xfs: convert to SPDX license tags
[linux-block.git] / fs / xfs / xfs_buf_item.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
4fb6e8ad 8#include "xfs_format.h"
239880ef
DC
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
a844f451 11#include "xfs_bit.h"
1da177e4 12#include "xfs_sb.h"
1da177e4 13#include "xfs_mount.h"
239880ef 14#include "xfs_trans.h"
a844f451 15#include "xfs_buf_item.h"
1da177e4 16#include "xfs_trans_priv.h"
1da177e4 17#include "xfs_error.h"
0b1b213f 18#include "xfs_trace.h"
239880ef 19#include "xfs_log.h"
0b80ae6e 20#include "xfs_inode.h"
1da177e4
LT
21
22
23kmem_zone_t *xfs_buf_item_zone;
24
7bfa31d8
CH
25static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
26{
27 return container_of(lip, struct xfs_buf_log_item, bli_item);
28}
29
c90821a2 30STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4 31
166d1368
DC
32static inline int
33xfs_buf_log_format_size(
34 struct xfs_buf_log_format *blfp)
35{
36 return offsetof(struct xfs_buf_log_format, blf_data_map) +
37 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
38}
39
1da177e4
LT
40/*
41 * This returns the number of log iovecs needed to log the
42 * given buf log item.
43 *
44 * It calculates this as 1 iovec for the buf log format structure
45 * and 1 for each stretch of non-contiguous chunks to be logged.
46 * Contiguous chunks are logged in a single iovec.
47 *
48 * If the XFS_BLI_STALE flag has been set, then log nothing.
49 */
166d1368 50STATIC void
372cc85e 51xfs_buf_item_size_segment(
70a20655
CM
52 struct xfs_buf_log_item *bip,
53 struct xfs_buf_log_format *blfp,
54 int *nvecs,
55 int *nbytes)
1da177e4 56{
70a20655
CM
57 struct xfs_buf *bp = bip->bli_buf;
58 int next_bit;
59 int last_bit;
1da177e4 60
372cc85e
DC
61 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
62 if (last_bit == -1)
166d1368 63 return;
372cc85e
DC
64
65 /*
66 * initial count for a dirty buffer is 2 vectors - the format structure
67 * and the first dirty region.
68 */
166d1368
DC
69 *nvecs += 2;
70 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
1da177e4 71
1da177e4
LT
72 while (last_bit != -1) {
73 /*
74 * This takes the bit number to start looking from and
75 * returns the next set bit from there. It returns -1
76 * if there are no more bits set or the start bit is
77 * beyond the end of the bitmap.
78 */
372cc85e
DC
79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 last_bit + 1);
1da177e4
LT
81 /*
82 * If we run out of bits, leave the loop,
83 * else if we find a new set of bits bump the number of vecs,
84 * else keep scanning the current set of bits.
85 */
86 if (next_bit == -1) {
372cc85e 87 break;
1da177e4
LT
88 } else if (next_bit != last_bit + 1) {
89 last_bit = next_bit;
166d1368 90 (*nvecs)++;
c1155410
DC
91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 XFS_BLF_CHUNK)) {
1da177e4 94 last_bit = next_bit;
166d1368 95 (*nvecs)++;
1da177e4
LT
96 } else {
97 last_bit++;
98 }
166d1368 99 *nbytes += XFS_BLF_CHUNK;
1da177e4 100 }
1da177e4
LT
101}
102
103/*
372cc85e
DC
104 * This returns the number of log iovecs needed to log the given buf log item.
105 *
106 * It calculates this as 1 iovec for the buf log format structure and 1 for each
107 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
108 * in a single iovec.
109 *
110 * Discontiguous buffers need a format structure per region that that is being
111 * logged. This makes the changes in the buffer appear to log recovery as though
112 * they came from separate buffers, just like would occur if multiple buffers
113 * were used instead of a single discontiguous buffer. This enables
114 * discontiguous buffers to be in-memory constructs, completely transparent to
115 * what ends up on disk.
116 *
117 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
118 * format structures.
1da177e4 119 */
166d1368 120STATIC void
372cc85e 121xfs_buf_item_size(
166d1368
DC
122 struct xfs_log_item *lip,
123 int *nvecs,
124 int *nbytes)
1da177e4 125{
7bfa31d8 126 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
127 int i;
128
129 ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 if (bip->bli_flags & XFS_BLI_STALE) {
131 /*
132 * The buffer is stale, so all we need to log
133 * is the buf log format structure with the
134 * cancel flag in it.
135 */
136 trace_xfs_buf_item_size_stale(bip);
b9438173 137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
166d1368
DC
138 *nvecs += bip->bli_format_count;
139 for (i = 0; i < bip->bli_format_count; i++) {
140 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
141 }
142 return;
372cc85e
DC
143 }
144
145 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
146
5f6bed76
DC
147 if (bip->bli_flags & XFS_BLI_ORDERED) {
148 /*
149 * The buffer has been logged just to order it.
150 * It is not being included in the transaction
151 * commit, so no vectors are used at all.
152 */
153 trace_xfs_buf_item_size_ordered(bip);
166d1368
DC
154 *nvecs = XFS_LOG_VEC_ORDERED;
155 return;
5f6bed76
DC
156 }
157
372cc85e
DC
158 /*
159 * the vector count is based on the number of buffer vectors we have
160 * dirty bits in. This will only be greater than one when we have a
161 * compound buffer with more than one segment dirty. Hence for compound
162 * buffers we need to track which segment the dirty bits correspond to,
163 * and when we move from one segment to the next increment the vector
164 * count for the extra buf log format structure that will need to be
165 * written.
