Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / fs / xfs / xfs_buf_item.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
4fb6e8ad 8#include "xfs_format.h"
239880ef
DC
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
a844f451 11#include "xfs_bit.h"
1da177e4 12#include "xfs_sb.h"
1da177e4 13#include "xfs_mount.h"
239880ef 14#include "xfs_trans.h"
a844f451 15#include "xfs_buf_item.h"
1da177e4 16#include "xfs_trans_priv.h"
1da177e4 17#include "xfs_error.h"
0b1b213f 18#include "xfs_trace.h"
239880ef 19#include "xfs_log.h"
0b80ae6e 20#include "xfs_inode.h"
1da177e4
LT
21
22
23kmem_zone_t *xfs_buf_item_zone;
24
7bfa31d8
CH
25static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
26{
27 return container_of(lip, struct xfs_buf_log_item, bli_item);
28}
29
c90821a2 30STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4 31
166d1368
DC
32static inline int
33xfs_buf_log_format_size(
34 struct xfs_buf_log_format *blfp)
35{
36 return offsetof(struct xfs_buf_log_format, blf_data_map) +
37 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
38}
39
1da177e4
LT
40/*
41 * This returns the number of log iovecs needed to log the
42 * given buf log item.
43 *
44 * It calculates this as 1 iovec for the buf log format structure
45 * and 1 for each stretch of non-contiguous chunks to be logged.
46 * Contiguous chunks are logged in a single iovec.
47 *
48 * If the XFS_BLI_STALE flag has been set, then log nothing.
49 */
166d1368 50STATIC void
372cc85e 51xfs_buf_item_size_segment(
70a20655
CM
52 struct xfs_buf_log_item *bip,
53 struct xfs_buf_log_format *blfp,
54 int *nvecs,
55 int *nbytes)
1da177e4 56{
70a20655
CM
57 struct xfs_buf *bp = bip->bli_buf;
58 int next_bit;
59 int last_bit;
1da177e4 60
372cc85e
DC
61 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
62 if (last_bit == -1)
166d1368 63 return;
372cc85e
DC
64
65 /*
66 * initial count for a dirty buffer is 2 vectors - the format structure
67 * and the first dirty region.
68 */
166d1368
DC
69 *nvecs += 2;
70 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
1da177e4 71
1da177e4
LT
72 while (last_bit != -1) {
73 /*
74 * This takes the bit number to start looking from and
75 * returns the next set bit from there. It returns -1
76 * if there are no more bits set or the start bit is
77 * beyond the end of the bitmap.
78 */
372cc85e
DC
79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 last_bit + 1);
1da177e4
LT
81 /*
82 * If we run out of bits, leave the loop,
83 * else if we find a new set of bits bump the number of vecs,
84 * else keep scanning the current set of bits.
85 */
86 if (next_bit == -1) {
372cc85e 87 break;
1da177e4
LT
88 } else if (next_bit != last_bit + 1) {
89 last_bit = next_bit;
166d1368 90 (*nvecs)++;
c1155410
DC
91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 XFS_BLF_CHUNK)) {
1da177e4 94 last_bit = next_bit;
166d1368 95 (*nvecs)++;
1da177e4
LT
96 } else {
97 last_bit++;
98 }
166d1368 99 *nbytes += XFS_BLF_CHUNK;
1da177e4 100 }
1da177e4
LT
101}
102
103/*
372cc85e
DC
104 * This returns the number of log iovecs needed to log the given buf log item.
105 *
106 * It calculates this as 1 iovec for the buf log format structure and 1 for each
107 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
108 * in a single iovec.
109 *
110 * Discontiguous buffers need a format structure per region that that is being
111 * logged. This makes the changes in the buffer appear to log recovery as though
112 * they came from separate buffers, just like would occur if multiple buffers
113 * were used instead of a single discontiguous buffer. This enables
114 * discontiguous buffers to be in-memory constructs, completely transparent to
115 * what ends up on disk.
116 *
117 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
118 * format structures.
1da177e4 119 */
166d1368 120STATIC void
372cc85e 121xfs_buf_item_size(
166d1368
DC
122 struct xfs_log_item *lip,
123 int *nvecs,
124 int *nbytes)
1da177e4 125{
7bfa31d8 126 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
127 int i;
128
129 ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 if (bip->bli_flags & XFS_BLI_STALE) {
131 /*
132 * The buffer is stale, so all we need to log
133 * is the buf log format structure with the
134 * cancel flag in it.
135 */
136 trace_xfs_buf_item_size_stale(bip);
b9438173 137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
166d1368
DC
138 *nvecs += bip->bli_format_count;
139 for (i = 0; i < bip->bli_format_count; i++) {
140 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
141 }
142 return;
372cc85e
DC
143 }
144
145 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
146
5f6bed76
DC
147 if (bip->bli_flags & XFS_BLI_ORDERED) {
148 /*
149 * The buffer has been logged just to order it.
150 * It is not being included in the transaction
151 * commit, so no vectors are used at all.
152 */
153 trace_xfs_buf_item_size_ordered(bip);
166d1368
DC
154 *nvecs = XFS_LOG_VEC_ORDERED;
155 return;
5f6bed76
DC
156 }
157
372cc85e
DC
158 /*
159 * the vector count is based on the number of buffer vectors we have
160 * dirty bits in. This will only be greater than one when we have a
161 * compound buffer with more than one segment dirty. Hence for compound
162 * buffers we need to track which segment the dirty bits correspond to,
163 * and when we move from one segment to the next increment the vector
164 * count for the extra buf log format structure that will need to be
165 * written.
