xfs: use blocks for counting length of buffers
[linux-block.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133
CH
37#include "xfs_sb.h"
38#include "xfs_inum.h"
ed3b4d6c 39#include "xfs_log.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
b7963133 43
7989cb8e 44static kmem_zone_t *xfs_buf_zone;
23ea4032 45
7989cb8e 46static struct workqueue_struct *xfslogd_workqueue;
1da177e4 47
ce8e922c
NS
48#ifdef XFS_BUF_LOCK_TRACKING
49# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 52#else
ce8e922c
NS
53# define XB_SET_OWNER(bp) do { } while (0)
54# define XB_CLEAR_OWNER(bp) do { } while (0)
55# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
56#endif
57
ce8e922c
NS
58#define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
60 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 61
ce8e922c
NS
62#define xb_to_km(flags) \
63 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 64
1da177e4 65
73c77e2c
JB
66static inline int
67xfs_buf_is_vmapped(
68 struct xfs_buf *bp)
69{
70 /*
71 * Return true if the buffer is vmapped.
72 *
73 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
74 * code is clever enough to know it doesn't have to map a single page,
75 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
76 */
77 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
78}
79
80static inline int
81xfs_buf_vmap_len(
82 struct xfs_buf *bp)
83{
84 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
85}
86
1da177e4 87/*
430cbeb8
DC
88 * xfs_buf_lru_add - add a buffer to the LRU.
89 *
90 * The LRU takes a new reference to the buffer so that it will only be freed
91 * once the shrinker takes the buffer off the LRU.
92 */
93STATIC void
94xfs_buf_lru_add(
95 struct xfs_buf *bp)
96{
97 struct xfs_buftarg *btp = bp->b_target;
98
99 spin_lock(&btp->bt_lru_lock);
100 if (list_empty(&bp->b_lru)) {
101 atomic_inc(&bp->b_hold);
102 list_add_tail(&bp->b_lru, &btp->bt_lru);
103 btp->bt_lru_nr++;
104 }
105 spin_unlock(&btp->bt_lru_lock);
106}
107
108/*
109 * xfs_buf_lru_del - remove a buffer from the LRU
110 *
111 * The unlocked check is safe here because it only occurs when there are not
112 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
113 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 114 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 115 * bt_lru_lock.
1da177e4 116 */
430cbeb8
DC
117STATIC void
118xfs_buf_lru_del(
119 struct xfs_buf *bp)
120{
121 struct xfs_buftarg *btp = bp->b_target;
122
123 if (list_empty(&bp->b_lru))
124 return;
125
126 spin_lock(&btp->bt_lru_lock);
127 if (!list_empty(&bp->b_lru)) {
128 list_del_init(&bp->b_lru);
129 btp->bt_lru_nr--;
130 }
131 spin_unlock(&btp->bt_lru_lock);
132}
133
134/*
135 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
136 * b_lru_ref count so that the buffer is freed immediately when the buffer
137 * reference count falls to zero. If the buffer is already on the LRU, we need
138 * to remove the reference that LRU holds on the buffer.
139 *
140 * This prevents build-up of stale buffers on the LRU.
141 */
142void
143xfs_buf_stale(
144 struct xfs_buf *bp)
145{
43ff2122
CH
146 ASSERT(xfs_buf_islocked(bp));
147
430cbeb8 148 bp->b_flags |= XBF_STALE;
43ff2122
CH
149
150 /*
151 * Clear the delwri status so that a delwri queue walker will not
152 * flush this buffer to disk now that it is stale. The delwri queue has
153 * a reference to the buffer, so this is safe to do.
154 */
155 bp->b_flags &= ~_XBF_DELWRI_Q;
156
430cbeb8
DC
157 atomic_set(&(bp)->b_lru_ref, 0);
158 if (!list_empty(&bp->b_lru)) {
159 struct xfs_buftarg *btp = bp->b_target;
160
161 spin_lock(&btp->bt_lru_lock);
162 if (!list_empty(&bp->b_lru)) {
163 list_del_init(&bp->b_lru);
164 btp->bt_lru_nr--;
165 atomic_dec(&bp->b_hold);
166 }
167 spin_unlock(&btp->bt_lru_lock);
168 }
169 ASSERT(atomic_read(&bp->b_hold) >= 1);
170}
1da177e4 171
4347b9d7
CH
172struct xfs_buf *
173xfs_buf_alloc(
174 struct xfs_buftarg *target,
e70b73f8
DC
175 xfs_daddr_t blkno,
176 size_t numblks,
ce8e922c 177 xfs_buf_flags_t flags)
1da177e4 178{
4347b9d7
CH
179 struct xfs_buf *bp;
180
bf813cdd 181 bp = kmem_zone_zalloc(xfs_buf_zone, xb_to_km(flags));
4347b9d7
CH
182 if (unlikely(!bp))
183 return NULL;
184
1da177e4 185 /*
ce8e922c 186 * We don't want certain flags to appear in b_flags.
1da177e4 187 */
ce8e922c
NS
188 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
189
ce8e922c 190 atomic_set(&bp->b_hold, 1);
430cbeb8 191 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 192 init_completion(&bp->b_iowait);
430cbeb8 193 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 194 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 195 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 196 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
197 XB_SET_OWNER(bp);
198 bp->b_target = target;
de1cbee4 199
1da177e4 200 /*
4e94b71b 201 * Set length and count_desired to the same value initially.
1da177e4
LT
202 * I/O routines should use count_desired, which will be the same in
203 * most cases but may be reset (e.g. XFS recovery).
204 */
4e94b71b
DC
205 bp->b_length = numblks;
206 bp->b_count_desired = numblks << BBSHIFT;
ce8e922c 207 bp->b_flags = flags;
e70b73f8
DC
208
209 /*
210 * We do not set the block number here in the buffer because we have not
211 * finished initialising the buffer. We insert the buffer into the cache
212 * in this state, so this ensures that we are unable to do IO on a
213 * buffer that hasn't been fully initialised.
214 */
ce8e922c
NS
215 bp->b_bn = XFS_BUF_DADDR_NULL;
216 atomic_set(&bp->b_pin_count, 0);
217 init_waitqueue_head(&bp->b_waiters);
218
219 XFS_STATS_INC(xb_create);
0b1b213f 220 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
221
222 return bp;
1da177e4
LT
223}
224
225/*
ce8e922c
NS
226 * Allocate a page array capable of holding a specified number
227 * of pages, and point the page buf at it.
1da177e4
LT
228 */
229STATIC int
ce8e922c
NS
230_xfs_buf_get_pages(
231 xfs_buf_t *bp,
1da177e4 232 int page_count,
ce8e922c 233 xfs_buf_flags_t flags)
1da177e4
LT
234{
235 /* Make sure that we have a page list */
ce8e922c 236 if (bp->b_pages == NULL) {
ce8e922c
NS
237 bp->b_page_count = page_count;
238 if (page_count <= XB_PAGES) {
239 bp->b_pages = bp->b_page_array;
1da177e4 240 } else {
ce8e922c
NS
241 bp->b_pages = kmem_alloc(sizeof(struct page *) *
242 page_count, xb_to_km(flags));
243 if (bp->b_pages == NULL)
1da177e4
LT
244 return -ENOMEM;
245 }
ce8e922c 246 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
247 }
248 return 0;
249}
250
251/*
ce8e922c 252 * Frees b_pages if it was allocated.
