Merge tag 'soc-drivers-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-block.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
6f643c57 8#include <linux/dax.h>
1da177e4 9
5467b34b 10#include "xfs_shared.h"
4fb6e8ad 11#include "xfs_format.h"
239880ef 12#include "xfs_log_format.h"
7fd36c44 13#include "xfs_trans_resv.h"
b7963133 14#include "xfs_mount.h"
0b1b213f 15#include "xfs_trace.h"
239880ef 16#include "xfs_log.h"
9fe5c77c 17#include "xfs_log_recover.h"
01728b44 18#include "xfs_log_priv.h"
f593bf14
DC
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
e9e899a2 21#include "xfs_errortag.h"
7561d27e 22#include "xfs_error.h"
9bbafc71 23#include "xfs_ag.h"
b7963133 24
231f91ab 25struct kmem_cache *xfs_buf_cache;
23ea4032 26
37fd1678
DC
27/*
28 * Locking orders
29 *
30 * xfs_buf_ioacct_inc:
31 * xfs_buf_ioacct_dec:
32 * b_sema (caller holds)
33 * b_lock
34 *
35 * xfs_buf_stale:
36 * b_sema (caller holds)
37 * b_lock
38 * lru_lock
39 *
40 * xfs_buf_rele:
41 * b_lock
42 * pag_buf_lock
43 * lru_lock
44 *
10fb9ac1 45 * xfs_buftarg_drain_rele
37fd1678
DC
46 * lru_lock
47 * b_lock (trylock due to inversion)
48 *
49 * xfs_buftarg_isolate
50 * lru_lock
51 * b_lock (trylock due to inversion)
52 */
1da177e4 53
26e32875
CH
54static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55
56static inline int
57xfs_buf_submit(
58 struct xfs_buf *bp)
59{
60 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61}
62
73c77e2c
JB
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
611c9946
DC
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 73 */
611c9946 74 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
54cd3aa6 81 return (bp->b_page_count * PAGE_SIZE);
73c77e2c
JB
82}
83
9c7504aa
BF
84/*
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
10fb9ac1 90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
9c7504aa
BF
91 * in-flight buffers.
92 *
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
96 */
97static inline void
98xfs_buf_ioacct_inc(
99 struct xfs_buf *bp)
100{
63db7c81 101 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
102 return;
103
104 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
105 spin_lock(&bp->b_lock);
106 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 percpu_counter_inc(&bp->b_target->bt_io_count);
109 }
110 spin_unlock(&bp->b_lock);
9c7504aa
BF
111}
112
113/*
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
116 */
117static inline void
63db7c81 118__xfs_buf_ioacct_dec(
9c7504aa
BF
119 struct xfs_buf *bp)
120{
95989c46 121 lockdep_assert_held(&bp->b_lock);
9c7504aa 122
63db7c81
BF
123 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 percpu_counter_dec(&bp->b_target->bt_io_count);
126 }
127}
128
129static inline void
130xfs_buf_ioacct_dec(
131 struct xfs_buf *bp)
132{
133 spin_lock(&bp->b_lock);
134 __xfs_buf_ioacct_dec(bp);
135 spin_unlock(&bp->b_lock);
9c7504aa
BF
136}
137
430cbeb8
DC
138/*
139 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140 * b_lru_ref count so that the buffer is freed immediately when the buffer
141 * reference count falls to zero. If the buffer is already on the LRU, we need
142 * to remove the reference that LRU holds on the buffer.
143 *
144 * This prevents build-up of stale buffers on the LRU.
145 */
146void
147xfs_buf_stale(
148 struct xfs_buf *bp)
149{
43ff2122
CH
150 ASSERT(xfs_buf_islocked(bp));
151
430cbeb8 152 bp->b_flags |= XBF_STALE;
43ff2122
CH
153
154 /*
155 * Clear the delwri status so that a delwri queue walker will not
156 * flush this buffer to disk now that it is stale. The delwri queue has
157 * a reference to the buffer, so this is safe to do.
158 */
159 bp->b_flags &= ~_XBF_DELWRI_Q;
160
9c7504aa
BF
161 /*
162 * Once the buffer is marked stale and unlocked, a subsequent lookup
163 * could reset b_flags. There is no guarantee that the buffer is
164 * unaccounted (released to LRU) before that occurs. Drop in-flight
165 * status now to preserve accounting consistency.
166 */
a4082357 167 spin_lock(&bp->b_lock);
63db7c81
BF
168 __xfs_buf_ioacct_dec(bp);
169
a4082357
DC
170 atomic_set(&bp->b_lru_ref, 0);
171 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
0a97c01c 172 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
e80dfa19
DC
173 atomic_dec(&bp->b_hold);
174
430cbeb8 175 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 176 spin_unlock(&bp->b_lock);
430cbeb8 177}
1da177e4 178
3e85c868
DC
179static int
180xfs_buf_get_maps(
181 struct xfs_buf *bp,
182 int map_count)
183{
184 ASSERT(bp->b_maps == NULL);
185 bp->b_map_count = map_count;
186
187 if (map_count == 1) {
f4b42421 188 bp->b_maps = &bp->__b_map;
3e85c868
DC
189 return 0;
190 }
191
192 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
193 KM_NOFS);
194 if (!bp->b_maps)
2451337d 195 return -ENOMEM;
3e85c868
DC
196 return 0;
197}
198
199/*
200 * Frees b_pages if it was allocated.
201 */
202static void
203xfs_buf_free_maps(
204 struct xfs_buf *bp)
205{
f4b42421 206 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
207 kmem_free(bp->b_maps);
208 bp->b_maps = NULL;
209 }
210}
211
32dff5e5 212static int
3e85c868 213_xfs_buf_alloc(
4347b9d7 214 struct xfs_buftarg *target,
3e85c868
DC
215 struct xfs_buf_map *map,
216 int nmaps,
32dff5e5
DW
217 xfs_buf_flags_t flags,
218 struct xfs_buf **bpp)
1da177e4 219{
4347b9d7 220 struct xfs_buf *bp;
3e85c868
DC
221 int error;
222 int i;
4347b9d7 223
32dff5e5 224 *bpp = NULL;
182696fb 225 bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
4347b9d7 226
1da177e4 227 /*
12bcb3f7
DC
228 * We don't want certain flags to appear in b_flags unless they are
229 * specifically set by later operations on the buffer.
1da177e4 230 */
611c9946 231 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 232
ce8e922c 233 atomic_set(&bp->b_hold, 1);
430cbeb8 234 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 235 init_completion(&bp->b_iowait);
430cbeb8 236 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 237 INIT_LIST_HEAD(&bp->b_list);
643c8c05 238 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 239 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 240 spin_lock_init(&bp->b_lock);
ce8e922c 241 bp->b_target = target;
dbd329f1 242 bp->b_mount = target->bt_mount;
3e85c868 243 bp->b_flags = flags;
de1cbee4 244
1da177e4 245 /*
aa0e8833
DC
246 * Set length and io_length to the same value initially.
247 * I/O routines should use io_length, which will be the same in
1da177e4
LT
248 * most cases but may be reset (e.g. XFS recovery).
249 */
3e85c868
DC
250 error = xfs_buf_get_maps(bp, nmaps);
251 if (error) {
182696fb 252 kmem_cache_free(xfs_buf_cache, bp);
32dff5e5 253 return error;
3e85c868
DC
254 }
255
4c7f65ae 256 bp->b_rhash_key = map[0].bm_bn;
3e85c868
DC
257 bp->b_length = 0;
258 for (i = 0; i < nmaps; i++) {
259 bp->b_maps[i].bm_bn = map[i].bm_bn;
260 bp->b_maps[i].bm_len = map[i].bm_len;
261 bp->b_length += map[i].bm_len;
262 }
3e85c868 263
ce8e922c
NS
264 atomic_set(&bp->b_pin_count, 0);
265 init_waitqueue_head(&bp->b_waiters);
266
dbd329f1 267 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 268 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7 269
32dff5e5
DW
270 *bpp = bp;
271 return 0;
1da177e4
LT
272}
273
e7d236a6
DC
274static void
275xfs_buf_free_pages(
e8222613 276 struct xfs_buf *bp)
1da177e4 277{
e7d236a6
DC
278 uint i;
279
280 ASSERT(bp->b_flags & _XBF_PAGES);
281
282 if (xfs_buf_is_vmapped(bp))
54cd3aa6 283 vm_unmap_ram(bp->b_addr, bp->b_page_count);
e7d236a6
DC
284
285 for (i = 0; i < bp->b_page_count; i++) {
286 if (bp->b_pages[i])
287 __free_page(bp->b_pages[i]);
288 }
c7b23b68 289 mm_account_reclaimed_pages(bp->b_page_count);
e7d236a6 290
02c51173 291 if (bp->b_pages != bp->b_page_array)
f0e2d93c 292 kmem_free(bp->b_pages);
02c51173 293 bp->b_pages = NULL;
e7d236a6 294 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
295}
296
298f3422
DC
297static void
298xfs_buf_free_callback(
299 struct callback_head *cb)
300{
301 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
302
303 xfs_buf_free_maps(bp);
304 kmem_cache_free(xfs_buf_cache, bp);
305}
306
25a40957 307static void
ce8e922c 308xfs_buf_free(
e8222613 309 struct xfs_buf *bp)
1da177e4 310{
0b1b213f 311 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 312
430cbeb8
DC
313 ASSERT(list_empty(&bp->b_lru));
314
e7d236a6
DC
315 if (bp->b_flags & _XBF_PAGES)
316 xfs_buf_free_pages(bp);
317 else if (bp->b_flags & _XBF_KMEM)
0e6e847f 318 kmem_free(bp->b_addr);
e7d236a6 319
298f3422 320 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
1da177e4
LT
321}
322
0a683794
DC
323static int
324xfs_buf_alloc_kmem(
325 struct xfs_buf *bp,
0a683794 326 xfs_buf_flags_t flags)
1da177e4 327{
0a683794 328 xfs_km_flags_t kmflag_mask = KM_NOFS;
8bcac744 329 size_t size = BBTOB(bp->b_length);
3219e8cf 330
0a683794
DC
331 /* Assure zeroed buffer for non-read cases. */
332 if (!(flags & XBF_READ))
3219e8cf 333 kmflag_mask |= KM_ZERO;
1da177e4 334
98fe2c3c 335 bp->b_addr = kmem_alloc(size, kmflag_mask);
0a683794
DC
336 if (!bp->b_addr)
337 return -ENOMEM;
0e6e847f 338
0a683794
DC
339 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
340 ((unsigned long)bp->b_addr & PAGE_MASK)) {
341 /* b_addr spans two pages - use alloc_page instead */
342 kmem_free(bp->b_addr);
343 bp->b_addr = NULL;
344 return -ENOMEM;
0e6e847f 345 }
0a683794
DC
346 bp->b_offset = offset_in_page(bp->b_addr);
347 bp->b_pages = bp->b_page_array;
348 bp->b_pages[0] = kmem_to_page(bp->b_addr);
349 bp->b_page_count = 1;
350 bp->b_flags |= _XBF_KMEM;
351 return 0;
352}
353
354static int
355xfs_buf_alloc_pages(
356 struct xfs_buf *bp,
0a683794
DC
357 xfs_buf_flags_t flags)
358{
289ae7b4 359 gfp_t gfp_mask = __GFP_NOWARN;
c9fa5630 360 long filled = 0;
0a683794 361
289ae7b4
DC
362 if (flags & XBF_READ_AHEAD)
363 gfp_mask |= __GFP_NORETRY;
364 else
365 gfp_mask |= GFP_NOFS;
366
02c51173 367 /* Make sure that we have a page list */
934d1076 368 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
02c51173
DC
369 if (bp->b_page_count <= XB_PAGES) {
370 bp->b_pages = bp->b_page_array;
371 } else {
372 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
373 gfp_mask);
374 if (!bp->b_pages)
375 return -ENOMEM;
376 }
377 bp->b_flags |= _XBF_PAGES;
378
0a683794
DC
379 /* Assure zeroed buffer for non-read cases. */
380 if (!(flags & XBF_READ))
381 gfp_mask |= __GFP_ZERO;
0e6e847f 382
c9fa5630
DC
383 /*
384 * Bulk filling of pages can take multiple calls. Not filling the entire
385 * array is not an allocation failure, so don't back off if we get at
386 * least one extra page.
