Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux-2.6-block.git] / fs / xfs / xfs_buf_item.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
5467b34b 8#include "xfs_shared.h"
4fb6e8ad 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_mount.h"
239880ef 14#include "xfs_trans.h"
3536b61e 15#include "xfs_trans_priv.h"
a844f451 16#include "xfs_buf_item.h"
aac855ab
DC
17#include "xfs_inode.h"
18#include "xfs_inode_item.h"
6f5de180
DC
19#include "xfs_quota.h"
20#include "xfs_dquot_item.h"
21#include "xfs_dquot.h"
0b1b213f 22#include "xfs_trace.h"
239880ef 23#include "xfs_log.h"
d86142dd 24#include "xfs_log_priv.h"
150bb10a 25#include "xfs_error.h"
1da177e4
LT
26
27
182696fb 28struct kmem_cache *xfs_buf_item_cache;
1da177e4 29
7bfa31d8
CH
30static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
31{
32 return container_of(lip, struct xfs_buf_log_item, bli_item);
33}
34
8a6453a8
DW
35/* Is this log iovec plausibly large enough to contain the buffer log format? */
36bool
37xfs_buf_log_check_iovec(
38 struct xfs_log_iovec *iovec)
39{
40 struct xfs_buf_log_format *blfp = iovec->i_addr;
41 char *bmp_end;
42 char *item_end;
43
44 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
45 return false;
46
47 item_end = (char *)iovec->i_addr + iovec->i_len;
48 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
49 return bmp_end <= item_end;
50}
51
166d1368
DC
52static inline int
53xfs_buf_log_format_size(
54 struct xfs_buf_log_format *blfp)
55{
56 return offsetof(struct xfs_buf_log_format, blf_data_map) +
57 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
58}
59
c81ea11e
DC
60static inline bool
61xfs_buf_item_straddle(
62 struct xfs_buf *bp,
63 uint offset,
929f8b0d
DC
64 int first_bit,
65 int nbits)
c81ea11e 66{
929f8b0d
DC
67 void *first, *last;
68
69 first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT));
70 last = xfs_buf_offset(bp,
71 offset + ((first_bit + nbits) << XFS_BLF_SHIFT));
72
73 if (last - first != nbits * XFS_BLF_CHUNK)
74 return true;
75 return false;
c81ea11e
DC
76}
77
1da177e4 78/*
19f4e7cc
DC
79 * Return the number of log iovecs and space needed to log the given buf log
80 * item segment.
1da177e4 81 *
19f4e7cc
DC
82 * It calculates this as 1 iovec for the buf log format structure and 1 for each
83 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
84 * in a single iovec.
1da177e4 85 */
166d1368 86STATIC void
372cc85e 87xfs_buf_item_size_segment(
70a20655
CM
88 struct xfs_buf_log_item *bip,
89 struct xfs_buf_log_format *blfp,
c81ea11e 90 uint offset,
70a20655
CM
91 int *nvecs,
92 int *nbytes)
1da177e4 93{
70a20655 94 struct xfs_buf *bp = bip->bli_buf;
929f8b0d
DC
95 int first_bit;
96 int nbits;
70a20655
CM
97 int next_bit;
98 int last_bit;
1da177e4 99
929f8b0d
DC
100 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
101 if (first_bit == -1)
166d1368 102 return;
372cc85e 103
929f8b0d
DC
104 (*nvecs)++;
105 *nbytes += xfs_buf_log_format_size(blfp);
106
107 do {
108 nbits = xfs_contig_bits(blfp->blf_data_map,
109 blfp->blf_map_size, first_bit);
110 ASSERT(nbits > 0);
111
112 /*
113 * Straddling a page is rare because we don't log contiguous
114 * chunks of unmapped buffers anywhere.
115 */
116 if (nbits > 1 &&
117 xfs_buf_item_straddle(bp, offset, first_bit, nbits))
118 goto slow_scan;
119
120 (*nvecs)++;
121 *nbytes += nbits * XFS_BLF_CHUNK;
122
123 /*
124 * This takes the bit number to start looking from and
125 * returns the next set bit from there. It returns -1
126 * if there are no more bits set or the start bit is
127 * beyond the end of the bitmap.
128 */
129 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
130 (uint)first_bit + nbits + 1);
131 } while (first_bit != -1);
1da177e4 132
929f8b0d
DC
133 return;
134
135slow_scan:
136 /* Count the first bit we jumped out of the above loop from */
137 (*nvecs)++;
138 *nbytes += XFS_BLF_CHUNK;
139 last_bit = first_bit;
1da177e4
LT
140 while (last_bit != -1) {
141 /*
142 * This takes the bit number to start looking from and
143 * returns the next set bit from there. It returns -1
144 * if there are no more bits set or the start bit is
145 * beyond the end of the bitmap.
146 */
372cc85e
DC
147 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
148 last_bit + 1);
1da177e4
LT
149 /*
150 * If we run out of bits, leave the loop,
151 * else if we find a new set of bits bump the number of vecs,
152 * else keep scanning the current set of bits.