1da177e4
LT
253 */
254STATIC void
ce8e922c 255_xfs_buf_free_pages(
1da177e4
LT
256 xfs_buf_t *bp)
257{
ce8e922c 258 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 259 kmem_free(bp->b_pages);
3fc98b1a 260 bp->b_pages = NULL;
1da177e4
LT
261 }
262}
263
264/*
265 * Releases the specified buffer.
266 *
267 * The modification state of any associated pages is left unchanged.
ce8e922c 268 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
269 * hashed and refcounted buffers
270 */
271void
ce8e922c 272xfs_buf_free(
1da177e4
LT
273 xfs_buf_t *bp)
274{
0b1b213f 275 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 276
430cbeb8
DC
277 ASSERT(list_empty(&bp->b_lru));
278
0e6e847f 279 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
280 uint i;
281
73c77e2c 282 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
283 vm_unmap_ram(bp->b_addr - bp->b_offset,
284 bp->b_page_count);
1da177e4 285
948ecdb4
NS
286 for (i = 0; i < bp->b_page_count; i++) {
287 struct page *page = bp->b_pages[i];
288
0e6e847f 289 __free_page(page);
948ecdb4 290 }
0e6e847f
DC
291 } else if (bp->b_flags & _XBF_KMEM)
292 kmem_free(bp->b_addr);
3fc98b1a 293 _xfs_buf_free_pages(bp);
4347b9d7 294 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
295}
296
297/*
0e6e847f 298 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
299 */
300STATIC int
0e6e847f 301xfs_buf_allocate_memory(
1da177e4
LT
302 xfs_buf_t *bp,
303 uint flags)
304{
ce8e922c 305 size_t size = bp->b_count_desired;
1da177e4 306 size_t nbytes, offset;
ce8e922c 307 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 308 unsigned short page_count, i;
204ab25f 309 xfs_off_t end;
1da177e4
LT
310 int error;
311
0e6e847f
DC
312 /*
313 * for buffers that are contained within a single page, just allocate
314 * the memory from the heap - there's no need for the complexity of
315 * page arrays to keep allocation down to order 0.
316 */
4e94b71b
DC
317 if (bp->b_length < BTOBB(PAGE_SIZE)) {
318 bp->b_addr = kmem_alloc(BBTOB(bp->b_length), xb_to_km(flags));
0e6e847f
DC
319 if (!bp->b_addr) {
320 /* low memory - use alloc_page loop instead */
321 goto use_alloc_page;
322 }
323
4e94b71b 324 if (((unsigned long)(bp->b_addr + BBTOB(bp->b_length) - 1) &
0e6e847f
DC
325 PAGE_MASK) !=
326 ((unsigned long)bp->b_addr & PAGE_MASK)) {
327 /* b_addr spans two pages - use alloc_page instead */
328 kmem_free(bp->b_addr);
329 bp->b_addr = NULL;
330 goto use_alloc_page;
331 }
332 bp->b_offset = offset_in_page(bp->b_addr);
333 bp->b_pages = bp->b_page_array;
334 bp->b_pages[0] = virt_to_page(bp->b_addr);
335 bp->b_page_count = 1;
336 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
337 return 0;
338 }
339
340use_alloc_page:
4e94b71b 341 end = BBTOB(bp->b_bn + bp->b_length);
de1cbee4 342 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(BBTOB(bp->b_bn));
ce8e922c 343 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
344 if (unlikely(error))
345 return error;
1da177e4 346
ce8e922c 347 offset = bp->b_offset;
0e6e847f 348 bp->b_flags |= _XBF_PAGES;
1da177e4 349
ce8e922c 350 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
351 struct page *page;
352 uint retries = 0;
0e6e847f
DC
353retry:
354 page = alloc_page(gfp_mask);
1da177e4 355 if (unlikely(page == NULL)) {
ce8e922c
NS
356 if (flags & XBF_READ_AHEAD) {
357 bp->b_page_count = i;
0e6e847f
DC
358 error = ENOMEM;
359 goto out_free_pages;
1da177e4
LT
360 }
361
362 /*
363 * This could deadlock.
364 *
365 * But until all the XFS lowlevel code is revamped to
366 * handle buffer allocation failures we can't do much.
367 */
368 if (!(++retries % 100))
4f10700a
DC
369 xfs_err(NULL,
370 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 371 __func__, gfp_mask);
1da177e4 372
ce8e922c 373 XFS_STATS_INC(xb_page_retries);
8aa7e847 374 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
375 goto retry;
376 }
377
ce8e922c 378 XFS_STATS_INC(xb_page_found);
1da177e4 379
0e6e847f 380 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 381 size -= nbytes;
ce8e922c 382 bp->b_pages[i] = page;
1da177e4
LT
383 offset = 0;
384 }
0e6e847f 385 return 0;
1da177e4 386
0e6e847f
DC
387out_free_pages:
388 for (i = 0; i < bp->b_page_count; i++)
389 __free_page(bp->b_pages[i]);
1da177e4
LT
390 return error;
391}
392
393/*
25985edc 394 * Map buffer into kernel address-space if necessary.
1da177e4
LT
395 */
396STATIC int
ce8e922c 397_xfs_buf_map_pages(
1da177e4
LT
398 xfs_buf_t *bp,
399 uint flags)
400{
0e6e847f 401 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 402 if (bp->b_page_count == 1) {
0e6e847f 403 /* A single page buffer is always mappable */
ce8e922c
NS
404 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
405 bp->b_flags |= XBF_MAPPED;
406 } else if (flags & XBF_MAPPED) {
a19fb380
DC
407 int retried = 0;
408
409 do {
410 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
411 -1, PAGE_KERNEL);
412 if (bp->b_addr)
413 break;
414 vm_unmap_aliases();
415 } while (retried++ <= 1);
416
417 if (!bp->b_addr)
1da177e4 418 return -ENOMEM;
ce8e922c
NS
419 bp->b_addr += bp->b_offset;
420 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
421 }
422
423 return 0;
424}
425
426/*
427 * Finding and Reading Buffers
428 */
429
430/*
ce8e922c 431 * Look up, and creates if absent, a lockable buffer for
1da177e4 432 * a given range of an inode. The buffer is returned
eabbaf11 433 * locked. No I/O is implied by this call.
