xfs: fix fs/xfs/xfs_log.c:1740:39: error: 'B_TRUE' undeclared
[linux-block.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133 37#include "xfs_sb.h"
ed3b4d6c 38#include "xfs_log.h"
b7963133 39#include "xfs_ag.h"
b7963133 40#include "xfs_mount.h"
0b1b213f 41#include "xfs_trace.h"
b7963133 42
7989cb8e 43static kmem_zone_t *xfs_buf_zone;
23ea4032 44
7989cb8e 45static struct workqueue_struct *xfslogd_workqueue;
1da177e4 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
1da177e4 82/*
430cbeb8
DC
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
6fb8a90a 99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
430cbeb8
DC
100 }
101 spin_unlock(&btp->bt_lru_lock);
102}
103
104/*
105 * xfs_buf_lru_del - remove a buffer from the LRU
106 *
107 * The unlocked check is safe here because it only occurs when there are not
108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 111 * bt_lru_lock.
1da177e4 112 */
430cbeb8
DC
113STATIC void
114xfs_buf_lru_del(
115 struct xfs_buf *bp)
116{
117 struct xfs_buftarg *btp = bp->b_target;
118
119 if (list_empty(&bp->b_lru))
120 return;
121
122 spin_lock(&btp->bt_lru_lock);
123 if (!list_empty(&bp->b_lru)) {
124 list_del_init(&bp->b_lru);
125 btp->bt_lru_nr--;
126 }
127 spin_unlock(&btp->bt_lru_lock);
128}
129
130/*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138void
139xfs_buf_stale(
140 struct xfs_buf *bp)
141{
43ff2122
CH
142 ASSERT(xfs_buf_islocked(bp));
143
430cbeb8 144 bp->b_flags |= XBF_STALE;
43ff2122
CH
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
430cbeb8
DC
153 atomic_set(&(bp)->b_lru_ref, 0);
154 if (!list_empty(&bp->b_lru)) {
155 struct xfs_buftarg *btp = bp->b_target;
156
157 spin_lock(&btp->bt_lru_lock);
6fb8a90a
CM
158 if (!list_empty(&bp->b_lru) &&
159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
430cbeb8
DC
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
163 }
164 spin_unlock(&btp->bt_lru_lock);
165 }
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
167}
1da177e4 168
3e85c868
DC
169static int
170xfs_buf_get_maps(
171 struct xfs_buf *bp,
172 int map_count)
173{
174 ASSERT(bp->b_maps == NULL);
175 bp->b_map_count = map_count;
176
177 if (map_count == 1) {
f4b42421 178 bp->b_maps = &bp->__b_map;
3e85c868
DC
179 return 0;
180 }
181
182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 KM_NOFS);
184 if (!bp->b_maps)
185 return ENOMEM;
186 return 0;
187}
188
189/*
190 * Frees b_pages if it was allocated.
191 */
192static void
193xfs_buf_free_maps(
194 struct xfs_buf *bp)
195{
f4b42421 196 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
197 kmem_free(bp->b_maps);
198 bp->b_maps = NULL;
199 }
200}
201
4347b9d7 202struct xfs_buf *
3e85c868 203_xfs_buf_alloc(
4347b9d7 204 struct xfs_buftarg *target,
3e85c868
DC
205 struct xfs_buf_map *map,
206 int nmaps,
ce8e922c 207 xfs_buf_flags_t flags)
1da177e4 208{
4347b9d7 209 struct xfs_buf *bp;
3e85c868
DC
210 int error;
211 int i;
4347b9d7 212
aa5c158e 213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
214 if (unlikely(!bp))
215 return NULL;
216
1da177e4 217 /*
12bcb3f7
DC
218 * We don't want certain flags to appear in b_flags unless they are
219 * specifically set by later operations on the buffer.
1da177e4 220 */
611c9946 221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 222
ce8e922c 223 atomic_set(&bp->b_hold, 1);
430cbeb8 224 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 225 init_completion(&bp->b_iowait);
430cbeb8 226 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 227 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 228 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 229 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
230 XB_SET_OWNER(bp);
231 bp->b_target = target;
3e85c868 232 bp->b_flags = flags;
de1cbee4 233
1da177e4 234 /*
aa0e8833
DC
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
1da177e4
LT
237 * most cases but may be reset (e.g. XFS recovery).
238 */
3e85c868
DC
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252 bp->b_io_length = bp->b_length;
253
ce8e922c
NS
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
256
257 XFS_STATS_INC(xb_create);
0b1b213f 258 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
259
260 return bp;
1da177e4
LT
261}
262
263/*
ce8e922c
NS
264 * Allocate a page array capable of holding a specified number
265 * of pages, and point the page buf at it.
1da177e4
LT
266 */
267STATIC int
ce8e922c
NS
268_xfs_buf_get_pages(
269 xfs_buf_t *bp,
1da177e4 270 int page_count,
ce8e922c 271 xfs_buf_flags_t flags)
1da177e4
LT
272{
273 /* Make sure that we have a page list */
ce8e922c 274 if (bp->b_pages == NULL) {
ce8e922c
NS
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
1da177e4 278 } else {
ce8e922c 279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 280 page_count, KM_NOFS);
ce8e922c 281 if (bp->b_pages == NULL)
1da177e4
LT
282 return -ENOMEM;
283 }
ce8e922c 284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
285 }
286 return 0;
287}
288
289/*
ce8e922c 290 * Frees b_pages if it was allocated.
1da177e4
LT
291 */
292STATIC void
ce8e922c 293_xfs_buf_free_pages(
1da177e4
LT
294 xfs_buf_t *bp)
295{
ce8e922c 296 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 297 kmem_free(bp->b_pages);
3fc98b1a 298 bp->b_pages = NULL;
1da177e4
LT
299 }
300}
301
302/*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
ce8e922c 306 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
307 * hashed and refcounted buffers
308 */
309void
ce8e922c 310xfs_buf_free(
1da177e4
LT
311 xfs_buf_t *bp)
312{
0b1b213f 313 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 314
430cbeb8
DC
315 ASSERT(list_empty(&bp->b_lru));
316
0e6e847f 317 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
318 uint i;
319
73c77e2c 320 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
321 vm_unmap_ram(bp->b_addr - bp->b_offset,
322 bp->b_page_count);
1da177e4 323
948ecdb4
NS
324 for (i = 0; i < bp->b_page_count; i++) {
325 struct page *page = bp->b_pages[i];
326
0e6e847f 327 __free_page(page);
948ecdb4 328 }
0e6e847f
DC
329 } else if (bp->b_flags & _XBF_KMEM)
330 kmem_free(bp->b_addr);
3fc98b1a 331 _xfs_buf_free_pages(bp);
3e85c868 332 xfs_buf_free_maps(bp);
4347b9d7 333 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
334}
335
336/*
0e6e847f 337 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
338 */
339STATIC int
0e6e847f 340xfs_buf_allocate_memory(
1da177e4
LT
341 xfs_buf_t *bp,
342 uint flags)
343{
aa0e8833 344 size_t size;
1da177e4 345 size_t nbytes, offset;
ce8e922c 346 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 347 unsigned short page_count, i;
795cac72 348 xfs_off_t start, end;
1da177e4
LT
349 int error;
350
0e6e847f
DC
351 /*
352 * for buffers that are contained within a single page, just allocate
353 * the memory from the heap - there's no need for the complexity of
354 * page arrays to keep allocation down to order 0.