387 */
388 for (;;) {
389 long last = filled;
390
391 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
392 bp->b_pages);
393 if (filled == bp->b_page_count) {
394 XFS_STATS_INC(bp->b_mount, xb_page_found);
395 break;
1da177e4
LT
396 }
397
c9fa5630
DC
398 if (filled != last)
399 continue;
400
401 if (flags & XBF_READ_AHEAD) {
e7d236a6
DC
402 xfs_buf_free_pages(bp);
403 return -ENOMEM;
c9fa5630 404 }
1da177e4 405
c9fa5630 406 XFS_STATS_INC(bp->b_mount, xb_page_retries);
4034247a 407 memalloc_retry_wait(gfp_mask);
1da177e4 408 }
0e6e847f 409 return 0;
1da177e4
LT
410}
411
412/*
25985edc 413 * Map buffer into kernel address-space if necessary.
1da177e4
LT
414 */
415STATIC int
ce8e922c 416_xfs_buf_map_pages(
e8222613 417 struct xfs_buf *bp,
b9b3fe15 418 xfs_buf_flags_t flags)
1da177e4 419{
0e6e847f 420 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 421 if (bp->b_page_count == 1) {
0e6e847f 422 /* A single page buffer is always mappable */
54cd3aa6 423 bp->b_addr = page_address(bp->b_pages[0]);
611c9946
DC
424 } else if (flags & XBF_UNMAPPED) {
425 bp->b_addr = NULL;
426 } else {
a19fb380 427 int retried = 0;
9ba1fb2c 428 unsigned nofs_flag;
ae687e58
DC
429
430 /*
cf085a1b 431 * vm_map_ram() will allocate auxiliary structures (e.g.
ae687e58
DC
432 * pagetables) with GFP_KERNEL, yet we are likely to be under
433 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 434 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
435 * memory reclaim re-entering the filesystem here and
436 * potentially deadlocking.
437 */
9ba1fb2c 438 nofs_flag = memalloc_nofs_save();
a19fb380
DC
439 do {
440 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
d4efd79a 441 -1);
a19fb380
DC
442 if (bp->b_addr)
443 break;
444 vm_unmap_aliases();
445 } while (retried++ <= 1);
9ba1fb2c 446 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
447
448 if (!bp->b_addr)
1da177e4 449 return -ENOMEM;
1da177e4
LT
450 }
451
452 return 0;
453}
454
455/*
456 * Finding and Reading Buffers
457 */
6031e73a
LS
458static int
459_xfs_buf_obj_cmp(
460 struct rhashtable_compare_arg *arg,
461 const void *obj)
462{
463 const struct xfs_buf_map *map = arg->key;
464 const struct xfs_buf *bp = obj;
465
466 /*
467 * The key hashing in the lookup path depends on the key being the
468 * first element of the compare_arg, make sure to assert this.
469 */
470 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
471
4c7f65ae 472 if (bp->b_rhash_key != map->bm_bn)
6031e73a
LS
473 return 1;
474
475 if (unlikely(bp->b_length != map->bm_len)) {
476 /*
477 * found a block number match. If the range doesn't
478 * match, the only way this is allowed is if the buffer
479 * in the cache is stale and the transaction that made
480 * it stale has not yet committed. i.e. we are
481 * reallocating a busy extent. Skip this buffer and
482 * continue searching for an exact match.
483 */
9ed851f6
DW
484 if (!(map->bm_flags & XBM_LIVESCAN))
485 ASSERT(bp->b_flags & XBF_STALE);
6031e73a
LS
486 return 1;
487 }
488 return 0;
489}
490
491static const struct rhashtable_params xfs_buf_hash_params = {
492 .min_size = 32, /* empty AGs have minimal footprint */
493 .nelem_hint = 16,
494 .key_len = sizeof(xfs_daddr_t),
4c7f65ae 495 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
6031e73a
LS
496 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
497 .automatic_shrinking = true,
498 .obj_cmpfn = _xfs_buf_obj_cmp,
499};
500
501int
502xfs_buf_hash_init(
503 struct xfs_perag *pag)
504{
505 spin_lock_init(&pag->pag_buf_lock);
506 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
507}
508
509void
510xfs_buf_hash_destroy(
511 struct xfs_perag *pag)
512{
513 rhashtable_destroy(&pag->pag_buf_hash);
514}
1da177e4 515
b027d4c9 516static int
de67dc57 517xfs_buf_map_verify(
e70b73f8 518 struct xfs_buftarg *btp,
de67dc57 519 struct xfs_buf_map *map)
1da177e4 520{
10616b80 521 xfs_daddr_t eofs;
1da177e4
LT
522
523 /* Check for IOs smaller than the sector size / not sector aligned */
de67dc57
DC
524 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 526
10616b80
DC
527 /*
528 * Corrupted block numbers can get through to here, unfortunately, so we
529 * have to check that the buffer falls within the filesystem bounds.
530 */
531 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
de67dc57 532 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
10616b80 533 xfs_alert(btp->bt_mount,
c219b015 534 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
de67dc57 535 __func__, map->bm_bn, eofs);
7bc0dc27 536 WARN_ON(1);
b027d4c9 537 return -EFSCORRUPTED;
10616b80 538 }
b027d4c9 539 return 0;
de67dc57 540}
1da177e4 541
de67dc57
DC
542static int
543xfs_buf_find_lock(
544 struct xfs_buf *bp,
545 xfs_buf_flags_t flags)
546{
d8d9bbb0
DC
547 if (flags & XBF_TRYLOCK) {
548 if (!xfs_buf_trylock(bp)) {
de67dc57 549 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
b027d4c9 550 return -EAGAIN;
1da177e4 551 }
d8d9bbb0 552 } else {
0c842ad4 553 xfs_buf_lock(bp);
de67dc57 554 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
1da177e4
LT
555 }
556
0e6e847f
DC
557 /*
558 * if the buffer is stale, clear all the external state associated with
559 * it. We need to keep flags such as how we allocated the buffer memory
560 * intact here.
561 */
ce8e922c 562 if (bp->b_flags & XBF_STALE) {
9ed851f6
DW
563 if (flags & XBF_LIVESCAN) {
564 xfs_buf_unlock(bp);
565 return -ENOENT;
566 }
ce8e922c 567 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 568 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 569 bp->b_ops = NULL;
2f926587 570 }
b027d4c9 571 return 0;
1da177e4
LT
572}
573
34800080 574static inline int
de67dc57
DC
575xfs_buf_lookup(
576 struct xfs_perag *pag,
34800080
DC
577 struct xfs_buf_map *map,
578 xfs_buf_flags_t flags,
579 struct xfs_buf **bpp)
8925a3dc 580{
de67dc57 581 struct xfs_buf *bp;
b027d4c9 582 int error;
b027d4c9 583
298f3422 584 rcu_read_lock();
de67dc57 585 bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
298f3422
DC
586 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
587 rcu_read_unlock();
34800080
DC
588 return -ENOENT;
589 }
298f3422 590 rcu_read_unlock();
de67dc57 591
34800080
DC
592 error = xfs_buf_find_lock(bp, flags);
593 if (error) {
594 xfs_buf_rele(bp);
595 return error;
de67dc57
DC
596 }
597
34800080
DC
598 trace_xfs_buf_find(bp, flags, _RET_IP_);
599 *bpp = bp;
de67dc57 600 return 0;
8925a3dc
DC
601}
602
1da177e4 603/*
34800080
DC
604 * Insert the new_bp into the hash table. This consumes the perag reference
605 * taken for the lookup regardless of the result of the insert.
1da177e4 606 */
b027d4c9 607static int
34800080 608xfs_buf_find_insert(
e70b73f8 609 struct xfs_buftarg *btp,
34800080
DC
610 struct xfs_perag *pag,
611 struct xfs_buf_map *cmap,
6dde2707
DC
612 struct xfs_buf_map *map,
613 int nmaps,
3848b5f6
DW
614 xfs_buf_flags_t flags,
615 struct xfs_buf **bpp)
1da177e4 616{
3815832a 617 struct xfs_buf *new_bp;
e8222613 618 struct xfs_buf *bp;
9bb38aa0 619 int error;
1da177e4 620
34800080 621 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
32dff5e5 622 if (error)
34800080 623 goto out_drop_pag;
1da177e4 624
8bcac744
DC
625 /*
626 * For buffers that fit entirely within a single page, first attempt to
627 * allocate the memory from the heap to minimise memory usage. If we
628 * can't get heap memory for these small buffers, we fall back to using
629 * the page allocator.