1da177e4
LT
434 */
435xfs_buf_t *
ce8e922c 436_xfs_buf_find(
e70b73f8
DC
437 struct xfs_buftarg *btp,
438 xfs_daddr_t blkno,
439 size_t numblks,
ce8e922c
NS
440 xfs_buf_flags_t flags,
441 xfs_buf_t *new_bp)
1da177e4 442{
e70b73f8 443 size_t numbytes;
74f75a0c
DC
444 struct xfs_perag *pag;
445 struct rb_node **rbp;
446 struct rb_node *parent;
447 xfs_buf_t *bp;
1da177e4 448
e70b73f8 449 numbytes = BBTOB(numblks);
1da177e4
LT
450
451 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 452 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 453 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 454
74f75a0c
DC
455 /* get tree root */
456 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 457 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
458
459 /* walk tree */
460 spin_lock(&pag->pag_buf_lock);
461 rbp = &pag->pag_buf_tree.rb_node;
462 parent = NULL;
463 bp = NULL;
464 while (*rbp) {
465 parent = *rbp;
466 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
467
de1cbee4 468 if (blkno < bp->b_bn)
74f75a0c 469 rbp = &(*rbp)->rb_left;
de1cbee4 470 else if (blkno > bp->b_bn)
74f75a0c
DC
471 rbp = &(*rbp)->rb_right;
472 else {
473 /*
de1cbee4 474 * found a block number match. If the range doesn't
74f75a0c
DC
475 * match, the only way this is allowed is if the buffer
476 * in the cache is stale and the transaction that made
477 * it stale has not yet committed. i.e. we are
478 * reallocating a busy extent. Skip this buffer and
479 * continue searching to the right for an exact match.
480 */
4e94b71b 481 if (bp->b_length != numblks) {
74f75a0c
DC
482 ASSERT(bp->b_flags & XBF_STALE);
483 rbp = &(*rbp)->rb_right;
484 continue;
485 }
ce8e922c 486 atomic_inc(&bp->b_hold);
1da177e4
LT
487 goto found;
488 }
489 }
490
491 /* No match found */
ce8e922c 492 if (new_bp) {
74f75a0c
DC
493 rb_link_node(&new_bp->b_rbnode, parent, rbp);
494 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
495 /* the buffer keeps the perag reference until it is freed */
496 new_bp->b_pag = pag;
497 spin_unlock(&pag->pag_buf_lock);
1da177e4 498 } else {
ce8e922c 499 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
500 spin_unlock(&pag->pag_buf_lock);
501 xfs_perag_put(pag);
1da177e4 502 }
ce8e922c 503 return new_bp;
1da177e4
LT
504
505found:
74f75a0c
DC
506 spin_unlock(&pag->pag_buf_lock);
507 xfs_perag_put(pag);
1da177e4 508
0c842ad4
CH
509 if (!xfs_buf_trylock(bp)) {
510 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
511 xfs_buf_rele(bp);
512 XFS_STATS_INC(xb_busy_locked);
513 return NULL;
1da177e4 514 }
0c842ad4
CH
515 xfs_buf_lock(bp);
516 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
517 }
518
0e6e847f
DC
519 /*
520 * if the buffer is stale, clear all the external state associated with
521 * it. We need to keep flags such as how we allocated the buffer memory
522 * intact here.
523 */
ce8e922c
NS
524 if (bp->b_flags & XBF_STALE) {
525 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
0e6e847f 526 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
2f926587 527 }
0b1b213f
CH
528
529 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
530 XFS_STATS_INC(xb_get_locked);
531 return bp;
1da177e4
LT
532}
533
534/*
3815832a
DC
535 * Assembles a buffer covering the specified range. The code is optimised for
536 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
537 * more hits than misses.
1da177e4 538 */
3815832a 539struct xfs_buf *
6ad112bf 540xfs_buf_get(
e70b73f8
DC
541 xfs_buftarg_t *target,
542 xfs_daddr_t blkno,
543 size_t numblks,
ce8e922c 544 xfs_buf_flags_t flags)
1da177e4 545{
3815832a
DC
546 struct xfs_buf *bp;
547 struct xfs_buf *new_bp;
0e6e847f 548 int error = 0;
1da177e4 549
e70b73f8 550 bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
3815832a
DC
551 if (likely(bp))
552 goto found;
553
e70b73f8 554 new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
ce8e922c 555 if (unlikely(!new_bp))
1da177e4
LT
556 return NULL;
557
fe2429b0
DC
558 error = xfs_buf_allocate_memory(new_bp, flags);
559 if (error) {
560 kmem_zone_free(xfs_buf_zone, new_bp);
561 return NULL;
562 }
563
e70b73f8 564 bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
3815832a 565 if (!bp) {
fe2429b0 566 xfs_buf_free(new_bp);
3815832a
DC
567 return NULL;
568 }
569
fe2429b0
DC
570 if (bp != new_bp)
571 xfs_buf_free(new_bp);
1da177e4 572
3815832a
DC
573 /*
574 * Now we have a workable buffer, fill in the block number so
575 * that we can do IO on it.
576 */
e70b73f8 577 bp->b_bn = blkno;
4e94b71b 578 bp->b_count_desired = BBTOB(bp->b_length);
3815832a
DC
579
580found:
ce8e922c
NS
581 if (!(bp->b_flags & XBF_MAPPED)) {
582 error = _xfs_buf_map_pages(bp, flags);
1da177e4 583 if (unlikely(error)) {
4f10700a
DC
584 xfs_warn(target->bt_mount,
585 "%s: failed to map pages\n", __func__);
1da177e4
LT
586 goto no_buffer;
587 }
588 }
589
ce8e922c 590 XFS_STATS_INC(xb_get);
0b1b213f 591 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 592 return bp;
1da177e4 593
3815832a 594no_buffer:
ce8e922c
NS
595 if (flags & (XBF_LOCK | XBF_TRYLOCK))
596 xfs_buf_unlock(bp);
597 xfs_buf_rele(bp);
1da177e4
LT
598 return NULL;
599}
600
5d765b97
CH
601STATIC int
602_xfs_buf_read(
603 xfs_buf_t *bp,
604 xfs_buf_flags_t flags)
605{
43ff2122 606 ASSERT(!(flags & XBF_WRITE));
5d765b97
CH
607 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
608
43ff2122 609 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 610 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 611
0e95f19a
DC
612 xfs_buf_iorequest(bp);
613 if (flags & XBF_ASYNC)
614 return 0;
ec53d1db 615 return xfs_buf_iowait(bp);
5d765b97
CH
616}
617
1da177e4 618xfs_buf_t *
6ad112bf 619xfs_buf_read(
1da177e4 620 xfs_buftarg_t *target,
e70b73f8
DC
621 xfs_daddr_t blkno,
622 size_t numblks,
ce8e922c 623 xfs_buf_flags_t flags)
1da177e4 624{
ce8e922c
NS
625 xfs_buf_t *bp;
626
627 flags |= XBF_READ;
628
e70b73f8 629 bp = xfs_buf_get(target, blkno, numblks, flags);
ce8e922c 630 if (bp) {
0b1b213f
CH
631 trace_xfs_buf_read(bp, flags, _RET_IP_);
632
ce8e922c 633 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 634 XFS_STATS_INC(xb_get_read);
5d765b97 635 _xfs_buf_read(bp, flags);
ce8e922c 636 } else if (flags & XBF_ASYNC) {
1da177e4
LT
637 /*
638 * Read ahead call which is already satisfied,
639 * drop the buffer
640 */
641 goto no_buffer;
642 } else {
1da177e4 643 /* We do not want read in the flags */
ce8e922c 644 bp->b_flags &= ~XBF_READ;
1da177e4
LT
645 }
646 }
647
ce8e922c 648 return bp;
1da177e4
LT
649
650 no_buffer:
ce8e922c
NS
651 if (flags & (XBF_LOCK | XBF_TRYLOCK))
652 xfs_buf_unlock(bp);
653 xfs_buf_rele(bp);
1da177e4
LT
654 return NULL;
655}
656
1da177e4 657/*
ce8e922c
NS
658 * If we are not low on memory then do the readahead in a deadlock
659 * safe manner.
