
128}
129
1da177e4 130/*
8d99fe92
BF
131 * The unpin operation is the last place an EFI is manipulated in the log. It is
132 * either inserted in the AIL or aborted in the event of a log I/O error. In
133 * either case, the EFI transaction has been successfully committed to make it
134 * this far. Therefore, we expect whoever committed the EFI to either construct
135 * and commit the EFD or drop the EFD's reference in the event of error. Simply
136 * drop the log's EFI reference now that the log is done with it.
1da177e4 137 */
1da177e4 138STATIC void
7bfa31d8
CH
139xfs_efi_item_unpin(
140 struct xfs_log_item *lip,
141 int remove)
1da177e4 142{
7bfa31d8 143 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
5e4b5386 144 xfs_efi_release(efip);
1da177e4
LT
145}
146
147/*
43ff2122
CH
148 * Efi items have no locking or pushing. However, since EFIs are pulled from
149 * the AIL when their corresponding EFDs are committed to disk, their situation
150 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
151 * will eventually flush the log. This should help in getting the EFI out of
152 * the AIL.
1da177e4 153 */
1da177e4 154STATIC uint
43ff2122
CH
155xfs_efi_item_push(
156 struct xfs_log_item *lip,
157 struct list_head *buffer_list)
1da177e4
LT
158{
159 return XFS_ITEM_PINNED;
160}
161
8d99fe92
BF
162/*
163 * The EFI has been either committed or aborted if the transaction has been
164 * cancelled. If the transaction was cancelled, an EFD isn't going to be
165 * constructed and thus we free the EFI here directly.
166 */
1da177e4 167STATIC void
7bfa31d8
CH
168xfs_efi_item_unlock(
169 struct xfs_log_item *lip)
1da177e4 170{
22525c17 171 if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
0612d116 172 xfs_efi_release(EFI_ITEM(lip));
1da177e4
LT
173}
174
175/*
b199c8a4 176 * The EFI is logged only once and cannot be moved in the log, so simply return
666d644c 177 * the lsn at which it's been logged.
1da177e4 178 */
1da177e4 179STATIC xfs_lsn_t
7bfa31d8
CH
180xfs_efi_item_committed(
181 struct xfs_log_item *lip,
182 xfs_lsn_t lsn)
1da177e4
LT
183{
184 return lsn;
185}
186
1da177e4
LT
187/*
188 * The EFI dependency tracking op doesn't do squat. It can't because
189 * it doesn't know where the free extent is coming from. The dependency
190 * tracking has to be handled by the "enclosing" metadata object. For
191 * example, for inodes, the inode is locked throughout the extent freeing
192 * so the dependency should be recorded there.
193 */
1da177e4 194STATIC void
7bfa31d8
CH
195xfs_efi_item_committing(
196 struct xfs_log_item *lip,
197 xfs_lsn_t lsn)
1da177e4 198{
1da177e4
LT
199}
200
201/*
202 * This is the ops vector shared by all efi log items.
203 */
272e42b2 204static const struct xfs_item_ops xfs_efi_item_ops = {
7bfa31d8
CH
205 .iop_size = xfs_efi_item_size,
206 .iop_format = xfs_efi_item_format,
207 .iop_pin = xfs_efi_item_pin,
208 .iop_unpin = xfs_efi_item_unpin,
7bfa31d8
CH
209 .iop_unlock = xfs_efi_item_unlock,
210 .iop_committed = xfs_efi_item_committed,
211 .iop_push = xfs_efi_item_push,
212 .iop_committing = xfs_efi_item_committing
1da177e4
LT
213};
214
215
216/*
217 * Allocate and initialize an efi item with the given number of extents.