153 */
154 if (next_bit == -1) {
372cc85e 155 break;
c81ea11e 156 } else if (next_bit != last_bit + 1 ||
929f8b0d 157 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
1da177e4 158 last_bit = next_bit;
929f8b0d 159 first_bit = next_bit;
166d1368 160 (*nvecs)++;
929f8b0d 161 nbits = 1;
1da177e4
LT
162 } else {
163 last_bit++;
929f8b0d 164 nbits++;
1da177e4 165 }
166d1368 166 *nbytes += XFS_BLF_CHUNK;
1da177e4 167 }
1da177e4
LT
168}
169
170/*
19f4e7cc
DC
171 * Return the number of log iovecs and space needed to log the given buf log
172 * item.
372cc85e 173 *
b63da6c8 174 * Discontiguous buffers need a format structure per region that is being
372cc85e
DC
175 * logged. This makes the changes in the buffer appear to log recovery as though
176 * they came from separate buffers, just like would occur if multiple buffers
177 * were used instead of a single discontiguous buffer. This enables
178 * discontiguous buffers to be in-memory constructs, completely transparent to
179 * what ends up on disk.
180 *
181 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
19f4e7cc
DC
182 * format structures. If the item has previously been logged and has dirty
183 * regions, we do not relog them in stale buffers. This has the effect of
184 * reducing the size of the relogged item by the amount of dirty data tracked
185 * by the log item. This can result in the committing transaction reducing the
186 * amount of space being consumed by the CIL.
1da177e4 187 */
166d1368 188STATIC void
372cc85e 189xfs_buf_item_size(
166d1368
DC
190 struct xfs_log_item *lip,
191 int *nvecs,
192 int *nbytes)
1da177e4 193{
7bfa31d8 194 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
c81ea11e 195 struct xfs_buf *bp = bip->bli_buf;
372cc85e 196 int i;
accc661b 197 int bytes;
c81ea11e 198 uint offset = 0;
372cc85e
DC
199
200 ASSERT(atomic_read(&bip->bli_refcount) > 0);
201 if (bip->bli_flags & XFS_BLI_STALE) {
202 /*
19f4e7cc
DC
203 * The buffer is stale, so all we need to log is the buf log
204 * format structure with the cancel flag in it as we are never
205 * going to replay the changes tracked in the log item.
372cc85e
DC
206 */
207 trace_xfs_buf_item_size_stale(bip);
b9438173 208 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
166d1368
DC
209 *nvecs += bip->bli_format_count;
210 for (i = 0; i < bip->bli_format_count; i++) {
211 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
212 }
213 return;
372cc85e
DC
214 }
215
216 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
217
5f6bed76
DC
218 if (bip->bli_flags & XFS_BLI_ORDERED) {
219 /*
19f4e7cc
DC
220 * The buffer has been logged just to order it. It is not being
221 * included in the transaction commit, so no vectors are used at
222 * all.
5f6bed76
DC
223 */
224 trace_xfs_buf_item_size_ordered(bip);
166d1368
DC
225 *nvecs = XFS_LOG_VEC_ORDERED;
226 return;
5f6bed76
DC
227 }
228
372cc85e 229 /*
accc661b 230 * The vector count is based on the number of buffer vectors we have
372cc85e
DC
231 * dirty bits in. This will only be greater than one when we have a
232 * compound buffer with more than one segment dirty. Hence for compound
233 * buffers we need to track which segment the dirty bits correspond to,
234 * and when we move from one segment to the next increment the vector
235 * count for the extra buf log format structure that will need to be
236 * written.
237 */
accc661b 238 bytes = 0;
372cc85e 239 for (i = 0; i < bip->bli_format_count; i++) {
c81ea11e 240 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
accc661b 241 nvecs, &bytes);
c81ea11e 242 offset += BBTOB(bp->b_maps[i].bm_len);
372cc85e 243 }
accc661b
DC
244
245 /*
246 * Round up the buffer size required to minimise the number of memory
247 * allocations that need to be done as this item grows when relogged by
248 * repeated modifications.
249 */
250 *nbytes = round_up(bytes, 512);
372cc85e 251 trace_xfs_buf_item_size(bip);
372cc85e
DC
252}
253
1234351c 254static inline void
7aeb7222 255xfs_buf_item_copy_iovec(
bde7cff6 256 struct xfs_log_vec *lv,
1234351c 257 struct xfs_log_iovec **vecp,
7aeb7222
CH
258 struct xfs_buf *bp,
259 uint offset,
260 int first_bit,
261 uint nbits)
262{
263 offset += first_bit * XFS_BLF_CHUNK;
bde7cff6 264 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
1234351c
CH
265 xfs_buf_offset(bp, offset),
266 nbits * XFS_BLF_CHUNK);
7aeb7222
CH
267}
268
1234351c 269static void
372cc85e
DC
270xfs_buf_item_format_segment(
271 struct xfs_buf_log_item *bip,
bde7cff6 272 struct xfs_log_vec *lv,
1234351c 273 struct xfs_log_iovec **vecp,
372cc85e
DC
274 uint offset,
275 struct xfs_buf_log_format *blfp)
276{
70a20655
CM
277 struct xfs_buf *bp = bip->bli_buf;
278 uint base_size;
279 int first_bit;
280 int last_bit;
281 int next_bit;
282 uint nbits;
1da177e4 283
372cc85e 284 /* copy the flags across from the base format item */
b9438173 285 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
286
287 /*
77c1a08f
DC
288 * Base size is the actual size of the ondisk structure - it reflects
289 * the actual size of the dirty bitmap rather than the size of the in
290 * memory structure.
