Merge tag 'mmc-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-block.git] / fs / xfs / xfs_extfree_item.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
4fb6e8ad 8#include "xfs_format.h"
239880ef
DC
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
dc42375d 11#include "xfs_bit.h"
1da177e4 12#include "xfs_mount.h"
239880ef 13#include "xfs_trans.h"
1da177e4 14#include "xfs_trans_priv.h"
239880ef 15#include "xfs_buf_item.h"
1da177e4 16#include "xfs_extfree_item.h"
1234351c 17#include "xfs_log.h"
340785cc
DW
18#include "xfs_btree.h"
19#include "xfs_rmap.h"
1da177e4
LT
20
21
22kmem_zone_t *xfs_efi_zone;
23kmem_zone_t *xfs_efd_zone;
24
7bfa31d8
CH
25static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
26{
27 return container_of(lip, struct xfs_efi_log_item, efi_item);
28}
1da177e4 29
7d795ca3 30void
7bfa31d8
CH
31xfs_efi_item_free(
32 struct xfs_efi_log_item *efip)
7d795ca3 33{
b1c5ebb2 34 kmem_free(efip->efi_item.li_lv_shadow);
7bfa31d8 35 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
f0e2d93c 36 kmem_free(efip);
7bfa31d8 37 else
7d795ca3 38 kmem_zone_free(xfs_efi_zone, efip);
7d795ca3 39}
1da177e4 40
0612d116
DC
41/*
42 * Freeing the efi requires that we remove it from the AIL if it has already
43 * been placed there. However, the EFI may not yet have been placed in the AIL
44 * when called by xfs_efi_release() from EFD processing due to the ordering of
45 * committed vs unpin operations in bulk insert operations. Hence the reference
46 * count to ensure only the last caller frees the EFI.
47 */
48void
49xfs_efi_release(
50 struct xfs_efi_log_item *efip)
51{
52 ASSERT(atomic_read(&efip->efi_refcount) > 0);
53 if (atomic_dec_and_test(&efip->efi_refcount)) {
54 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
55 xfs_efi_item_free(efip);
56 }
57}
58
1da177e4
LT
59/*
60 * This returns the number of iovecs needed to log the given efi item.
61 * We only need 1 iovec for an efi item. It just logs the efi_log_format
62 * structure.
63 */
166d1368
DC
64static inline int
65xfs_efi_item_sizeof(
66 struct xfs_efi_log_item *efip)
67{
68 return sizeof(struct xfs_efi_log_format) +
69 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
70}
71
72STATIC void
7bfa31d8 73xfs_efi_item_size(
166d1368
DC
74 struct xfs_log_item *lip,
75 int *nvecs,
76 int *nbytes)
1da177e4 77{
166d1368
DC
78 *nvecs += 1;
79 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
1da177e4
LT
80}
81
82/*
83 * This is called to fill in the vector of log iovecs for the
84 * given efi log item. We use only 1 iovec, and we point that
85 * at the efi_log_format structure embedded in the efi item.
86 * It is at this point that we assert that all of the extent
87 * slots in the efi item have been filled.
88 */
89STATIC void
7bfa31d8
CH
90xfs_efi_item_format(
91 struct xfs_log_item *lip,
bde7cff6 92 struct xfs_log_vec *lv)
1da177e4 93{
7bfa31d8 94 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
bde7cff6 95 struct xfs_log_iovec *vecp = NULL;
1da177e4 96
b199c8a4
DC
97 ASSERT(atomic_read(&efip->efi_next_extent) ==
98 efip->efi_format.efi_nextents);
1da177e4
LT
99
100 efip->efi_format.efi_type = XFS_LI_EFI;
1da177e4
LT
101 efip->efi_format.efi_size = 1;
102
bde7cff6 103 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
1234351c
CH
104 &efip->efi_format,
105 xfs_efi_item_sizeof(efip));
1da177e4
LT
106}
107
108
109/*
110 * Pinning has no meaning for an efi item, so just return.