166 */
372cc85e 167 for (i = 0; i < bip->bli_format_count; i++) {
166d1368
DC
168 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
169 nvecs, nbytes);
372cc85e 170 }
372cc85e 171 trace_xfs_buf_item_size(bip);
372cc85e
DC
172}
173
1234351c 174static inline void
7aeb7222 175xfs_buf_item_copy_iovec(
bde7cff6 176 struct xfs_log_vec *lv,
1234351c 177 struct xfs_log_iovec **vecp,
7aeb7222
CH
178 struct xfs_buf *bp,
179 uint offset,
180 int first_bit,
181 uint nbits)
182{
183 offset += first_bit * XFS_BLF_CHUNK;
bde7cff6 184 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
1234351c
CH
185 xfs_buf_offset(bp, offset),
186 nbits * XFS_BLF_CHUNK);
7aeb7222
CH
187}
188
189static inline bool
190xfs_buf_item_straddle(
191 struct xfs_buf *bp,
192 uint offset,
193 int next_bit,
194 int last_bit)
195{
196 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
197 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
198 XFS_BLF_CHUNK);
199}
200
1234351c 201static void
372cc85e
DC
202xfs_buf_item_format_segment(
203 struct xfs_buf_log_item *bip,
bde7cff6 204 struct xfs_log_vec *lv,
1234351c 205 struct xfs_log_iovec **vecp,
372cc85e
DC
206 uint offset,
207 struct xfs_buf_log_format *blfp)
208{
70a20655
CM
209 struct xfs_buf *bp = bip->bli_buf;
210 uint base_size;
211 int first_bit;
212 int last_bit;
213 int next_bit;
214 uint nbits;
1da177e4 215
372cc85e 216 /* copy the flags across from the base format item */
b9438173 217 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
218
219 /*
77c1a08f
DC
220 * Base size is the actual size of the ondisk structure - it reflects
221 * the actual size of the dirty bitmap rather than the size of the in
222 * memory structure.
1da177e4 223 */
166d1368 224 base_size = xfs_buf_log_format_size(blfp);
820a554f 225
820a554f
MT
226 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
227 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
228 /*
229 * If the map is not be dirty in the transaction, mark
230 * the size as zero and do not advance the vector pointer.
231 */
bde7cff6 232 return;
820a554f
MT
233 }
234
bde7cff6
CH
235 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
236 blfp->blf_size = 1;
1da177e4
LT
237
238 if (bip->bli_flags & XFS_BLI_STALE) {
239 /*
240 * The buffer is stale, so all we need to log
241 * is the buf log format structure with the
242 * cancel flag in it.
243 */
0b1b213f 244 trace_xfs_buf_item_format_stale(bip);
372cc85e 245 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
bde7cff6 246 return;
1da177e4
LT
247 }
248
5f6bed76 249
1da177e4
LT
250 /*
251 * Fill in an iovec for each set of contiguous chunks.
252 */
1da177e4
LT
253 last_bit = first_bit;
254 nbits = 1;
255 for (;;) {
256 /*
257 * This takes the bit number to start looking from and
258 * returns the next set bit from there. It returns -1
259 * if there are no more bits set or the start bit is
260 * beyond the end of the bitmap.
261 */
372cc85e
DC
262 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
263 (uint)last_bit + 1);
1da177e4 264 /*
7aeb7222
CH
265 * If we run out of bits fill in the last iovec and get out of
266 * the loop. Else if we start a new set of bits then fill in
267 * the iovec for the series we were looking at and start
268 * counting the bits in the new one. Else we're still in the
269 * same set of bits so just keep counting and scanning.
1da177e4
LT
270 */
271 if (next_bit == -1) {
bde7cff6 272 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
7aeb7222 273 first_bit, nbits);
bde7cff6 274 blfp->blf_size++;
1da177e4 275 break;
7aeb7222
CH
276 } else if (next_bit != last_bit + 1 ||
277 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
bde7cff6 278 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
1234351c 279 first_bit, nbits);
bde7cff6 280 blfp->blf_size++;
1da177e4
LT
281 first_bit = next_bit;
282 last_bit = next_bit;
283 nbits = 1;
284 } else {
285 last_bit++;
286 nbits++;
287 }
288 }
372cc85e
DC
289}
290
291/*
292 * This is called to fill in the vector of log iovecs for the
293 * given log buf item. It fills the first entry with a buf log
294 * format structure, and the rest point to contiguous chunks
295 * within the buffer.
296 */
297STATIC void
298xfs_buf_item_format(
299 struct xfs_log_item *lip,
bde7cff6 300 struct xfs_log_vec *lv)
372cc85e
DC
301{
302 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
303 struct xfs_buf *bp = bip->bli_buf;
bde7cff6 304 struct xfs_log_iovec *vecp = NULL;
372cc85e
DC
305 uint offset = 0;
306 int i;
307
308 ASSERT(atomic_read(&bip->bli_refcount) > 0);
309 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
310 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5
DC
311 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
312 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
313 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
e9385cc6
BF
314 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
315 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5 316
372cc85e
DC
317
318 /*
319 * If it is an inode buffer, transfer the in-memory state to the
ddf6ad01
DC
320 * format flags and clear the in-memory state.
321 *
322 * For buffer based inode allocation, we do not transfer
372cc85e
DC
323 * this state if the inode buffer allocation has not yet been committed
324 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
325 * correct replay of the inode allocation.
ddf6ad01
DC
326 *
327 * For icreate item based inode allocation, the buffers aren't written
328 * to the journal during allocation, and hence we should always tag the
329 * buffer as an inode buffer so that the correct unlinked list replay
330 * occurs during recovery.
372cc85e
DC
331 */
332 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
ddf6ad01
DC
333 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
334 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
372cc85e 335 xfs_log_item_in_current_chkpt(lip)))
b9438173 336 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
337 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
338 }
339
340 for (i = 0; i < bip->bli_format_count; i++) {
bde7cff6 341 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
1234351c 342 &bip->bli_formats[i]);
a3916e52 343 offset += BBTOB(bp->b_maps[i].bm_len);
372cc85e 344 }
1da177e4
LT
345
346 /*
347 * Check to make sure everything is consistent.