1da177e4 291 */
166d1368 292 base_size = xfs_buf_log_format_size(blfp);
820a554f 293
820a554f
MT
294 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
295 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
296 /*
297 * If the map is not be dirty in the transaction, mark
298 * the size as zero and do not advance the vector pointer.
299 */
bde7cff6 300 return;
820a554f
MT
301 }
302
bde7cff6
CH
303 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
304 blfp->blf_size = 1;
1da177e4
LT
305
306 if (bip->bli_flags & XFS_BLI_STALE) {
307 /*
308 * The buffer is stale, so all we need to log
309 * is the buf log format structure with the
310 * cancel flag in it.
311 */
0b1b213f 312 trace_xfs_buf_item_format_stale(bip);
372cc85e 313 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
bde7cff6 314 return;
1da177e4
LT
315 }
316
5f6bed76 317
1da177e4
LT
318 /*
319 * Fill in an iovec for each set of contiguous chunks.
320 */
929f8b0d
DC
321 do {
322 ASSERT(first_bit >= 0);
323 nbits = xfs_contig_bits(blfp->blf_data_map,
324 blfp->blf_map_size, first_bit);
325 ASSERT(nbits > 0);
326
327 /*
328 * Straddling a page is rare because we don't log contiguous
329 * chunks of unmapped buffers anywhere.
330 */
331 if (nbits > 1 &&
332 xfs_buf_item_straddle(bp, offset, first_bit, nbits))
333 goto slow_scan;
334
335 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
336 first_bit, nbits);
337 blfp->blf_size++;
338
339 /*
340 * This takes the bit number to start looking from and
341 * returns the next set bit from there. It returns -1
342 * if there are no more bits set or the start bit is
343 * beyond the end of the bitmap.
344 */
345 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
346 (uint)first_bit + nbits + 1);
347 } while (first_bit != -1);
348
349 return;
350
351slow_scan:
352 ASSERT(bp->b_addr == NULL);
1da177e4
LT
353 last_bit = first_bit;
354 nbits = 1;
355 for (;;) {
356 /*
357 * This takes the bit number to start looking from and
358 * returns the next set bit from there. It returns -1
359 * if there are no more bits set or the start bit is
360 * beyond the end of the bitmap.
361 */
372cc85e
DC
362 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
363 (uint)last_bit + 1);
1da177e4 364 /*
7aeb7222
CH
365 * If we run out of bits fill in the last iovec and get out of
366 * the loop. Else if we start a new set of bits then fill in
367 * the iovec for the series we were looking at and start
368 * counting the bits in the new one. Else we're still in the
369 * same set of bits so just keep counting and scanning.
1da177e4
LT
370 */
371 if (next_bit == -1) {
bde7cff6 372 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
7aeb7222 373 first_bit, nbits);
bde7cff6 374 blfp->blf_size++;
1da177e4 375 break;
7aeb7222 376 } else if (next_bit != last_bit + 1 ||
929f8b0d 377 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
bde7cff6 378 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
1234351c 379 first_bit, nbits);
bde7cff6 380 blfp->blf_size++;
1da177e4
LT
381 first_bit = next_bit;
382 last_bit = next_bit;
383 nbits = 1;
384 } else {
385 last_bit++;
386 nbits++;
387 }
388 }
372cc85e
DC
389}
390
391/*
392 * This is called to fill in the vector of log iovecs for the
393 * given log buf item. It fills the first entry with a buf log
394 * format structure, and the rest point to contiguous chunks
395 * within the buffer.
396 */
397STATIC void
398xfs_buf_item_format(
399 struct xfs_log_item *lip,
bde7cff6 400 struct xfs_log_vec *lv)
372cc85e
DC
401{
402 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
403 struct xfs_buf *bp = bip->bli_buf;
bde7cff6 404 struct xfs_log_iovec *vecp = NULL;
372cc85e
DC
405 uint offset = 0;
406 int i;
407
408 ASSERT(atomic_read(&bip->bli_refcount) > 0);
409 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
410 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5
DC
411 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
412 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
413 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
e9385cc6
BF
414 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
415 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5 416
372cc85e
DC
417
418 /*
419 * If it is an inode buffer, transfer the in-memory state to the
ddf6ad01
DC
420 * format flags and clear the in-memory state.
421 *
422 * For buffer based inode allocation, we do not transfer
372cc85e
DC
423 * this state if the inode buffer allocation has not yet been committed
424 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
425 * correct replay of the inode allocation.
ddf6ad01
DC
426 *
427 * For icreate item based inode allocation, the buffers aren't written
428 * to the journal during allocation, and hence we should always tag the
429 * buffer as an inode buffer so that the correct unlinked list replay
430 * occurs during recovery.
372cc85e
DC
431 */
432 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
d86142dd 433 if (xfs_has_v3inodes(lip->li_log->l_mp) ||
ddf6ad01 434 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
372cc85e 435 xfs_log_item_in_current_chkpt(lip)))
b9438173 436 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
437 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
438 }
439
440 for (i = 0; i < bip->bli_format_count; i++) {
bde7cff6 441 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
1234351c 442 &bip->bli_formats[i]);
a3916e52 443 offset += BBTOB(bp->b_maps[i].bm_len);
372cc85e 444 }
1da177e4
LT
445
446 /*
447 * Check to make sure everything is consistent.