630 */
631 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
632 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
633 error = xfs_buf_alloc_pages(new_bp, flags);
634 if (error)
635 goto out_free_buf;
636 }
fe2429b0 637
74f75a0c 638 spin_lock(&pag->pag_buf_lock);
32dd4f9c
DC
639 bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
640 &new_bp->b_rhash_head, xfs_buf_hash_params);
641 if (IS_ERR(bp)) {
642 error = PTR_ERR(bp);
643 spin_unlock(&pag->pag_buf_lock);
170041f7 644 goto out_free_buf;
32dd4f9c 645 }
34800080 646 if (bp) {
32dd4f9c 647 /* found an existing buffer */
34800080
DC
648 atomic_inc(&bp->b_hold);
649 spin_unlock(&pag->pag_buf_lock);
650 error = xfs_buf_find_lock(bp, flags);
651 if (error)
652 xfs_buf_rele(bp);
653 else
654 *bpp = bp;
655 goto out_free_buf;
656 }
1da177e4 657
32dd4f9c 658 /* The new buffer keeps the perag reference until it is freed. */
34800080 659 new_bp->b_pag = pag;
b027d4c9 660 spin_unlock(&pag->pag_buf_lock);
34800080 661 *bpp = new_bp;
b027d4c9 662 return 0;
3815832a 663
34800080
DC
664out_free_buf:
665 xfs_buf_free(new_bp);
666out_drop_pag:
74f75a0c 667 xfs_perag_put(pag);
34800080 668 return error;
1da177e4 669}
1da177e4 670
1da177e4 671/*
3815832a
DC
672 * Assembles a buffer covering the specified range. The code is optimised for
673 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
674 * more hits than misses.
1da177e4 675 */
3848b5f6 676int
6dde2707 677xfs_buf_get_map(
34800080 678 struct xfs_buftarg *btp,
6dde2707
DC
679 struct xfs_buf_map *map,
680 int nmaps,
3848b5f6
DW
681 xfs_buf_flags_t flags,
682 struct xfs_buf **bpp)
1da177e4 683{
34800080
DC
684 struct xfs_perag *pag;
685 struct xfs_buf *bp = NULL;
686 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
9bb38aa0 687 int error;
34800080 688 int i;
1da177e4 689
9ed851f6
DW
690 if (flags & XBF_LIVESCAN)
691 cmap.bm_flags |= XBM_LIVESCAN;
34800080
DC
692 for (i = 0; i < nmaps; i++)
693 cmap.bm_len += map[i].bm_len;
3815832a 694
34800080 695 error = xfs_buf_map_verify(btp, &cmap);
32dff5e5 696 if (error)
3848b5f6 697 return error;
1da177e4 698
34800080
DC
699 pag = xfs_perag_get(btp->bt_mount,
700 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
fe2429b0 701
34800080
DC
702 error = xfs_buf_lookup(pag, &cmap, flags, &bp);
703 if (error && error != -ENOENT)
704 goto out_put_perag;
705
706 /* cache hits always outnumber misses by at least 10:1 */
707 if (unlikely(!bp)) {
708 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
3815832a 709
34800080
DC
710 if (flags & XBF_INCORE)
711 goto out_put_perag;
1da177e4 712
34800080
DC
713 /* xfs_buf_find_insert() consumes the perag reference. */
714 error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
715 flags, &bp);
716 if (error)
717 return error;
718 } else {
719 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
720 xfs_perag_put(pag);
721 }
722
723 /* We do not hold a perag reference anymore. */
611c9946 724 if (!bp->b_addr) {
ce8e922c 725 error = _xfs_buf_map_pages(bp, flags);
1da177e4 726 if (unlikely(error)) {
34800080 727 xfs_warn_ratelimited(btp->bt_mount,
93baa55a
DW
728 "%s: failed to map %u pages", __func__,
729 bp->b_page_count);
a8acad70 730 xfs_buf_relse(bp);
3848b5f6 731 return error;
1da177e4
LT
732 }
733 }
734
b79f4a1c
DC
735 /*
736 * Clear b_error if this is a lookup from a caller that doesn't expect
737 * valid data to be found in the buffer.
738 */
739 if (!(flags & XBF_READ))
740 xfs_buf_ioerror(bp, 0);
741
34800080 742 XFS_STATS_INC(btp->bt_mount, xb_get);
0b1b213f 743 trace_xfs_buf_get(bp, flags, _RET_IP_);
3848b5f6
DW
744 *bpp = bp;
745 return 0;
34800080
DC
746
747out_put_perag:
748 xfs_perag_put(pag);
170041f7 749 return error;
1da177e4
LT
750}
751
26e32875 752int
5d765b97 753_xfs_buf_read(
e8222613 754 struct xfs_buf *bp,
5d765b97
CH
755 xfs_buf_flags_t flags)
756{
43ff2122 757 ASSERT(!(flags & XBF_WRITE));
f4b42421 758 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 759
26e32875 760 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
1d5ae5df 761 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 762
6af88cda 763 return xfs_buf_submit(bp);
5d765b97
CH
764}
765
1aff5696 766/*
75d02303 767 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 768 *
75d02303
BF
769 * If the caller passed an ops structure and the buffer doesn't have ops
770 * assigned, set the ops and use it to verify the contents. If verification
771 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
772 * already in XBF_DONE state on entry.
add46b3b 773 *
75d02303
BF
774 * Under normal operations, every in-core buffer is verified on read I/O
775 * completion. There are two scenarios that can lead to in-core buffers without
776 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
777 * filesystem, though these buffers are purged at the end of recovery. The
778 * other is online repair, which intentionally reads with a NULL buffer ops to
779 * run several verifiers across an in-core buffer in order to establish buffer
780 * type. If repair can't establish that, the buffer will be left in memory
781 * with NULL buffer ops.
1aff5696
DW
782 */
783int
75d02303 784xfs_buf_reverify(
1aff5696
DW
785 struct xfs_buf *bp,
786 const struct xfs_buf_ops *ops)
787{
788 ASSERT(bp->b_flags & XBF_DONE);
789 ASSERT(bp->b_error == 0);
790
791 if (!ops || bp->b_ops)
792 return 0;
793
794 bp->b_ops = ops;
795 bp->b_ops->verify_read(bp);
796 if (bp->b_error)
797 bp->b_flags &= ~XBF_DONE;
798 return bp->b_error;
799}
800
4ed8e27b 801int
6dde2707
DC
802xfs_buf_read_map(
803 struct xfs_buftarg *target,
804 struct xfs_buf_map *map,
805 int nmaps,
c3f8fc73 806 xfs_buf_flags_t flags,
4ed8e27b 807 struct xfs_buf **bpp,
cdbcf82b
DW
808 const struct xfs_buf_ops *ops,
809 xfs_failaddr_t fa)
1da177e4 810{
6dde2707 811 struct xfs_buf *bp;
3848b5f6 812 int error;
ce8e922c
NS
813
814 flags |= XBF_READ;
4ed8e27b 815 *bpp = NULL;
ce8e922c 816
3848b5f6
DW
817 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
818 if (error)
4ed8e27b 819 return error;
0b1b213f 820
1aff5696
DW
821 trace_xfs_buf_read(bp, flags, _RET_IP_);
822
823 if (!(bp->b_flags & XBF_DONE)) {
4ed8e27b 824 /* Initiate the buffer read and wait. */
1aff5696
DW
825 XFS_STATS_INC(target->bt_mount, xb_get_read);
826 bp->b_ops = ops;
4ed8e27b
DW
827 error = _xfs_buf_read(bp, flags);
828
829 /* Readahead iodone already dropped the buffer, so exit. */
830 if (flags & XBF_ASYNC)
831 return 0;
832 } else {
833 /* Buffer already read; all we need to do is check it. */
834 error = xfs_buf_reverify(bp, ops);
835
836 /* Readahead already finished; drop the buffer and exit. */
837 if (flags & XBF_ASYNC) {
838 xfs_buf_relse(bp);
839 return 0;
840 }
841
842 /* We do not want read in the flags */
843 bp->b_flags &= ~XBF_READ;
844 ASSERT(bp->b_ops != NULL || ops == NULL);
1aff5696
DW
845 }
846
4ed8e27b
DW
847 /*
848 * If we've had a read error, then the contents of the buffer are
849 * invalid and should not be used. To ensure that a followup read tries
850 * to pull the buffer from disk again, we clear the XBF_DONE flag and
851 * mark the buffer stale. This ensures that anyone who has a current
852 * reference to the buffer will interpret it's contents correctly and
853 * future cache lookups will also treat it as an empty, uninitialised
854 * buffer.
855 */
856 if (error) {
01728b44
DC
857 /*
858 * Check against log shutdown for error reporting because
859 * metadata writeback may require a read first and we need to
860 * report errors in metadata writeback until the log is shut
861 * down. High level transaction read functions already check
862 * against mount shutdown, anyway, so we only need to be
863 * concerned about low level IO interactions here.
864 */
865 if (!xlog_is_shutdown(target->bt_mount->m_log))
cdbcf82b 866 xfs_buf_ioerror_alert(bp, fa);
1aff5696 867
4ed8e27b
DW
868 bp->b_flags &= ~XBF_DONE;
869 xfs_buf_stale(bp);
1aff5696 870 xfs_buf_relse(bp);
4ed8e27b
DW
871
872 /* bad CRC means corrupted metadata */
873 if (error == -EFSBADCRC)
874 error = -EFSCORRUPTED;
875 return error;
1da177e4
LT
876 }
877
4ed8e27b
DW
878 *bpp = bp;
879 return 0;
1da177e4
LT
880}
881
1da177e4 882/*
ce8e922c
NS
883 * If we are not low on memory then do the readahead in a deadlock
884 * safe manner.
1da177e4
LT
885 */
886void
6dde2707
DC
887xfs_buf_readahead_map(
888 struct xfs_buftarg *target,
889 struct xfs_buf_map *map,
c3f8fc73 890 int nmaps,
1813dd64 891 const struct xfs_buf_ops *ops)
1da177e4 892{
4ed8e27b
DW
893 struct xfs_buf *bp;
894
6dde2707 895 xfs_buf_read_map(target, map, nmaps,
cdbcf82b
DW
896 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
897 __this_address);
1da177e4
LT
898}
899
5adc94c2
DC
900/*
901 * Read an uncached buffer from disk. Allocates and returns a locked
4c7f65ae
DC
902 * buffer containing the disk contents or nothing. Uncached buffers always have
903 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
904 * is cached or uncached during fault diagnosis.