355 */
795cac72
DC
356 size = BBTOB(bp->b_length);
357 if (size < PAGE_SIZE) {
aa5c158e 358 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
359 if (!bp->b_addr) {
360 /* low memory - use alloc_page loop instead */
361 goto use_alloc_page;
362 }
363
795cac72 364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
365 ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 /* b_addr spans two pages - use alloc_page instead */
367 kmem_free(bp->b_addr);
368 bp->b_addr = NULL;
369 goto use_alloc_page;
370 }
371 bp->b_offset = offset_in_page(bp->b_addr);
372 bp->b_pages = bp->b_page_array;
373 bp->b_pages[0] = virt_to_page(bp->b_addr);
374 bp->b_page_count = 1;
611c9946 375 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
376 return 0;
377 }
378
379use_alloc_page:
f4b42421
MT
380 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
381 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 382 >> PAGE_SHIFT;
795cac72 383 page_count = end - start;
ce8e922c 384 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
385 if (unlikely(error))
386 return error;
1da177e4 387
ce8e922c 388 offset = bp->b_offset;
0e6e847f 389 bp->b_flags |= _XBF_PAGES;
1da177e4 390
ce8e922c 391 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
392 struct page *page;
393 uint retries = 0;
0e6e847f
DC
394retry:
395 page = alloc_page(gfp_mask);
1da177e4 396 if (unlikely(page == NULL)) {
ce8e922c
NS
397 if (flags & XBF_READ_AHEAD) {
398 bp->b_page_count = i;
0e6e847f
DC
399 error = ENOMEM;
400 goto out_free_pages;
1da177e4
LT
401 }
402
403 /*
404 * This could deadlock.
405 *
406 * But until all the XFS lowlevel code is revamped to
407 * handle buffer allocation failures we can't do much.
408 */
409 if (!(++retries % 100))
4f10700a
DC
410 xfs_err(NULL,
411 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 412 __func__, gfp_mask);
1da177e4 413
ce8e922c 414 XFS_STATS_INC(xb_page_retries);
8aa7e847 415 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
416 goto retry;
417 }
418
ce8e922c 419 XFS_STATS_INC(xb_page_found);
1da177e4 420
0e6e847f 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 422 size -= nbytes;
ce8e922c 423 bp->b_pages[i] = page;
1da177e4
LT
424 offset = 0;
425 }
0e6e847f 426 return 0;
1da177e4 427
0e6e847f
DC
428out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
1da177e4
LT
431 return error;
432}
433
434/*
25985edc 435 * Map buffer into kernel address-space if necessary.
1da177e4
LT
436 */
437STATIC int
ce8e922c 438_xfs_buf_map_pages(
1da177e4
LT
439 xfs_buf_t *bp,
440 uint flags)
441{
0e6e847f 442 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 443 if (bp->b_page_count == 1) {
0e6e847f 444 /* A single page buffer is always mappable */
ce8e922c 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
a19fb380
DC
449 int retried = 0;
450
451 do {
452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 -1, PAGE_KERNEL);
454 if (bp->b_addr)
455 break;
456 vm_unmap_aliases();
457 } while (retried++ <= 1);
458
459 if (!bp->b_addr)
1da177e4 460 return -ENOMEM;
ce8e922c 461 bp->b_addr += bp->b_offset;
1da177e4
LT
462 }
463
464 return 0;
465}
466
467/*
468 * Finding and Reading Buffers
469 */
470
471/*
ce8e922c 472 * Look up, and creates if absent, a lockable buffer for
1da177e4 473 * a given range of an inode. The buffer is returned
eabbaf11 474 * locked. No I/O is implied by this call.
1da177e4
LT
475 */
476xfs_buf_t *
ce8e922c 477_xfs_buf_find(
e70b73f8 478 struct xfs_buftarg *btp,
3e85c868
DC
479 struct xfs_buf_map *map,
480 int nmaps,
ce8e922c
NS
481 xfs_buf_flags_t flags,
482 xfs_buf_t *new_bp)
1da177e4 483{
e70b73f8 484 size_t numbytes;
74f75a0c
DC
485 struct xfs_perag *pag;
486 struct rb_node **rbp;
487 struct rb_node *parent;
488 xfs_buf_t *bp;
3e85c868
DC
489 xfs_daddr_t blkno = map[0].bm_bn;
490 int numblks = 0;
491 int i;
1da177e4 492
3e85c868
DC
493 for (i = 0; i < nmaps; i++)
494 numblks += map[i].bm_len;
e70b73f8 495 numbytes = BBTOB(numblks);
1da177e4
LT
496
497 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 498 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 499 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 500
74f75a0c
DC
501 /* get tree root */
502 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 503 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
504
505 /* walk tree */
506 spin_lock(&pag->pag_buf_lock);
507 rbp = &pag->pag_buf_tree.rb_node;
508 parent = NULL;
509 bp = NULL;
510 while (*rbp) {
511 parent = *rbp;
512 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
513
de1cbee4 514 if (blkno < bp->b_bn)
74f75a0c 515 rbp = &(*rbp)->rb_left;
de1cbee4 516 else if (blkno > bp->b_bn)
74f75a0c
DC
517 rbp = &(*rbp)->rb_right;
518 else {
519 /*
de1cbee4 520 * found a block number match. If the range doesn't
74f75a0c
DC
521 * match, the only way this is allowed is if the buffer
522 * in the cache is stale and the transaction that made
523 * it stale has not yet committed. i.e. we are
524 * reallocating a busy extent. Skip this buffer and
525 * continue searching to the right for an exact match.