448 */
0b1b213f 449 trace_xfs_buf_item_format(bip);
1da177e4
LT
450}
451
452/*
64fc35de 453 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 454 * so it cannot be written out.
64fc35de 455 *
89a4bf0d
DC
456 * We take a reference to the buffer log item here so that the BLI life cycle
457 * extends at least until the buffer is unpinned via xfs_buf_item_unpin() and
458 * inserted into the AIL.
459 *
460 * We also need to take a reference to the buffer itself as the BLI unpin
461 * processing requires accessing the buffer after the BLI has dropped the final
462 * BLI reference. See xfs_buf_item_unpin() for an explanation.
463 * If unpins race to drop the final BLI reference and only the
464 * BLI owns a reference to the buffer, then the loser of the race can have the
465 * buffer fgreed from under it (e.g. on shutdown). Taking a buffer reference per
466 * pin count ensures the life cycle of the buffer extends for as
467 * long as we hold the buffer pin reference in xfs_buf_item_unpin().
1da177e4 468 */
ba0f32d4 469STATIC void
1da177e4 470xfs_buf_item_pin(
7bfa31d8 471 struct xfs_log_item *lip)
1da177e4 472{
7bfa31d8 473 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 474
1da177e4
LT
475 ASSERT(atomic_read(&bip->bli_refcount) > 0);
476 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 477 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 478 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 479
0b1b213f 480 trace_xfs_buf_item_pin(bip);
4d16e924 481
89a4bf0d 482 xfs_buf_hold(bip->bli_buf);
4d16e924
CH
483 atomic_inc(&bip->bli_refcount);
484 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
485}
486
1da177e4 487/*
89a4bf0d
DC
488 * This is called to unpin the buffer associated with the buf log item which was
489 * previously pinned with a call to xfs_buf_item_pin(). We enter this function
490 * with a buffer pin count, a buffer reference and a BLI reference.
491 *
492 * We must drop the BLI reference before we unpin the buffer because the AIL
493 * doesn't acquire a BLI reference whenever it accesses it. Therefore if the
494 * refcount drops to zero, the bli could still be AIL resident and the buffer
495 * submitted for I/O at any point before we return. This can result in IO
496 * completion freeing the buffer while we are still trying to access it here.
497 * This race condition can also occur in shutdown situations where we abort and
498 * unpin buffers from contexts other that journal IO completion.
499 *
500 * Hence we have to hold a buffer reference per pin count to ensure that the
501 * buffer cannot be freed until we have finished processing the unpin operation.
502 * The reference is taken in xfs_buf_item_pin(), and we must hold it until we
503 * are done processing the buffer state. In the case of an abort (remove =
504 * true) then we re-use the current pin reference as the IO reference we hand
505 * off to IO failure handling.
1da177e4 506 */
ba0f32d4 507STATIC void
1da177e4 508xfs_buf_item_unpin(
7bfa31d8 509 struct xfs_log_item *lip,
9412e318 510 int remove)
1da177e4 511{
7bfa31d8 512 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
e8222613 513 struct xfs_buf *bp = bip->bli_buf;
70a20655
CM
514 int stale = bip->bli_flags & XFS_BLI_STALE;
515 int freed;
1da177e4 516
fb1755a6 517 ASSERT(bp->b_log_item == bip);
1da177e4 518 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 519
0b1b213f 520 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
521
522 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
523 if (atomic_dec_and_test(&bp->b_pin_count))
524 wake_up_all(&bp->b_waiters);
7bfa31d8 525
89a4bf0d
DC
526 /*
527 * Nothing to do but drop the buffer pin reference if the BLI is
528 * still active.
529 */
530 if (!freed) {
531 xfs_buf_rele(bp);
84d8949e 532 return;
89a4bf0d 533 }
84d8949e
BF
534
535 if (stale) {
1da177e4 536 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 537 ASSERT(xfs_buf_islocked(bp));
5cfd28b6 538 ASSERT(bp->b_flags & XBF_STALE);
b9438173 539 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
e53d3aa0
BF
540 ASSERT(list_empty(&lip->li_trans));
541 ASSERT(!bp->b_transp);
9412e318 542
0b1b213f
CH
543 trace_xfs_buf_item_unpin_stale(bip);
544
89a4bf0d
DC
545 /*
546 * The buffer has been locked and referenced since it was marked
547 * stale so we own both lock and reference exclusively here. We
548 * do not need the pin reference any more, so drop it now so
549 * that we only have one reference to drop once item completion
550 * processing is complete.
551 */
552 xfs_buf_rele(bp);
553
1da177e4 554 /*
849274c1
BF
555 * If we get called here because of an IO error, we may or may
556 * not have the item on the AIL. xfs_trans_ail_delete() will
557 * take care of that situation. xfs_trans_ail_delete() drops
558 * the AIL lock.