218 */
7bfa31d8
CH
219struct xfs_efi_log_item *
220xfs_efi_init(
221 struct xfs_mount *mp,
222 uint nextents)
1da177e4
LT
223
224{
7bfa31d8 225 struct xfs_efi_log_item *efip;
1da177e4
LT
226 uint size;
227
228 ASSERT(nextents > 0);
229 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
230 size = (uint)(sizeof(xfs_efi_log_item_t) +
231 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 232 efip = kmem_zalloc(size, KM_SLEEP);
1da177e4 233 } else {
7bfa31d8 234 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
1da177e4
LT
235 }
236
43f5efc5 237 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
1da177e4 238 efip->efi_format.efi_nextents = nextents;
db9d67d6 239 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
b199c8a4 240 atomic_set(&efip->efi_next_extent, 0);
666d644c 241 atomic_set(&efip->efi_refcount, 2);
1da177e4 242
7bfa31d8 243 return efip;
1da177e4
LT
244}
245
6d192a9b
TS
246/*
247 * Copy an EFI format buffer from the given buf, and into the destination
248 * EFI format structure.
249 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
250 * one of which will be the native format for this kernel.
251 * It will handle the conversion of formats if necessary.
252 */
253int
254xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
255{
4e0d5f92 256 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
6d192a9b
TS
257 uint i;
258 uint len = sizeof(xfs_efi_log_format_t) +
259 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
260 uint len32 = sizeof(xfs_efi_log_format_32_t) +
261 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
262 uint len64 = sizeof(xfs_efi_log_format_64_t) +
263 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
264
265 if (buf->i_len == len) {
266 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
267 return 0;
268 } else if (buf->i_len == len32) {
4e0d5f92 269 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
6d192a9b
TS
270
271 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
272 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
273 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
274 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
275 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
276 dst_efi_fmt->efi_extents[i].ext_start =
277 src_efi_fmt_32->efi_extents[i].ext_start;
278 dst_efi_fmt->efi_extents[i].ext_len =
279 src_efi_fmt_32->efi_extents[i].ext_len;
280 }
281 return 0;
282 } else if (buf->i_len == len64) {
4e0d5f92 283 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
6d192a9b
TS
284
285 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
286 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
287 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
288 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
289 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
290 dst_efi_fmt->efi_extents[i].ext_start =
291 src_efi_fmt_64->efi_extents[i].ext_start;
292 dst_efi_fmt->efi_extents[i].ext_len =
293 src_efi_fmt_64->efi_extents[i].ext_len;
294 }
295 return 0;
296 }
2451337d 297 return -EFSCORRUPTED;
6d192a9b
TS
298}
299
7bfa31d8 300static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
7d795ca3 301{
7bfa31d8
CH
302 return container_of(lip, struct xfs_efd_log_item, efd_item);
303}
1da177e4 304
7bfa31d8
CH
305STATIC void
306xfs_efd_item_free(struct xfs_efd_log_item *efdp)
307{
b1c5ebb2 308 kmem_free(efdp->efd_item.li_lv_shadow);
7bfa31d8 309 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
f0e2d93c 310 kmem_free(efdp);
7bfa31d8 311 else
7d795ca3 312 kmem_zone_free(xfs_efd_zone, efdp);
7d795ca3 313}
1da177e4
LT
314
315/*
316 * This returns the number of iovecs needed to log the given efd item.
317 * We only need 1 iovec for an efd item. It just logs the efd_log_format
318 * structure.
319 */
166d1368
DC
320static inline int
321xfs_efd_item_sizeof(
322 struct xfs_efd_log_item *efdp)
323{
324 return sizeof(xfs_efd_log_format_t) +
325 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
326}
327
328STATIC void
7bfa31d8 329xfs_efd_item_size(
166d1368
DC
330 struct xfs_log_item *lip,
331 int *nvecs,
332 int *nbytes)
1da177e4 333{
166d1368
DC
334 *nvecs += 1;
335 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
1da177e4
LT
336}
337
338/*
339 * This is called to fill in the vector of log iovecs for the
340 * given efd log item. We use only 1 iovec, and we point that
341 * at the efd_log_format structure embedded in the efd item.