348 */
0b1b213f 349 trace_xfs_buf_item_format(bip);
1da177e4
LT
350}
351
352/*
64fc35de 353 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 354 * so it cannot be written out.
64fc35de
DC
355 *
356 * We also always take a reference to the buffer log item here so that the bli
357 * is held while the item is pinned in memory. This means that we can
358 * unconditionally drop the reference count a transaction holds when the
359 * transaction is completed.
1da177e4 360 */
ba0f32d4 361STATIC void
1da177e4 362xfs_buf_item_pin(
7bfa31d8 363 struct xfs_log_item *lip)
1da177e4 364{
7bfa31d8 365 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 366
1da177e4
LT
367 ASSERT(atomic_read(&bip->bli_refcount) > 0);
368 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 369 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 370 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 371
0b1b213f 372 trace_xfs_buf_item_pin(bip);
4d16e924
CH
373
374 atomic_inc(&bip->bli_refcount);
375 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
376}
377
1da177e4
LT
378/*
379 * This is called to unpin the buffer associated with the buf log
380 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
381 *
382 * Also drop the reference to the buf item for the current transaction.
383 * If the XFS_BLI_STALE flag is set and we are the last reference,
384 * then free up the buf log item and unlock the buffer.
9412e318
CH
385 *
386 * If the remove flag is set we are called from uncommit in the
387 * forced-shutdown path. If that is true and the reference count on
388 * the log item is going to drop to zero we need to free the item's
389 * descriptor in the transaction.
1da177e4 390 */
ba0f32d4 391STATIC void
1da177e4 392xfs_buf_item_unpin(
7bfa31d8 393 struct xfs_log_item *lip,
9412e318 394 int remove)
1da177e4 395{
7bfa31d8 396 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
70a20655
CM
397 xfs_buf_t *bp = bip->bli_buf;
398 struct xfs_ail *ailp = lip->li_ailp;
399 int stale = bip->bli_flags & XFS_BLI_STALE;
400 int freed;
1da177e4 401
fb1755a6 402 ASSERT(bp->b_log_item == bip);
1da177e4 403 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 404
0b1b213f 405 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
406
407 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
408
409 if (atomic_dec_and_test(&bp->b_pin_count))
410 wake_up_all(&bp->b_waiters);
7bfa31d8 411
1da177e4
LT
412 if (freed && stale) {
413 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 414 ASSERT(xfs_buf_islocked(bp));
5cfd28b6 415 ASSERT(bp->b_flags & XBF_STALE);
b9438173 416 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 417
0b1b213f
CH
418 trace_xfs_buf_item_unpin_stale(bip);
419
9412e318
CH
420 if (remove) {
421 /*
e34a314c
DC
422 * If we are in a transaction context, we have to
423 * remove the log item from the transaction as we are
424 * about to release our reference to the buffer. If we
425 * don't, the unlock that occurs later in
426 * xfs_trans_uncommit() will try to reference the
9412e318
CH
427 * buffer which we no longer have a hold on.
428 */
e6631f85 429 if (!list_empty(&lip->li_trans))
e34a314c 430 xfs_trans_del_item(lip);
9412e318
CH
431
432 /*
433 * Since the transaction no longer refers to the buffer,
434 * the buffer should no longer refer to the transaction.
435 */
bf9d9013 436 bp->b_transp = NULL;
9412e318
CH
437 }
438
1da177e4
LT
439 /*
440 * If we get called here because of an IO error, we may
783a2f65 441 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 442 * will take care of that situation.
783a2f65 443 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
444 */
445 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 446 xfs_buf_do_callbacks(bp);
fb1755a6 447 bp->b_log_item = NULL;
643c8c05 448 list_del_init(&bp->b_li_list);
cb669ca5 449 bp->b_iodone = NULL;
1da177e4 450 } else {
57e80956 451 spin_lock(&ailp->ail_lock);
04913fdd 452 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 453 xfs_buf_item_relse(bp);
fb1755a6 454 ASSERT(bp->b_log_item == NULL);
1da177e4
LT
455 }
456 xfs_buf_relse(bp);
960c60af 457 } else if (freed && remove) {
137fff09
DC
458 /*
459 * There are currently two references to the buffer - the active
460 * LRU reference and the buf log item. What we are about to do
461 * here - simulate a failed IO completion - requires 3
462 * references.
463 *
464 * The LRU reference is removed by the xfs_buf_stale() call. The
465 * buf item reference is removed by the xfs_buf_iodone()
466 * callback that is run by xfs_buf_do_callbacks() during ioend
467 * processing (via the bp->b_iodone callback), and then finally
468 * the ioend processing will drop the IO reference if the buffer
469 * is marked XBF_ASYNC.
470 *
471 * Hence we need to take an additional reference here so that IO
472 * completion processing doesn't free the buffer prematurely.
473 */
960c60af 474 xfs_buf_lock(bp);
137fff09
DC
475 xfs_buf_hold(bp);
476 bp->b_flags |= XBF_ASYNC;
2451337d 477 xfs_buf_ioerror(bp, -EIO);
b0388bf1 478 bp->b_flags &= ~XBF_DONE;
960c60af 479 xfs_buf_stale(bp);
e8aaba9a 480 xfs_buf_ioend(bp);
1da177e4
LT
481 }
482}
483
ac8809f9
DC
484/*
485 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
486 * seconds so as to not spam logs too much on repeated detection of the same
487 * buffer being bad..