1da177e4
LT
559 */
560 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
fec671cd 561 xfs_buf_item_done(bp);
664ffb8a 562 xfs_buf_inode_iodone(bp);
48d55e2a 563 ASSERT(list_empty(&bp->b_li_list));
1da177e4 564 } else {
849274c1 565 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 566 xfs_buf_item_relse(bp);
fb1755a6 567 ASSERT(bp->b_log_item == NULL);
1da177e4
LT
568 }
569 xfs_buf_relse(bp);
89a4bf0d
DC
570 return;
571 }
572
573 if (remove) {
137fff09 574 /*
89a4bf0d
DC
575 * We need to simulate an async IO failures here to ensure that
576 * the correct error completion is run on this buffer. This
577 * requires a reference to the buffer and for the buffer to be
578 * locked. We can safely pass ownership of the pin reference to
579 * the IO to ensure that nothing can free the buffer while we
580 * wait for the lock and then run the IO failure completion.
137fff09 581 */
960c60af 582 xfs_buf_lock(bp);
137fff09 583 bp->b_flags |= XBF_ASYNC;
54b3b1f6 584 xfs_buf_ioend_fail(bp);
89a4bf0d 585 return;
1da177e4 586 }
89a4bf0d
DC
587
588 /*
589 * BLI has no more active references - it will be moved to the AIL to
590 * manage the remaining BLI/buffer life cycle. There is nothing left for
591 * us to do here so drop the pin reference to the buffer.
592 */
593 xfs_buf_rele(bp);
1da177e4
LT
594}
595
ba0f32d4 596STATIC uint
43ff2122
CH
597xfs_buf_item_push(
598 struct xfs_log_item *lip,
599 struct list_head *buffer_list)
1da177e4 600{
7bfa31d8
CH
601 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
602 struct xfs_buf *bp = bip->bli_buf;
43ff2122 603 uint rval = XFS_ITEM_SUCCESS;
1da177e4 604
811e64c7 605 if (xfs_buf_ispinned(bp))
1da177e4 606 return XFS_ITEM_PINNED;
5337fe9b
BF
607 if (!xfs_buf_trylock(bp)) {
608 /*
609 * If we have just raced with a buffer being pinned and it has
610 * been marked stale, we could end up stalling until someone else
611 * issues a log force to unpin the stale buffer. Check for the
612 * race condition here so xfsaild recognizes the buffer is pinned
613 * and queues a log force to move it along.
614 */
615 if (xfs_buf_ispinned(bp))
616 return XFS_ITEM_PINNED;
1da177e4 617 return XFS_ITEM_LOCKED;
5337fe9b 618 }
1da177e4 619
1da177e4 620 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
621
622 trace_xfs_buf_item_push(bip);
623
ac8809f9 624 /* has a previous flush failed due to IO errors? */
f9bccfcc
BF
625 if (bp->b_flags & XBF_WRITE_FAIL) {
626 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
627 "Failing async write on buffer block 0x%llx. Retrying async write.",
9343ee76 628 (long long)xfs_buf_daddr(bp));
ac8809f9
DC
629 }
630
43ff2122
CH
631 if (!xfs_buf_delwri_queue(bp, buffer_list))
632 rval = XFS_ITEM_FLUSHING;
633 xfs_buf_unlock(bp);
634 return rval;
1da177e4
LT
635}
636
95808459
BF
637/*
638 * Drop the buffer log item refcount and take appropriate action. This helper
639 * determines whether the bli must be freed or not, since a decrement to zero
640 * does not necessarily mean the bli is unused.
641 *
642 * Return true if the bli is freed, false otherwise.
643 */
644bool
645xfs_buf_item_put(
646 struct xfs_buf_log_item *bip)
647{
648 struct xfs_log_item *lip = &bip->bli_item;
649 bool aborted;
650 bool dirty;
651
652 /* drop the bli ref and return if it wasn't the last one */
653 if (!atomic_dec_and_test(&bip->bli_refcount))
654 return false;
655
656 /*
657 * We dropped the last ref and must free the item if clean or aborted.
658 * If the bli is dirty and non-aborted, the buffer was clean in the
659 * transaction but still awaiting writeback from previous changes. In
660 * that case, the bli is freed on buffer writeback completion.
661 */
662 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
d86142dd 663 xlog_is_shutdown(lip->li_log);
95808459
BF
664 dirty = bip->bli_flags & XFS_BLI_DIRTY;
665 if (dirty && !aborted)
666 return false;
667
668 /*
669 * The bli is aborted or clean. An aborted item may be in the AIL
670 * regardless of dirty state. For example, consider an aborted
671 * transaction that invalidated a dirty bli and cleared the dirty
672 * state.
673 */
674 if (aborted)
2b3cf093 675 xfs_trans_ail_delete(lip, 0);
95808459
BF
676 xfs_buf_item_relse(bip->bli_buf);
677 return true;
678}
679
1da177e4 680/*
64fc35de
DC
681 * Release the buffer associated with the buf log item. If there is no dirty
682 * logged data associated with the buffer recorded in the buf log item, then
683 * free the buf log item and remove the reference to it in the buffer.
1da177e4 684 *
64fc35de
DC
685 * This call ignores the recursion count. It is only called when the buffer
686 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 687 *
64fc35de
DC
688 * We unconditionally drop the transaction's reference to the log item. If the
689 * item was logged, then another reference was taken when it was pinned, so we
690 * can safely drop the transaction reference now. This also allows us to avoid
691 * potential races with the unpin code freeing the bli by not referencing the
692 * bli after we've dropped the reference count.