166 */
372cc85e 167 for (i = 0; i < bip->bli_format_count; i++) {
166d1368
DC
168 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
169 nvecs, nbytes);
372cc85e 170 }
372cc85e 171 trace_xfs_buf_item_size(bip);
372cc85e
DC
172}
173
1234351c 174static inline void
7aeb7222 175xfs_buf_item_copy_iovec(
bde7cff6 176 struct xfs_log_vec *lv,
1234351c 177 struct xfs_log_iovec **vecp,
7aeb7222
CH
178 struct xfs_buf *bp,
179 uint offset,
180 int first_bit,
181 uint nbits)
182{
183 offset += first_bit * XFS_BLF_CHUNK;
bde7cff6 184 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
1234351c
CH
185 xfs_buf_offset(bp, offset),
186 nbits * XFS_BLF_CHUNK);
7aeb7222
CH
187}
188
189static inline bool
190xfs_buf_item_straddle(
191 struct xfs_buf *bp,
192 uint offset,
193 int next_bit,
194 int last_bit)
195{
196 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
197 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
198 XFS_BLF_CHUNK);
199}
200
1234351c 201static void
372cc85e
DC
202xfs_buf_item_format_segment(
203 struct xfs_buf_log_item *bip,
bde7cff6 204 struct xfs_log_vec *lv,
1234351c 205 struct xfs_log_iovec **vecp,
372cc85e
DC
206 uint offset,
207 struct xfs_buf_log_format *blfp)
208{
70a20655
CM
209 struct xfs_buf *bp = bip->bli_buf;
210 uint base_size;
211 int first_bit;
212 int last_bit;
213 int next_bit;
214 uint nbits;
1da177e4 215
372cc85e 216 /* copy the flags across from the base format item */
b9438173 217 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
218
219 /*
77c1a08f
DC
220 * Base size is the actual size of the ondisk structure - it reflects
221 * the actual size of the dirty bitmap rather than the size of the in
222 * memory structure.
1da177e4 223 */
166d1368 224 base_size = xfs_buf_log_format_size(blfp);
820a554f 225
820a554f
MT
226 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
227 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
228 /*
229 * If the map is not be dirty in the transaction, mark
230 * the size as zero and do not advance the vector pointer.
231 */
bde7cff6 232 return;
820a554f
MT
233 }
234
bde7cff6
CH
235 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
236 blfp->blf_size = 1;
1da177e4
LT
237
238 if (bip->bli_flags & XFS_BLI_STALE) {
239 /*
240 * The buffer is stale, so all we need to log
241 * is the buf log format structure with the
242 * cancel flag in it.
243 */
0b1b213f 244 trace_xfs_buf_item_format_stale(bip);
372cc85e 245 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
bde7cff6 246 return;
1da177e4
LT
247 }
248
5f6bed76 249
1da177e4
LT
250 /*
251 * Fill in an iovec for each set of contiguous chunks.
252 */
1da177e4
LT
253 last_bit = first_bit;
254 nbits = 1;
255 for (;;) {
256 /*
257 * This takes the bit number to start looking from and
258 * returns the next set bit from there. It returns -1
259 * if there are no more bits set or the start bit is
260 * beyond the end of the bitmap.
261 */
372cc85e
DC
262 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
263 (uint)last_bit + 1);
1da177e4 264 /*
7aeb7222
CH
265 * If we run out of bits fill in the last iovec and get out of
266 * the loop. Else if we start a new set of bits then fill in
267 * the iovec for the series we were looking at and start
268 * counting the bits in the new one. Else we're still in the
269 * same set of bits so just keep counting and scanning.
1da177e4
LT
270 */
271 if (next_bit == -1) {
bde7cff6 272 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
7aeb7222 273 first_bit, nbits);
bde7cff6 274 blfp->blf_size++;
1da177e4 275 break;
7aeb7222
CH
276 } else if (next_bit != last_bit + 1 ||
277 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
bde7cff6 278 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
1234351c 279 first_bit, nbits);
bde7cff6 280 blfp->blf_size++;
1da177e4
LT
281 first_bit = next_bit;
282 last_bit = next_bit;
283 nbits = 1;
284 } else {
285 last_bit++;
286 nbits++;
287 }
288 }
372cc85e
DC
289}
290
291/*
292 * This is called to fill in the vector of log iovecs for the
293 * given log buf item. It fills the first entry with a buf log
294 * format structure, and the rest point to contiguous chunks
295 * within the buffer.
296 */
297STATIC void
298xfs_buf_item_format(
299 struct xfs_log_item *lip,
bde7cff6 300 struct xfs_log_vec *lv)
372cc85e
DC
301{
302 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
303 struct xfs_buf *bp = bip->bli_buf;
bde7cff6 304 struct xfs_log_iovec *vecp = NULL;
372cc85e
DC
305 uint offset = 0;
306 int i;
307
308 ASSERT(atomic_read(&bip->bli_refcount) > 0);
309 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
310 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5
DC
311 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
312 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
313 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
e9385cc6
BF
314 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
315 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5 316
372cc85e
DC
317
318 /*
319 * If it is an inode buffer, transfer the in-memory state to the
ddf6ad01
DC
320 * format flags and clear the in-memory state.
321 *
322 * For buffer based inode allocation, we do not transfer
372cc85e
DC
323 * this state if the inode buffer allocation has not yet been committed
324 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
325 * correct replay of the inode allocation.
ddf6ad01
DC
326 *
327 * For icreate item based inode allocation, the buffers aren't written
328 * to the journal during allocation, and hence we should always tag the
329 * buffer as an inode buffer so that the correct unlinked list replay
330 * occurs during recovery.