488 */
489
02cc1876 490static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
ac8809f9 491
ba0f32d4 492STATIC uint
43ff2122
CH
493xfs_buf_item_push(
494 struct xfs_log_item *lip,
495 struct list_head *buffer_list)
1da177e4 496{
7bfa31d8
CH
497 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
498 struct xfs_buf *bp = bip->bli_buf;
43ff2122 499 uint rval = XFS_ITEM_SUCCESS;
1da177e4 500
811e64c7 501 if (xfs_buf_ispinned(bp))
1da177e4 502 return XFS_ITEM_PINNED;
5337fe9b
BF
503 if (!xfs_buf_trylock(bp)) {
504 /*
505 * If we have just raced with a buffer being pinned and it has
506 * been marked stale, we could end up stalling until someone else
507 * issues a log force to unpin the stale buffer. Check for the
508 * race condition here so xfsaild recognizes the buffer is pinned
509 * and queues a log force to move it along.
510 */
511 if (xfs_buf_ispinned(bp))
512 return XFS_ITEM_PINNED;
1da177e4 513 return XFS_ITEM_LOCKED;
5337fe9b 514 }
1da177e4 515
1da177e4 516 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
517
518 trace_xfs_buf_item_push(bip);
519
ac8809f9
DC
520 /* has a previous flush failed due to IO errors? */
521 if ((bp->b_flags & XBF_WRITE_FAIL) &&
fdadf267 522 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
ac8809f9 523 xfs_warn(bp->b_target->bt_mount,
fdadf267 524"Failing async write on buffer block 0x%llx. Retrying async write.",
ac8809f9
DC
525 (long long)bp->b_bn);
526 }
527
43ff2122
CH
528 if (!xfs_buf_delwri_queue(bp, buffer_list))
529 rval = XFS_ITEM_FLUSHING;
530 xfs_buf_unlock(bp);
531 return rval;
1da177e4
LT
532}
533
95808459
BF
534/*
535 * Drop the buffer log item refcount and take appropriate action. This helper
536 * determines whether the bli must be freed or not, since a decrement to zero
537 * does not necessarily mean the bli is unused.
538 *
539 * Return true if the bli is freed, false otherwise.
540 */
541bool
542xfs_buf_item_put(
543 struct xfs_buf_log_item *bip)
544{
545 struct xfs_log_item *lip = &bip->bli_item;
546 bool aborted;
547 bool dirty;
548
549 /* drop the bli ref and return if it wasn't the last one */
550 if (!atomic_dec_and_test(&bip->bli_refcount))
551 return false;
552
553 /*
554 * We dropped the last ref and must free the item if clean or aborted.
555 * If the bli is dirty and non-aborted, the buffer was clean in the
556 * transaction but still awaiting writeback from previous changes. In
557 * that case, the bli is freed on buffer writeback completion.
558 */
559 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
560 XFS_FORCED_SHUTDOWN(lip->li_mountp);
561 dirty = bip->bli_flags & XFS_BLI_DIRTY;
562 if (dirty && !aborted)
563 return false;
564
565 /*
566 * The bli is aborted or clean. An aborted item may be in the AIL
567 * regardless of dirty state. For example, consider an aborted
568 * transaction that invalidated a dirty bli and cleared the dirty
569 * state.
570 */
571 if (aborted)
572 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
573 xfs_buf_item_relse(bip->bli_buf);
574 return true;
575}
576
1da177e4 577/*
64fc35de
DC
578 * Release the buffer associated with the buf log item. If there is no dirty
579 * logged data associated with the buffer recorded in the buf log item, then
580 * free the buf log item and remove the reference to it in the buffer.
1da177e4 581 *
64fc35de
DC
582 * This call ignores the recursion count. It is only called when the buffer
583 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 584 *
64fc35de
DC
585 * We unconditionally drop the transaction's reference to the log item. If the
586 * item was logged, then another reference was taken when it was pinned, so we
587 * can safely drop the transaction reference now. This also allows us to avoid
588 * potential races with the unpin code freeing the bli by not referencing the
589 * bli after we've dropped the reference count.
590 *
591 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
592 * if necessary but do not unlock the buffer. This is for support of
593 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
594 * free the item.
1da177e4 595 */
ba0f32d4 596STATIC void
1da177e4 597xfs_buf_item_unlock(
7bfa31d8 598 struct xfs_log_item *lip)
1da177e4 599{
7bfa31d8
CH
600 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
601 struct xfs_buf *bp = bip->bli_buf;
95808459 602 bool released;
d9183105 603 bool hold = bip->bli_flags & XFS_BLI_HOLD;
d9183105 604 bool stale = bip->bli_flags & XFS_BLI_STALE;
7bf7a193 605#if defined(DEBUG) || defined(XFS_WARN)
d9183105 606 bool ordered = bip->bli_flags & XFS_BLI_ORDERED;
95808459 607 bool dirty = bip->bli_flags & XFS_BLI_DIRTY;
7bf7a193 608#endif
1da177e4 609
0b1b213f 610 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
611
612 /*
6453c65d
BF
613 * The bli dirty state should match whether the blf has logged segments
614 * except for ordered buffers, where only the bli should be dirty.
1da177e4 615 */
6453c65d
BF
616 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
617 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
d9183105
BF
618 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
619
46f9d2eb 620 /*
d9183105
BF
621 * Clear the buffer's association with this transaction and
622 * per-transaction state from the bli, which has been copied above.
623 */
624 bp->b_transp = NULL;
625 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
626
627 /*
95808459
BF
628 * Unref the item and unlock the buffer unless held or stale. Stale
629 * buffers remain locked until final unpin unless the bli is freed by
630 * the unref call. The latter implies shutdown because buffer
631 * invalidation dirties the bli and transaction.
46f9d2eb 632 */
95808459
BF
633 released = xfs_buf_item_put(bip);
634 if (hold || (stale && !released))
d9183105 635 return;
95808459
BF
636 ASSERT(!stale || test_bit(XFS_LI_ABORTED, &lip->li_flags));
637 xfs_buf_relse(bp);
1da177e4
LT
638}
639
640/*
641 * This is called to find out where the oldest active copy of the
642 * buf log item in the on disk log resides now that the last log
643 * write of it completed at the given lsn.