526 */
4e94b71b 527 if (bp->b_length != numblks) {
74f75a0c
DC
528 ASSERT(bp->b_flags & XBF_STALE);
529 rbp = &(*rbp)->rb_right;
530 continue;
531 }
ce8e922c 532 atomic_inc(&bp->b_hold);
1da177e4
LT
533 goto found;
534 }
535 }
536
537 /* No match found */
ce8e922c 538 if (new_bp) {
74f75a0c
DC
539 rb_link_node(&new_bp->b_rbnode, parent, rbp);
540 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
541 /* the buffer keeps the perag reference until it is freed */
542 new_bp->b_pag = pag;
543 spin_unlock(&pag->pag_buf_lock);
1da177e4 544 } else {
ce8e922c 545 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
546 spin_unlock(&pag->pag_buf_lock);
547 xfs_perag_put(pag);
1da177e4 548 }
ce8e922c 549 return new_bp;
1da177e4
LT
550
551found:
74f75a0c
DC
552 spin_unlock(&pag->pag_buf_lock);
553 xfs_perag_put(pag);
1da177e4 554
0c842ad4
CH
555 if (!xfs_buf_trylock(bp)) {
556 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
557 xfs_buf_rele(bp);
558 XFS_STATS_INC(xb_busy_locked);
559 return NULL;
1da177e4 560 }
0c842ad4
CH
561 xfs_buf_lock(bp);
562 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
563 }
564
0e6e847f
DC
565 /*
566 * if the buffer is stale, clear all the external state associated with
567 * it. We need to keep flags such as how we allocated the buffer memory
568 * intact here.
569 */
ce8e922c
NS
570 if (bp->b_flags & XBF_STALE) {
571 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 572 ASSERT(bp->b_iodone == NULL);
611c9946 573 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 574 bp->b_ops = NULL;
2f926587 575 }
0b1b213f
CH
576
577 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
578 XFS_STATS_INC(xb_get_locked);
579 return bp;
1da177e4
LT
580}
581
582/*
3815832a
DC
583 * Assembles a buffer covering the specified range. The code is optimised for
584 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
585 * more hits than misses.
1da177e4 586 */
3815832a 587struct xfs_buf *
6dde2707
DC
588xfs_buf_get_map(
589 struct xfs_buftarg *target,
590 struct xfs_buf_map *map,
591 int nmaps,
ce8e922c 592 xfs_buf_flags_t flags)
1da177e4 593{
3815832a
DC
594 struct xfs_buf *bp;
595 struct xfs_buf *new_bp;
0e6e847f 596 int error = 0;
1da177e4 597
6dde2707 598 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
599 if (likely(bp))
600 goto found;
601
6dde2707 602 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 603 if (unlikely(!new_bp))
1da177e4
LT
604 return NULL;
605
fe2429b0
DC
606 error = xfs_buf_allocate_memory(new_bp, flags);
607 if (error) {
3e85c868 608 xfs_buf_free(new_bp);
fe2429b0
DC
609 return NULL;
610 }
611
6dde2707 612 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 613 if (!bp) {
fe2429b0 614 xfs_buf_free(new_bp);
3815832a
DC
615 return NULL;
616 }
617
fe2429b0
DC
618 if (bp != new_bp)
619 xfs_buf_free(new_bp);
1da177e4 620
3815832a 621found:
611c9946 622 if (!bp->b_addr) {
ce8e922c 623 error = _xfs_buf_map_pages(bp, flags);
1da177e4 624 if (unlikely(error)) {
4f10700a
DC
625 xfs_warn(target->bt_mount,
626 "%s: failed to map pages\n", __func__);
a8acad70
DC
627 xfs_buf_relse(bp);
628 return NULL;
1da177e4
LT
629 }
630 }
631
ce8e922c 632 XFS_STATS_INC(xb_get);
0b1b213f 633 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 634 return bp;
1da177e4
LT
635}
636
5d765b97
CH
637STATIC int
638_xfs_buf_read(
639 xfs_buf_t *bp,
640 xfs_buf_flags_t flags)
641{
43ff2122 642 ASSERT(!(flags & XBF_WRITE));
f4b42421 643 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 644
43ff2122 645 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 646 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 647
0e95f19a
DC
648 xfs_buf_iorequest(bp);
649 if (flags & XBF_ASYNC)
650 return 0;
ec53d1db 651 return xfs_buf_iowait(bp);
5d765b97
CH
652}
653
1da177e4 654xfs_buf_t *
6dde2707
DC
655xfs_buf_read_map(
656 struct xfs_buftarg *target,
657 struct xfs_buf_map *map,
658 int nmaps,
c3f8fc73 659 xfs_buf_flags_t flags,
1813dd64 660 const struct xfs_buf_ops *ops)
1da177e4 661{
6dde2707 662 struct xfs_buf *bp;
ce8e922c
NS
663
664 flags |= XBF_READ;
665
6dde2707 666 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 667 if (bp) {
0b1b213f
CH
668 trace_xfs_buf_read(bp, flags, _RET_IP_);
669
ce8e922c 670 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 671 XFS_STATS_INC(xb_get_read);
1813dd64 672 bp->b_ops = ops;
5d765b97 673 _xfs_buf_read(bp, flags);
ce8e922c 674 } else if (flags & XBF_ASYNC) {
1da177e4
LT
675 /*
676 * Read ahead call which is already satisfied,
677 * drop the buffer
678 */
a8acad70
DC
679 xfs_buf_relse(bp);
680 return NULL;
1da177e4 681 } else {
1da177e4 682 /* We do not want read in the flags */
ce8e922c 683 bp->b_flags &= ~XBF_READ;
1da177e4
LT
684 }
685 }
686
ce8e922c 687 return bp;
1da177e4
LT
688}
689
1da177e4 690/*
ce8e922c
NS
691 * If we are not low on memory then do the readahead in a deadlock
692 * safe manner.
1da177e4
LT
693 */
694void
6dde2707
DC
695xfs_buf_readahead_map(
696 struct xfs_buftarg *target,
697 struct xfs_buf_map *map,
c3f8fc73 698 int nmaps,
1813dd64 699 const struct xfs_buf_ops *ops)
1da177e4 700{
0e6e847f 701 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
702 return;
703
6dde2707 704 xfs_buf_read_map(target, map, nmaps,
1813dd64 705 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
706}
707
5adc94c2
DC
708/*
709 * Read an uncached buffer from disk. Allocates and returns a locked
710 * buffer containing the disk contents or nothing.
711 */
712struct xfs_buf *
713xfs_buf_read_uncached(
5adc94c2
DC
714 struct xfs_buftarg *target,
715 xfs_daddr_t daddr,
e70b73f8 716 size_t numblks,
c3f8fc73 717 int flags,
1813dd64 718 const struct xfs_buf_ops *ops)
5adc94c2 719{
eab4e633 720 struct xfs_buf *bp;
5adc94c2 721
e70b73f8 722 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
723 if (!bp)
724 return NULL;
725
726 /* set up the buffer for a read IO */
3e85c868
DC
727 ASSERT(bp->b_map_count == 1);
728 bp->b_bn = daddr;
729 bp->b_maps[0].bm_bn = daddr;
cbb7baab 730 bp->b_flags |= XBF_READ;
1813dd64 731 bp->b_ops = ops;
5adc94c2 732
e70b73f8 733 xfsbdstrat(target->bt_mount, bp);
eab4e633 734 xfs_buf_iowait(bp);
5adc94c2 735 return bp;
1da177e4
LT
736}
737
44396476
DC
738/*
739 * Return a buffer allocated as an empty buffer and associated to external
740 * memory via xfs_buf_associate_memory() back to it's empty state.