372cc85e
DC
331 */
332 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
ddf6ad01
DC
333 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
334 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
372cc85e 335 xfs_log_item_in_current_chkpt(lip)))
b9438173 336 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
337 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
338 }
339
340 for (i = 0; i < bip->bli_format_count; i++) {
bde7cff6 341 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
1234351c 342 &bip->bli_formats[i]);
a3916e52 343 offset += BBTOB(bp->b_maps[i].bm_len);
372cc85e 344 }
1da177e4
LT
345
346 /*
347 * Check to make sure everything is consistent.
348 */
0b1b213f 349 trace_xfs_buf_item_format(bip);
1da177e4
LT
350}
351
352/*
64fc35de 353 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 354 * so it cannot be written out.
64fc35de
DC
355 *
356 * We also always take a reference to the buffer log item here so that the bli
357 * is held while the item is pinned in memory. This means that we can
358 * unconditionally drop the reference count a transaction holds when the
359 * transaction is completed.
1da177e4 360 */
ba0f32d4 361STATIC void
1da177e4 362xfs_buf_item_pin(
7bfa31d8 363 struct xfs_log_item *lip)
1da177e4 364{
7bfa31d8 365 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 366
1da177e4
LT
367 ASSERT(atomic_read(&bip->bli_refcount) > 0);
368 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 369 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 370 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 371
0b1b213f 372 trace_xfs_buf_item_pin(bip);
4d16e924
CH
373
374 atomic_inc(&bip->bli_refcount);
375 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
376}
377
1da177e4
LT
378/*
379 * This is called to unpin the buffer associated with the buf log
380 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
381 *
382 * Also drop the reference to the buf item for the current transaction.
383 * If the XFS_BLI_STALE flag is set and we are the last reference,
384 * then free up the buf log item and unlock the buffer.
9412e318
CH
385 *
386 * If the remove flag is set we are called from uncommit in the
387 * forced-shutdown path. If that is true and the reference count on
388 * the log item is going to drop to zero we need to free the item's
389 * descriptor in the transaction.
1da177e4 390 */
ba0f32d4 391STATIC void
1da177e4 392xfs_buf_item_unpin(
7bfa31d8 393 struct xfs_log_item *lip,
9412e318 394 int remove)
1da177e4 395{
7bfa31d8 396 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
70a20655
CM
397 xfs_buf_t *bp = bip->bli_buf;
398 struct xfs_ail *ailp = lip->li_ailp;
399 int stale = bip->bli_flags & XFS_BLI_STALE;
400 int freed;
1da177e4 401
fb1755a6 402 ASSERT(bp->b_log_item == bip);
1da177e4 403 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 404
0b1b213f 405 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
406
407 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
408
409 if (atomic_dec_and_test(&bp->b_pin_count))
410 wake_up_all(&bp->b_waiters);
7bfa31d8 411
1da177e4
LT
412 if (freed && stale) {
413 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 414 ASSERT(xfs_buf_islocked(bp));
5cfd28b6 415 ASSERT(bp->b_flags & XBF_STALE);
b9438173 416 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 417
0b1b213f
CH
418 trace_xfs_buf_item_unpin_stale(bip);
419
9412e318
CH
420 if (remove) {
421 /*
e34a314c
DC
422 * If we are in a transaction context, we have to
423 * remove the log item from the transaction as we are
424 * about to release our reference to the buffer. If we
425 * don't, the unlock that occurs later in
426 * xfs_trans_uncommit() will try to reference the
9412e318
CH
427 * buffer which we no longer have a hold on.
428 */
e6631f85 429 if (!list_empty(&lip->li_trans))
e34a314c 430 xfs_trans_del_item(lip);
9412e318
CH
431
432 /*
433 * Since the transaction no longer refers to the buffer,
434 * the buffer should no longer refer to the transaction.
435 */
bf9d9013 436 bp->b_transp = NULL;
9412e318
CH
437 }
438
1da177e4
LT
439 /*
440 * If we get called here because of an IO error, we may
783a2f65 441 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 442 * will take care of that situation.
783a2f65 443 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
444 */
445 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 446 xfs_buf_do_callbacks(bp);
fb1755a6 447 bp->b_log_item = NULL;
643c8c05 448 list_del_init(&bp->b_li_list);
cb669ca5 449 bp->b_iodone = NULL;
1da177e4 450 } else {
57e80956 451 spin_lock(&ailp->ail_lock);
04913fdd 452 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 453 xfs_buf_item_relse(bp);
fb1755a6 454 ASSERT(bp->b_log_item == NULL);
1da177e4
LT
455 }
456 xfs_buf_relse(bp);
960c60af 457 } else if (freed && remove) {
137fff09
DC
458 /*
459 * There are currently two references to the buffer - the active
460 * LRU reference and the buf log item. What we are about to do
461 * here - simulate a failed IO completion - requires 3
462 * references.
463 *
464 * The LRU reference is removed by the xfs_buf_stale() call. The
465 * buf item reference is removed by the xfs_buf_iodone()
466 * callback that is run by xfs_buf_do_callbacks() during ioend
467 * processing (via the bp->b_iodone callback), and then finally
468 * the ioend processing will drop the IO reference if the buffer
469 * is marked XBF_ASYNC.
470 *
471 * Hence we need to take an additional reference here so that IO
472 * completion processing doesn't free the buffer prematurely.
473 */
960c60af 474 xfs_buf_lock(bp);
137fff09
DC
475 xfs_buf_hold(bp);
476 bp->b_flags |= XBF_ASYNC;
2451337d 477 xfs_buf_ioerror(bp, -EIO);
b0388bf1 478 bp->b_flags &= ~XBF_DONE;
960c60af 479 xfs_buf_stale(bp);
e8aaba9a 480 xfs_buf_ioend(bp);
1da177e4
LT
481 }
482}
483
ac8809f9
DC
484/*
485 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
486 * seconds so as to not spam logs too much on repeated detection of the same
487 * buffer being bad..