1da177e4
LT
660 */
661void
ce8e922c 662xfs_buf_readahead(
1da177e4 663 xfs_buftarg_t *target,
e70b73f8
DC
664 xfs_daddr_t blkno,
665 size_t numblks)
1da177e4 666{
0e6e847f 667 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
668 return;
669
e70b73f8 670 xfs_buf_read(target, blkno, numblks,
1a1a3e97 671 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
672}
673
5adc94c2
DC
674/*
675 * Read an uncached buffer from disk. Allocates and returns a locked
676 * buffer containing the disk contents or nothing.
677 */
678struct xfs_buf *
679xfs_buf_read_uncached(
5adc94c2
DC
680 struct xfs_buftarg *target,
681 xfs_daddr_t daddr,
e70b73f8 682 size_t numblks,
5adc94c2
DC
683 int flags)
684{
685 xfs_buf_t *bp;
686 int error;
687
e70b73f8 688 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
689 if (!bp)
690 return NULL;
691
692 /* set up the buffer for a read IO */
5adc94c2
DC
693 XFS_BUF_SET_ADDR(bp, daddr);
694 XFS_BUF_READ(bp);
5adc94c2 695
e70b73f8 696 xfsbdstrat(target->bt_mount, bp);
1a1a3e97 697 error = xfs_buf_iowait(bp);
0e95f19a 698 if (error) {
5adc94c2
DC
699 xfs_buf_relse(bp);
700 return NULL;
701 }
702 return bp;
1da177e4
LT
703}
704
44396476
DC
705/*
706 * Return a buffer allocated as an empty buffer and associated to external
707 * memory via xfs_buf_associate_memory() back to it's empty state.
708 */
709void
710xfs_buf_set_empty(
711 struct xfs_buf *bp,
e70b73f8 712 size_t numblks)
44396476
DC
713{
714 if (bp->b_pages)
715 _xfs_buf_free_pages(bp);
716
717 bp->b_pages = NULL;
718 bp->b_page_count = 0;
719 bp->b_addr = NULL;
4e94b71b
DC
720 bp->b_length = numblks;
721 bp->b_count_desired = numblks << BBSHIFT;
44396476
DC
722 bp->b_bn = XFS_BUF_DADDR_NULL;
723 bp->b_flags &= ~XBF_MAPPED;
724}
725
1da177e4
LT
726static inline struct page *
727mem_to_page(
728 void *addr)
729{
9e2779fa 730 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
731 return virt_to_page(addr);
732 } else {
733 return vmalloc_to_page(addr);
734 }
735}
736
737int
ce8e922c
NS
738xfs_buf_associate_memory(
739 xfs_buf_t *bp,
1da177e4
LT
740 void *mem,
741 size_t len)
742{
743 int rval;
744 int i = 0;
d1afb678
LM
745 unsigned long pageaddr;
746 unsigned long offset;
747 size_t buflen;
1da177e4
LT
748 int page_count;
749
0e6e847f 750 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 751 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
752 buflen = PAGE_ALIGN(len + offset);
753 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
754
755 /* Free any previous set of page pointers */
ce8e922c
NS
756 if (bp->b_pages)
757 _xfs_buf_free_pages(bp);
1da177e4 758
ce8e922c
NS
759 bp->b_pages = NULL;
760 bp->b_addr = mem;
1da177e4 761
36fae17a 762 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
763 if (rval)
764 return rval;
765
ce8e922c 766 bp->b_offset = offset;
d1afb678
LM
767
768 for (i = 0; i < bp->b_page_count; i++) {
769 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 770 pageaddr += PAGE_SIZE;
1da177e4 771 }
1da177e4 772
d1afb678 773 bp->b_count_desired = len;
4e94b71b 774 bp->b_length = BTOBB(buflen);
ce8e922c 775 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
776
777 return 0;
778}
779
780xfs_buf_t *
686865f7
DC
781xfs_buf_get_uncached(
782 struct xfs_buftarg *target,
e70b73f8 783 size_t numblks,
686865f7 784 int flags)
1da177e4 785{
e70b73f8 786 unsigned long page_count;
1fa40b01 787 int error, i;
1da177e4 788 xfs_buf_t *bp;
1da177e4 789
e70b73f8 790 bp = xfs_buf_alloc(target, 0, numblks, 0);
1da177e4
LT
791 if (unlikely(bp == NULL))
792 goto fail;
1da177e4 793
e70b73f8 794 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
795 error = _xfs_buf_get_pages(bp, page_count, 0);
796 if (error)
1da177e4
LT
797 goto fail_free_buf;
798
1fa40b01 799 for (i = 0; i < page_count; i++) {
686865f7 800 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
801 if (!bp->b_pages[i])
802 goto fail_free_mem;
1da177e4 803 }
1fa40b01 804 bp->b_flags |= _XBF_PAGES;
1da177e4 805
1fa40b01
CH
806 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
807 if (unlikely(error)) {
4f10700a
DC
808 xfs_warn(target->bt_mount,
809 "%s: failed to map pages\n", __func__);
1da177e4 810 goto fail_free_mem;
1fa40b01 811 }
1da177e4 812
686865f7 813 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 814 return bp;
1fa40b01 815
1da177e4 816 fail_free_mem:
1fa40b01
CH
817 while (--i >= 0)
818 __free_page(bp->b_pages[i]);
ca165b88 819 _xfs_buf_free_pages(bp);
1da177e4 820 fail_free_buf:
4347b9d7 821 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
822 fail:
823 return NULL;
824}
825
826/*
1da177e4
LT
827 * Increment reference count on buffer, to hold the buffer concurrently
828 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
829 * Must hold the buffer already to call this function.
830 */
831void
ce8e922c
NS
832xfs_buf_hold(
833 xfs_buf_t *bp)
1da177e4 834{
0b1b213f 835 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 836 atomic_inc(&bp->b_hold);
1da177e4
LT
837}
838
839/*
ce8e922c
NS
840 * Releases a hold on the specified buffer. If the
841 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
842 */
843void
ce8e922c
NS
844xfs_buf_rele(
845 xfs_buf_t *bp)
1da177e4 846{
74f75a0c 847 struct xfs_perag *pag = bp->b_pag;
1da177e4 848
0b1b213f 849 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 850
74f75a0c 851 if (!pag) {
430cbeb8 852 ASSERT(list_empty(&bp->b_lru));
74f75a0c 853 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
854 if (atomic_dec_and_test(&bp->b_hold))
855 xfs_buf_free(bp);
856 return;
857 }
858
74f75a0c 859 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 860
3790689f 861 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 862 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 863 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
864 atomic_read(&bp->b_lru_ref)) {
865 xfs_buf_lru_add(bp);
866 spin_unlock(&pag->pag_buf_lock);
1da177e4 867 } else {
430cbeb8 868 xfs_buf_lru_del(bp);
43ff2122 869 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
870 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
871 spin_unlock(&pag->pag_buf_lock);
872 xfs_perag_put(pag);
ce8e922c 873 xfs_buf_free(bp);
1da177e4
LT
874 }
875 }
876}
877
878
879/*
0e6e847f 880 * Lock a buffer object, if it is not already locked.