5adc94c2 905 */
ba372674 906int
5adc94c2 907xfs_buf_read_uncached(
5adc94c2
DC
908 struct xfs_buftarg *target,
909 xfs_daddr_t daddr,
e70b73f8 910 size_t numblks,
b9b3fe15 911 xfs_buf_flags_t flags,
ba372674 912 struct xfs_buf **bpp,
1813dd64 913 const struct xfs_buf_ops *ops)
5adc94c2 914{
eab4e633 915 struct xfs_buf *bp;
2842b6db 916 int error;
5adc94c2 917
ba372674
DC
918 *bpp = NULL;
919
2842b6db
DW
920 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
921 if (error)
922 return error;
5adc94c2
DC
923
924 /* set up the buffer for a read IO */
3e85c868 925 ASSERT(bp->b_map_count == 1);
4c7f65ae 926 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
3e85c868 927 bp->b_maps[0].bm_bn = daddr;
cbb7baab 928 bp->b_flags |= XBF_READ;
1813dd64 929 bp->b_ops = ops;
5adc94c2 930
6af88cda 931 xfs_buf_submit(bp);
ba372674 932 if (bp->b_error) {
2842b6db 933 error = bp->b_error;
83a0adc3 934 xfs_buf_relse(bp);
ba372674 935 return error;
83a0adc3 936 }
ba372674
DC
937
938 *bpp = bp;
939 return 0;
1da177e4
LT
940}
941
2842b6db 942int
686865f7
DC
943xfs_buf_get_uncached(
944 struct xfs_buftarg *target,
e70b73f8 945 size_t numblks,
b9b3fe15 946 xfs_buf_flags_t flags,
2842b6db 947 struct xfs_buf **bpp)
1da177e4 948{
07b5c5ad 949 int error;
3e85c868
DC
950 struct xfs_buf *bp;
951 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 952
2842b6db
DW
953 *bpp = NULL;
954
c891c30a 955 /* flags might contain irrelevant bits, pass only what we care about */
32dff5e5
DW
956 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
957 if (error)
07b5c5ad 958 return error;
1da177e4 959
934d1076 960 error = xfs_buf_alloc_pages(bp, flags);
1fa40b01 961 if (error)
1da177e4
LT
962 goto fail_free_buf;
963
611c9946 964 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 965 if (unlikely(error)) {
4f10700a 966 xfs_warn(target->bt_mount,
08e96e1a 967 "%s: failed to map pages", __func__);
07b5c5ad 968 goto fail_free_buf;
1fa40b01 969 }
1da177e4 970
686865f7 971 trace_xfs_buf_get_uncached(bp, _RET_IP_);
2842b6db
DW
972 *bpp = bp;
973 return 0;
1fa40b01 974
07b5c5ad
DC
975fail_free_buf:
976 xfs_buf_free(bp);
2842b6db 977 return error;
1da177e4
LT
978}
979
980/*
1da177e4
LT
981 * Increment reference count on buffer, to hold the buffer concurrently
982 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
983 * Must hold the buffer already to call this function.
984 */
985void
ce8e922c 986xfs_buf_hold(
e8222613 987 struct xfs_buf *bp)
1da177e4 988{
0b1b213f 989 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 990 atomic_inc(&bp->b_hold);
1da177e4
LT
991}
992
993/*
9c7504aa
BF
994 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
995 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
996 */
997void
ce8e922c 998xfs_buf_rele(
e8222613 999 struct xfs_buf *bp)
1da177e4 1000{
74f75a0c 1001 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
1002 bool release;
1003 bool freebuf = false;
1da177e4 1004
0b1b213f 1005 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 1006
74f75a0c 1007 if (!pag) {
430cbeb8 1008 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
1009 if (atomic_dec_and_test(&bp->b_hold)) {
1010 xfs_buf_ioacct_dec(bp);
fad3aa1e 1011 xfs_buf_free(bp);
9c7504aa 1012 }
fad3aa1e
NS
1013 return;
1014 }
1015
3790689f 1016 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 1017
37fd1678
DC
1018 /*
1019 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1020 * calls. The pag_buf_lock being taken on the last reference only
1021 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1022 * to last reference we drop here is not serialised against the last
1023 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1024 * first, the last "release" reference can win the race to the lock and
1025 * free the buffer before the second-to-last reference is processed,
1026 * leading to a use-after-free scenario.
1027 */
9c7504aa 1028 spin_lock(&bp->b_lock);
37fd1678 1029 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
1030 if (!release) {
1031 /*
1032 * Drop the in-flight state if the buffer is already on the LRU
1033 * and it holds the only reference. This is racy because we
1034 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1035 * ensures the decrement occurs only once per-buf.
1036 */
1037 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1038 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1039 goto out_unlock;
1040 }
1041
1042 /* the last reference has been dropped ... */
63db7c81 1043 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1044 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1045 /*
1046 * If the buffer is added to the LRU take a new reference to the
1047 * buffer for the LRU and clear the (now stale) dispose list
1048 * state flag
1049 */
0a97c01c 1050 if (list_lru_add_obj(&bp->b_target->bt_lru, &bp->b_lru)) {
9c7504aa
BF
1051 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1052 atomic_inc(&bp->b_hold);
1da177e4 1053 }
9c7504aa
BF
1054 spin_unlock(&pag->pag_buf_lock);
1055 } else {
1056 /*
1057 * most of the time buffers will already be removed from the
1058 * LRU, so optimise that case by checking for the
1059 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1060 * was on was the disposal list
1061 */
1062 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
0a97c01c 1063 list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru);
9c7504aa
BF
1064 } else {
1065 ASSERT(list_empty(&bp->b_lru));
1da177e4 1066 }
9c7504aa
BF
1067
1068 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1069 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1070 xfs_buf_hash_params);
9c7504aa
BF
1071 spin_unlock(&pag->pag_buf_lock);
1072 xfs_perag_put(pag);
1073 freebuf = true;
1da177e4 1074 }
9c7504aa
BF
1075
1076out_unlock:
1077 spin_unlock(&bp->b_lock);
1078
1079 if (freebuf)
1080 xfs_buf_free(bp);
1da177e4
LT
1081}
1082
1083
1084/*
0e6e847f 1085 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1086 *
1087 * If we come across a stale, pinned, locked buffer, we know that we are
1088 * being asked to lock a buffer that has been reallocated. Because it is
1089 * pinned, we know that the log has not been pushed to disk and hence it
1090 * will still be locked. Rather than continuing to have trylock attempts
1091 * fail until someone else pushes the log, push it ourselves before
1092 * returning. This means that the xfsaild will not get stuck trying
1093 * to push on stale inode buffers.
1da177e4
LT
1094 */
1095int
0c842ad4
CH
1096xfs_buf_trylock(
1097 struct xfs_buf *bp)
1da177e4
LT
1098{
1099 int locked;
1100
ce8e922c 1101 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1102 if (locked)
479c6412 1103 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1104 else
479c6412 1105 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1106 return locked;
1da177e4 1107}
1da177e4
LT
1108
1109/*
0e6e847f 1110 * Lock a buffer object.
ed3b4d6c
DC
1111 *
1112 * If we come across a stale, pinned, locked buffer, we know that we
1113 * are being asked to lock a buffer that has been reallocated. Because
1114 * it is pinned, we know that the log has not been pushed to disk and
1115 * hence it will still be locked. Rather than sleeping until someone
1116 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1117 */
ce8e922c
NS
1118void
1119xfs_buf_lock(
0c842ad4 1120 struct xfs_buf *bp)
1da177e4 1121{
0b1b213f
CH
1122 trace_xfs_buf_lock(bp, _RET_IP_);
1123
ed3b4d6c 1124 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1125 xfs_log_force(bp->b_mount, 0);
ce8e922c 1126 down(&bp->b_sema);
0b1b213f
CH
1127
1128 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1129}
1130
1da177e4 1131void
ce8e922c 1132xfs_buf_unlock(
0c842ad4 1133 struct xfs_buf *bp)
1da177e4 1134{
20e8a063
BF
1135 ASSERT(xfs_buf_islocked(bp));
1136
ce8e922c 1137 up(&bp->b_sema);
0b1b213f 1138 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1139}
1140
ce8e922c
NS
1141STATIC void
1142xfs_buf_wait_unpin(
e8222613 1143 struct xfs_buf *bp)
1da177e4
LT
1144{
1145 DECLARE_WAITQUEUE (wait, current);
1146
ce8e922c 1147 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1148 return;
1149
ce8e922c 1150 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1151 for (;;) {
1152 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1153 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1154 break;
7eaceacc 1155 io_schedule();
1da177e4 1156 }
ce8e922c 1157 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1158 set_current_state(TASK_RUNNING);
1159}
1160
f58d0ea9
CH
1161static void
1162xfs_buf_ioerror_alert_ratelimited(
664ffb8a
CH
1163 struct xfs_buf *bp)
1164{
664ffb8a
CH
1165 static unsigned long lasttime;
1166 static struct xfs_buftarg *lasttarg;
1167
664ffb8a
CH
1168 if (bp->b_target != lasttarg ||
1169 time_after(jiffies, (lasttime + 5*HZ))) {
1170 lasttime = jiffies;
1171 xfs_buf_ioerror_alert(bp, __this_address);
1172 }
1173 lasttarg = bp->b_target;
664ffb8a
CH
1174}
1175
664ffb8a
CH
1176/*
1177 * Account for this latest trip around the retry handler, and decide if
1178 * we've failed enough times to constitute a permanent failure.
1179 */
1180static bool
1181xfs_buf_ioerror_permanent(
1182 struct xfs_buf *bp,
1183 struct xfs_error_cfg *cfg)
1184{
1185 struct xfs_mount *mp = bp->b_mount;
1186
1187 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1188 ++bp->b_retries > cfg->max_retries)
1189 return true;
1190 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1191 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1192 return true;
1193
1194 /* At unmount we may treat errors differently */
2e973b2c 1195 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
664ffb8a
CH
1196 return true;
1197
1198 return false;
1199}
1200
1201/*
1202 * On a sync write or shutdown we just want to stale the buffer and let the
1203 * caller handle the error in bp->b_error appropriately.
1204 *
1205 * If the write was asynchronous then no one will be looking for the error. If
1206 * this is the first failure of this type, clear the error state and write the
1207 * buffer out again. This means we always retry an async write failure at least
1208 * once, but we also need to set the buffer up to behave correctly now for
1209 * repeated failures.
1210 *
1211 * If we get repeated async write failures, then we take action according to the
1212 * error configuration we have been set up to use.
1213 *
70796c6b
CH
1214 * Returns true if this function took care of error handling and the caller must
1215 * not touch the buffer again. Return false if the caller should proceed with
1216 * normal I/O completion handling.
664ffb8a 1217 */
70796c6b
CH
1218static bool
1219xfs_buf_ioend_handle_error(
664ffb8a
CH
1220 struct xfs_buf *bp)
1221{
1222 struct xfs_mount *mp = bp->b_mount;
1223 struct xfs_error_cfg *cfg;
1224
f58d0ea9 1225 /*
01728b44
DC
1226 * If we've already shutdown the journal because of I/O errors, there's
1227 * no point in giving this a retry.
f58d0ea9 1228 */
01728b44 1229 if (xlog_is_shutdown(mp->m_log))
f58d0ea9
CH
1230 goto out_stale;
1231
1232 xfs_buf_ioerror_alert_ratelimited(bp);
1233
22c10589
CH
1234 /*
1235 * We're not going to bother about retrying this during recovery.