488 */
489
02cc1876 490static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
ac8809f9 491
ba0f32d4 492STATIC uint
43ff2122
CH
493xfs_buf_item_push(
494 struct xfs_log_item *lip,
495 struct list_head *buffer_list)
1da177e4 496{
7bfa31d8
CH
497 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
498 struct xfs_buf *bp = bip->bli_buf;
43ff2122 499 uint rval = XFS_ITEM_SUCCESS;
1da177e4 500
811e64c7 501 if (xfs_buf_ispinned(bp))
1da177e4 502 return XFS_ITEM_PINNED;
5337fe9b
BF
503 if (!xfs_buf_trylock(bp)) {
504 /*
505 * If we have just raced with a buffer being pinned and it has
506 * been marked stale, we could end up stalling until someone else
507 * issues a log force to unpin the stale buffer. Check for the
508 * race condition here so xfsaild recognizes the buffer is pinned
509 * and queues a log force to move it along.
510 */
511 if (xfs_buf_ispinned(bp))
512 return XFS_ITEM_PINNED;
1da177e4 513 return XFS_ITEM_LOCKED;
5337fe9b 514 }
1da177e4 515
1da177e4 516 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
517
518 trace_xfs_buf_item_push(bip);
519
ac8809f9
DC
520 /* has a previous flush failed due to IO errors? */
521 if ((bp->b_flags & XBF_WRITE_FAIL) &&
fdadf267 522 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
ac8809f9 523 xfs_warn(bp->b_target->bt_mount,
fdadf267 524"Failing async write on buffer block 0x%llx. Retrying async write.",
ac8809f9
DC
525 (long long)bp->b_bn);
526 }
527
43ff2122
CH
528 if (!xfs_buf_delwri_queue(bp, buffer_list))
529 rval = XFS_ITEM_FLUSHING;
530 xfs_buf_unlock(bp);
531 return rval;
1da177e4
LT
532}
533
534/*
64fc35de
DC
535 * Release the buffer associated with the buf log item. If there is no dirty
536 * logged data associated with the buffer recorded in the buf log item, then
537 * free the buf log item and remove the reference to it in the buffer.
1da177e4 538 *
64fc35de
DC
539 * This call ignores the recursion count. It is only called when the buffer
540 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 541 *
64fc35de
DC
542 * We unconditionally drop the transaction's reference to the log item. If the
543 * item was logged, then another reference was taken when it was pinned, so we
544 * can safely drop the transaction reference now. This also allows us to avoid
545 * potential races with the unpin code freeing the bli by not referencing the
546 * bli after we've dropped the reference count.
547 *
548 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
549 * if necessary but do not unlock the buffer. This is for support of
550 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
551 * free the item.
1da177e4 552 */
ba0f32d4 553STATIC void
1da177e4 554xfs_buf_item_unlock(
7bfa31d8 555 struct xfs_log_item *lip)
1da177e4 556{
7bfa31d8
CH
557 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
558 struct xfs_buf *bp = bip->bli_buf;
22525c17 559 bool aborted;
6453c65d
BF
560 bool hold = !!(bip->bli_flags & XFS_BLI_HOLD);
561 bool dirty = !!(bip->bli_flags & XFS_BLI_DIRTY);
7bf7a193 562#if defined(DEBUG) || defined(XFS_WARN)
6453c65d 563 bool ordered = !!(bip->bli_flags & XFS_BLI_ORDERED);
7bf7a193 564#endif
1da177e4 565
22525c17
DC
566 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags);
567
64fc35de 568 /* Clear the buffer's association with this transaction. */
bf9d9013 569 bp->b_transp = NULL;
1da177e4
LT
570
571 /*
6453c65d
BF
572 * The per-transaction state has been copied above so clear it from the
573 * bli.
1da177e4 574 */
5f6bed76 575 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
64fc35de
DC
576
577 /*
578 * If the buf item is marked stale, then don't do anything. We'll
579 * unlock the buffer and free the buf item when the buffer is unpinned
580 * for the last time.
1da177e4 581 */
6453c65d 582 if (bip->bli_flags & XFS_BLI_STALE) {
0b1b213f 583 trace_xfs_buf_item_unlock_stale(bip);
b9438173 584 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
585 if (!aborted) {
586 atomic_dec(&bip->bli_refcount);
1da177e4 587 return;
64fc35de 588 }
1da177e4
LT
589 }
590
0b1b213f 591 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
592
593 /*
64fc35de 594 * If the buf item isn't tracking any data, free it, otherwise drop the
3b19034d
DC
595 * reference we hold to it. If we are aborting the transaction, this may
596 * be the only reference to the buf item, so we free it anyway
597 * regardless of whether it is dirty or not. A dirty abort implies a
598 * shutdown, anyway.
5f6bed76 599 *
6453c65d
BF
600 * The bli dirty state should match whether the blf has logged segments
601 * except for ordered buffers, where only the bli should be dirty.
1da177e4 602 */
6453c65d
BF
603 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
604 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
46f9d2eb
DC
605
606 /*
607 * Clean buffers, by definition, cannot be in the AIL. However, aborted
3d4b4a3e
BF
608 * buffers may be in the AIL regardless of dirty state. An aborted
609 * transaction that invalidates a buffer already in the AIL may have
610 * marked it stale and cleared the dirty state, for example.
611 *
612 * Therefore if we are aborting a buffer and we've just taken the last
613 * reference away, we have to check if it is in the AIL before freeing
614 * it. We need to free it in this case, because an aborted transaction
615 * has already shut the filesystem down and this is the last chance we
616 * will have to do so.