111 */
1da177e4 112STATIC void
7bfa31d8
CH
113xfs_efi_item_pin(
114 struct xfs_log_item *lip)
1da177e4 115{
1da177e4
LT
116}
117
1da177e4 118/*
8d99fe92
BF
119 * The unpin operation is the last place an EFI is manipulated in the log. It is
120 * either inserted in the AIL or aborted in the event of a log I/O error. In
121 * either case, the EFI transaction has been successfully committed to make it
122 * this far. Therefore, we expect whoever committed the EFI to either construct
123 * and commit the EFD or drop the EFD's reference in the event of error. Simply
124 * drop the log's EFI reference now that the log is done with it.
1da177e4 125 */
1da177e4 126STATIC void
7bfa31d8
CH
127xfs_efi_item_unpin(
128 struct xfs_log_item *lip,
129 int remove)
1da177e4 130{
7bfa31d8 131 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
5e4b5386 132 xfs_efi_release(efip);
1da177e4
LT
133}
134
135/*
43ff2122
CH
136 * Efi items have no locking or pushing. However, since EFIs are pulled from
137 * the AIL when their corresponding EFDs are committed to disk, their situation
138 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
139 * will eventually flush the log. This should help in getting the EFI out of
140 * the AIL.
1da177e4 141 */
1da177e4 142STATIC uint
43ff2122
CH
143xfs_efi_item_push(
144 struct xfs_log_item *lip,
145 struct list_head *buffer_list)
1da177e4
LT
146{
147 return XFS_ITEM_PINNED;
148}
149
8d99fe92
BF
150/*
151 * The EFI has been either committed or aborted if the transaction has been
152 * cancelled. If the transaction was cancelled, an EFD isn't going to be
153 * constructed and thus we free the EFI here directly.
154 */
1da177e4 155STATIC void
7bfa31d8
CH
156xfs_efi_item_unlock(
157 struct xfs_log_item *lip)
1da177e4 158{
22525c17 159 if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
0612d116 160 xfs_efi_release(EFI_ITEM(lip));
1da177e4
LT
161}
162
163/*
b199c8a4 164 * The EFI is logged only once and cannot be moved in the log, so simply return
666d644c 165 * the lsn at which it's been logged.
1da177e4 166 */
1da177e4 167STATIC xfs_lsn_t
7bfa31d8
CH
168xfs_efi_item_committed(
169 struct xfs_log_item *lip,
170 xfs_lsn_t lsn)
1da177e4
LT
171{
172 return lsn;
173}
174
1da177e4
LT
175/*
176 * The EFI dependency tracking op doesn't do squat. It can't because
177 * it doesn't know where the free extent is coming from. The dependency
178 * tracking has to be handled by the "enclosing" metadata object. For
179 * example, for inodes, the inode is locked throughout the extent freeing
180 * so the dependency should be recorded there.
181 */
1da177e4 182STATIC void
7bfa31d8
CH
183xfs_efi_item_committing(
184 struct xfs_log_item *lip,
185 xfs_lsn_t lsn)
1da177e4 186{
1da177e4
LT
187}
188
189/*
190 * This is the ops vector shared by all efi log items.
191 */
272e42b2 192static const struct xfs_item_ops xfs_efi_item_ops = {
7bfa31d8
CH
193 .iop_size = xfs_efi_item_size,
194 .iop_format = xfs_efi_item_format,
195 .iop_pin = xfs_efi_item_pin,
196 .iop_unpin = xfs_efi_item_unpin,
7bfa31d8
CH
197 .iop_unlock = xfs_efi_item_unlock,
198 .iop_committed = xfs_efi_item_committed,
199 .iop_push = xfs_efi_item_push,
200 .iop_committing = xfs_efi_item_committing
1da177e4
LT
201};
202
203
204/*
205 * Allocate and initialize an efi item with the given number of extents.