693 *
694 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
695 * if necessary but do not unlock the buffer. This is for support of
696 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
697 * free the item.
1da177e4 698 */
ba0f32d4 699STATIC void
ddf92053 700xfs_buf_item_release(
7bfa31d8 701 struct xfs_log_item *lip)
1da177e4 702{
7bfa31d8
CH
703 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
704 struct xfs_buf *bp = bip->bli_buf;
95808459 705 bool released;
d9183105 706 bool hold = bip->bli_flags & XFS_BLI_HOLD;
d9183105 707 bool stale = bip->bli_flags & XFS_BLI_STALE;
7bf7a193 708#if defined(DEBUG) || defined(XFS_WARN)
d9183105 709 bool ordered = bip->bli_flags & XFS_BLI_ORDERED;
95808459 710 bool dirty = bip->bli_flags & XFS_BLI_DIRTY;
4d09807f
BF
711 bool aborted = test_bit(XFS_LI_ABORTED,
712 &lip->li_flags);
7bf7a193 713#endif
1da177e4 714
ddf92053 715 trace_xfs_buf_item_release(bip);
1da177e4
LT
716
717 /*
6453c65d
BF
718 * The bli dirty state should match whether the blf has logged segments
719 * except for ordered buffers, where only the bli should be dirty.
1da177e4 720 */
6453c65d
BF
721 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
722 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
d9183105
BF
723 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
724
46f9d2eb 725 /*
d9183105
BF
726 * Clear the buffer's association with this transaction and
727 * per-transaction state from the bli, which has been copied above.
728 */
729 bp->b_transp = NULL;
730 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
731
732 /*
95808459
BF
733 * Unref the item and unlock the buffer unless held or stale. Stale
734 * buffers remain locked until final unpin unless the bli is freed by
735 * the unref call. The latter implies shutdown because buffer
736 * invalidation dirties the bli and transaction.
46f9d2eb 737 */
95808459
BF
738 released = xfs_buf_item_put(bip);
739 if (hold || (stale && !released))
d9183105 740 return;
4d09807f 741 ASSERT(!stale || aborted);
95808459 742 xfs_buf_relse(bp);
1da177e4
LT
743}
744
ddf92053
CH
745STATIC void
746xfs_buf_item_committing(
747 struct xfs_log_item *lip,
5f9b4b0d 748 xfs_csn_t seq)
ddf92053
CH
749{
750 return xfs_buf_item_release(lip);
751}
752
1da177e4
LT
753/*
754 * This is called to find out where the oldest active copy of the
755 * buf log item in the on disk log resides now that the last log
756 * write of it completed at the given lsn.
757 * We always re-log all the dirty data in a buffer, so usually the
758 * latest copy in the on disk log is the only one that matters. For
759 * those cases we simply return the given lsn.
760 *
761 * The one exception to this is for buffers full of newly allocated
762 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
763 * flag set, indicating that only the di_next_unlinked fields from the
764 * inodes in the buffers will be replayed during recovery. If the
765 * original newly allocated inode images have not yet been flushed
766 * when the buffer is so relogged, then we need to make sure that we
767 * keep the old images in the 'active' portion of the log. We do this
768 * by returning the original lsn of that transaction here rather than
769 * the current one.
770 */
ba0f32d4 771STATIC xfs_lsn_t
1da177e4 772xfs_buf_item_committed(
7bfa31d8 773 struct xfs_log_item *lip,
1da177e4
LT
774 xfs_lsn_t lsn)
775{
7bfa31d8
CH
776 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
777
0b1b213f
CH
778 trace_xfs_buf_item_committed(bip);
779
7bfa31d8
CH
780 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
781 return lip->li_lsn;
782 return lsn;
1da177e4
LT
783}
784
150bb10a
DW
785#ifdef DEBUG_EXPENSIVE
786static int
787xfs_buf_item_precommit(
788 struct xfs_trans *tp,
789 struct xfs_log_item *lip)
790{
791 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
792 struct xfs_buf *bp = bip->bli_buf;
793 struct xfs_mount *mp = bp->b_mount;
794 xfs_failaddr_t fa;
795
796 if (!bp->b_ops || !bp->b_ops->verify_struct)
797 return 0;
798 if (bip->bli_flags & XFS_BLI_STALE)
799 return 0;
800
801 fa = bp->b_ops->verify_struct(bp);
802 if (fa) {
803 xfs_buf_verifier_error(bp, -EFSCORRUPTED, bp->b_ops->name,
804 bp->b_addr, BBTOB(bp->b_length), fa);
805 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
806 ASSERT(fa == NULL);
807 }
808
809 return 0;
810}
811#else
812# define xfs_buf_item_precommit NULL
813#endif
814
272e42b2 815static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8 816 .iop_size = xfs_buf_item_size,
150bb10a 817 .iop_precommit = xfs_buf_item_precommit,
7bfa31d8
CH
818 .iop_format = xfs_buf_item_format,
819 .iop_pin = xfs_buf_item_pin,
820 .iop_unpin = xfs_buf_item_unpin,
ddf92053
CH
821 .iop_release = xfs_buf_item_release,
822 .iop_committing = xfs_buf_item_committing,
7bfa31d8
CH
823 .iop_committed = xfs_buf_item_committed,
824 .iop_push = xfs_buf_item_push,
1da177e4
LT
825};
826
c64dd49b 827STATIC void
372cc85e
DC
828xfs_buf_item_get_format(
829 struct xfs_buf_log_item *bip,
830 int count)
831{
832 ASSERT(bip->bli_formats == NULL);
833 bip->bli_format_count = count;
834
835 if (count == 1) {
b9438173 836 bip->bli_formats = &bip->__bli_format;
c64dd49b 837 return;
372cc85e
DC
838 }
839
10634530
DC
840 bip->bli_formats = kzalloc(count * sizeof(struct xfs_buf_log_format),
841 GFP_KERNEL | __GFP_NOFAIL);
372cc85e
DC
842}
843
844STATIC void
845xfs_buf_item_free_format(
846 struct xfs_buf_log_item *bip)
847{
b9438173 848 if (bip->bli_formats != &bip->__bli_format) {
d4c75a1b 849 kfree(bip->bli_formats);
372cc85e
DC
850 bip->bli_formats = NULL;
851 }
852}
1da177e4
LT
853
854/*
855 * Allocate a new buf log item to go with the given buffer.