46f9d2eb
DC
617 */
618 if (atomic_dec_and_test(&bip->bli_refcount)) {
3d4b4a3e 619 if (aborted) {
46f9d2eb 620 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
146e54b7 621 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
3b19034d 622 xfs_buf_item_relse(bp);
6453c65d 623 } else if (!dirty)
3d4b4a3e 624 xfs_buf_item_relse(bp);
46f9d2eb 625 }
1da177e4 626
6453c65d 627 if (!hold)
1da177e4 628 xfs_buf_relse(bp);
1da177e4
LT
629}
630
631/*
632 * This is called to find out where the oldest active copy of the
633 * buf log item in the on disk log resides now that the last log
634 * write of it completed at the given lsn.
635 * We always re-log all the dirty data in a buffer, so usually the
636 * latest copy in the on disk log is the only one that matters. For
637 * those cases we simply return the given lsn.
638 *
639 * The one exception to this is for buffers full of newly allocated
640 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
641 * flag set, indicating that only the di_next_unlinked fields from the
642 * inodes in the buffers will be replayed during recovery. If the
643 * original newly allocated inode images have not yet been flushed
644 * when the buffer is so relogged, then we need to make sure that we
645 * keep the old images in the 'active' portion of the log. We do this
646 * by returning the original lsn of that transaction here rather than
647 * the current one.
648 */
ba0f32d4 649STATIC xfs_lsn_t
1da177e4 650xfs_buf_item_committed(
7bfa31d8 651 struct xfs_log_item *lip,
1da177e4
LT
652 xfs_lsn_t lsn)
653{
7bfa31d8
CH
654 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
655
0b1b213f
CH
656 trace_xfs_buf_item_committed(bip);
657
7bfa31d8
CH
658 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
659 return lip->li_lsn;
660 return lsn;
1da177e4
LT
661}
662
ba0f32d4 663STATIC void
7bfa31d8
CH
664xfs_buf_item_committing(
665 struct xfs_log_item *lip,
666 xfs_lsn_t commit_lsn)
1da177e4
LT
667{
668}
669
670/*
671 * This is the ops vector shared by all buf log items.
672 */
272e42b2 673static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
674 .iop_size = xfs_buf_item_size,
675 .iop_format = xfs_buf_item_format,
676 .iop_pin = xfs_buf_item_pin,
677 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
678 .iop_unlock = xfs_buf_item_unlock,
679 .iop_committed = xfs_buf_item_committed,
680 .iop_push = xfs_buf_item_push,
7bfa31d8 681 .iop_committing = xfs_buf_item_committing
1da177e4
LT
682};
683
372cc85e
DC
684STATIC int
685xfs_buf_item_get_format(
686 struct xfs_buf_log_item *bip,
687 int count)
688{
689 ASSERT(bip->bli_formats == NULL);
690 bip->bli_format_count = count;
691
692 if (count == 1) {
b9438173 693 bip->bli_formats = &bip->__bli_format;
372cc85e
DC
694 return 0;
695 }
696
697 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
698 KM_SLEEP);
699 if (!bip->bli_formats)
2451337d 700 return -ENOMEM;
372cc85e
DC
701 return 0;
702}
703
704STATIC void
705xfs_buf_item_free_format(
706 struct xfs_buf_log_item *bip)
707{
b9438173 708 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
709 kmem_free(bip->bli_formats);
710 bip->bli_formats = NULL;
711 }
712}
1da177e4
LT
713
714/*
715 * Allocate a new buf log item to go with the given buffer.
fb1755a6
CM
716 * Set the buffer's b_log_item field to point to the new
717 * buf log item.
1da177e4 718 */
f79af0b9 719int
1da177e4 720xfs_buf_item_init(
f79af0b9
DC
721 struct xfs_buf *bp,
722 struct xfs_mount *mp)
1da177e4 723{
fb1755a6 724 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4
LT
725 int chunks;
726 int map_size;
372cc85e
DC
727 int error;
728 int i;
1da177e4
LT
729
730 /*
731 * Check to see if there is already a buf log item for
fb1755a6 732 * this buffer. If we do already have one, there is
1da177e4
LT
733 * nothing to do here so return.
734 */
ebad861b 735 ASSERT(bp->b_target->bt_mount == mp);
1a2ebf83 736 if (bip) {
fb1755a6 737 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
1a2ebf83
DC
738 ASSERT(!bp->b_transp);
739 ASSERT(bip->bli_buf == bp);
f79af0b9 740 return 0;
fb1755a6 741 }
1da177e4 742
372cc85e 743 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
43f5efc5 744 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 745 bip->bli_buf = bp;
372cc85e
DC
746
747 /*
748 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
749 * can be divided into. Make sure not to truncate any pieces.
750 * map_size is the size of the bitmap needed to describe the
751 * chunks of the buffer.
752 *
753 * Discontiguous buffer support follows the layout of the underlying
754 * buffer. This makes the implementation as simple as possible.
755 */
756 error = xfs_buf_item_get_format(bip, bp->b_map_count);
757 ASSERT(error == 0);
f79af0b9
DC
758 if (error) { /* to stop gcc throwing set-but-unused warnings */
759 kmem_zone_free(xfs_buf_item_zone, bip);
760 return error;
761 }
762
372cc85e
DC
763
764 for (i = 0; i < bip->bli_format_count; i++) {
765 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
766 XFS_BLF_CHUNK);
767 map_size = DIV_ROUND_UP(chunks, NBWORD);
768
769 bip->bli_formats[i].blf_type = XFS_LI_BUF;
770 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
771 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
772 bip->bli_formats[i].blf_map_size = map_size;
773 }
1da177e4 774
fb1755a6 775 bp->b_log_item = bip;
f79af0b9
DC
776 xfs_buf_hold(bp);
777 return 0;
1da177e4
LT
778}
779
780
781/*
782 * Mark bytes first through last inclusive as dirty in the buf
783 * item's bitmap.