206 */
7bfa31d8
CH
207struct xfs_efi_log_item *
208xfs_efi_init(
209 struct xfs_mount *mp,
210 uint nextents)
1da177e4
LT
211
212{
7bfa31d8 213 struct xfs_efi_log_item *efip;
1da177e4
LT
214 uint size;
215
216 ASSERT(nextents > 0);
217 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
218 size = (uint)(sizeof(xfs_efi_log_item_t) +
219 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 220 efip = kmem_zalloc(size, KM_SLEEP);
1da177e4 221 } else {
7bfa31d8 222 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
1da177e4
LT
223 }
224
43f5efc5 225 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
1da177e4 226 efip->efi_format.efi_nextents = nextents;
db9d67d6 227 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
b199c8a4 228 atomic_set(&efip->efi_next_extent, 0);
666d644c 229 atomic_set(&efip->efi_refcount, 2);
1da177e4 230
7bfa31d8 231 return efip;
1da177e4
LT
232}
233
6d192a9b
TS
234/*
235 * Copy an EFI format buffer from the given buf, and into the destination
236 * EFI format structure.
237 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
238 * one of which will be the native format for this kernel.
239 * It will handle the conversion of formats if necessary.
240 */
241int
242xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
243{
4e0d5f92 244 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
6d192a9b
TS
245 uint i;
246 uint len = sizeof(xfs_efi_log_format_t) +
247 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
248 uint len32 = sizeof(xfs_efi_log_format_32_t) +
249 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
250 uint len64 = sizeof(xfs_efi_log_format_64_t) +
251 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
252
253 if (buf->i_len == len) {
254 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
255 return 0;
256 } else if (buf->i_len == len32) {
4e0d5f92 257 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
6d192a9b
TS
258
259 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
260 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
261 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
262 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
263 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
264 dst_efi_fmt->efi_extents[i].ext_start =
265 src_efi_fmt_32->efi_extents[i].ext_start;
266 dst_efi_fmt->efi_extents[i].ext_len =
267 src_efi_fmt_32->efi_extents[i].ext_len;
268 }
269 return 0;
270 } else if (buf->i_len == len64) {
4e0d5f92 271 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
6d192a9b
TS
272
273 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
274 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
275 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
276 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
277 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
278 dst_efi_fmt->efi_extents[i].ext_start =
279 src_efi_fmt_64->efi_extents[i].ext_start;
280 dst_efi_fmt->efi_extents[i].ext_len =
281 src_efi_fmt_64->efi_extents[i].ext_len;
282 }
283 return 0;
284 }
2451337d 285 return -EFSCORRUPTED;
6d192a9b
TS
286}
287
7bfa31d8 288static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
7d795ca3 289{
7bfa31d8
CH
290 return container_of(lip, struct xfs_efd_log_item, efd_item);
291}
1da177e4 292
7bfa31d8
CH
293STATIC void
294xfs_efd_item_free(struct xfs_efd_log_item *efdp)
295{
b1c5ebb2 296 kmem_free(efdp->efd_item.li_lv_shadow);
7bfa31d8 297 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
f0e2d93c 298 kmem_free(efdp);
7bfa31d8 299 else
7d795ca3 300 kmem_zone_free(xfs_efd_zone, efdp);
7d795ca3 301}
1da177e4
LT
302
303/*
304 * This returns the number of iovecs needed to log the given efd item.
305 * We only need 1 iovec for an efd item. It just logs the efd_log_format
306 * structure.
307 */
166d1368
DC
308static inline int
309xfs_efd_item_sizeof(
310 struct xfs_efd_log_item *efdp)
311{
312 return sizeof(xfs_efd_log_format_t) +
313 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
314}
315
316STATIC void
7bfa31d8 317xfs_efd_item_size(
166d1368
DC
318 struct xfs_log_item *lip,
319 int *nvecs,
320 int *nbytes)
1da177e4 321{
166d1368
DC
322 *nvecs += 1;
323 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
1da177e4
LT
324}
325
326/*
327 * This is called to fill in the vector of log iovecs for the
328 * given efd log item. We use only 1 iovec, and we point that
329 * at the efd_log_format structure embedded in the efd item.