90810b9e
DC
881 *
882 * If we come across a stale, pinned, locked buffer, we know that we are
883 * being asked to lock a buffer that has been reallocated. Because it is
884 * pinned, we know that the log has not been pushed to disk and hence it
885 * will still be locked. Rather than continuing to have trylock attempts
886 * fail until someone else pushes the log, push it ourselves before
887 * returning. This means that the xfsaild will not get stuck trying
888 * to push on stale inode buffers.
1da177e4
LT
889 */
890int
0c842ad4
CH
891xfs_buf_trylock(
892 struct xfs_buf *bp)
1da177e4
LT
893{
894 int locked;
895
ce8e922c 896 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 897 if (locked)
ce8e922c 898 XB_SET_OWNER(bp);
90810b9e
DC
899 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
900 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 901
0c842ad4
CH
902 trace_xfs_buf_trylock(bp, _RET_IP_);
903 return locked;
1da177e4 904}
1da177e4
LT
905
906/*
0e6e847f 907 * Lock a buffer object.
ed3b4d6c
DC
908 *
909 * If we come across a stale, pinned, locked buffer, we know that we
910 * are being asked to lock a buffer that has been reallocated. Because
911 * it is pinned, we know that the log has not been pushed to disk and
912 * hence it will still be locked. Rather than sleeping until someone
913 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 914 */
ce8e922c
NS
915void
916xfs_buf_lock(
0c842ad4 917 struct xfs_buf *bp)
1da177e4 918{
0b1b213f
CH
919 trace_xfs_buf_lock(bp, _RET_IP_);
920
ed3b4d6c 921 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 922 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
923 down(&bp->b_sema);
924 XB_SET_OWNER(bp);
0b1b213f
CH
925
926 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
927}
928
1da177e4 929void
ce8e922c 930xfs_buf_unlock(
0c842ad4 931 struct xfs_buf *bp)
1da177e4 932{
ce8e922c
NS
933 XB_CLEAR_OWNER(bp);
934 up(&bp->b_sema);
0b1b213f
CH
935
936 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
937}
938
ce8e922c
NS
939STATIC void
940xfs_buf_wait_unpin(
941 xfs_buf_t *bp)
1da177e4
LT
942{
943 DECLARE_WAITQUEUE (wait, current);
944
ce8e922c 945 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
946 return;
947
ce8e922c 948 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
949 for (;;) {
950 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 951 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 952 break;
7eaceacc 953 io_schedule();
1da177e4 954 }
ce8e922c 955 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
956 set_current_state(TASK_RUNNING);
957}
958
959/*
960 * Buffer Utility Routines
961 */
962
1da177e4 963STATIC void
ce8e922c 964xfs_buf_iodone_work(
c4028958 965 struct work_struct *work)
1da177e4 966{
c4028958
DH
967 xfs_buf_t *bp =
968 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 969
80f6c29d 970 if (bp->b_iodone)
ce8e922c
NS
971 (*(bp->b_iodone))(bp);
972 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
973 xfs_buf_relse(bp);
974}
975
976void
ce8e922c
NS
977xfs_buf_ioend(
978 xfs_buf_t *bp,
1da177e4
LT
979 int schedule)
980{
0b1b213f
CH
981 trace_xfs_buf_iodone(bp, _RET_IP_);
982
77be55a5 983 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
984 if (bp->b_error == 0)
985 bp->b_flags |= XBF_DONE;
1da177e4 986
ce8e922c 987 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 988 if (schedule) {
c4028958 989 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 990 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 991 } else {
c4028958 992 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
993 }
994 } else {
b4dd330b 995 complete(&bp->b_iowait);
1da177e4
LT
996 }
997}
998
1da177e4 999void
ce8e922c
NS
1000xfs_buf_ioerror(
1001 xfs_buf_t *bp,
1002 int error)
1da177e4
LT
1003{
1004 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1005 bp->b_error = (unsigned short)error;
0b1b213f 1006 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1007}
1008
901796af
CH
1009void
1010xfs_buf_ioerror_alert(
1011 struct xfs_buf *bp,
1012 const char *func)
1013{
1014 xfs_alert(bp->b_target->bt_mount,
1015"metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
1016 (__uint64_t)XFS_BUF_ADDR(bp), func,
1017 bp->b_error, XFS_BUF_COUNT(bp));
1018}
1019
1da177e4 1020int
64e0bc7d 1021xfs_bwrite(
5d765b97 1022 struct xfs_buf *bp)
1da177e4 1023{
8c38366f 1024 int error;
1da177e4 1025
43ff2122
CH
1026 ASSERT(xfs_buf_islocked(bp));
1027
64e0bc7d 1028 bp->b_flags |= XBF_WRITE;
43ff2122 1029 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1da177e4 1030
939d723b 1031 xfs_bdstrat_cb(bp);
1da177e4 1032
8c38366f 1033 error = xfs_buf_iowait(bp);
c2b006c1
CH
1034 if (error) {
1035 xfs_force_shutdown(bp->b_target->bt_mount,
1036 SHUTDOWN_META_IO_ERROR);
1037 }
64e0bc7d 1038 return error;
5d765b97 1039}
1da177e4 1040
4e23471a
CH
1041/*
1042 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1043 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1044 * so that the proper iodone callbacks get called.
1045 */
1046STATIC int
1047xfs_bioerror(
1048 xfs_buf_t *bp)
1049{
1050#ifdef XFSERRORDEBUG
1051 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1052#endif
1053
1054 /*
1055 * No need to wait until the buffer is unpinned, we aren't flushing it.
1056 */
5a52c2a5 1057 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1058
1059 /*
1a1a3e97 1060 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1061 */
1062 XFS_BUF_UNREAD(bp);
4e23471a 1063 XFS_BUF_UNDONE(bp);
c867cb61 1064 xfs_buf_stale(bp);
4e23471a 1065
1a1a3e97 1066 xfs_buf_ioend(bp, 0);
4e23471a
CH
1067
1068 return EIO;
1069}
1070
1071/*
1072 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1073 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1074 * This is meant for userdata errors; metadata bufs come with
1075 * iodone functions attached, so that we can track down errors.
1076 */
1077STATIC int
1078xfs_bioerror_relse(
1079 struct xfs_buf *bp)
1080{
ed43233b 1081 int64_t fl = bp->b_flags;
4e23471a
CH
1082 /*
1083 * No need to wait until the buffer is unpinned.
1084 * We aren't flushing it.
1085 *
1086 * chunkhold expects B_DONE to be set, whether
1087 * we actually finish the I/O or not. We don't want to
1088 * change that interface.