784 */
632b89e8 785static void
372cc85e 786xfs_buf_item_log_segment(
1da177e4 787 uint first,
372cc85e
DC
788 uint last,
789 uint *map)
1da177e4
LT
790{
791 uint first_bit;
792 uint last_bit;
793 uint bits_to_set;
794 uint bits_set;
795 uint word_num;
796 uint *wordp;
797 uint bit;
798 uint end_bit;
799 uint mask;
800
1da177e4
LT
801 /*
802 * Convert byte offsets to bit numbers.
803 */
c1155410
DC
804 first_bit = first >> XFS_BLF_SHIFT;
805 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
806
807 /*
808 * Calculate the total number of bits to be set.
809 */
810 bits_to_set = last_bit - first_bit + 1;
811
812 /*
813 * Get a pointer to the first word in the bitmap
814 * to set a bit in.
815 */
816 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 817 wordp = &map[word_num];
1da177e4
LT
818
819 /*
820 * Calculate the starting bit in the first word.
821 */
822 bit = first_bit & (uint)(NBWORD - 1);
823
824 /*
825 * First set any bits in the first word of our range.
826 * If it starts at bit 0 of the word, it will be
827 * set below rather than here. That is what the variable
828 * bit tells us. The variable bits_set tracks the number
829 * of bits that have been set so far. End_bit is the number
830 * of the last bit to be set in this word plus one.
831 */
832 if (bit) {
833 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
79c350e4 834 mask = ((1U << (end_bit - bit)) - 1) << bit;
1da177e4
LT
835 *wordp |= mask;
836 wordp++;
837 bits_set = end_bit - bit;
838 } else {
839 bits_set = 0;
840 }
841
842 /*
843 * Now set bits a whole word at a time that are between
844 * first_bit and last_bit.
845 */
846 while ((bits_to_set - bits_set) >= NBWORD) {
847 *wordp |= 0xffffffff;
848 bits_set += NBWORD;
849 wordp++;
850 }
851
852 /*
853 * Finally, set any bits left to be set in one last partial word.
854 */
855 end_bit = bits_to_set - bits_set;
856 if (end_bit) {
79c350e4 857 mask = (1U << end_bit) - 1;
1da177e4
LT
858 *wordp |= mask;
859 }
1da177e4
LT
860}
861
372cc85e
DC
862/*
863 * Mark bytes first through last inclusive as dirty in the buf
864 * item's bitmap.
865 */
866void
867xfs_buf_item_log(
70a20655 868 struct xfs_buf_log_item *bip,
372cc85e
DC
869 uint first,
870 uint last)
871{
872 int i;
873 uint start;
874 uint end;
875 struct xfs_buf *bp = bip->bli_buf;
876
372cc85e
DC
877 /*
878 * walk each buffer segment and mark them dirty appropriately.
879 */
880 start = 0;
881 for (i = 0; i < bip->bli_format_count; i++) {
882 if (start > last)
883 break;
a3916e52
BF
884 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
885
886 /* skip to the map that includes the first byte to log */
372cc85e
DC
887 if (first > end) {
888 start += BBTOB(bp->b_maps[i].bm_len);
889 continue;
890 }
a3916e52
BF
891
892 /*
893 * Trim the range to this segment and mark it in the bitmap.
894 * Note that we must convert buffer offsets to segment relative
895 * offsets (e.g., the first byte of each segment is byte 0 of
896 * that segment).
897 */
372cc85e
DC
898 if (first < start)
899 first = start;
900 if (end > last)
901 end = last;
a3916e52 902 xfs_buf_item_log_segment(first - start, end - start,
372cc85e
DC
903 &bip->bli_formats[i].blf_data_map[0]);
904
a3916e52 905 start += BBTOB(bp->b_maps[i].bm_len);
372cc85e
DC
906 }
907}
908
1da177e4 909
6453c65d
BF
910/*
911 * Return true if the buffer has any ranges logged/dirtied by a transaction,
912 * false otherwise.
913 */
914bool
915xfs_buf_item_dirty_format(
916 struct xfs_buf_log_item *bip)
917{
918 int i;
919
920 for (i = 0; i < bip->bli_format_count; i++) {
921 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
922 bip->bli_formats[i].blf_map_size))
923 return true;
924 }
925
926 return false;
927}
928
e1f5dbd7
LM
929STATIC void
930xfs_buf_item_free(
70a20655 931 struct xfs_buf_log_item *bip)
e1f5dbd7 932{
372cc85e 933 xfs_buf_item_free_format(bip);
b1c5ebb2 934 kmem_free(bip->bli_item.li_lv_shadow);
e1f5dbd7
LM
935 kmem_zone_free(xfs_buf_item_zone, bip);
936}
937
1da177e4
LT
938/*
939 * This is called when the buf log item is no longer needed. It should
940 * free the buf log item associated with the given buffer and clear
941 * the buffer's pointer to the buf log item. If there are no more
942 * items in the list, clear the b_iodone field of the buffer (see
943 * xfs_buf_attach_iodone() below).
944 */
945void
946xfs_buf_item_relse(
947 xfs_buf_t *bp)
948{
fb1755a6 949 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 950
0b1b213f 951 trace_xfs_buf_item_relse(bp, _RET_IP_);
5f6bed76 952 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
0b1b213f 953
fb1755a6 954 bp->b_log_item = NULL;
643c8c05 955 if (list_empty(&bp->b_li_list))
cb669ca5 956 bp->b_iodone = NULL;
adadbeef 957
e1f5dbd7
LM
958 xfs_buf_rele(bp);
959 xfs_buf_item_free(bip);
1da177e4
LT
960}
961
962
963/*
964 * Add the given log item with its callback to the list of callbacks
965 * to be called when the buffer's I/O completes. If it is not set
966 * already, set the buffer's b_iodone() routine to be
967 * xfs_buf_iodone_callbacks() and link the log item into the list of
fb1755a6 968 * items rooted at b_li_list.