644 * We always re-log all the dirty data in a buffer, so usually the
645 * latest copy in the on disk log is the only one that matters. For
646 * those cases we simply return the given lsn.
647 *
648 * The one exception to this is for buffers full of newly allocated
649 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
650 * flag set, indicating that only the di_next_unlinked fields from the
651 * inodes in the buffers will be replayed during recovery. If the
652 * original newly allocated inode images have not yet been flushed
653 * when the buffer is so relogged, then we need to make sure that we
654 * keep the old images in the 'active' portion of the log. We do this
655 * by returning the original lsn of that transaction here rather than
656 * the current one.
657 */
ba0f32d4 658STATIC xfs_lsn_t
1da177e4 659xfs_buf_item_committed(
7bfa31d8 660 struct xfs_log_item *lip,
1da177e4
LT
661 xfs_lsn_t lsn)
662{
7bfa31d8
CH
663 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
664
0b1b213f
CH
665 trace_xfs_buf_item_committed(bip);
666
7bfa31d8
CH
667 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
668 return lip->li_lsn;
669 return lsn;
1da177e4
LT
670}
671
ba0f32d4 672STATIC void
7bfa31d8
CH
673xfs_buf_item_committing(
674 struct xfs_log_item *lip,
675 xfs_lsn_t commit_lsn)
1da177e4
LT
676{
677}
678
679/*
680 * This is the ops vector shared by all buf log items.
681 */
272e42b2 682static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
683 .iop_size = xfs_buf_item_size,
684 .iop_format = xfs_buf_item_format,
685 .iop_pin = xfs_buf_item_pin,
686 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
687 .iop_unlock = xfs_buf_item_unlock,
688 .iop_committed = xfs_buf_item_committed,
689 .iop_push = xfs_buf_item_push,
7bfa31d8 690 .iop_committing = xfs_buf_item_committing
1da177e4
LT
691};
692
372cc85e
DC
693STATIC int
694xfs_buf_item_get_format(
695 struct xfs_buf_log_item *bip,
696 int count)
697{
698 ASSERT(bip->bli_formats == NULL);
699 bip->bli_format_count = count;
700
701 if (count == 1) {
b9438173 702 bip->bli_formats = &bip->__bli_format;
372cc85e
DC
703 return 0;
704 }
705
706 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
707 KM_SLEEP);
708 if (!bip->bli_formats)
2451337d 709 return -ENOMEM;
372cc85e
DC
710 return 0;
711}
712
713STATIC void
714xfs_buf_item_free_format(
715 struct xfs_buf_log_item *bip)
716{
b9438173 717 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
718 kmem_free(bip->bli_formats);
719 bip->bli_formats = NULL;
720 }
721}
1da177e4
LT
722
723/*
724 * Allocate a new buf log item to go with the given buffer.
fb1755a6
CM
725 * Set the buffer's b_log_item field to point to the new
726 * buf log item.
1da177e4 727 */
f79af0b9 728int
1da177e4 729xfs_buf_item_init(
f79af0b9
DC
730 struct xfs_buf *bp,
731 struct xfs_mount *mp)
1da177e4 732{
fb1755a6 733 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4
LT
734 int chunks;
735 int map_size;
372cc85e
DC
736 int error;
737 int i;
1da177e4
LT
738
739 /*
740 * Check to see if there is already a buf log item for
fb1755a6 741 * this buffer. If we do already have one, there is
1da177e4
LT
742 * nothing to do here so return.
743 */
ebad861b 744 ASSERT(bp->b_target->bt_mount == mp);
1a2ebf83 745 if (bip) {
fb1755a6 746 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
1a2ebf83
DC
747 ASSERT(!bp->b_transp);
748 ASSERT(bip->bli_buf == bp);
f79af0b9 749 return 0;
fb1755a6 750 }
1da177e4 751
372cc85e 752 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
43f5efc5 753 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 754 bip->bli_buf = bp;
372cc85e
DC
755
756 /*
757 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
758 * can be divided into. Make sure not to truncate any pieces.
759 * map_size is the size of the bitmap needed to describe the
760 * chunks of the buffer.
761 *
762 * Discontiguous buffer support follows the layout of the underlying
763 * buffer. This makes the implementation as simple as possible.
764 */
765 error = xfs_buf_item_get_format(bip, bp->b_map_count);
766 ASSERT(error == 0);
f79af0b9
DC
767 if (error) { /* to stop gcc throwing set-but-unused warnings */
768 kmem_zone_free(xfs_buf_item_zone, bip);
769 return error;
770 }
771
372cc85e
DC
772
773 for (i = 0; i < bip->bli_format_count; i++) {
774 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
775 XFS_BLF_CHUNK);
776 map_size = DIV_ROUND_UP(chunks, NBWORD);
777
778 bip->bli_formats[i].blf_type = XFS_LI_BUF;
779 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
780 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
781 bip->bli_formats[i].blf_map_size = map_size;
782 }
1da177e4 783
fb1755a6 784 bp->b_log_item = bip;
f79af0b9
DC
785 xfs_buf_hold(bp);
786 return 0;
1da177e4
LT
787}
788
789
790/*
791 * Mark bytes first through last inclusive as dirty in the buf
792 * item's bitmap.
793 */
632b89e8 794static void
372cc85e 795xfs_buf_item_log_segment(
1da177e4 796 uint first,
372cc85e
DC
797 uint last,
798 uint *map)
1da177e4
LT
799{
800 uint first_bit;
801 uint last_bit;
802 uint bits_to_set;
803 uint bits_set;
804 uint word_num;
805 uint *wordp;
806 uint bit;
807 uint end_bit;
808 uint mask;
809
1da177e4
LT
810 /*
811 * Convert byte offsets to bit numbers.