342 * It is at this point that we assert that all of the extent
343 * slots in the efd item have been filled.
344 */
345STATIC void
7bfa31d8
CH
346xfs_efd_item_format(
347 struct xfs_log_item *lip,
bde7cff6 348 struct xfs_log_vec *lv)
1da177e4 349{
7bfa31d8 350 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
bde7cff6 351 struct xfs_log_iovec *vecp = NULL;
1da177e4
LT
352
353 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
354
355 efdp->efd_format.efd_type = XFS_LI_EFD;
1da177e4
LT
356 efdp->efd_format.efd_size = 1;
357
bde7cff6 358 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
1234351c
CH
359 &efdp->efd_format,
360 xfs_efd_item_sizeof(efdp));
1da177e4
LT
361}
362
1da177e4
LT
363/*
364 * Pinning has no meaning for an efd item, so just return.
365 */
1da177e4 366STATIC void
7bfa31d8
CH
367xfs_efd_item_pin(
368 struct xfs_log_item *lip)
1da177e4 369{
1da177e4
LT
370}
371
1da177e4
LT
372/*
373 * Since pinning has no meaning for an efd item, unpinning does
374 * not either.
375 */
1da177e4 376STATIC void
7bfa31d8
CH
377xfs_efd_item_unpin(
378 struct xfs_log_item *lip,
379 int remove)
1da177e4 380{
1da177e4
LT
381}
382
383/*
43ff2122
CH
384 * There isn't much you can do to push on an efd item. It is simply stuck
385 * waiting for the log to be flushed to disk.
1da177e4 386 */
1da177e4 387STATIC uint
43ff2122
CH
388xfs_efd_item_push(
389 struct xfs_log_item *lip,
390 struct list_head *buffer_list)
1da177e4 391{
43ff2122 392 return XFS_ITEM_PINNED;
1da177e4
LT
393}
394
8d99fe92
BF
395/*
396 * The EFD is either committed or aborted if the transaction is cancelled. If
397 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
398 */
1da177e4 399STATIC void
7bfa31d8
CH
400xfs_efd_item_unlock(
401 struct xfs_log_item *lip)
1da177e4 402{
8d99fe92
BF
403 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
404
22525c17 405 if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
8d99fe92
BF
406 xfs_efi_release(efdp->efd_efip);
407 xfs_efd_item_free(efdp);
408 }
1da177e4
LT
409}
410
411/*
8d99fe92
BF
412 * When the efd item is committed to disk, all we need to do is delete our
413 * reference to our partner efi item and then free ourselves. Since we're
414 * freeing ourselves we must return -1 to keep the transaction code from further
415 * referencing this item.
1da177e4 416 */
1da177e4 417STATIC xfs_lsn_t
7bfa31d8
CH
418xfs_efd_item_committed(
419 struct xfs_log_item *lip,
420 xfs_lsn_t lsn)
1da177e4 421{
7bfa31d8
CH
422 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
423
1da177e4 424 /*
8d99fe92
BF
425 * Drop the EFI reference regardless of whether the EFD has been
426 * aborted. Once the EFD transaction is constructed, it is the sole
427 * responsibility of the EFD to release the EFI (even if the EFI is
428 * aborted due to log I/O error).
1da177e4 429 */
8d99fe92 430 xfs_efi_release(efdp->efd_efip);
7d795ca3 431 xfs_efd_item_free(efdp);
8d99fe92 432
1da177e4
LT
433 return (xfs_lsn_t)-1;
434}
435
1da177e4
LT
436/*
437 * The EFD dependency tracking op doesn't do squat. It can't because
438 * it doesn't know where the free extent is coming from. The dependency
439 * tracking has to be handled by the "enclosing" metadata object. For
440 * example, for inodes, the inode is locked throughout the extent freeing
441 * so the dependency should be recorded there.