1da177e4
LT
969 */
970void
971xfs_buf_attach_iodone(
972 xfs_buf_t *bp,
973 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
974 xfs_log_item_t *lip)
975{
0c842ad4 976 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
977
978 lip->li_cb = cb;
643c8c05 979 list_add_tail(&lip->li_bio_list, &bp->b_li_list);
1da177e4 980
cb669ca5
CH
981 ASSERT(bp->b_iodone == NULL ||
982 bp->b_iodone == xfs_buf_iodone_callbacks);
983 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
984}
985
c90821a2
DC
986/*
987 * We can have many callbacks on a buffer. Running the callbacks individually
988 * can cause a lot of contention on the AIL lock, so we allow for a single
643c8c05
CM
989 * callback to be able to scan the remaining items in bp->b_li_list for other
990 * items of the same type and callback to be processed in the first call.
c90821a2
DC
991 *
992 * As a result, the loop walking the callback list below will also modify the
993 * list. it removes the first item from the list and then runs the callback.
643c8c05 994 * The loop then restarts from the new first item int the list. This allows the
c90821a2
DC
995 * callback to scan and modify the list attached to the buffer and we don't
996 * have to care about maintaining a next item pointer.
997 */
1da177e4
LT
998STATIC void
999xfs_buf_do_callbacks(
c90821a2 1000 struct xfs_buf *bp)
1da177e4 1001{
fb1755a6 1002 struct xfs_buf_log_item *blip = bp->b_log_item;
c90821a2 1003 struct xfs_log_item *lip;
1da177e4 1004
fb1755a6
CM
1005 /* If there is a buf_log_item attached, run its callback */
1006 if (blip) {
1007 lip = &blip->bli_item;
1008 lip->li_cb(bp, lip);
1009 }
1010
643c8c05
CM
1011 while (!list_empty(&bp->b_li_list)) {
1012 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1013 li_bio_list);
1014
1da177e4 1015 /*
643c8c05 1016 * Remove the item from the list, so we don't have any
1da177e4
LT
1017 * confusion if the item is added to another buf.
1018 * Don't touch the log item after calling its
1019 * callback, because it could have freed itself.
1020 */
643c8c05 1021 list_del_init(&lip->li_bio_list);
1da177e4 1022 lip->li_cb(bp, lip);
1da177e4
LT
1023 }
1024}
1025
0b80ae6e
CM
1026/*
1027 * Invoke the error state callback for each log item affected by the failed I/O.
1028 *
1029 * If a metadata buffer write fails with a non-permanent error, the buffer is
1030 * eventually resubmitted and so the completion callbacks are not run. The error
1031 * state may need to be propagated to the log items attached to the buffer,
1032 * however, so the next AIL push of the item knows hot to handle it correctly.
1033 */
1034STATIC void
1035xfs_buf_do_callbacks_fail(
1036 struct xfs_buf *bp)
1037{
643c8c05 1038 struct xfs_log_item *lip;
fb1755a6 1039 struct xfs_ail *ailp;
0b80ae6e 1040
fb1755a6
CM
1041 /*
1042 * Buffer log item errors are handled directly by xfs_buf_item_push()
1043 * and xfs_buf_iodone_callback_error, and they have no IO error
1044 * callbacks. Check only for items in b_li_list.
1045 */
643c8c05 1046 if (list_empty(&bp->b_li_list))
fb1755a6
CM
1047 return;
1048
643c8c05
CM
1049 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1050 li_bio_list);
fb1755a6 1051 ailp = lip->li_ailp;
57e80956 1052 spin_lock(&ailp->ail_lock);
643c8c05 1053 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
0b80ae6e
CM
1054 if (lip->li_ops->iop_error)
1055 lip->li_ops->iop_error(lip, bp);
1056 }
57e80956 1057 spin_unlock(&ailp->ail_lock);
0b80ae6e
CM
1058}
1059
df309390
CM
1060static bool
1061xfs_buf_iodone_callback_error(
bfc60177 1062 struct xfs_buf *bp)
1da177e4 1063{
fb1755a6 1064 struct xfs_buf_log_item *bip = bp->b_log_item;
643c8c05 1065 struct xfs_log_item *lip;
fb1755a6 1066 struct xfs_mount *mp;
bfc60177
CH
1067 static ulong lasttime;
1068 static xfs_buftarg_t *lasttarg;
df309390 1069 struct xfs_error_cfg *cfg;
1da177e4 1070
fb1755a6
CM
1071 /*
1072 * The failed buffer might not have a buf_log_item attached or the
1073 * log_item list might be empty. Get the mp from the available
1074 * xfs_log_item
1075 */
643c8c05
CM
1076 lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1077 li_bio_list);
1078 mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
fb1755a6 1079
bfc60177
CH
1080 /*
1081 * If we've already decided to shutdown the filesystem because of
1082 * I/O errors, there's no point in giving this a retry.