1236 * One strike!
1237 */
1238 if (bp->b_flags & _XBF_LOGRECOVERY) {
1239 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1240 return false;
1241 }
1242
f58d0ea9
CH
1243 /*
1244 * Synchronous writes will have callers process the error.
1245 */
1246 if (!(bp->b_flags & XBF_ASYNC))
664ffb8a
CH
1247 goto out_stale;
1248
1249 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1250
1251 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
3cc49884
CH
1252 if (bp->b_last_error != bp->b_error ||
1253 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1254 bp->b_last_error = bp->b_error;
1255 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1256 !bp->b_first_retry_time)
1257 bp->b_first_retry_time = jiffies;
1258 goto resubmit;
664ffb8a
CH
1259 }
1260
1261 /*
1262 * Permanent error - we need to trigger a shutdown if we haven't already
1263 * to indicate that inconsistency will result from this action.
1264 */
1265 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1266 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1267 goto out_stale;
1268 }
1269
1270 /* Still considered a transient error. Caller will schedule retries. */
844c9358
CH
1271 if (bp->b_flags & _XBF_INODES)
1272 xfs_buf_inode_io_fail(bp);
1273 else if (bp->b_flags & _XBF_DQUOTS)
1274 xfs_buf_dquot_io_fail(bp);
1275 else
1276 ASSERT(list_empty(&bp->b_li_list));
1277 xfs_buf_ioerror(bp, 0);
1278 xfs_buf_relse(bp);
70796c6b 1279 return true;
664ffb8a 1280
3cc49884
CH
1281resubmit:
1282 xfs_buf_ioerror(bp, 0);
55b7d711 1283 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
3cc49884 1284 xfs_buf_submit(bp);
70796c6b 1285 return true;
664ffb8a
CH
1286out_stale:
1287 xfs_buf_stale(bp);
1288 bp->b_flags |= XBF_DONE;
55b7d711 1289 bp->b_flags &= ~XBF_WRITE;
664ffb8a 1290 trace_xfs_buf_error_relse(bp, _RET_IP_);
70796c6b 1291 return false;
664ffb8a 1292}
1da177e4 1293
76b2d323 1294static void
e8aaba9a
DC
1295xfs_buf_ioend(
1296 struct xfs_buf *bp)
1da177e4 1297{
e8aaba9a 1298 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64 1299
61be9c52
DC
1300 /*
1301 * Pull in IO completion errors now. We are guaranteed to be running
1302 * single threaded, so we don't need the lock to read b_io_error.
1303 */
1304 if (!bp->b_error && bp->b_io_error)
1305 xfs_buf_ioerror(bp, bp->b_io_error);
1306
55b7d711 1307 if (bp->b_flags & XBF_READ) {
b01d1461
DC
1308 if (!bp->b_error && bp->b_ops)
1309 bp->b_ops->verify_read(bp);
1310 if (!bp->b_error)
1311 bp->b_flags |= XBF_DONE;
23fb5a93
CH
1312 } else {
1313 if (!bp->b_error) {
1314 bp->b_flags &= ~XBF_WRITE_FAIL;
1315 bp->b_flags |= XBF_DONE;
1316 }
f593bf14 1317
70796c6b 1318 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
664ffb8a 1319 return;
664ffb8a
CH
1320
1321 /* clear the retry state */
1322 bp->b_last_error = 0;
1323 bp->b_retries = 0;
1324 bp->b_first_retry_time = 0;
1325
1326 /*
1327 * Note that for things like remote attribute buffers, there may
1328 * not be a buffer log item here, so processing the buffer log
1329 * item must remain optional.
1330 */
1331 if (bp->b_log_item)
1332 xfs_buf_item_done(bp);
1333
23fb5a93
CH
1334 if (bp->b_flags & _XBF_INODES)
1335 xfs_buf_inode_iodone(bp);
1336 else if (bp->b_flags & _XBF_DQUOTS)
1337 xfs_buf_dquot_iodone(bp);
22c10589 1338
0c7e5afb 1339 }
6a7584b1 1340
22c10589
CH
1341 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1342 _XBF_LOGRECOVERY);
55b7d711 1343
6a7584b1
CH
1344 if (bp->b_flags & XBF_ASYNC)
1345 xfs_buf_relse(bp);
1346 else
1347 complete(&bp->b_iowait);
1da177e4
LT
1348}
1349
e8aaba9a
DC
1350static void
1351xfs_buf_ioend_work(
1352 struct work_struct *work)
1da177e4 1353{
e8aaba9a 1354 struct xfs_buf *bp =
e8222613 1355 container_of(work, struct xfs_buf, b_ioend_work);
0b1b213f 1356
e8aaba9a
DC
1357 xfs_buf_ioend(bp);
1358}
1da177e4 1359
211fe1a4 1360static void
e8aaba9a
DC
1361xfs_buf_ioend_async(
1362 struct xfs_buf *bp)
1363{
b29c70f5 1364 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1365 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1366}
1367
1da177e4 1368void
31ca03c9 1369__xfs_buf_ioerror(
e8222613 1370 struct xfs_buf *bp,
31ca03c9
DW
1371 int error,
1372 xfs_failaddr_t failaddr)
1da177e4 1373{
2451337d
DC
1374 ASSERT(error <= 0 && error >= -1000);
1375 bp->b_error = error;
31ca03c9 1376 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1377}
1378
901796af
CH
1379void
1380xfs_buf_ioerror_alert(
1381 struct xfs_buf *bp,
cdbcf82b 1382 xfs_failaddr_t func)
901796af 1383{
f9bccfcc
BF
1384 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1385 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
04fcad80 1386 func, (uint64_t)xfs_buf_daddr(bp),
f9bccfcc 1387 bp->b_length, -bp->b_error);
901796af
CH
1388}
1389
54b3b1f6
BF
1390/*
1391 * To simulate an I/O failure, the buffer must be locked and held with at least
1392 * three references. The LRU reference is dropped by the stale call. The buf
1393 * item reference is dropped via ioend processing. The third reference is owned
1394 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1395 */
1396void
1397xfs_buf_ioend_fail(
1398 struct xfs_buf *bp)
1399{
1400 bp->b_flags &= ~XBF_DONE;
1401 xfs_buf_stale(bp);
1402 xfs_buf_ioerror(bp, -EIO);
1403 xfs_buf_ioend(bp);
901796af
CH
1404}
1405
a2dcf5df
CH
1406int
1407xfs_bwrite(
1408 struct xfs_buf *bp)
1409{
1410 int error;
1411
1412 ASSERT(xfs_buf_islocked(bp));
1413
1414 bp->b_flags |= XBF_WRITE;
27187754 1415 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
b6983e80 1416 XBF_DONE);
a2dcf5df 1417
6af88cda 1418 error = xfs_buf_submit(bp);
dbd329f1
CH
1419 if (error)
1420 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1421 return error;
1422}
1423
9bdd9bd6 1424static void
ce8e922c 1425xfs_buf_bio_end_io(
4246a0b6 1426 struct bio *bio)
1da177e4 1427{
9bdd9bd6 1428 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1429
7376d745
BF
1430 if (!bio->bi_status &&
1431 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
43dc0aa8 1432 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
7376d745 1433 bio->bi_status = BLK_STS_IOERR;
1da177e4 1434
37eb17e6
DC
1435 /*
1436 * don't overwrite existing errors - otherwise we can lose errors on
1437 * buffers that require multiple bios to complete.
1438 */
4e4cbee9
CH
1439 if (bio->bi_status) {
1440 int error = blk_status_to_errno(bio->bi_status);
1441
1442 cmpxchg(&bp->b_io_error, 0, error);
1443 }
1da177e4 1444
37eb17e6 1445 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1446 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1447
e8aaba9a
DC
1448 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1449 xfs_buf_ioend_async(bp);
1da177e4 1450 bio_put(bio);
1da177e4
LT
1451}
1452
3e85c868
DC
1453static void
1454xfs_buf_ioapply_map(
1455 struct xfs_buf *bp,
1456 int map,
1457 int *buf_offset,
1458 int *count,
d03025ae 1459 blk_opf_t op)
1da177e4 1460{
3e85c868 1461 int page_index;
5f7136db 1462 unsigned int total_nr_pages = bp->b_page_count;
3e85c868
DC
1463 int nr_pages;
1464 struct bio *bio;
1465 sector_t sector = bp->b_maps[map].bm_bn;
1466 int size;
1467 int offset;
1da177e4 1468
3e85c868
DC
1469 /* skip the pages in the buffer before the start offset */
1470 page_index = 0;
1471 offset = *buf_offset;
1472 while (offset >= PAGE_SIZE) {
1473 page_index++;
1474 offset -= PAGE_SIZE;
f538d4da
CH
1475 }
1476
3e85c868
DC
1477 /*
1478 * Limit the IO size to the length of the current vector, and update the
1479 * remaining IO count for the next time around.
1480 */
1481 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1482 *count -= size;
1483 *buf_offset += size;
34951f5c 1484
1da177e4 1485next_chunk:
ce8e922c 1486 atomic_inc(&bp->b_io_remaining);
5f7136db 1487 nr_pages = bio_max_segs(total_nr_pages);
1da177e4 1488
07888c66 1489 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
4f024f37 1490 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1491 bio->bi_end_io = xfs_buf_bio_end_io;
1492 bio->bi_private = bp;
0e6e847f 1493
3e85c868 1494 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1495 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1496
1497 if (nbytes > size)
1498 nbytes = size;
1499
3e85c868
DC
1500 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1501 offset);
ce8e922c 1502 if (rbytes < nbytes)
1da177e4
LT
1503 break;
1504
1505 offset = 0;
aa0e8833 1506 sector += BTOBB(nbytes);
1da177e4
LT
1507 size -= nbytes;
1508 total_nr_pages--;
1509 }
1510
4f024f37 1511 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1512 if (xfs_buf_is_vmapped(bp)) {
1513 flush_kernel_vmap_range(bp->b_addr,
1514 xfs_buf_vmap_len(bp));
1515 }
4e49ea4a 1516 submit_bio(bio);
1da177e4
LT
1517 if (size)
1518 goto next_chunk;
1519 } else {
37eb17e6
DC
1520 /*
1521 * This is guaranteed not to be the last io reference count
595bff75 1522 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1523 */
1524 atomic_dec(&bp->b_io_remaining);
2451337d 1525 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1526 bio_put(bio);
1da177e4 1527 }
3e85c868
DC
1528
1529}
1530
1531STATIC void
1532_xfs_buf_ioapply(
1533 struct xfs_buf *bp)
1534{
1535 struct blk_plug plug;
d03025ae 1536 blk_opf_t op;
3e85c868
DC
1537 int offset;
1538 int size;
1539 int i;
1540
c163f9a1
DC
1541 /*
1542 * Make sure we capture only current IO errors rather than stale errors
1543 * left over from previous use of the buffer (e.g. failed readahead).