741 */
742void
743xfs_buf_set_empty(
744 struct xfs_buf *bp,
e70b73f8 745 size_t numblks)
44396476
DC
746{
747 if (bp->b_pages)
748 _xfs_buf_free_pages(bp);
749
750 bp->b_pages = NULL;
751 bp->b_page_count = 0;
752 bp->b_addr = NULL;
4e94b71b 753 bp->b_length = numblks;
aa0e8833 754 bp->b_io_length = numblks;
3e85c868
DC
755
756 ASSERT(bp->b_map_count == 1);
44396476 757 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
758 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
759 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
760}
761
1da177e4
LT
762static inline struct page *
763mem_to_page(
764 void *addr)
765{
9e2779fa 766 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
767 return virt_to_page(addr);
768 } else {
769 return vmalloc_to_page(addr);
770 }
771}
772
773int
ce8e922c
NS
774xfs_buf_associate_memory(
775 xfs_buf_t *bp,
1da177e4
LT
776 void *mem,
777 size_t len)
778{
779 int rval;
780 int i = 0;
d1afb678
LM
781 unsigned long pageaddr;
782 unsigned long offset;
783 size_t buflen;
1da177e4
LT
784 int page_count;
785
0e6e847f 786 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 787 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
788 buflen = PAGE_ALIGN(len + offset);
789 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
790
791 /* Free any previous set of page pointers */
ce8e922c
NS
792 if (bp->b_pages)
793 _xfs_buf_free_pages(bp);
1da177e4 794
ce8e922c
NS
795 bp->b_pages = NULL;
796 bp->b_addr = mem;
1da177e4 797
aa5c158e 798 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
799 if (rval)
800 return rval;
801
ce8e922c 802 bp->b_offset = offset;
d1afb678
LM
803
804 for (i = 0; i < bp->b_page_count; i++) {
805 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 806 pageaddr += PAGE_SIZE;
1da177e4 807 }
1da177e4 808
aa0e8833 809 bp->b_io_length = BTOBB(len);
4e94b71b 810 bp->b_length = BTOBB(buflen);
1da177e4
LT
811
812 return 0;
813}
814
815xfs_buf_t *
686865f7
DC
816xfs_buf_get_uncached(
817 struct xfs_buftarg *target,
e70b73f8 818 size_t numblks,
686865f7 819 int flags)
1da177e4 820{
e70b73f8 821 unsigned long page_count;
1fa40b01 822 int error, i;
3e85c868
DC
823 struct xfs_buf *bp;
824 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 825
3e85c868 826 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
827 if (unlikely(bp == NULL))
828 goto fail;
1da177e4 829
e70b73f8 830 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
831 error = _xfs_buf_get_pages(bp, page_count, 0);
832 if (error)
1da177e4
LT
833 goto fail_free_buf;
834
1fa40b01 835 for (i = 0; i < page_count; i++) {
686865f7 836 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
837 if (!bp->b_pages[i])
838 goto fail_free_mem;
1da177e4 839 }
1fa40b01 840 bp->b_flags |= _XBF_PAGES;
1da177e4 841
611c9946 842 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 843 if (unlikely(error)) {
4f10700a
DC
844 xfs_warn(target->bt_mount,
845 "%s: failed to map pages\n", __func__);
1da177e4 846 goto fail_free_mem;
1fa40b01 847 }
1da177e4 848
686865f7 849 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 850 return bp;
1fa40b01 851
1da177e4 852 fail_free_mem:
1fa40b01
CH
853 while (--i >= 0)
854 __free_page(bp->b_pages[i]);
ca165b88 855 _xfs_buf_free_pages(bp);
1da177e4 856 fail_free_buf:
3e85c868 857 xfs_buf_free_maps(bp);
4347b9d7 858 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
859 fail:
860 return NULL;
861}
862
863/*
1da177e4
LT
864 * Increment reference count on buffer, to hold the buffer concurrently
865 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
866 * Must hold the buffer already to call this function.
867 */
868void
ce8e922c
NS
869xfs_buf_hold(
870 xfs_buf_t *bp)
1da177e4 871{
0b1b213f 872 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 873 atomic_inc(&bp->b_hold);
1da177e4
LT
874}
875
876/*
ce8e922c
NS
877 * Releases a hold on the specified buffer. If the
878 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
879 */
880void
ce8e922c
NS
881xfs_buf_rele(
882 xfs_buf_t *bp)
1da177e4 883{
74f75a0c 884 struct xfs_perag *pag = bp->b_pag;
1da177e4 885
0b1b213f 886 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 887
74f75a0c 888 if (!pag) {
430cbeb8 889 ASSERT(list_empty(&bp->b_lru));
74f75a0c 890 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
891 if (atomic_dec_and_test(&bp->b_hold))
892 xfs_buf_free(bp);
893 return;
894 }
895
74f75a0c 896 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 897
3790689f 898 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 899 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 900 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
901 atomic_read(&bp->b_lru_ref)) {
902 xfs_buf_lru_add(bp);
903 spin_unlock(&pag->pag_buf_lock);
1da177e4 904 } else {
430cbeb8 905 xfs_buf_lru_del(bp);
43ff2122 906 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
907 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
908 spin_unlock(&pag->pag_buf_lock);
909 xfs_perag_put(pag);
ce8e922c 910 xfs_buf_free(bp);
1da177e4
LT
911 }
912 }
913}
914
915
916/*
0e6e847f 917 * Lock a buffer object, if it is not already locked.
90810b9e
DC
918 *
919 * If we come across a stale, pinned, locked buffer, we know that we are
920 * being asked to lock a buffer that has been reallocated. Because it is
921 * pinned, we know that the log has not been pushed to disk and hence it
922 * will still be locked. Rather than continuing to have trylock attempts
923 * fail until someone else pushes the log, push it ourselves before
924 * returning. This means that the xfsaild will not get stuck trying
925 * to push on stale inode buffers.