fb1755a6
CM
856 * Set the buffer's b_log_item field to point to the new
857 * buf log item.
1da177e4 858 */
f79af0b9 859int
1da177e4 860xfs_buf_item_init(
f79af0b9
DC
861 struct xfs_buf *bp,
862 struct xfs_mount *mp)
1da177e4 863{
fb1755a6 864 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4
LT
865 int chunks;
866 int map_size;
372cc85e 867 int i;
1da177e4
LT
868
869 /*
870 * Check to see if there is already a buf log item for
fb1755a6 871 * this buffer. If we do already have one, there is
1da177e4
LT
872 * nothing to do here so return.
873 */
dbd329f1 874 ASSERT(bp->b_mount == mp);
1a2ebf83 875 if (bip) {
fb1755a6 876 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
1a2ebf83
DC
877 ASSERT(!bp->b_transp);
878 ASSERT(bip->bli_buf == bp);
f79af0b9 879 return 0;
fb1755a6 880 }
1da177e4 881
182696fb 882 bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL);
43f5efc5 883 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 884 bip->bli_buf = bp;
372cc85e
DC
885
886 /*
887 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
888 * can be divided into. Make sure not to truncate any pieces.
889 * map_size is the size of the bitmap needed to describe the
890 * chunks of the buffer.
891 *
892 * Discontiguous buffer support follows the layout of the underlying
893 * buffer. This makes the implementation as simple as possible.
894 */
c64dd49b 895 xfs_buf_item_get_format(bip, bp->b_map_count);
372cc85e
DC
896
897 for (i = 0; i < bip->bli_format_count; i++) {
898 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
899 XFS_BLF_CHUNK);
900 map_size = DIV_ROUND_UP(chunks, NBWORD);
901
c3d5f0c2 902 if (map_size > XFS_BLF_DATAMAP_SIZE) {
182696fb 903 kmem_cache_free(xfs_buf_item_cache, bip);
c3d5f0c2
DW
904 xfs_err(mp,
905 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
906 map_size,
907 BBTOB(bp->b_maps[i].bm_len));
908 return -EFSCORRUPTED;
909 }
910
372cc85e
DC
911 bip->bli_formats[i].blf_type = XFS_LI_BUF;
912 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
913 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
914 bip->bli_formats[i].blf_map_size = map_size;
915 }
1da177e4 916
fb1755a6 917 bp->b_log_item = bip;
f79af0b9
DC
918 xfs_buf_hold(bp);
919 return 0;
1da177e4
LT
920}
921
922
923/*
924 * Mark bytes first through last inclusive as dirty in the buf
925 * item's bitmap.
926 */
632b89e8 927static void
372cc85e 928xfs_buf_item_log_segment(
1da177e4 929 uint first,
372cc85e
DC
930 uint last,
931 uint *map)
1da177e4
LT
932{
933 uint first_bit;
934 uint last_bit;
935 uint bits_to_set;
936 uint bits_set;
937 uint word_num;
938 uint *wordp;
939 uint bit;
940 uint end_bit;
941 uint mask;
942
c3d5f0c2
DW
943 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
944 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
945
1da177e4
LT
946 /*
947 * Convert byte offsets to bit numbers.
948 */
c1155410
DC
949 first_bit = first >> XFS_BLF_SHIFT;
950 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
951
952 /*
953 * Calculate the total number of bits to be set.
954 */
955 bits_to_set = last_bit - first_bit + 1;
956
957 /*
958 * Get a pointer to the first word in the bitmap
959 * to set a bit in.
960 */
961 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 962 wordp = &map[word_num];
1da177e4
LT
963
964 /*
965 * Calculate the starting bit in the first word.
966 */
967 bit = first_bit & (uint)(NBWORD - 1);
968
969 /*
970 * First set any bits in the first word of our range.
971 * If it starts at bit 0 of the word, it will be
972 * set below rather than here. That is what the variable
973 * bit tells us. The variable bits_set tracks the number
974 * of bits that have been set so far. End_bit is the number
975 * of the last bit to be set in this word plus one.