1089 */
1090 XFS_BUF_UNREAD(bp);
4e23471a 1091 XFS_BUF_DONE(bp);
c867cb61 1092 xfs_buf_stale(bp);
cb669ca5 1093 bp->b_iodone = NULL;
0cadda1c 1094 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1095 /*
1096 * Mark b_error and B_ERROR _both_.
1097 * Lot's of chunkcache code assumes that.
1098 * There's no reason to mark error for
1099 * ASYNC buffers.
1100 */
5a52c2a5 1101 xfs_buf_ioerror(bp, EIO);
5fde0326 1102 complete(&bp->b_iowait);
4e23471a
CH
1103 } else {
1104 xfs_buf_relse(bp);
1105 }
1106
1107 return EIO;
1108}
1109
1110
1111/*
1112 * All xfs metadata buffers except log state machine buffers
1113 * get this attached as their b_bdstrat callback function.
1114 * This is so that we can catch a buffer
1115 * after prematurely unpinning it to forcibly shutdown the filesystem.
1116 */
1117int
1118xfs_bdstrat_cb(
1119 struct xfs_buf *bp)
1120{
ebad861b 1121 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1122 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1123 /*
1124 * Metadata write that didn't get logged but
1125 * written delayed anyway. These aren't associated
1126 * with a transaction, and can be ignored.
1127 */
1128 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1129 return xfs_bioerror_relse(bp);
1130 else
1131 return xfs_bioerror(bp);
1132 }
1133
1134 xfs_buf_iorequest(bp);
1135 return 0;
1136}
1137
1138/*
1139 * Wrapper around bdstrat so that we can stop data from going to disk in case
1140 * we are shutting down the filesystem. Typically user data goes thru this
1141 * path; one of the exceptions is the superblock.
1142 */
1143void
1144xfsbdstrat(
1145 struct xfs_mount *mp,
1146 struct xfs_buf *bp)
1147{
1148 if (XFS_FORCED_SHUTDOWN(mp)) {
1149 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1150 xfs_bioerror_relse(bp);
1151 return;
1152 }
1153
1154 xfs_buf_iorequest(bp);
1155}
1156
b8f82a4a 1157STATIC void
ce8e922c
NS
1158_xfs_buf_ioend(
1159 xfs_buf_t *bp,
1da177e4
LT
1160 int schedule)
1161{
0e6e847f 1162 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1163 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1164}
1165
782e3b3b 1166STATIC void
ce8e922c 1167xfs_buf_bio_end_io(
1da177e4 1168 struct bio *bio,
1da177e4
LT
1169 int error)
1170{
ce8e922c 1171 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1172
cfbe5267 1173 xfs_buf_ioerror(bp, -error);
1da177e4 1174
73c77e2c
JB
1175 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1176 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1177
ce8e922c 1178 _xfs_buf_ioend(bp, 1);
1da177e4 1179 bio_put(bio);
1da177e4
LT
1180}
1181
1182STATIC void
ce8e922c
NS
1183_xfs_buf_ioapply(
1184 xfs_buf_t *bp)
1da177e4 1185{
a9759f2d 1186 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1187 struct bio *bio;
ce8e922c
NS
1188 int offset = bp->b_offset;
1189 int size = bp->b_count_desired;
1190 sector_t sector = bp->b_bn;
1da177e4 1191
ce8e922c 1192 total_nr_pages = bp->b_page_count;
1da177e4
LT
1193 map_i = 0;
1194
1d5ae5df
CH
1195 if (bp->b_flags & XBF_WRITE) {
1196 if (bp->b_flags & XBF_SYNCIO)
1197 rw = WRITE_SYNC;
1198 else
1199 rw = WRITE;
1200 if (bp->b_flags & XBF_FUA)
1201 rw |= REQ_FUA;
1202 if (bp->b_flags & XBF_FLUSH)
1203 rw |= REQ_FLUSH;
1204 } else if (bp->b_flags & XBF_READ_AHEAD) {
1205 rw = READA;
51bdd706 1206 } else {
1d5ae5df 1207 rw = READ;
f538d4da
CH
1208 }
1209
34951f5c
CH
1210 /* we only use the buffer cache for meta-data */
1211 rw |= REQ_META;
1212
1da177e4 1213next_chunk:
ce8e922c 1214 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1215 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1216 if (nr_pages > total_nr_pages)
1217 nr_pages = total_nr_pages;
1218
1219 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1220 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1221 bio->bi_sector = sector;
ce8e922c
NS
1222 bio->bi_end_io = xfs_buf_bio_end_io;
1223 bio->bi_private = bp;
1da177e4 1224
0e6e847f 1225
1da177e4 1226 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1227 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1228
1229 if (nbytes > size)
1230 nbytes = size;
1231
ce8e922c
NS
1232 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1233 if (rbytes < nbytes)
1da177e4
LT
1234 break;
1235
1236 offset = 0;
1237 sector += nbytes >> BBSHIFT;
1238 size -= nbytes;
1239 total_nr_pages--;
1240 }
1241
1da177e4 1242 if (likely(bio->bi_size)) {
73c77e2c
JB
1243 if (xfs_buf_is_vmapped(bp)) {
1244 flush_kernel_vmap_range(bp->b_addr,
1245 xfs_buf_vmap_len(bp));
1246 }
1da177e4
LT
1247 submit_bio(rw, bio);
1248 if (size)
1249 goto next_chunk;
1250 } else {
ce8e922c 1251 xfs_buf_ioerror(bp, EIO);
ec53d1db 1252 bio_put(bio);
1da177e4
LT
1253 }
1254}
1255
0e95f19a 1256void
ce8e922c
NS
1257xfs_buf_iorequest(
1258 xfs_buf_t *bp)
1da177e4 1259{
0b1b213f 1260 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1261
43ff2122 1262 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1263
375ec69d 1264 if (bp->b_flags & XBF_WRITE)
ce8e922c 1265 xfs_buf_wait_unpin(bp);
ce8e922c 1266 xfs_buf_hold(bp);
1da177e4
LT
1267
1268 /* Set the count to 1 initially, this will stop an I/O
1269 * completion callout which happens before we have started
ce8e922c 1270 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1271 */
ce8e922c
NS
1272 atomic_set(&bp->b_io_remaining, 1);
1273 _xfs_buf_ioapply(bp);
1274 _xfs_buf_ioend(bp, 0);
1da177e4 1275
ce8e922c 1276 xfs_buf_rele(bp);
1da177e4
LT
1277}
1278
1279/*
0e95f19a
DC
1280 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1281 * no I/O is pending or there is already a pending error on the buffer. It
1282 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1283 */
1284int
ce8e922c
NS
1285xfs_buf_iowait(
1286 xfs_buf_t *bp)
1da177e4 1287{
0b1b213f
CH
1288 trace_xfs_buf_iowait(bp, _RET_IP_);
1289
0e95f19a
DC
1290 if (!bp->b_error)
1291 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1292
1293 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1294 return bp->b_error;
1da177e4
LT
1295}
1296
ce8e922c
NS
1297xfs_caddr_t
1298xfs_buf_offset(
1299 xfs_buf_t *bp,
1da177e4
LT
1300 size_t offset)
1301{
1302 struct page *page;
1303
ce8e922c 1304 if (bp->b_flags & XBF_MAPPED)
62926044 1305 return bp->b_addr + offset;
1da177e4 1306
ce8e922c 1307 offset += bp->b_offset;
0e6e847f
DC
1308 page = bp->b_pages[offset >> PAGE_SHIFT];
1309 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1310}
1311
1312/*
1da177e4
LT
1313 * Move data into or out of a buffer.