1da177e4
LT
926 */
927int
0c842ad4
CH
928xfs_buf_trylock(
929 struct xfs_buf *bp)
1da177e4
LT
930{
931 int locked;
932
ce8e922c 933 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 934 if (locked)
ce8e922c 935 XB_SET_OWNER(bp);
90810b9e
DC
936 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
937 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 938
0c842ad4
CH
939 trace_xfs_buf_trylock(bp, _RET_IP_);
940 return locked;
1da177e4 941}
1da177e4
LT
942
943/*
0e6e847f 944 * Lock a buffer object.
ed3b4d6c
DC
945 *
946 * If we come across a stale, pinned, locked buffer, we know that we
947 * are being asked to lock a buffer that has been reallocated. Because
948 * it is pinned, we know that the log has not been pushed to disk and
949 * hence it will still be locked. Rather than sleeping until someone
950 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 951 */
ce8e922c
NS
952void
953xfs_buf_lock(
0c842ad4 954 struct xfs_buf *bp)
1da177e4 955{
0b1b213f
CH
956 trace_xfs_buf_lock(bp, _RET_IP_);
957
ed3b4d6c 958 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 959 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
960 down(&bp->b_sema);
961 XB_SET_OWNER(bp);
0b1b213f
CH
962
963 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
964}
965
1da177e4 966void
ce8e922c 967xfs_buf_unlock(
0c842ad4 968 struct xfs_buf *bp)
1da177e4 969{
ce8e922c
NS
970 XB_CLEAR_OWNER(bp);
971 up(&bp->b_sema);
0b1b213f
CH
972
973 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
974}
975
ce8e922c
NS
976STATIC void
977xfs_buf_wait_unpin(
978 xfs_buf_t *bp)
1da177e4
LT
979{
980 DECLARE_WAITQUEUE (wait, current);
981
ce8e922c 982 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
983 return;
984
ce8e922c 985 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
986 for (;;) {
987 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 988 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 989 break;
7eaceacc 990 io_schedule();
1da177e4 991 }
ce8e922c 992 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
993 set_current_state(TASK_RUNNING);
994}
995
996/*
997 * Buffer Utility Routines
998 */
999
1da177e4 1000STATIC void
ce8e922c 1001xfs_buf_iodone_work(
c4028958 1002 struct work_struct *work)
1da177e4 1003{
1813dd64 1004 struct xfs_buf *bp =
c4028958 1005 container_of(work, xfs_buf_t, b_iodone_work);
1813dd64
DC
1006 bool read = !!(bp->b_flags & XBF_READ);
1007
1008 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1009 if (read && bp->b_ops)
1010 bp->b_ops->verify_read(bp);
1da177e4 1011
80f6c29d 1012 if (bp->b_iodone)
ce8e922c
NS
1013 (*(bp->b_iodone))(bp);
1014 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1015 xfs_buf_relse(bp);
1813dd64
DC
1016 else {
1017 ASSERT(read && bp->b_ops);
1018 complete(&bp->b_iowait);
1019 }
1da177e4
LT
1020}
1021
1022void
ce8e922c 1023xfs_buf_ioend(
1813dd64
DC
1024 struct xfs_buf *bp,
1025 int schedule)
1da177e4 1026{
1813dd64
DC
1027 bool read = !!(bp->b_flags & XBF_READ);
1028
0b1b213f
CH
1029 trace_xfs_buf_iodone(bp, _RET_IP_);
1030
ce8e922c
NS
1031 if (bp->b_error == 0)
1032 bp->b_flags |= XBF_DONE;
1da177e4 1033
1813dd64 1034 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1035 if (schedule) {
c4028958 1036 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1037 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1038 } else {
c4028958 1039 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1040 }
1041 } else {
1813dd64 1042 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
b4dd330b 1043 complete(&bp->b_iowait);
1da177e4
LT
1044 }
1045}
1046
1da177e4 1047void
ce8e922c
NS
1048xfs_buf_ioerror(
1049 xfs_buf_t *bp,
1050 int error)
1da177e4
LT
1051{
1052 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1053 bp->b_error = (unsigned short)error;
0b1b213f 1054 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1055}
1056
901796af
CH
1057void
1058xfs_buf_ioerror_alert(
1059 struct xfs_buf *bp,
1060 const char *func)
1061{
1062 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1063"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1064 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1065}
1066
4e23471a
CH
1067/*
1068 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1069 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1070 * so that the proper iodone callbacks get called.
1071 */
1072STATIC int
1073xfs_bioerror(
1074 xfs_buf_t *bp)
1075{
1076#ifdef XFSERRORDEBUG
1077 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1078#endif
1079
1080 /*
1081 * No need to wait until the buffer is unpinned, we aren't flushing it.
1082 */
5a52c2a5 1083 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1084
1085 /*
1a1a3e97 1086 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1087 */
1088 XFS_BUF_UNREAD(bp);
4e23471a 1089 XFS_BUF_UNDONE(bp);
c867cb61 1090 xfs_buf_stale(bp);
4e23471a 1091
1a1a3e97 1092 xfs_buf_ioend(bp, 0);
4e23471a
CH
1093
1094 return EIO;
1095}
1096
1097/*
1098 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1099 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1100 * This is meant for userdata errors; metadata bufs come with
1101 * iodone functions attached, so that we can track down errors.
1102 */
1103STATIC int
1104xfs_bioerror_relse(
1105 struct xfs_buf *bp)
1106{
ed43233b 1107 int64_t fl = bp->b_flags;
4e23471a
CH
1108 /*
1109 * No need to wait until the buffer is unpinned.
1110 * We aren't flushing it.
1111 *
1112 * chunkhold expects B_DONE to be set, whether
1113 * we actually finish the I/O or not. We don't want to
1114 * change that interface.
1115 */
1116 XFS_BUF_UNREAD(bp);
4e23471a 1117 XFS_BUF_DONE(bp);
c867cb61 1118 xfs_buf_stale(bp);
cb669ca5 1119 bp->b_iodone = NULL;
0cadda1c 1120 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1121 /*
1122 * Mark b_error and B_ERROR _both_.
1123 * Lot's of chunkcache code assumes that.
1124 * There's no reason to mark error for
1125 * ASYNC buffers.
1126 */
5a52c2a5 1127 xfs_buf_ioerror(bp, EIO);
5fde0326 1128 complete(&bp->b_iowait);
4e23471a
CH
1129 } else {
1130 xfs_buf_relse(bp);
1131 }
1132
1133 return EIO;
1134}
1135
a2dcf5df 1136STATIC int
4e23471a
CH
1137xfs_bdstrat_cb(
1138 struct xfs_buf *bp)
1139{
ebad861b 1140 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1141 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1142 /*
1143 * Metadata write that didn't get logged but
1144 * written delayed anyway. These aren't associated
1145 * with a transaction, and can be ignored.