1083 */
df309390
CM
1084 if (XFS_FORCED_SHUTDOWN(mp))
1085 goto out_stale;
1da177e4 1086
49074c06 1087 if (bp->b_target != lasttarg ||
bfc60177
CH
1088 time_after(jiffies, (lasttime + 5*HZ))) {
1089 lasttime = jiffies;
b38505b0 1090 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 1091 }
49074c06 1092 lasttarg = bp->b_target;
1da177e4 1093
df309390
CM
1094 /* synchronous writes will have callers process the error */
1095 if (!(bp->b_flags & XBF_ASYNC))
1096 goto out_stale;
1097
1098 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1099 ASSERT(bp->b_iodone != NULL);
1100
5539d367
ES
1101 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1102
bfc60177 1103 /*
25985edc 1104 * If the write was asynchronous then no one will be looking for the
df309390
CM
1105 * error. If this is the first failure of this type, clear the error
1106 * state and write the buffer out again. This means we always retry an
1107 * async write failure at least once, but we also need to set the buffer
1108 * up to behave correctly now for repeated failures.
bfc60177 1109 */
0b4db5df 1110 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
df309390 1111 bp->b_last_error != bp->b_error) {
0b4db5df 1112 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
df309390 1113 bp->b_last_error = bp->b_error;
77169812
ES
1114 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1115 !bp->b_first_retry_time)
5539d367 1116 bp->b_first_retry_time = jiffies;
a5ea70d2 1117
df309390
CM
1118 xfs_buf_ioerror(bp, 0);
1119 xfs_buf_submit(bp);
1120 return true;
1121 }
43ff2122 1122
df309390
CM
1123 /*
1124 * Repeated failure on an async write. Take action according to the
1125 * error configuration we have been set up to use.
1126 */
a5ea70d2
CM
1127
1128 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1129 ++bp->b_retries > cfg->max_retries)
1130 goto permanent_error;
77169812 1131 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
a5ea70d2
CM
1132 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1133 goto permanent_error;
bfc60177 1134
e6b3bb78
CM
1135 /* At unmount we may treat errors differently */
1136 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1137 goto permanent_error;
1138
0b80ae6e
CM
1139 /*
1140 * Still a transient error, run IO completion failure callbacks and let
1141 * the higher layers retry the buffer.
1142 */
1143 xfs_buf_do_callbacks_fail(bp);
df309390
CM
1144 xfs_buf_ioerror(bp, 0);
1145 xfs_buf_relse(bp);
1146 return true;
0b1b213f 1147
bfc60177 1148 /*
df309390
CM
1149 * Permanent error - we need to trigger a shutdown if we haven't already
1150 * to indicate that inconsistency will result from this action.
bfc60177 1151 */
df309390
CM
1152permanent_error:
1153 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1154out_stale:
c867cb61 1155 xfs_buf_stale(bp);
b0388bf1 1156 bp->b_flags |= XBF_DONE;
0b1b213f 1157 trace_xfs_buf_error_relse(bp, _RET_IP_);
df309390
CM
1158 return false;
1159}
1160
1161/*
1162 * This is the iodone() function for buffers which have had callbacks attached
1163 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1164 * callback list, mark the buffer as having no more callbacks and then push the
1165 * buffer through IO completion processing.
1166 */
1167void
1168xfs_buf_iodone_callbacks(
1169 struct xfs_buf *bp)
1170{
1171 /*
1172 * If there is an error, process it. Some errors require us
1173 * to run callbacks after failure processing is done so we
1174 * detect that and take appropriate action.
1175 */
1176 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1177 return;
1178
1179 /*
1180 * Successful IO or permanent error. Either way, we can clear the
1181 * retry state here in preparation for the next error that may occur.
1182 */
1183 bp->b_last_error = 0;
a5ea70d2 1184 bp->b_retries = 0;
4dd2eb63 1185 bp->b_first_retry_time = 0;
0b1b213f 1186
c90821a2 1187 xfs_buf_do_callbacks(bp);
fb1755a6 1188 bp->b_log_item = NULL;
643c8c05 1189 list_del_init(&bp->b_li_list);
cb669ca5 1190 bp->b_iodone = NULL;
e8aaba9a 1191 xfs_buf_ioend(bp);
1da177e4
LT
1192}
1193
1da177e4
LT
1194/*
1195 * This is the iodone() function for buffers which have been
1196 * logged. It is called when they are eventually flushed out.
1197 * It should remove the buf item from the AIL, and free the buf item.
1198 * It is called by xfs_buf_iodone_callbacks() above which will take
1199 * care of cleaning up the buffer itself.
1200 */
1da177e4
LT
1201void
1202xfs_buf_iodone(
ca30b2a7
CH
1203 struct xfs_buf *bp,
1204 struct xfs_log_item *lip)
1da177e4 1205{
ca30b2a7 1206 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1207
ca30b2a7 1208 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1209
e1f5dbd7 1210 xfs_buf_rele(bp);
1da177e4
LT
1211
1212 /*
1213 * If we are forcibly shutting down, this may well be
1214 * off the AIL already. That's because we simulate the
1215 * log-committed callbacks to unpin these buffers. Or we may never
1216 * have put this item on AIL because of the transaction was
783a2f65 1217 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1218 *
1219 * Either way, AIL is useless if we're forcing a shutdown.
1220 */
57e80956 1221 spin_lock(&ailp->ail_lock);
04913fdd 1222 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1223 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1224}
d3a304b6
CM
1225
1226/*
1227 * Requeue a failed buffer for writeback
1228 *
1229 * Return true if the buffer has been re-queued properly, false otherwise
1230 */
1231bool
1232xfs_buf_resubmit_failed_buffers(
1233 struct xfs_buf *bp,
d3a304b6
CM
1234 struct list_head *buffer_list)
1235{
643c8c05 1236 struct xfs_log_item *lip;
d3a304b6
CM
1237
1238 /*
1239 * Clear XFS_LI_FAILED flag from all items before resubmit
1240 *
57e80956 1241 * XFS_LI_FAILED set/clear is protected by ail_lock, caller this
d3a304b6
CM
1242 * function already have it acquired
1243 */
643c8c05 1244 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
d3a304b6 1245 xfs_clear_li_failed(lip);
d3a304b6
CM
1246
1247 /* Add this buffer back to the delayed write list */
1248 return xfs_buf_delwri_queue(bp, buffer_list);
1249}