1544 */
1545 bp->b_error = 0;
1546
3e85c868 1547 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1548 op = REQ_OP_WRITE;
1813dd64
DC
1549
1550 /*
1551 * Run the write verifier callback function if it exists. If
1552 * this function fails it will mark the buffer with an error and
1553 * the IO should not be dispatched.
1554 */
1555 if (bp->b_ops) {
1556 bp->b_ops->verify_write(bp);
1557 if (bp->b_error) {
dbd329f1 1558 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1559 SHUTDOWN_CORRUPT_INCORE);
1560 return;
1561 }
4c7f65ae 1562 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
dbd329f1 1563 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1564
1565 /*
1566 * non-crc filesystems don't attach verifiers during
1567 * log recovery, so don't warn for such filesystems.
1568 */
38c26bfd 1569 if (xfs_has_crc(mp)) {
400b9d88 1570 xfs_warn(mp,
c219b015 1571 "%s: no buf ops on daddr 0x%llx len %d",
4c7f65ae
DC
1572 __func__, xfs_buf_daddr(bp),
1573 bp->b_length);
9c712a13
DW
1574 xfs_hex_dump(bp->b_addr,
1575 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1576 dump_stack();
1577 }
1813dd64 1578 }
3e85c868 1579 } else {
50bfcd0c 1580 op = REQ_OP_READ;
2123ef85
CH
1581 if (bp->b_flags & XBF_READ_AHEAD)
1582 op |= REQ_RAHEAD;
3e85c868
DC
1583 }
1584
1585 /* we only use the buffer cache for meta-data */
2123ef85 1586 op |= REQ_META;
3e85c868
DC
1587
1588 /*
1589 * Walk all the vectors issuing IO on them. Set up the initial offset
1590 * into the buffer and the desired IO size before we start -
1591 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1592 * subsequent call.
1593 */
1594 offset = bp->b_offset;
8124b9b6 1595 size = BBTOB(bp->b_length);
3e85c868
DC
1596 blk_start_plug(&plug);
1597 for (i = 0; i < bp->b_map_count; i++) {
2123ef85 1598 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
3e85c868
DC
1599 if (bp->b_error)
1600 break;
1601 if (size <= 0)
1602 break; /* all done */
1603 }
1604 blk_finish_plug(&plug);
1da177e4
LT
1605}
1606
595bff75 1607/*
bb00b6f1 1608 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1609 */
eaebb515 1610static int
bb00b6f1 1611xfs_buf_iowait(
595bff75 1612 struct xfs_buf *bp)
1da177e4 1613{
bb00b6f1
BF
1614 ASSERT(!(bp->b_flags & XBF_ASYNC));
1615
1616 trace_xfs_buf_iowait(bp, _RET_IP_);
1617 wait_for_completion(&bp->b_iowait);
1618 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1619
1620 return bp->b_error;
1621}
1622
1623/*
1624 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1625 * the buffer lock ownership and the current reference to the IO. It is not
1626 * safe to reference the buffer after a call to this function unless the caller
1627 * holds an additional reference itself.
1628 */
26e32875 1629static int
bb00b6f1
BF
1630__xfs_buf_submit(
1631 struct xfs_buf *bp,
1632 bool wait)
1633{
1634 int error = 0;
1635
595bff75 1636 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1637
43ff2122 1638 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75 1639
01728b44
DC
1640 /*
1641 * On log shutdown we stale and complete the buffer immediately. We can
1642 * be called to read the superblock before the log has been set up, so
1643 * be careful checking the log state.
1644 *
1645 * Checking the mount shutdown state here can result in the log tail
1646 * moving inappropriately on disk as the log may not yet be shut down.
1647 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1648 * and move the tail of the log forwards without having written this
1649 * buffer to disk. This corrupts the log tail state in memory, and
1650 * because the log may not be shut down yet, it can then be propagated
1651 * to disk before the log is shutdown. Hence we check log shutdown
1652 * state here rather than mount state to avoid corrupting the log tail
1653 * on shutdown.
1654 */
1655 if (bp->b_mount->m_log &&
1656 xlog_is_shutdown(bp->b_mount->m_log)) {
54b3b1f6 1657 xfs_buf_ioend_fail(bp);
eaebb515 1658 return -EIO;
595bff75 1659 }
1da177e4 1660
bb00b6f1
BF
1661 /*
1662 * Grab a reference so the buffer does not go away underneath us. For
1663 * async buffers, I/O completion drops the callers reference, which
1664 * could occur before submission returns.
1665 */
1666 xfs_buf_hold(bp);
1667
375ec69d 1668 if (bp->b_flags & XBF_WRITE)
ce8e922c 1669 xfs_buf_wait_unpin(bp);
e11bb805 1670
61be9c52
DC
1671 /* clear the internal error state to avoid spurious errors */
1672 bp->b_io_error = 0;
1673
8d6c1210 1674 /*
e11bb805
DC
1675 * Set the count to 1 initially, this will stop an I/O completion
1676 * callout which happens before we have started all the I/O from calling
1677 * xfs_buf_ioend too early.
1da177e4 1678 */
ce8e922c 1679 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1680 if (bp->b_flags & XBF_ASYNC)
1681 xfs_buf_ioacct_inc(bp);
ce8e922c 1682 _xfs_buf_ioapply(bp);
e11bb805 1683
8d6c1210 1684 /*
595bff75
DC
1685 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1686 * reference we took above. If we drop it to zero, run completion so
1687 * that we don't return to the caller with completion still pending.
8d6c1210 1688 */
e8aaba9a 1689 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1690 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1691 xfs_buf_ioend(bp);
1692 else
1693 xfs_buf_ioend_async(bp);
1694 }
1da177e4 1695
6af88cda
BF
1696 if (wait)
1697 error = xfs_buf_iowait(bp);
bb00b6f1 1698
595bff75 1699 /*
6af88cda
BF
1700 * Release the hold that keeps the buffer referenced for the entire
1701 * I/O. Note that if the buffer is async, it is not safe to reference
1702 * after this release.
595bff75
DC
1703 */
1704 xfs_buf_rele(bp);
1705 return error;
1da177e4
LT
1706}
1707
88ee2df7 1708void *
ce8e922c 1709xfs_buf_offset(
88ee2df7 1710 struct xfs_buf *bp,
1da177e4
LT
1711 size_t offset)
1712{
1713 struct page *page;
1714
611c9946 1715 if (bp->b_addr)
62926044 1716 return bp->b_addr + offset;
1da177e4 1717
0e6e847f 1718 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1719 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1720}
1721
1da177e4 1722void
f9a196ee
CH
1723xfs_buf_zero(
1724 struct xfs_buf *bp,
1725 size_t boff,
1726 size_t bsize)
1da177e4 1727{
795cac72 1728 size_t bend;
1da177e4
LT
1729
1730 bend = boff + bsize;
1731 while (boff < bend) {
795cac72
DC
1732 struct page *page;
1733 int page_index, page_offset, csize;
1734
1735 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1736 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1737 page = bp->b_pages[page_index];
1738 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1739 BBTOB(bp->b_length) - boff);
1da177e4 1740
795cac72 1741 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1742
f9a196ee 1743 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1744
1745 boff += csize;
1da177e4
LT
1746 }
1747}
1748
8d57c216
DW
1749/*
1750 * Log a message about and stale a buffer that a caller has decided is corrupt.
1751 *
1752 * This function should be called for the kinds of metadata corruption that
1753 * cannot be detect from a verifier, such as incorrect inter-block relationship
1754 * data. Do /not/ call this function from a verifier function.
1755 *
1756 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1757 * be marked stale, but b_error will not be set. The caller is responsible for
1758 * releasing the buffer or fixing it.
1759 */
1760void
1761__xfs_buf_mark_corrupt(
1762 struct xfs_buf *bp,
1763 xfs_failaddr_t fa)
1764{
1765 ASSERT(bp->b_flags & XBF_DONE);
1766
e83cf875 1767 xfs_buf_corruption_error(bp, fa);
8d57c216
DW
1768 xfs_buf_stale(bp);
1769}
1770
1da177e4 1771/*
ce8e922c 1772 * Handling of buffer targets (buftargs).
1da177e4
LT
1773 */
1774
1775/*
430cbeb8
DC
1776 * Wait for any bufs with callbacks that have been submitted but have not yet
1777 * returned. These buffers will have an elevated hold count, so wait on those
1778 * while freeing all the buffers only held by the LRU.
1da177e4 1779 */
e80dfa19 1780static enum lru_status
10fb9ac1 1781xfs_buftarg_drain_rele(
e80dfa19 1782 struct list_head *item,
3f97b163 1783 struct list_lru_one *lru,
e80dfa19
DC
1784 spinlock_t *lru_lock,
1785 void *arg)
1786
1da177e4 1787{
e80dfa19 1788 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1789 struct list_head *dispose = arg;
430cbeb8 1790
e80dfa19 1791 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1792 /* need to wait, so skip it this pass */
10fb9ac1 1793 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
a4082357 1794 return LRU_SKIP;
1da177e4 1795 }
a4082357
DC
1796 if (!spin_trylock(&bp->b_lock))
1797 return LRU_SKIP;
e80dfa19 1798
a4082357
DC
1799 /*
1800 * clear the LRU reference count so the buffer doesn't get
1801 * ignored in xfs_buf_rele().
1802 */
1803 atomic_set(&bp->b_lru_ref, 0);
1804 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1805 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1806 spin_unlock(&bp->b_lock);
1807 return LRU_REMOVED;
1da177e4
LT
1808}
1809
8321ddb2
BF
1810/*
1811 * Wait for outstanding I/O on the buftarg to complete.
1812 */
e80dfa19 1813void
8321ddb2 1814xfs_buftarg_wait(
e80dfa19
DC
1815 struct xfs_buftarg *btp)
1816{
85bec546 1817 /*
9c7504aa
BF
1818 * First wait on the buftarg I/O count for all in-flight buffers to be
1819 * released. This is critical as new buffers do not make the LRU until
1820 * they are released.