1146 */
1147 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1148 return xfs_bioerror_relse(bp);
1149 else
1150 return xfs_bioerror(bp);
1151 }
1152
1153 xfs_buf_iorequest(bp);
1154 return 0;
1155}
1156
a2dcf5df
CH
1157int
1158xfs_bwrite(
1159 struct xfs_buf *bp)
1160{
1161 int error;
1162
1163 ASSERT(xfs_buf_islocked(bp));
1164
1165 bp->b_flags |= XBF_WRITE;
1166 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1167
1168 xfs_bdstrat_cb(bp);
1169
1170 error = xfs_buf_iowait(bp);
1171 if (error) {
1172 xfs_force_shutdown(bp->b_target->bt_mount,
1173 SHUTDOWN_META_IO_ERROR);
1174 }
1175 return error;
1176}
1177
4e23471a
CH
1178/*
1179 * Wrapper around bdstrat so that we can stop data from going to disk in case
1180 * we are shutting down the filesystem. Typically user data goes thru this
1181 * path; one of the exceptions is the superblock.
1182 */
1183void
1184xfsbdstrat(
1185 struct xfs_mount *mp,
1186 struct xfs_buf *bp)
1187{
1188 if (XFS_FORCED_SHUTDOWN(mp)) {
1189 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1190 xfs_bioerror_relse(bp);
1191 return;
1192 }
1193
1194 xfs_buf_iorequest(bp);
1195}
1196
b8f82a4a 1197STATIC void
ce8e922c
NS
1198_xfs_buf_ioend(
1199 xfs_buf_t *bp,
1da177e4
LT
1200 int schedule)
1201{
0e6e847f 1202 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1203 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1204}
1205
782e3b3b 1206STATIC void
ce8e922c 1207xfs_buf_bio_end_io(
1da177e4 1208 struct bio *bio,
1da177e4
LT
1209 int error)
1210{
ce8e922c 1211 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1212
37eb17e6
DC
1213 /*
1214 * don't overwrite existing errors - otherwise we can lose errors on
1215 * buffers that require multiple bios to complete.
1216 */
1217 if (!bp->b_error)
1218 xfs_buf_ioerror(bp, -error);
1da177e4 1219
37eb17e6 1220 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1221 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1222
ce8e922c 1223 _xfs_buf_ioend(bp, 1);
1da177e4 1224 bio_put(bio);
1da177e4
LT
1225}
1226
3e85c868
DC
1227static void
1228xfs_buf_ioapply_map(
1229 struct xfs_buf *bp,
1230 int map,
1231 int *buf_offset,
1232 int *count,
1233 int rw)
1da177e4 1234{
3e85c868
DC
1235 int page_index;
1236 int total_nr_pages = bp->b_page_count;
1237 int nr_pages;
1238 struct bio *bio;
1239 sector_t sector = bp->b_maps[map].bm_bn;
1240 int size;
1241 int offset;
1da177e4 1242
ce8e922c 1243 total_nr_pages = bp->b_page_count;
1da177e4 1244
3e85c868
DC
1245 /* skip the pages in the buffer before the start offset */
1246 page_index = 0;
1247 offset = *buf_offset;
1248 while (offset >= PAGE_SIZE) {
1249 page_index++;
1250 offset -= PAGE_SIZE;
f538d4da
CH
1251 }
1252
3e85c868
DC
1253 /*
1254 * Limit the IO size to the length of the current vector, and update the
1255 * remaining IO count for the next time around.
1256 */
1257 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1258 *count -= size;
1259 *buf_offset += size;
34951f5c 1260
1da177e4 1261next_chunk:
ce8e922c 1262 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1263 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1264 if (nr_pages > total_nr_pages)
1265 nr_pages = total_nr_pages;
1266
1267 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1268 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1269 bio->bi_sector = sector;
ce8e922c
NS
1270 bio->bi_end_io = xfs_buf_bio_end_io;
1271 bio->bi_private = bp;
1da177e4 1272
0e6e847f 1273
3e85c868 1274 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1275 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1276
1277 if (nbytes > size)
1278 nbytes = size;
1279
3e85c868
DC
1280 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1281 offset);
ce8e922c 1282 if (rbytes < nbytes)
1da177e4
LT
1283 break;
1284
1285 offset = 0;
aa0e8833 1286 sector += BTOBB(nbytes);
1da177e4
LT
1287 size -= nbytes;
1288 total_nr_pages--;
1289 }
1290
1da177e4 1291 if (likely(bio->bi_size)) {
73c77e2c
JB
1292 if (xfs_buf_is_vmapped(bp)) {
1293 flush_kernel_vmap_range(bp->b_addr,
1294 xfs_buf_vmap_len(bp));
1295 }
1da177e4
LT
1296 submit_bio(rw, bio);
1297 if (size)
1298 goto next_chunk;
1299 } else {
37eb17e6
DC
1300 /*
1301 * This is guaranteed not to be the last io reference count
1302 * because the caller (xfs_buf_iorequest) holds a count itself.
1303 */
1304 atomic_dec(&bp->b_io_remaining);
ce8e922c 1305 xfs_buf_ioerror(bp, EIO);
ec53d1db 1306 bio_put(bio);
1da177e4 1307 }
3e85c868
DC
1308
1309}
1310
1311STATIC void
1312_xfs_buf_ioapply(
1313 struct xfs_buf *bp)
1314{
1315 struct blk_plug plug;
1316 int rw;
1317 int offset;
1318 int size;
1319 int i;
1320
1321 if (bp->b_flags & XBF_WRITE) {
1322 if (bp->b_flags & XBF_SYNCIO)
1323 rw = WRITE_SYNC;
1324 else
1325 rw = WRITE;
1326 if (bp->b_flags & XBF_FUA)
1327 rw |= REQ_FUA;
1328 if (bp->b_flags & XBF_FLUSH)
1329 rw |= REQ_FLUSH;
1813dd64
DC
1330
1331 /*
1332 * Run the write verifier callback function if it exists. If
1333 * this function fails it will mark the buffer with an error and
1334 * the IO should not be dispatched.
1335 */
1336 if (bp->b_ops) {
1337 bp->b_ops->verify_write(bp);
1338 if (bp->b_error) {
1339 xfs_force_shutdown(bp->b_target->bt_mount,
1340 SHUTDOWN_CORRUPT_INCORE);
1341 return;
1342 }
1343 }
3e85c868
DC
1344 } else if (bp->b_flags & XBF_READ_AHEAD) {
1345 rw = READA;
1346 } else {
1347 rw = READ;
1348 }
1349
1350 /* we only use the buffer cache for meta-data */
1351 rw |= REQ_META;
1352
1353 /*
1354 * Walk all the vectors issuing IO on them. Set up the initial offset
1355 * into the buffer and the desired IO size before we start -
1356 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1357 * subsequent call.