812 */
c1155410
DC
813 first_bit = first >> XFS_BLF_SHIFT;
814 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
815
816 /*
817 * Calculate the total number of bits to be set.
818 */
819 bits_to_set = last_bit - first_bit + 1;
820
821 /*
822 * Get a pointer to the first word in the bitmap
823 * to set a bit in.
824 */
825 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 826 wordp = &map[word_num];
1da177e4
LT
827
828 /*
829 * Calculate the starting bit in the first word.
830 */
831 bit = first_bit & (uint)(NBWORD - 1);
832
833 /*
834 * First set any bits in the first word of our range.
835 * If it starts at bit 0 of the word, it will be
836 * set below rather than here. That is what the variable
837 * bit tells us. The variable bits_set tracks the number
838 * of bits that have been set so far. End_bit is the number
839 * of the last bit to be set in this word plus one.
840 */
841 if (bit) {
9bb54cb5 842 end_bit = min(bit + bits_to_set, (uint)NBWORD);
79c350e4 843 mask = ((1U << (end_bit - bit)) - 1) << bit;
1da177e4
LT
844 *wordp |= mask;
845 wordp++;
846 bits_set = end_bit - bit;
847 } else {
848 bits_set = 0;
849 }
850
851 /*
852 * Now set bits a whole word at a time that are between
853 * first_bit and last_bit.
854 */
855 while ((bits_to_set - bits_set) >= NBWORD) {
856 *wordp |= 0xffffffff;
857 bits_set += NBWORD;
858 wordp++;
859 }
860
861 /*
862 * Finally, set any bits left to be set in one last partial word.
863 */
864 end_bit = bits_to_set - bits_set;
865 if (end_bit) {
79c350e4 866 mask = (1U << end_bit) - 1;
1da177e4
LT
867 *wordp |= mask;
868 }
1da177e4
LT
869}
870
372cc85e
DC
871/*
872 * Mark bytes first through last inclusive as dirty in the buf
873 * item's bitmap.
874 */
875void
876xfs_buf_item_log(
70a20655 877 struct xfs_buf_log_item *bip,
372cc85e
DC
878 uint first,
879 uint last)
880{
881 int i;
882 uint start;
883 uint end;
884 struct xfs_buf *bp = bip->bli_buf;
885
372cc85e
DC
886 /*
887 * walk each buffer segment and mark them dirty appropriately.
888 */
889 start = 0;
890 for (i = 0; i < bip->bli_format_count; i++) {
891 if (start > last)
892 break;
a3916e52
BF
893 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
894
895 /* skip to the map that includes the first byte to log */
372cc85e
DC
896 if (first > end) {
897 start += BBTOB(bp->b_maps[i].bm_len);
898 continue;
899 }
a3916e52
BF
900
901 /*
902 * Trim the range to this segment and mark it in the bitmap.
903 * Note that we must convert buffer offsets to segment relative
904 * offsets (e.g., the first byte of each segment is byte 0 of
905 * that segment).
906 */
372cc85e
DC
907 if (first < start)
908 first = start;
909 if (end > last)
910 end = last;
a3916e52 911 xfs_buf_item_log_segment(first - start, end - start,
372cc85e
DC
912 &bip->bli_formats[i].blf_data_map[0]);
913
a3916e52 914 start += BBTOB(bp->b_maps[i].bm_len);
372cc85e
DC
915 }
916}
917
1da177e4 918
6453c65d
BF
919/*
920 * Return true if the buffer has any ranges logged/dirtied by a transaction,
921 * false otherwise.
922 */
923bool
924xfs_buf_item_dirty_format(
925 struct xfs_buf_log_item *bip)
926{
927 int i;
928
929 for (i = 0; i < bip->bli_format_count; i++) {
930 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
931 bip->bli_formats[i].blf_map_size))
932 return true;
933 }
934
935 return false;
936}
937
e1f5dbd7
LM
938STATIC void
939xfs_buf_item_free(
70a20655 940 struct xfs_buf_log_item *bip)
e1f5dbd7 941{
372cc85e 942 xfs_buf_item_free_format(bip);
b1c5ebb2 943 kmem_free(bip->bli_item.li_lv_shadow);
e1f5dbd7
LM
944 kmem_zone_free(xfs_buf_item_zone, bip);
945}
946
1da177e4
LT
947/*
948 * This is called when the buf log item is no longer needed. It should
949 * free the buf log item associated with the given buffer and clear
950 * the buffer's pointer to the buf log item. If there are no more
951 * items in the list, clear the b_iodone field of the buffer (see
952 * xfs_buf_attach_iodone() below).
953 */
954void
955xfs_buf_item_relse(
956 xfs_buf_t *bp)
957{
fb1755a6 958 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 959
0b1b213f 960 trace_xfs_buf_item_relse(bp, _RET_IP_);
5f6bed76 961 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
0b1b213f 962
fb1755a6 963 bp->b_log_item = NULL;
643c8c05 964 if (list_empty(&bp->b_li_list))
cb669ca5 965 bp->b_iodone = NULL;
adadbeef 966
e1f5dbd7
LM
967 xfs_buf_rele(bp);
968 xfs_buf_item_free(bip);
1da177e4
LT
969}
970
971
972/*
973 * Add the given log item with its callback to the list of callbacks
974 * to be called when the buffer's I/O completes. If it is not set
975 * already, set the buffer's b_iodone() routine to be
976 * xfs_buf_iodone_callbacks() and link the log item into the list of
fb1755a6 977 * items rooted at b_li_list.