976 */
977 if (bit) {
9bb54cb5 978 end_bit = min(bit + bits_to_set, (uint)NBWORD);
79c350e4 979 mask = ((1U << (end_bit - bit)) - 1) << bit;
1da177e4
LT
980 *wordp |= mask;
981 wordp++;
982 bits_set = end_bit - bit;
983 } else {
984 bits_set = 0;
985 }
986
987 /*
988 * Now set bits a whole word at a time that are between
989 * first_bit and last_bit.
990 */
991 while ((bits_to_set - bits_set) >= NBWORD) {
12025460 992 *wordp = 0xffffffff;
1da177e4
LT
993 bits_set += NBWORD;
994 wordp++;
995 }
996
997 /*
998 * Finally, set any bits left to be set in one last partial word.
999 */
1000 end_bit = bits_to_set - bits_set;
1001 if (end_bit) {
79c350e4 1002 mask = (1U << end_bit) - 1;
1da177e4
LT
1003 *wordp |= mask;
1004 }
1da177e4
LT
1005}
1006
372cc85e
DC
1007/*
1008 * Mark bytes first through last inclusive as dirty in the buf
1009 * item's bitmap.
1010 */
1011void
1012xfs_buf_item_log(
70a20655 1013 struct xfs_buf_log_item *bip,
372cc85e
DC
1014 uint first,
1015 uint last)
1016{
1017 int i;
1018 uint start;
1019 uint end;
1020 struct xfs_buf *bp = bip->bli_buf;
1021
372cc85e
DC
1022 /*
1023 * walk each buffer segment and mark them dirty appropriately.
1024 */
1025 start = 0;
1026 for (i = 0; i < bip->bli_format_count; i++) {
1027 if (start > last)
1028 break;
a3916e52
BF
1029 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
1030
1031 /* skip to the map that includes the first byte to log */
372cc85e
DC
1032 if (first > end) {
1033 start += BBTOB(bp->b_maps[i].bm_len);
1034 continue;
1035 }
a3916e52
BF
1036
1037 /*
1038 * Trim the range to this segment and mark it in the bitmap.
1039 * Note that we must convert buffer offsets to segment relative
1040 * offsets (e.g., the first byte of each segment is byte 0 of
1041 * that segment).
1042 */
372cc85e
DC
1043 if (first < start)
1044 first = start;
1045 if (end > last)
1046 end = last;
a3916e52 1047 xfs_buf_item_log_segment(first - start, end - start,
372cc85e
DC
1048 &bip->bli_formats[i].blf_data_map[0]);
1049
a3916e52 1050 start += BBTOB(bp->b_maps[i].bm_len);
372cc85e
DC
1051 }
1052}
1053
1da177e4 1054
6453c65d
BF
1055/*
1056 * Return true if the buffer has any ranges logged/dirtied by a transaction,
1057 * false otherwise.
1058 */
1059bool
1060xfs_buf_item_dirty_format(
1061 struct xfs_buf_log_item *bip)
1062{
1063 int i;
1064
1065 for (i = 0; i < bip->bli_format_count; i++) {
1066 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
1067 bip->bli_formats[i].blf_map_size))
1068 return true;
1069 }
1070
1071 return false;
1072}
1073
e1f5dbd7
LM
1074STATIC void
1075xfs_buf_item_free(
70a20655 1076 struct xfs_buf_log_item *bip)
e1f5dbd7 1077{
372cc85e 1078 xfs_buf_item_free_format(bip);
49292576 1079 kvfree(bip->bli_item.li_lv_shadow);
182696fb 1080 kmem_cache_free(xfs_buf_item_cache, bip);
e1f5dbd7
LM
1081}
1082
1da177e4 1083/*
b01d1461 1084 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
1da177e4
LT
1085 */
1086void
1087xfs_buf_item_relse(
e8222613 1088 struct xfs_buf *bp)
1da177e4 1089{
fb1755a6 1090 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 1091
0b1b213f 1092 trace_xfs_buf_item_relse(bp, _RET_IP_);
826f7e34 1093 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
0b1b213f 1094
575689fc
GX
1095 if (atomic_read(&bip->bli_refcount))
1096 return;
fb1755a6 1097 bp->b_log_item = NULL;
e1f5dbd7
LM
1098 xfs_buf_rele(bp);
1099 xfs_buf_item_free(bip);
1da177e4
LT
1100}
1101
664ffb8a 1102void
fec671cd 1103xfs_buf_item_done(
aac855ab
DC
1104 struct xfs_buf *bp)
1105{
fec671cd
DC
1106 /*
1107 * If we are forcibly shutting down, this may well be off the AIL
1108 * already. That's because we simulate the log-committed callbacks to
1109 * unpin these buffers. Or we may never have put this item on AIL
1110 * because of the transaction was aborted forcibly.
1111 * xfs_trans_ail_delete() takes care of these.
1112 *
1113 * Either way, AIL is useless if we're forcing a shutdown.
22c10589
CH
1114 *
1115 * Note that log recovery writes might have buffer items that are not on
1116 * the AIL even when the file system is not shut down.
fec671cd 1117 */
b840e2ad 1118 xfs_trans_ail_delete(&bp->b_log_item->bli_item,
22c10589 1119 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
b840e2ad
CH
1120 SHUTDOWN_CORRUPT_INCORE);
1121 xfs_buf_item_relse(bp);
f593bf14 1122}