442 */
1da177e4 443STATIC void
7bfa31d8
CH
444xfs_efd_item_committing(
445 struct xfs_log_item *lip,
446 xfs_lsn_t lsn)
1da177e4 447{
1da177e4
LT
448}
449
450/*
451 * This is the ops vector shared by all efd log items.
452 */
272e42b2 453static const struct xfs_item_ops xfs_efd_item_ops = {
7bfa31d8
CH
454 .iop_size = xfs_efd_item_size,
455 .iop_format = xfs_efd_item_format,
456 .iop_pin = xfs_efd_item_pin,
457 .iop_unpin = xfs_efd_item_unpin,
7bfa31d8
CH
458 .iop_unlock = xfs_efd_item_unlock,
459 .iop_committed = xfs_efd_item_committed,
460 .iop_push = xfs_efd_item_push,
461 .iop_committing = xfs_efd_item_committing
1da177e4
LT
462};
463
1da177e4
LT
464/*
465 * Allocate and initialize an efd item with the given number of extents.
466 */
7bfa31d8
CH
467struct xfs_efd_log_item *
468xfs_efd_init(
469 struct xfs_mount *mp,
470 struct xfs_efi_log_item *efip,
471 uint nextents)
1da177e4
LT
472
473{
7bfa31d8 474 struct xfs_efd_log_item *efdp;
1da177e4
LT
475 uint size;
476
477 ASSERT(nextents > 0);
478 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
479 size = (uint)(sizeof(xfs_efd_log_item_t) +
480 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 481 efdp = kmem_zalloc(size, KM_SLEEP);
1da177e4 482 } else {
7bfa31d8 483 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
1da177e4
LT
484 }
485
43f5efc5 486 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
1da177e4
LT
487 efdp->efd_efip = efip;
488 efdp->efd_format.efd_nextents = nextents;
489 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
490
7bfa31d8 491 return efdp;
1da177e4 492}
dc42375d
DW
493
494/*
495 * Process an extent free intent item that was recovered from
496 * the log. We need to free the extents that it describes.
497 */
498int
499xfs_efi_recover(
500 struct xfs_mount *mp,
501 struct xfs_efi_log_item *efip)
502{
503 struct xfs_efd_log_item *efdp;
504 struct xfs_trans *tp;
505 int i;
506 int error = 0;
507 xfs_extent_t *extp;
508 xfs_fsblock_t startblock_fsb;
340785cc 509 struct xfs_owner_info oinfo;
dc42375d
DW
510
511 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
512
513 /*
514 * First check the validity of the extents described by the
515 * EFI. If any are bad, then assume that all are bad and
516 * just toss the EFI.
517 */
518 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
e127fafd 519 extp = &efip->efi_format.efi_extents[i];
dc42375d
DW
520 startblock_fsb = XFS_BB_TO_FSB(mp,
521 XFS_FSB_TO_DADDR(mp, extp->ext_start));
e127fafd
DW
522 if (startblock_fsb == 0 ||
523 extp->ext_len == 0 ||
524 startblock_fsb >= mp->m_sb.sb_dblocks ||
525 extp->ext_len >= mp->m_sb.sb_agblocks) {
dc42375d
DW
526 /*
527 * This will pull the EFI from the AIL and
528 * free the memory associated with it.
529 */
530 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
531 xfs_efi_release(efip);
532 return -EIO;
533 }
534 }
535
536 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
537 if (error)
538 return error;
539 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
540
33df3a9c 541 xfs_rmap_any_owner_update(&oinfo);
dc42375d 542 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
e127fafd 543 extp = &efip->efi_format.efi_extents[i];
dc42375d 544 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
fcb762f5 545 extp->ext_len, &oinfo, false);
dc42375d
DW
546 if (error)
547 goto abort_error;
548
549 }
550
551 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
552 error = xfs_trans_commit(tp);
553 return error;
554
555abort_error:
556 xfs_trans_cancel(tp);
557 return error;
558}