1da177e4
LT
978 */
979void
980xfs_buf_attach_iodone(
981 xfs_buf_t *bp,
982 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
983 xfs_log_item_t *lip)
984{
0c842ad4 985 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
986
987 lip->li_cb = cb;
643c8c05 988 list_add_tail(&lip->li_bio_list, &bp->b_li_list);
1da177e4 989
cb669ca5
CH
990 ASSERT(bp->b_iodone == NULL ||
991 bp->b_iodone == xfs_buf_iodone_callbacks);
992 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
993}
994
c90821a2
DC
995/*
996 * We can have many callbacks on a buffer. Running the callbacks individually
997 * can cause a lot of contention on the AIL lock, so we allow for a single
643c8c05
CM
998 * callback to be able to scan the remaining items in bp->b_li_list for other
999 * items of the same type and callback to be processed in the first call.
c90821a2
DC
1000 *
1001 * As a result, the loop walking the callback list below will also modify the
1002 * list. it removes the first item from the list and then runs the callback.
643c8c05 1003 * The loop then restarts from the new first item int the list. This allows the
c90821a2
DC
1004 * callback to scan and modify the list attached to the buffer and we don't
1005 * have to care about maintaining a next item pointer.
1006 */
1da177e4
LT
1007STATIC void
1008xfs_buf_do_callbacks(
c90821a2 1009 struct xfs_buf *bp)
1da177e4 1010{
fb1755a6 1011 struct xfs_buf_log_item *blip = bp->b_log_item;
c90821a2 1012 struct xfs_log_item *lip;
1da177e4 1013
fb1755a6
CM
1014 /* If there is a buf_log_item attached, run its callback */
1015 if (blip) {
1016 lip = &blip->bli_item;
1017 lip->li_cb(bp, lip);
1018 }
1019
643c8c05
CM
1020 while (!list_empty(&bp->b_li_list)) {
1021 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1022 li_bio_list);
1023
1da177e4 1024 /*
643c8c05 1025 * Remove the item from the list, so we don't have any
1da177e4
LT
1026 * confusion if the item is added to another buf.
1027 * Don't touch the log item after calling its
1028 * callback, because it could have freed itself.
1029 */
643c8c05 1030 list_del_init(&lip->li_bio_list);
1da177e4 1031 lip->li_cb(bp, lip);
1da177e4
LT
1032 }
1033}
1034
0b80ae6e
CM
1035/*
1036 * Invoke the error state callback for each log item affected by the failed I/O.
1037 *
1038 * If a metadata buffer write fails with a non-permanent error, the buffer is
1039 * eventually resubmitted and so the completion callbacks are not run. The error
1040 * state may need to be propagated to the log items attached to the buffer,
1041 * however, so the next AIL push of the item knows hot to handle it correctly.
1042 */
1043STATIC void
1044xfs_buf_do_callbacks_fail(
1045 struct xfs_buf *bp)
1046{
643c8c05 1047 struct xfs_log_item *lip;
fb1755a6 1048 struct xfs_ail *ailp;
0b80ae6e 1049
fb1755a6
CM
1050 /*
1051 * Buffer log item errors are handled directly by xfs_buf_item_push()
1052 * and xfs_buf_iodone_callback_error, and they have no IO error
1053 * callbacks. Check only for items in b_li_list.
1054 */
643c8c05 1055 if (list_empty(&bp->b_li_list))
fb1755a6
CM
1056 return;
1057
643c8c05
CM
1058 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1059 li_bio_list);
fb1755a6 1060 ailp = lip->li_ailp;
57e80956 1061 spin_lock(&ailp->ail_lock);
643c8c05 1062 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
0b80ae6e
CM
1063 if (lip->li_ops->iop_error)
1064 lip->li_ops->iop_error(lip, bp);
1065 }
57e80956 1066 spin_unlock(&ailp->ail_lock);
0b80ae6e
CM
1067}
1068
df309390
CM
1069static bool
1070xfs_buf_iodone_callback_error(
bfc60177 1071 struct xfs_buf *bp)
1da177e4 1072{
fb1755a6 1073 struct xfs_buf_log_item *bip = bp->b_log_item;
643c8c05 1074 struct xfs_log_item *lip;
fb1755a6 1075 struct xfs_mount *mp;
bfc60177
CH
1076 static ulong lasttime;
1077 static xfs_buftarg_t *lasttarg;
df309390 1078 struct xfs_error_cfg *cfg;
1da177e4 1079
fb1755a6
CM
1080 /*
1081 * The failed buffer might not have a buf_log_item attached or the
1082 * log_item list might be empty. Get the mp from the available
1083 * xfs_log_item
1084 */
643c8c05
CM
1085 lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1086 li_bio_list);
1087 mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
fb1755a6 1088
bfc60177
CH
1089 /*
1090 * If we've already decided to shutdown the filesystem because of
1091 * I/O errors, there's no point in giving this a retry.
1092 */
df309390
CM
1093 if (XFS_FORCED_SHUTDOWN(mp))
1094 goto out_stale;
1da177e4 1095
49074c06 1096 if (bp->b_target != lasttarg ||
bfc60177
CH
1097 time_after(jiffies, (lasttime + 5*HZ))) {
1098 lasttime = jiffies;
b38505b0 1099 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 1100 }
49074c06 1101 lasttarg = bp->b_target;
1da177e4 1102
df309390
CM
1103 /* synchronous writes will have callers process the error */
1104 if (!(bp->b_flags & XBF_ASYNC))
1105 goto out_stale;
1106
1107 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1108 ASSERT(bp->b_iodone != NULL);
1109
5539d367
ES
1110 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1111
bfc60177 1112 /*
25985edc 1113 * If the write was asynchronous then no one will be looking for the
df309390
CM
1114 * error. If this is the first failure of this type, clear the error
1115 * state and write the buffer out again. This means we always retry an
1116 * async write failure at least once, but we also need to set the buffer
1117 * up to behave correctly now for repeated failures.
bfc60177 1118 */
0b4db5df 1119 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
df309390 1120 bp->b_last_error != bp->b_error) {
0b4db5df 1121 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
df309390 1122 bp->b_last_error = bp->b_error;
77169812
ES
1123 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1124 !bp->b_first_retry_time)
5539d367 1125 bp->b_first_retry_time = jiffies;
a5ea70d2 1126
df309390
CM
1127 xfs_buf_ioerror(bp, 0);
1128 xfs_buf_submit(bp);
1129 return true;
1130 }
43ff2122 1131
df309390
CM
1132 /*
1133 * Repeated failure on an async write. Take action according to the
1134 * error configuration we have been set up to use.