330 * It is at this point that we assert that all of the extent
331 * slots in the efd item have been filled.
332 */
333STATIC void
7bfa31d8
CH
334xfs_efd_item_format(
335 struct xfs_log_item *lip,
bde7cff6 336 struct xfs_log_vec *lv)
1da177e4 337{
7bfa31d8 338 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
bde7cff6 339 struct xfs_log_iovec *vecp = NULL;
1da177e4
LT
340
341 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
342
343 efdp->efd_format.efd_type = XFS_LI_EFD;
1da177e4
LT
344 efdp->efd_format.efd_size = 1;
345
bde7cff6 346 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
1234351c
CH
347 &efdp->efd_format,
348 xfs_efd_item_sizeof(efdp));
1da177e4
LT
349}
350
1da177e4
LT
351/*
352 * Pinning has no meaning for an efd item, so just return.
353 */
1da177e4 354STATIC void
7bfa31d8
CH
355xfs_efd_item_pin(
356 struct xfs_log_item *lip)
1da177e4 357{
1da177e4
LT
358}
359
1da177e4
LT
360/*
361 * Since pinning has no meaning for an efd item, unpinning does
362 * not either.
363 */
1da177e4 364STATIC void
7bfa31d8
CH
365xfs_efd_item_unpin(
366 struct xfs_log_item *lip,
367 int remove)
1da177e4 368{
1da177e4
LT
369}
370
371/*
43ff2122
CH
372 * There isn't much you can do to push on an efd item. It is simply stuck
373 * waiting for the log to be flushed to disk.
1da177e4 374 */
1da177e4 375STATIC uint
43ff2122
CH
376xfs_efd_item_push(
377 struct xfs_log_item *lip,
378 struct list_head *buffer_list)
1da177e4 379{
43ff2122 380 return XFS_ITEM_PINNED;
1da177e4
LT
381}
382
8d99fe92
BF
383/*
384 * The EFD is either committed or aborted if the transaction is cancelled. If
385 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
386 */
1da177e4 387STATIC void
7bfa31d8
CH
388xfs_efd_item_unlock(
389 struct xfs_log_item *lip)
1da177e4 390{
8d99fe92
BF
391 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
392
22525c17 393 if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
8d99fe92
BF
394 xfs_efi_release(efdp->efd_efip);
395 xfs_efd_item_free(efdp);
396 }
1da177e4
LT
397}
398
399/*
8d99fe92
BF
400 * When the efd item is committed to disk, all we need to do is delete our
401 * reference to our partner efi item and then free ourselves. Since we're
402 * freeing ourselves we must return -1 to keep the transaction code from further
403 * referencing this item.
1da177e4 404 */
1da177e4 405STATIC xfs_lsn_t
7bfa31d8
CH
406xfs_efd_item_committed(
407 struct xfs_log_item *lip,
408 xfs_lsn_t lsn)
1da177e4 409{
7bfa31d8
CH
410 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
411
1da177e4 412 /*
8d99fe92
BF
413 * Drop the EFI reference regardless of whether the EFD has been
414 * aborted. Once the EFD transaction is constructed, it is the sole
415 * responsibility of the EFD to release the EFI (even if the EFI is
416 * aborted due to log I/O error).
1da177e4 417 */
8d99fe92 418 xfs_efi_release(efdp->efd_efip);
7d795ca3 419 xfs_efd_item_free(efdp);
8d99fe92 420
1da177e4
LT
421 return (xfs_lsn_t)-1;
422}
423
1da177e4
LT
424/*
425 * The EFD dependency tracking op doesn't do squat. It can't because
426 * it doesn't know where the free extent is coming from. The dependency
427 * tracking has to be handled by the "enclosing" metadata object. For
428 * example, for inodes, the inode is locked throughout the extent freeing
429 * so the dependency should be recorded there.