1358 */
1359 offset = bp->b_offset;
1360 size = BBTOB(bp->b_io_length);
1361 blk_start_plug(&plug);
1362 for (i = 0; i < bp->b_map_count; i++) {
1363 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1364 if (bp->b_error)
1365 break;
1366 if (size <= 0)
1367 break; /* all done */
1368 }
1369 blk_finish_plug(&plug);
1da177e4
LT
1370}
1371
0e95f19a 1372void
ce8e922c
NS
1373xfs_buf_iorequest(
1374 xfs_buf_t *bp)
1da177e4 1375{
0b1b213f 1376 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1377
43ff2122 1378 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1379
375ec69d 1380 if (bp->b_flags & XBF_WRITE)
ce8e922c 1381 xfs_buf_wait_unpin(bp);
ce8e922c 1382 xfs_buf_hold(bp);
1da177e4
LT
1383
1384 /* Set the count to 1 initially, this will stop an I/O
1385 * completion callout which happens before we have started
ce8e922c 1386 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1387 */
ce8e922c
NS
1388 atomic_set(&bp->b_io_remaining, 1);
1389 _xfs_buf_ioapply(bp);
08023d6d 1390 _xfs_buf_ioend(bp, 1);
1da177e4 1391
ce8e922c 1392 xfs_buf_rele(bp);
1da177e4
LT
1393}
1394
1395/*
0e95f19a
DC
1396 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1397 * no I/O is pending or there is already a pending error on the buffer. It
1398 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1399 */
1400int
ce8e922c
NS
1401xfs_buf_iowait(
1402 xfs_buf_t *bp)
1da177e4 1403{
0b1b213f
CH
1404 trace_xfs_buf_iowait(bp, _RET_IP_);
1405
0e95f19a
DC
1406 if (!bp->b_error)
1407 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1408
1409 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1410 return bp->b_error;
1da177e4
LT
1411}
1412
ce8e922c
NS
1413xfs_caddr_t
1414xfs_buf_offset(
1415 xfs_buf_t *bp,
1da177e4
LT
1416 size_t offset)
1417{
1418 struct page *page;
1419
611c9946 1420 if (bp->b_addr)
62926044 1421 return bp->b_addr + offset;
1da177e4 1422
ce8e922c 1423 offset += bp->b_offset;
0e6e847f
DC
1424 page = bp->b_pages[offset >> PAGE_SHIFT];
1425 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1426}
1427
1428/*
1da177e4
LT
1429 * Move data into or out of a buffer.
1430 */
1431void
ce8e922c
NS
1432xfs_buf_iomove(
1433 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1434 size_t boff, /* starting buffer offset */
1435 size_t bsize, /* length to copy */
b9c48649 1436 void *data, /* data address */
ce8e922c 1437 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1438{
795cac72 1439 size_t bend;
1da177e4
LT
1440
1441 bend = boff + bsize;
1442 while (boff < bend) {
795cac72
DC
1443 struct page *page;
1444 int page_index, page_offset, csize;
1445
1446 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1447 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1448 page = bp->b_pages[page_index];
1449 csize = min_t(size_t, PAGE_SIZE - page_offset,
1450 BBTOB(bp->b_io_length) - boff);
1da177e4 1451
795cac72 1452 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1453
1454 switch (mode) {
ce8e922c 1455 case XBRW_ZERO:
795cac72 1456 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1457 break;
ce8e922c 1458 case XBRW_READ:
795cac72 1459 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1460 break;
ce8e922c 1461 case XBRW_WRITE:
795cac72 1462 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1463 }
1464
1465 boff += csize;
1466 data += csize;
1467 }
1468}
1469
1470/*
ce8e922c 1471 * Handling of buffer targets (buftargs).
1da177e4
LT
1472 */
1473
1474/*
430cbeb8
DC
1475 * Wait for any bufs with callbacks that have been submitted but have not yet
1476 * returned. These buffers will have an elevated hold count, so wait on those
1477 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1478 */
1479void
1480xfs_wait_buftarg(
74f75a0c 1481 struct xfs_buftarg *btp)
1da177e4 1482{
430cbeb8
DC
1483 struct xfs_buf *bp;
1484
1485restart:
1486 spin_lock(&btp->bt_lru_lock);
1487 while (!list_empty(&btp->bt_lru)) {
1488 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1489 if (atomic_read(&bp->b_hold) > 1) {
1490 spin_unlock(&btp->bt_lru_lock);
26af6552 1491 delay(100);
430cbeb8 1492 goto restart;
1da177e4 1493 }
430cbeb8 1494 /*
90802ed9 1495 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1496 * ignored in xfs_buf_rele().
1497 */
1498 atomic_set(&bp->b_lru_ref, 0);
1499 spin_unlock(&btp->bt_lru_lock);
1500 xfs_buf_rele(bp);
1501 spin_lock(&btp->bt_lru_lock);
1da177e4 1502 }
430cbeb8 1503 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1504}
1505
ff57ab21
DC
1506int
1507xfs_buftarg_shrink(
1508 struct shrinker *shrink,
1495f230 1509 struct shrink_control *sc)
a6867a68 1510{
ff57ab21
DC
1511 struct xfs_buftarg *btp = container_of(shrink,
1512 struct xfs_buftarg, bt_shrinker);
430cbeb8 1513 struct xfs_buf *bp;
1495f230 1514 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1515 LIST_HEAD(dispose);
1516
1517 if (!nr_to_scan)
1518 return btp->bt_lru_nr;
1519
1520 spin_lock(&btp->bt_lru_lock);
1521 while (!list_empty(&btp->bt_lru)) {
1522 if (nr_to_scan-- <= 0)
1523 break;
1524
1525 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1526
1527 /*
1528 * Decrement the b_lru_ref count unless the value is already
1529 * zero. If the value is already zero, we need to reclaim the
1530 * buffer, otherwise it gets another trip through the LRU.
1531 */
1532 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1533 list_move_tail(&bp->b_lru, &btp->bt_lru);
1534 continue;
1535 }
1536
1537 /*
1538 * remove the buffer from the LRU now to avoid needing another
1539 * lock round trip inside xfs_buf_rele().