1135 */
a5ea70d2
CM
1136
1137 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1138 ++bp->b_retries > cfg->max_retries)
1139 goto permanent_error;
77169812 1140 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
a5ea70d2
CM
1141 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1142 goto permanent_error;
bfc60177 1143
e6b3bb78
CM
1144 /* At unmount we may treat errors differently */
1145 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1146 goto permanent_error;
1147
0b80ae6e
CM
1148 /*
1149 * Still a transient error, run IO completion failure callbacks and let
1150 * the higher layers retry the buffer.
1151 */
1152 xfs_buf_do_callbacks_fail(bp);
df309390
CM
1153 xfs_buf_ioerror(bp, 0);
1154 xfs_buf_relse(bp);
1155 return true;
0b1b213f 1156
bfc60177 1157 /*
df309390
CM
1158 * Permanent error - we need to trigger a shutdown if we haven't already
1159 * to indicate that inconsistency will result from this action.
bfc60177 1160 */
df309390
CM
1161permanent_error:
1162 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1163out_stale:
c867cb61 1164 xfs_buf_stale(bp);
b0388bf1 1165 bp->b_flags |= XBF_DONE;
0b1b213f 1166 trace_xfs_buf_error_relse(bp, _RET_IP_);
df309390
CM
1167 return false;
1168}
1169
1170/*
1171 * This is the iodone() function for buffers which have had callbacks attached
1172 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1173 * callback list, mark the buffer as having no more callbacks and then push the
1174 * buffer through IO completion processing.
1175 */
1176void
1177xfs_buf_iodone_callbacks(
1178 struct xfs_buf *bp)
1179{
1180 /*
1181 * If there is an error, process it. Some errors require us
1182 * to run callbacks after failure processing is done so we
1183 * detect that and take appropriate action.
1184 */
1185 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1186 return;
1187
1188 /*
1189 * Successful IO or permanent error. Either way, we can clear the
1190 * retry state here in preparation for the next error that may occur.
1191 */
1192 bp->b_last_error = 0;
a5ea70d2 1193 bp->b_retries = 0;
4dd2eb63 1194 bp->b_first_retry_time = 0;
0b1b213f 1195
c90821a2 1196 xfs_buf_do_callbacks(bp);
fb1755a6 1197 bp->b_log_item = NULL;
643c8c05 1198 list_del_init(&bp->b_li_list);
cb669ca5 1199 bp->b_iodone = NULL;
e8aaba9a 1200 xfs_buf_ioend(bp);
1da177e4
LT
1201}
1202
1da177e4
LT
1203/*
1204 * This is the iodone() function for buffers which have been
1205 * logged. It is called when they are eventually flushed out.
1206 * It should remove the buf item from the AIL, and free the buf item.
1207 * It is called by xfs_buf_iodone_callbacks() above which will take
1208 * care of cleaning up the buffer itself.
1209 */
1da177e4
LT
1210void
1211xfs_buf_iodone(
ca30b2a7
CH
1212 struct xfs_buf *bp,
1213 struct xfs_log_item *lip)
1da177e4 1214{
ca30b2a7 1215 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1216
ca30b2a7 1217 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1218
e1f5dbd7 1219 xfs_buf_rele(bp);
1da177e4
LT
1220
1221 /*
1222 * If we are forcibly shutting down, this may well be
1223 * off the AIL already. That's because we simulate the
1224 * log-committed callbacks to unpin these buffers. Or we may never
1225 * have put this item on AIL because of the transaction was
783a2f65 1226 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1227 *
1228 * Either way, AIL is useless if we're forcing a shutdown.
1229 */
57e80956 1230 spin_lock(&ailp->ail_lock);
04913fdd 1231 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1232 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1233}
d3a304b6
CM
1234
1235/*
d43aaf16 1236 * Requeue a failed buffer for writeback.
d3a304b6 1237 *
d43aaf16
DC
1238 * We clear the log item failed state here as well, but we have to be careful
1239 * about reference counts because the only active reference counts on the buffer
1240 * may be the failed log items. Hence if we clear the log item failed state
1241 * before queuing the buffer for IO we can release all active references to
1242 * the buffer and free it, leading to use after free problems in
1243 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
1244 * order we process them in - the buffer is locked, and we own the buffer list
1245 * so nothing on them is going to change while we are performing this action.
1246 *
1247 * Hence we can safely queue the buffer for IO before we clear the failed log
1248 * item state, therefore always having an active reference to the buffer and
1249 * avoiding the transient zero-reference state that leads to use-after-free.
1250 *
1251 * Return true if the buffer was added to the buffer list, false if it was
1252 * already on the buffer list.
d3a304b6
CM
1253 */
1254bool
1255xfs_buf_resubmit_failed_buffers(
1256 struct xfs_buf *bp,
d3a304b6
CM
1257 struct list_head *buffer_list)
1258{
643c8c05 1259 struct xfs_log_item *lip;
d43aaf16
DC
1260 bool ret;
1261
1262 ret = xfs_buf_delwri_queue(bp, buffer_list);
d3a304b6
CM
1263
1264 /*
d43aaf16 1265 * XFS_LI_FAILED set/clear is protected by ail_lock, caller of this
d3a304b6
CM
1266 * function already have it acquired
1267 */
643c8c05 1268 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
d3a304b6 1269 xfs_clear_li_failed(lip);
d3a304b6 1270
d43aaf16 1271 return ret;
d3a304b6 1272}