1314 */
1315void
ce8e922c
NS
1316xfs_buf_iomove(
1317 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1318 size_t boff, /* starting buffer offset */
1319 size_t bsize, /* length to copy */
b9c48649 1320 void *data, /* data address */
ce8e922c 1321 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1322{
1323 size_t bend, cpoff, csize;
1324 struct page *page;
1325
1326 bend = boff + bsize;
1327 while (boff < bend) {
ce8e922c
NS
1328 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1329 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1330 csize = min_t(size_t,
0e6e847f 1331 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4 1332
0e6e847f 1333 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1da177e4
LT
1334
1335 switch (mode) {
ce8e922c 1336 case XBRW_ZERO:
1da177e4
LT
1337 memset(page_address(page) + cpoff, 0, csize);
1338 break;
ce8e922c 1339 case XBRW_READ:
1da177e4
LT
1340 memcpy(data, page_address(page) + cpoff, csize);
1341 break;
ce8e922c 1342 case XBRW_WRITE:
1da177e4
LT
1343 memcpy(page_address(page) + cpoff, data, csize);
1344 }
1345
1346 boff += csize;
1347 data += csize;
1348 }
1349}
1350
1351/*
ce8e922c 1352 * Handling of buffer targets (buftargs).
1da177e4
LT
1353 */
1354
1355/*
430cbeb8
DC
1356 * Wait for any bufs with callbacks that have been submitted but have not yet
1357 * returned. These buffers will have an elevated hold count, so wait on those
1358 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1359 */
1360void
1361xfs_wait_buftarg(
74f75a0c 1362 struct xfs_buftarg *btp)
1da177e4 1363{
430cbeb8
DC
1364 struct xfs_buf *bp;
1365
1366restart:
1367 spin_lock(&btp->bt_lru_lock);
1368 while (!list_empty(&btp->bt_lru)) {
1369 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1370 if (atomic_read(&bp->b_hold) > 1) {
1371 spin_unlock(&btp->bt_lru_lock);
26af6552 1372 delay(100);
430cbeb8 1373 goto restart;
1da177e4 1374 }
430cbeb8 1375 /*
90802ed9 1376 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1377 * ignored in xfs_buf_rele().
1378 */
1379 atomic_set(&bp->b_lru_ref, 0);
1380 spin_unlock(&btp->bt_lru_lock);
1381 xfs_buf_rele(bp);
1382 spin_lock(&btp->bt_lru_lock);
1da177e4 1383 }
430cbeb8 1384 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1385}
1386
ff57ab21
DC
1387int
1388xfs_buftarg_shrink(
1389 struct shrinker *shrink,
1495f230 1390 struct shrink_control *sc)
a6867a68 1391{
ff57ab21
DC
1392 struct xfs_buftarg *btp = container_of(shrink,
1393 struct xfs_buftarg, bt_shrinker);
430cbeb8 1394 struct xfs_buf *bp;
1495f230 1395 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1396 LIST_HEAD(dispose);
1397
1398 if (!nr_to_scan)
1399 return btp->bt_lru_nr;
1400
1401 spin_lock(&btp->bt_lru_lock);
1402 while (!list_empty(&btp->bt_lru)) {
1403 if (nr_to_scan-- <= 0)
1404 break;
1405
1406 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1407
1408 /*
1409 * Decrement the b_lru_ref count unless the value is already
1410 * zero. If the value is already zero, we need to reclaim the
1411 * buffer, otherwise it gets another trip through the LRU.
1412 */
1413 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1414 list_move_tail(&bp->b_lru, &btp->bt_lru);
1415 continue;
1416 }
1417
1418 /*
1419 * remove the buffer from the LRU now to avoid needing another
1420 * lock round trip inside xfs_buf_rele().
1421 */
1422 list_move(&bp->b_lru, &dispose);
1423 btp->bt_lru_nr--;
ff57ab21 1424 }
430cbeb8
DC
1425 spin_unlock(&btp->bt_lru_lock);
1426
1427 while (!list_empty(&dispose)) {
1428 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1429 list_del_init(&bp->b_lru);
1430 xfs_buf_rele(bp);
1431 }
1432
1433 return btp->bt_lru_nr;
a6867a68
DC
1434}
1435
1da177e4
LT
1436void
1437xfs_free_buftarg(
b7963133
CH
1438 struct xfs_mount *mp,
1439 struct xfs_buftarg *btp)
1da177e4 1440{
ff57ab21
DC
1441 unregister_shrinker(&btp->bt_shrinker);
1442
b7963133
CH
1443 if (mp->m_flags & XFS_MOUNT_BARRIER)
1444 xfs_blkdev_issue_flush(btp);
a6867a68 1445
f0e2d93c 1446 kmem_free(btp);
1da177e4
LT
1447}
1448
1da177e4
LT
1449STATIC int
1450xfs_setsize_buftarg_flags(
1451 xfs_buftarg_t *btp,
1452 unsigned int blocksize,
1453 unsigned int sectorsize,
1454 int verbose)
1455{
ce8e922c
NS
1456 btp->bt_bsize = blocksize;
1457 btp->bt_sshift = ffs(sectorsize) - 1;
1458 btp->bt_smask = sectorsize - 1;
1da177e4 1459
ce8e922c 1460 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1461 char name[BDEVNAME_SIZE];
1462
1463 bdevname(btp->bt_bdev, name);
1464
4f10700a
DC
1465 xfs_warn(btp->bt_mount,
1466 "Cannot set_blocksize to %u on device %s\n",
02b102df 1467 sectorsize, name);
1da177e4
LT
1468 return EINVAL;
1469 }
1470
1da177e4
LT
1471 return 0;
1472}
1473
1474/*
ce8e922c
NS
1475 * When allocating the initial buffer target we have not yet
1476 * read in the superblock, so don't know what sized sectors
1477 * are being used is at this early stage. Play safe.
1478 */
1da177e4
LT
1479STATIC int
1480xfs_setsize_buftarg_early(
1481 xfs_buftarg_t *btp,
1482 struct block_device *bdev)
1483{
1484 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1485 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1486}
1487
1488int
1489xfs_setsize_buftarg(
1490 xfs_buftarg_t *btp,
1491 unsigned int blocksize,
1492 unsigned int sectorsize)
1493{
1494 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1495}
1496
1da177e4
LT
1497xfs_buftarg_t *
1498xfs_alloc_buftarg(
ebad861b 1499 struct xfs_mount *mp,
1da177e4 1500 struct block_device *bdev,
e2a07812
JE
1501 int external,
1502 const char *fsname)
1da177e4
LT
1503{
1504 xfs_buftarg_t *btp;
1505
1506 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1507
ebad861b 1508 btp->bt_mount = mp;
ce8e922c
NS
1509 btp->bt_dev = bdev->bd_dev;
1510 btp->bt_bdev = bdev;
0e6e847f
DC
1511 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1512 if (!btp->bt_bdi)
1513 goto error;
1514
430cbeb8
DC
1515 INIT_LIST_HEAD(&btp->bt_lru);
1516 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1517 if (xfs_setsize_buftarg_early(btp, bdev))
1518 goto error;
ff57ab21
DC
1519 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1520 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1521 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1522 return btp;
1523
1524error:
f0e2d93c 1525 kmem_free(btp);
1da177e4
LT
1526 return NULL;
1527}
1528
1da177e4 1529/*
43ff2122
CH
1530 * Add a buffer to the delayed write list.