1821 *
1822 * Next, flush the buffer workqueue to ensure all completion processing
1823 * has finished. Just waiting on buffer locks is not sufficient for
1824 * async IO as the reference count held over IO is not released until
1825 * after the buffer lock is dropped. Hence we need to ensure here that
1826 * all reference counts have been dropped before we start walking the
1827 * LRU list.
85bec546 1828 */
9c7504aa
BF
1829 while (percpu_counter_sum(&btp->bt_io_count))
1830 delay(100);
800b2694 1831 flush_workqueue(btp->bt_mount->m_buf_workqueue);
8321ddb2
BF
1832}
1833
1834void
1835xfs_buftarg_drain(
1836 struct xfs_buftarg *btp)
1837{
1838 LIST_HEAD(dispose);
1839 int loop = 0;
1840 bool write_fail = false;
1841
1842 xfs_buftarg_wait(btp);
85bec546 1843
a4082357
DC
1844 /* loop until there is nothing left on the lru list. */
1845 while (list_lru_count(&btp->bt_lru)) {
10fb9ac1 1846 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
a4082357
DC
1847 &dispose, LONG_MAX);
1848
1849 while (!list_empty(&dispose)) {
1850 struct xfs_buf *bp;
1851 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1852 list_del_init(&bp->b_lru);
ac8809f9 1853 if (bp->b_flags & XBF_WRITE_FAIL) {
61948b6f
BF
1854 write_fail = true;
1855 xfs_buf_alert_ratelimited(bp,
1856 "XFS: Corruption Alert",
c219b015 1857"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
4c7f65ae 1858 (long long)xfs_buf_daddr(bp));
ac8809f9 1859 }
a4082357
DC
1860 xfs_buf_rele(bp);
1861 }
1862 if (loop++ != 0)
1863 delay(100);
1864 }
61948b6f
BF
1865
1866 /*
1867 * If one or more failed buffers were freed, that means dirty metadata
1868 * was thrown away. This should only ever happen after I/O completion
1869 * handling has elevated I/O error(s) to permanent failures and shuts
01728b44 1870 * down the journal.
61948b6f
BF
1871 */
1872 if (write_fail) {
01728b44 1873 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
61948b6f
BF
1874 xfs_alert(btp->bt_mount,
1875 "Please run xfs_repair to determine the extent of the problem.");
1876 }
e80dfa19
DC
1877}
1878
1879static enum lru_status
1880xfs_buftarg_isolate(
1881 struct list_head *item,
3f97b163 1882 struct list_lru_one *lru,
e80dfa19
DC
1883 spinlock_t *lru_lock,
1884 void *arg)
1885{
1886 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1887 struct list_head *dispose = arg;
1888
a4082357
DC
1889 /*
1890 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1891 * If we fail to get the lock, just skip it.
1892 */
1893 if (!spin_trylock(&bp->b_lock))
1894 return LRU_SKIP;
e80dfa19
DC
1895 /*
1896 * Decrement the b_lru_ref count unless the value is already
1897 * zero. If the value is already zero, we need to reclaim the
1898 * buffer, otherwise it gets another trip through the LRU.
1899 */
19957a18 1900 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1901 spin_unlock(&bp->b_lock);
e80dfa19 1902 return LRU_ROTATE;
a4082357 1903 }
e80dfa19 1904
a4082357 1905 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1906 list_lru_isolate_move(lru, item, dispose);
a4082357 1907 spin_unlock(&bp->b_lock);
e80dfa19
DC
1908 return LRU_REMOVED;
1909}
1910
addbda40 1911static unsigned long
e80dfa19 1912xfs_buftarg_shrink_scan(
ff57ab21 1913 struct shrinker *shrink,
1495f230 1914 struct shrink_control *sc)
a6867a68 1915{
17e7a00e 1916 struct xfs_buftarg *btp = shrink->private_data;
430cbeb8 1917 LIST_HEAD(dispose);
addbda40 1918 unsigned long freed;
430cbeb8 1919
503c358c
VD
1920 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1921 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1922
1923 while (!list_empty(&dispose)) {
e80dfa19 1924 struct xfs_buf *bp;
430cbeb8
DC
1925 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1926 list_del_init(&bp->b_lru);
1927 xfs_buf_rele(bp);
1928 }
1929
e80dfa19
DC
1930 return freed;
1931}
1932
addbda40 1933static unsigned long
e80dfa19
DC
1934xfs_buftarg_shrink_count(
1935 struct shrinker *shrink,
1936 struct shrink_control *sc)
1937{
17e7a00e 1938 struct xfs_buftarg *btp = shrink->private_data;
503c358c 1939 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1940}
1941
1da177e4
LT
1942void
1943xfs_free_buftarg(
b7963133 1944 struct xfs_buftarg *btp)
1da177e4 1945{
17e7a00e 1946 shrinker_free(btp->bt_shrinker);
9c7504aa
BF
1947 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1948 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1949 list_lru_destroy(&btp->bt_lru);
ff57ab21 1950
6f643c57 1951 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
41233576 1952 /* the main block device is closed by kill_block_super */
e340dd63 1953 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
1b9e2d90 1954 fput(btp->bt_bdev_file);
a6867a68 1955
f0e2d93c 1956 kmem_free(btp);
1da177e4
LT
1957}
1958
3fefdeee
ES
1959int
1960xfs_setsize_buftarg(
1da177e4 1961 xfs_buftarg_t *btp,
3fefdeee 1962 unsigned int sectorsize)
1da177e4 1963{
7c71ee78 1964 /* Set up metadata sector size info */
6da54179
ES
1965 btp->bt_meta_sectorsize = sectorsize;
1966 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1967
ce8e922c 1968 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1969 xfs_warn(btp->bt_mount,
a1c6f057
DM
1970 "Cannot set_blocksize to %u on device %pg",
1971 sectorsize, btp->bt_bdev);
2451337d 1972 return -EINVAL;
1da177e4
LT
1973 }
1974
7c71ee78
ES
1975 /* Set up device logical sector size mask */
1976 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1977 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1978
1da177e4
LT
1979 return 0;
1980}
1981
1982/*
3fefdeee
ES
1983 * When allocating the initial buffer target we have not yet
1984 * read in the superblock, so don't know what sized sectors
1985 * are being used at this early stage. Play safe.
ce8e922c 1986 */
1da177e4
LT
1987STATIC int
1988xfs_setsize_buftarg_early(
e340dd63 1989 xfs_buftarg_t *btp)
1da177e4 1990{
e340dd63 1991 return xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev));
1da177e4
LT
1992}
1993
5b5abbef 1994struct xfs_buftarg *
1da177e4 1995xfs_alloc_buftarg(
ebad861b 1996 struct xfs_mount *mp,
1b9e2d90 1997 struct file *bdev_file)
1da177e4
LT
1998{
1999 xfs_buftarg_t *btp;
6f643c57 2000 const struct dax_holder_operations *ops = NULL;
1da177e4 2001
6f643c57
SR
2002#if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2003 ops = &xfs_dax_holder_operations;
2004#endif
707e0dda 2005 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 2006
ebad861b 2007 btp->bt_mount = mp;
1b9e2d90
CB
2008 btp->bt_bdev_file = bdev_file;
2009 btp->bt_bdev = file_bdev(bdev_file);
2010 btp->bt_dev = btp->bt_bdev->bd_dev;
e340dd63 2011 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
6f643c57 2012 mp, ops);
0e6e847f 2013
f9bccfcc
BF
2014 /*
2015 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2016 * per 30 seconds so as to not spam logs too much on repeated errors.
2017 */
2018 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2019 DEFAULT_RATELIMIT_BURST);
2020
e340dd63 2021 if (xfs_setsize_buftarg_early(btp))
d210a987 2022 goto error_free;
5ca302c8
GC
2023
2024 if (list_lru_init(&btp->bt_lru))
d210a987 2025 goto error_free;
5ca302c8 2026
9c7504aa 2027 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 2028 goto error_lru;
9c7504aa 2029
17e7a00e
QZ
2030 btp->bt_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s",
2031 mp->m_super->s_id);
2032 if (!btp->bt_shrinker)
d210a987 2033 goto error_pcpu;
17e7a00e
QZ
2034
2035 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2036 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2037 btp->bt_shrinker->private_data = btp;
2038
2039 shrinker_register(btp->bt_shrinker);
2040
1da177e4
LT
2041 return btp;
2042
d210a987
MH
2043error_pcpu:
2044 percpu_counter_destroy(&btp->bt_io_count);
2045error_lru:
2046 list_lru_destroy(&btp->bt_lru);
2047error_free:
f0e2d93c 2048 kmem_free(btp);
1da177e4
LT
2049 return NULL;
2050}
2051
13ae04d8
DW
2052static inline void
2053xfs_buf_list_del(
2054 struct xfs_buf *bp)
2055{
2056 list_del_init(&bp->b_list);
2057 wake_up_var(&bp->b_list);
2058}
2059
20e8a063
BF
2060/*
2061 * Cancel a delayed write list.
2062 *
2063 * Remove each buffer from the list, clear the delwri queue flag and drop the
2064 * associated buffer reference.
2065 */
2066void
2067xfs_buf_delwri_cancel(
2068 struct list_head *list)
2069{
2070 struct xfs_buf *bp;
2071
2072 while (!list_empty(list)) {
2073 bp = list_first_entry(list, struct xfs_buf, b_list);
2074
2075 xfs_buf_lock(bp);
2076 bp->b_flags &= ~_XBF_DELWRI_Q;
13ae04d8 2077 xfs_buf_list_del(bp);
20e8a063
BF
2078 xfs_buf_relse(bp);
2079 }
2080}
2081
1da177e4 2082/*
43ff2122
CH
2083 * Add a buffer to the delayed write list.
2084 *
2085 * This queues a buffer for writeout if it hasn't already been. Note that
2086 * neither this routine nor the buffer list submission functions perform
2087 * any internal synchronization. It is expected that the lists are thread-local
2088 * to the callers.
2089 *
2090 * Returns true if we queued up the buffer, or false if it already had
2091 * been on the buffer list.
1da177e4 2092 */
43ff2122 2093bool
ce8e922c 2094xfs_buf_delwri_queue(
43ff2122
CH
2095 struct xfs_buf *bp,
2096 struct list_head *list)
1da177e4 2097{
43ff2122 2098 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 2099 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 2100
43ff2122
CH
2101 /*
2102 * If the buffer is already marked delwri it already is queued up
2103 * by someone else for imediate writeout. Just ignore it in that
2104 * case.