430 */
1da177e4 431STATIC void
7bfa31d8
CH
432xfs_efd_item_committing(
433 struct xfs_log_item *lip,
434 xfs_lsn_t lsn)
1da177e4 435{
1da177e4
LT
436}
437
438/*
439 * This is the ops vector shared by all efd log items.
440 */
272e42b2 441static const struct xfs_item_ops xfs_efd_item_ops = {
7bfa31d8
CH
442 .iop_size = xfs_efd_item_size,
443 .iop_format = xfs_efd_item_format,
444 .iop_pin = xfs_efd_item_pin,
445 .iop_unpin = xfs_efd_item_unpin,
7bfa31d8
CH
446 .iop_unlock = xfs_efd_item_unlock,
447 .iop_committed = xfs_efd_item_committed,
448 .iop_push = xfs_efd_item_push,
449 .iop_committing = xfs_efd_item_committing
1da177e4
LT
450};
451
1da177e4
LT
452/*
453 * Allocate and initialize an efd item with the given number of extents.
454 */
7bfa31d8
CH
455struct xfs_efd_log_item *
456xfs_efd_init(
457 struct xfs_mount *mp,
458 struct xfs_efi_log_item *efip,
459 uint nextents)
1da177e4
LT
460
461{
7bfa31d8 462 struct xfs_efd_log_item *efdp;
1da177e4
LT
463 uint size;
464
465 ASSERT(nextents > 0);
466 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
467 size = (uint)(sizeof(xfs_efd_log_item_t) +
468 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 469 efdp = kmem_zalloc(size, KM_SLEEP);
1da177e4 470 } else {
7bfa31d8 471 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
1da177e4
LT
472 }
473
43f5efc5 474 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
1da177e4
LT
475 efdp->efd_efip = efip;
476 efdp->efd_format.efd_nextents = nextents;
477 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
478
7bfa31d8 479 return efdp;
1da177e4 480}
dc42375d
DW
481
482/*
483 * Process an extent free intent item that was recovered from
484 * the log. We need to free the extents that it describes.
485 */
486int
487xfs_efi_recover(
488 struct xfs_mount *mp,
489 struct xfs_efi_log_item *efip)
490{
491 struct xfs_efd_log_item *efdp;
492 struct xfs_trans *tp;
493 int i;
494 int error = 0;
495 xfs_extent_t *extp;
496 xfs_fsblock_t startblock_fsb;
497
498 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
499
500 /*
501 * First check the validity of the extents described by the
502 * EFI. If any are bad, then assume that all are bad and
503 * just toss the EFI.
504 */
505 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
e127fafd 506 extp = &efip->efi_format.efi_extents[i];
dc42375d
DW
507 startblock_fsb = XFS_BB_TO_FSB(mp,
508 XFS_FSB_TO_DADDR(mp, extp->ext_start));
e127fafd
DW
509 if (startblock_fsb == 0 ||
510 extp->ext_len == 0 ||
511 startblock_fsb >= mp->m_sb.sb_dblocks ||
512 extp->ext_len >= mp->m_sb.sb_agblocks) {
dc42375d
DW
513 /*
514 * This will pull the EFI from the AIL and
515 * free the memory associated with it.
516 */
517 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
518 xfs_efi_release(efip);
519 return -EIO;
520 }
521 }
522
523 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
524 if (error)
525 return error;
526 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
527
528 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
e127fafd 529 extp = &efip->efi_format.efi_extents[i];
dc42375d 530 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
7280feda
DW
531 extp->ext_len,
532 &XFS_RMAP_OINFO_ANY_OWNER, false);
dc42375d
DW
533 if (error)
534 goto abort_error;
535
536 }
537
538 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
539 error = xfs_trans_commit(tp);
540 return error;
541
542abort_error:
543 xfs_trans_cancel(tp);
544 return error;
545}