1531 *
1532 * This queues a buffer for writeout if it hasn't already been. Note that
1533 * neither this routine nor the buffer list submission functions perform
1534 * any internal synchronization. It is expected that the lists are thread-local
1535 * to the callers.
1536 *
1537 * Returns true if we queued up the buffer, or false if it already had
1538 * been on the buffer list.
1da177e4 1539 */
43ff2122 1540bool
ce8e922c 1541xfs_buf_delwri_queue(
43ff2122
CH
1542 struct xfs_buf *bp,
1543 struct list_head *list)
1da177e4 1544{
43ff2122 1545 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1546 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1547
43ff2122
CH
1548 /*
1549 * If the buffer is already marked delwri it already is queued up
1550 * by someone else for imediate writeout. Just ignore it in that
1551 * case.
1552 */
1553 if (bp->b_flags & _XBF_DELWRI_Q) {
1554 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1555 return false;
1da177e4 1556 }
1da177e4 1557
43ff2122 1558 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1559
1560 /*
43ff2122
CH
1561 * If a buffer gets written out synchronously or marked stale while it
1562 * is on a delwri list we lazily remove it. To do this, the other party
1563 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1564 * It remains referenced and on the list. In a rare corner case it
1565 * might get readded to a delwri list after the synchronous writeout, in
1566 * which case we need just need to re-add the flag here.
d808f617 1567 */
43ff2122
CH
1568 bp->b_flags |= _XBF_DELWRI_Q;
1569 if (list_empty(&bp->b_list)) {
1570 atomic_inc(&bp->b_hold);
1571 list_add_tail(&bp->b_list, list);
585e6d88 1572 }
585e6d88 1573
43ff2122 1574 return true;
585e6d88
DC
1575}
1576
089716aa
DC
1577/*
1578 * Compare function is more complex than it needs to be because
1579 * the return value is only 32 bits and we are doing comparisons
1580 * on 64 bit values
1581 */
1582static int
1583xfs_buf_cmp(
1584 void *priv,
1585 struct list_head *a,
1586 struct list_head *b)
1587{
1588 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1589 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1590 xfs_daddr_t diff;
1591
1592 diff = ap->b_bn - bp->b_bn;
1593 if (diff < 0)
1594 return -1;
1595 if (diff > 0)
1596 return 1;
1597 return 0;
1598}
1599
43ff2122
CH
1600static int
1601__xfs_buf_delwri_submit(
1602 struct list_head *buffer_list,
1603 struct list_head *io_list,
1604 bool wait)
1da177e4 1605{
43ff2122
CH
1606 struct blk_plug plug;
1607 struct xfs_buf *bp, *n;
1608 int pinned = 0;
1609
1610 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1611 if (!wait) {
1612 if (xfs_buf_ispinned(bp)) {
1613 pinned++;
1614 continue;
1615 }
1616 if (!xfs_buf_trylock(bp))
1617 continue;
1618 } else {
1619 xfs_buf_lock(bp);
1620 }
978c7b2f 1621
43ff2122
CH
1622 /*
1623 * Someone else might have written the buffer synchronously or
1624 * marked it stale in the meantime. In that case only the
1625 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1626 * reference and remove it from the list here.
1627 */
1628 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1629 list_del_init(&bp->b_list);
1630 xfs_buf_relse(bp);
1631 continue;
1632 }
c9c12971 1633
43ff2122
CH
1634 list_move_tail(&bp->b_list, io_list);
1635 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1636 }
1da177e4 1637
43ff2122 1638 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1639
43ff2122
CH
1640 blk_start_plug(&plug);
1641 list_for_each_entry_safe(bp, n, io_list, b_list) {
1642 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1643 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1644
43ff2122
CH
1645 if (!wait) {
1646 bp->b_flags |= XBF_ASYNC;
ce8e922c 1647 list_del_init(&bp->b_list);
1da177e4 1648 }
43ff2122
CH
1649 xfs_bdstrat_cb(bp);
1650 }
1651 blk_finish_plug(&plug);
1da177e4 1652
43ff2122 1653 return pinned;
1da177e4
LT
1654}
1655
1656/*
43ff2122
CH
1657 * Write out a buffer list asynchronously.
1658 *
1659 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1660 * out and not wait for I/O completion on any of the buffers. This interface
1661 * is only safely useable for callers that can track I/O completion by higher
1662 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1663 * function.
1da177e4
LT
1664 */
1665int
43ff2122
CH
1666xfs_buf_delwri_submit_nowait(
1667 struct list_head *buffer_list)
1da177e4 1668{
43ff2122
CH
1669 LIST_HEAD (io_list);
1670 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1671}
1da177e4 1672
43ff2122
CH
1673/*
1674 * Write out a buffer list synchronously.
1675 *
1676 * This will take the @buffer_list, write all buffers out and wait for I/O
1677 * completion on all of the buffers. @buffer_list is consumed by the function,
1678 * so callers must have some other way of tracking buffers if they require such
1679 * functionality.
1680 */
1681int
1682xfs_buf_delwri_submit(
1683 struct list_head *buffer_list)
1684{
1685 LIST_HEAD (io_list);
1686 int error = 0, error2;
1687 struct xfs_buf *bp;
1da177e4 1688
43ff2122 1689 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1690
43ff2122
CH
1691 /* Wait for IO to complete. */
1692 while (!list_empty(&io_list)) {
1693 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1694
089716aa 1695 list_del_init(&bp->b_list);
43ff2122
CH
1696 error2 = xfs_buf_iowait(bp);
1697 xfs_buf_relse(bp);
1698 if (!error)
1699 error = error2;
1da177e4
LT
1700 }
1701
43ff2122 1702 return error;
1da177e4
LT
1703}
1704
04d8b284 1705int __init
ce8e922c 1706xfs_buf_init(void)
1da177e4 1707{
8758280f
NS
1708 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1709 KM_ZONE_HWALIGN, NULL);
ce8e922c 1710 if (!xfs_buf_zone)
0b1b213f 1711 goto out;
04d8b284 1712
51749e47 1713 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1714 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1715 if (!xfslogd_workqueue)
04d8b284 1716 goto out_free_buf_zone;
1da177e4 1717
23ea4032 1718 return 0;
1da177e4 1719
23ea4032 1720 out_free_buf_zone:
ce8e922c 1721 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1722 out:
8758280f 1723 return -ENOMEM;
1da177e4
LT
1724}
1725
1da177e4 1726void
ce8e922c 1727xfs_buf_terminate(void)
1da177e4 1728{
04d8b284 1729 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1730 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1731}