2105 */
2106 if (bp->b_flags & _XBF_DELWRI_Q) {
2107 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2108 return false;
1da177e4 2109 }
1da177e4 2110
43ff2122 2111 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
2112
2113 /*
43ff2122
CH
2114 * If a buffer gets written out synchronously or marked stale while it
2115 * is on a delwri list we lazily remove it. To do this, the other party
2116 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2117 * It remains referenced and on the list. In a rare corner case it
2118 * might get readded to a delwri list after the synchronous writeout, in
2119 * which case we need just need to re-add the flag here.
d808f617 2120 */
43ff2122
CH
2121 bp->b_flags |= _XBF_DELWRI_Q;
2122 if (list_empty(&bp->b_list)) {
2123 atomic_inc(&bp->b_hold);
2124 list_add_tail(&bp->b_list, list);
585e6d88 2125 }
585e6d88 2126
43ff2122 2127 return true;
585e6d88
DC
2128}
2129
13ae04d8
DW
2130/*
2131 * Queue a buffer to this delwri list as part of a data integrity operation.
2132 * If the buffer is on any other delwri list, we'll wait for that to clear
2133 * so that the caller can submit the buffer for IO and wait for the result.
2134 * Callers must ensure the buffer is not already on the list.
2135 */
2136void
2137xfs_buf_delwri_queue_here(
2138 struct xfs_buf *bp,
2139 struct list_head *buffer_list)
2140{
2141 /*
2142 * We need this buffer to end up on the /caller's/ delwri list, not any
2143 * old list. This can happen if the buffer is marked stale (which
2144 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2145 * before the AIL has a chance to submit the list.
2146 */
2147 while (!list_empty(&bp->b_list)) {
2148 xfs_buf_unlock(bp);
2149 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2150 xfs_buf_lock(bp);
2151 }
2152
2153 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2154
2155 xfs_buf_delwri_queue(bp, buffer_list);
2156}
2157
089716aa
DC
2158/*
2159 * Compare function is more complex than it needs to be because
2160 * the return value is only 32 bits and we are doing comparisons
2161 * on 64 bit values
2162 */
2163static int
2164xfs_buf_cmp(
4f0f586b
ST
2165 void *priv,
2166 const struct list_head *a,
2167 const struct list_head *b)
089716aa
DC
2168{
2169 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2170 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2171 xfs_daddr_t diff;
2172
f4b42421 2173 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
2174 if (diff < 0)
2175 return -1;
2176 if (diff > 0)
2177 return 1;
2178 return 0;
2179}
2180
26f1fe85 2181/*
e339dd8d
BF
2182 * Submit buffers for write. If wait_list is specified, the buffers are
2183 * submitted using sync I/O and placed on the wait list such that the caller can
2184 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2185 * at I/O completion time. In either case, buffers remain locked until I/O
2186 * completes and the buffer is released from the queue.
26f1fe85 2187 */
43ff2122 2188static int
26f1fe85 2189xfs_buf_delwri_submit_buffers(
43ff2122 2190 struct list_head *buffer_list,
26f1fe85 2191 struct list_head *wait_list)
1da177e4 2192{
43ff2122
CH
2193 struct xfs_buf *bp, *n;
2194 int pinned = 0;
26f1fe85 2195 struct blk_plug plug;
43ff2122 2196
26f1fe85 2197 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 2198
26f1fe85 2199 blk_start_plug(&plug);
43ff2122 2200 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 2201 if (!wait_list) {
dbd0f529
DC
2202 if (!xfs_buf_trylock(bp))
2203 continue;
43ff2122 2204 if (xfs_buf_ispinned(bp)) {
dbd0f529 2205 xfs_buf_unlock(bp);
43ff2122
CH
2206 pinned++;
2207 continue;
2208 }
43ff2122
CH
2209 } else {
2210 xfs_buf_lock(bp);
2211 }
978c7b2f 2212
43ff2122
CH
2213 /*
2214 * Someone else might have written the buffer synchronously or
2215 * marked it stale in the meantime. In that case only the
2216 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2217 * reference and remove it from the list here.
2218 */
2219 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
13ae04d8 2220 xfs_buf_list_del(bp);
43ff2122
CH
2221 xfs_buf_relse(bp);
2222 continue;
2223 }
c9c12971 2224
43ff2122 2225 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 2226
cf53e99d 2227 /*
e339dd8d
BF
2228 * If we have a wait list, each buffer (and associated delwri
2229 * queue reference) transfers to it and is submitted
2230 * synchronously. Otherwise, drop the buffer from the delwri
2231 * queue and submit async.
cf53e99d 2232 */
b6983e80 2233 bp->b_flags &= ~_XBF_DELWRI_Q;
e339dd8d 2234 bp->b_flags |= XBF_WRITE;
26f1fe85 2235 if (wait_list) {
e339dd8d 2236 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 2237 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
2238 } else {
2239 bp->b_flags |= XBF_ASYNC;
13ae04d8 2240 xfs_buf_list_del(bp);
e339dd8d 2241 }
6af88cda 2242 __xfs_buf_submit(bp, false);
43ff2122
CH
2243 }
2244 blk_finish_plug(&plug);
1da177e4 2245
43ff2122 2246 return pinned;
1da177e4
LT
2247}
2248
2249/*
43ff2122
CH
2250 * Write out a buffer list asynchronously.
2251 *
2252 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2253 * out and not wait for I/O completion on any of the buffers. This interface
2254 * is only safely useable for callers that can track I/O completion by higher
2255 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2256 * function.
efc3289c
BF
2257 *
2258 * Note: this function will skip buffers it would block on, and in doing so
2259 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2260 * it is up to the caller to ensure that the buffer list is fully submitted or
2261 * cancelled appropriately when they are finished with the list. Failure to
2262 * cancel or resubmit the list until it is empty will result in leaked buffers
2263 * at unmount time.
1da177e4
LT
2264 */
2265int
43ff2122
CH
2266xfs_buf_delwri_submit_nowait(
2267 struct list_head *buffer_list)
1da177e4 2268{
26f1fe85 2269 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2270}
1da177e4 2271
43ff2122
CH
2272/*
2273 * Write out a buffer list synchronously.
2274 *
2275 * This will take the @buffer_list, write all buffers out and wait for I/O
2276 * completion on all of the buffers. @buffer_list is consumed by the function,
2277 * so callers must have some other way of tracking buffers if they require such
2278 * functionality.
2279 */
2280int
2281xfs_buf_delwri_submit(
2282 struct list_head *buffer_list)
2283{
26f1fe85 2284 LIST_HEAD (wait_list);
43ff2122
CH
2285 int error = 0, error2;
2286 struct xfs_buf *bp;
1da177e4 2287
26f1fe85 2288 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2289
43ff2122 2290 /* Wait for IO to complete. */
26f1fe85
DC
2291 while (!list_empty(&wait_list)) {
2292 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2293
13ae04d8 2294 xfs_buf_list_del(bp);
cf53e99d 2295
e339dd8d
BF
2296 /*
2297 * Wait on the locked buffer, check for errors and unlock and
2298 * release the delwri queue reference.
2299 */
2300 error2 = xfs_buf_iowait(bp);
43ff2122
CH
2301 xfs_buf_relse(bp);
2302 if (!error)
2303 error = error2;
1da177e4
LT
2304 }
2305
43ff2122 2306 return error;
1da177e4
LT
2307}
2308
7912e7fe
BF
2309/*
2310 * Push a single buffer on a delwri queue.
2311 *
2312 * The purpose of this function is to submit a single buffer of a delwri queue
2313 * and return with the buffer still on the original queue. The waiting delwri
2314 * buffer submission infrastructure guarantees transfer of the delwri queue
2315 * buffer reference to a temporary wait list. We reuse this infrastructure to
2316 * transfer the buffer back to the original queue.
2317 *
2318 * Note the buffer transitions from the queued state, to the submitted and wait
2319 * listed state and back to the queued state during this call. The buffer
2320 * locking and queue management logic between _delwri_pushbuf() and
2321 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2322 * before returning.
2323 */
2324int
2325xfs_buf_delwri_pushbuf(
2326 struct xfs_buf *bp,
2327 struct list_head *buffer_list)
2328{
2329 LIST_HEAD (submit_list);
2330 int error;
2331
2332 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2333
2334 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2335
2336 /*
2337 * Isolate the buffer to a new local list so we can submit it for I/O
2338 * independently from the rest of the original list.
2339 */
2340 xfs_buf_lock(bp);
2341 list_move(&bp->b_list, &submit_list);
2342 xfs_buf_unlock(bp);
2343
2344 /*
2345 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2346 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2347 * bounce the buffer from a local wait list back to the original list
2348 * after I/O completion, reuse the original list as the wait list.
2349 */
2350 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2351
2352 /*
e339dd8d
BF
2353 * The buffer is now locked, under I/O and wait listed on the original
2354 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2355 * return with the buffer unlocked and on the original queue.
7912e7fe 2356 */
e339dd8d 2357 error = xfs_buf_iowait(bp);
7912e7fe
BF
2358 bp->b_flags |= _XBF_DELWRI_Q;
2359 xfs_buf_unlock(bp);
2360
2361 return error;
2362}
2363
7561d27e
BF
2364void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2365{
7561d27e
BF
2366 /*
2367 * Set the lru reference count to 0 based on the error injection tag.
2368 * This allows userspace to disrupt buffer caching for debug/testing
2369 * purposes.
2370 */
dbd329f1 2371 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2372 lru_ref = 0;
2373
2374 atomic_set(&bp->b_lru_ref, lru_ref);
2375}
8473fee3
BF
2376
2377/*
2378 * Verify an on-disk magic value against the magic value specified in the
2379 * verifier structure. The verifier magic is in disk byte order so the caller is
2380 * expected to pass the value directly from disk.
2381 */
2382bool
2383xfs_verify_magic(
2384 struct xfs_buf *bp,
15baadf7 2385 __be32 dmagic)
8473fee3 2386{
dbd329f1 2387 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2388 int idx;
2389
38c26bfd 2390 idx = xfs_has_crc(mp);
14ed8688 2391 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
8473fee3
BF
2392 return false;
2393 return dmagic == bp->b_ops->magic[idx];
2394}
15baadf7
DW
2395/*
2396 * Verify an on-disk magic value against the magic value specified in the
2397 * verifier structure. The verifier magic is in disk byte order so the caller is
2398 * expected to pass the value directly from disk.
2399 */
2400bool
2401xfs_verify_magic16(
2402 struct xfs_buf *bp,
2403 __be16 dmagic)
2404{
dbd329f1 2405 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2406 int idx;
2407
38c26bfd 2408 idx = xfs_has_crc(mp);
14ed8688 2409 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
15baadf7
DW
2410 return false;
2411 return dmagic == bp->b_ops->magic16[idx];
2412}