1540 */
1541 list_move(&bp->b_lru, &dispose);
1542 btp->bt_lru_nr--;
6fb8a90a 1543 bp->b_lru_flags |= _XBF_LRU_DISPOSE;
ff57ab21 1544 }
430cbeb8
DC
1545 spin_unlock(&btp->bt_lru_lock);
1546
1547 while (!list_empty(&dispose)) {
1548 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1549 list_del_init(&bp->b_lru);
1550 xfs_buf_rele(bp);
1551 }
1552
1553 return btp->bt_lru_nr;
a6867a68
DC
1554}
1555
1da177e4
LT
1556void
1557xfs_free_buftarg(
b7963133
CH
1558 struct xfs_mount *mp,
1559 struct xfs_buftarg *btp)
1da177e4 1560{
ff57ab21
DC
1561 unregister_shrinker(&btp->bt_shrinker);
1562
b7963133
CH
1563 if (mp->m_flags & XFS_MOUNT_BARRIER)
1564 xfs_blkdev_issue_flush(btp);
a6867a68 1565
f0e2d93c 1566 kmem_free(btp);
1da177e4
LT
1567}
1568
1da177e4
LT
1569STATIC int
1570xfs_setsize_buftarg_flags(
1571 xfs_buftarg_t *btp,
1572 unsigned int blocksize,
1573 unsigned int sectorsize,
1574 int verbose)
1575{
ce8e922c
NS
1576 btp->bt_bsize = blocksize;
1577 btp->bt_sshift = ffs(sectorsize) - 1;
1578 btp->bt_smask = sectorsize - 1;
1da177e4 1579
ce8e922c 1580 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1581 char name[BDEVNAME_SIZE];
1582
1583 bdevname(btp->bt_bdev, name);
1584
4f10700a
DC
1585 xfs_warn(btp->bt_mount,
1586 "Cannot set_blocksize to %u on device %s\n",
02b102df 1587 sectorsize, name);
1da177e4
LT
1588 return EINVAL;
1589 }
1590
1da177e4
LT
1591 return 0;
1592}
1593
1594/*
ce8e922c
NS
1595 * When allocating the initial buffer target we have not yet
1596 * read in the superblock, so don't know what sized sectors
1597 * are being used is at this early stage. Play safe.
1598 */
1da177e4
LT
1599STATIC int
1600xfs_setsize_buftarg_early(
1601 xfs_buftarg_t *btp,
1602 struct block_device *bdev)
1603{
1604 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1605 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1606}
1607
1608int
1609xfs_setsize_buftarg(
1610 xfs_buftarg_t *btp,
1611 unsigned int blocksize,
1612 unsigned int sectorsize)
1613{
1614 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1615}
1616
1da177e4
LT
1617xfs_buftarg_t *
1618xfs_alloc_buftarg(
ebad861b 1619 struct xfs_mount *mp,
1da177e4 1620 struct block_device *bdev,
e2a07812
JE
1621 int external,
1622 const char *fsname)
1da177e4
LT
1623{
1624 xfs_buftarg_t *btp;
1625
1626 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1627
ebad861b 1628 btp->bt_mount = mp;
ce8e922c
NS
1629 btp->bt_dev = bdev->bd_dev;
1630 btp->bt_bdev = bdev;
0e6e847f
DC
1631 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1632 if (!btp->bt_bdi)
1633 goto error;
1634
430cbeb8
DC
1635 INIT_LIST_HEAD(&btp->bt_lru);
1636 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1637 if (xfs_setsize_buftarg_early(btp, bdev))
1638 goto error;
ff57ab21
DC
1639 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1640 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1641 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1642 return btp;
1643
1644error:
f0e2d93c 1645 kmem_free(btp);
1da177e4
LT
1646 return NULL;
1647}
1648
1da177e4 1649/*
43ff2122
CH
1650 * Add a buffer to the delayed write list.
1651 *
1652 * This queues a buffer for writeout if it hasn't already been. Note that
1653 * neither this routine nor the buffer list submission functions perform
1654 * any internal synchronization. It is expected that the lists are thread-local
1655 * to the callers.
1656 *
1657 * Returns true if we queued up the buffer, or false if it already had
1658 * been on the buffer list.
1da177e4 1659 */
43ff2122 1660bool
ce8e922c 1661xfs_buf_delwri_queue(
43ff2122
CH
1662 struct xfs_buf *bp,
1663 struct list_head *list)
1da177e4 1664{
43ff2122 1665 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1666 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1667
43ff2122
CH
1668 /*
1669 * If the buffer is already marked delwri it already is queued up
1670 * by someone else for imediate writeout. Just ignore it in that
1671 * case.
1672 */
1673 if (bp->b_flags & _XBF_DELWRI_Q) {
1674 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1675 return false;
1da177e4 1676 }
1da177e4 1677
43ff2122 1678 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1679
1680 /*
43ff2122
CH
1681 * If a buffer gets written out synchronously or marked stale while it
1682 * is on a delwri list we lazily remove it. To do this, the other party
1683 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1684 * It remains referenced and on the list. In a rare corner case it
1685 * might get readded to a delwri list after the synchronous writeout, in
1686 * which case we need just need to re-add the flag here.
d808f617 1687 */
43ff2122
CH
1688 bp->b_flags |= _XBF_DELWRI_Q;
1689 if (list_empty(&bp->b_list)) {
1690 atomic_inc(&bp->b_hold);
1691 list_add_tail(&bp->b_list, list);
585e6d88 1692 }
585e6d88 1693
43ff2122 1694 return true;
585e6d88
DC
1695}
1696
089716aa
DC
1697/*
1698 * Compare function is more complex than it needs to be because
1699 * the return value is only 32 bits and we are doing comparisons
1700 * on 64 bit values
1701 */
1702static int
1703xfs_buf_cmp(
1704 void *priv,
1705 struct list_head *a,
1706 struct list_head *b)
1707{
1708 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1709 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1710 xfs_daddr_t diff;
1711
f4b42421 1712 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1713 if (diff < 0)
1714 return -1;
1715 if (diff > 0)
1716 return 1;
1717 return 0;
1718}
1719
43ff2122
CH
1720static int
1721__xfs_buf_delwri_submit(
1722 struct list_head *buffer_list,
1723 struct list_head *io_list,
1724 bool wait)
1da177e4 1725{
43ff2122
CH
1726 struct blk_plug plug;
1727 struct xfs_buf *bp, *n;
1728 int pinned = 0;
1729
1730 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1731 if (!wait) {
1732 if (xfs_buf_ispinned(bp)) {
1733 pinned++;
1734 continue;
1735 }
1736 if (!xfs_buf_trylock(bp))
1737 continue;
1738 } else {
1739 xfs_buf_lock(bp);
1740 }
978c7b2f 1741
43ff2122
CH
1742 /*
1743 * Someone else might have written the buffer synchronously or
1744 * marked it stale in the meantime. In that case only the
1745 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1746 * reference and remove it from the list here.
1747 */
1748 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1749 list_del_init(&bp->b_list);
1750 xfs_buf_relse(bp);
1751 continue;
1752 }
c9c12971 1753
43ff2122
CH
1754 list_move_tail(&bp->b_list, io_list);
1755 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1756 }
1da177e4 1757
43ff2122 1758 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1759
43ff2122
CH
1760 blk_start_plug(&plug);
1761 list_for_each_entry_safe(bp, n, io_list, b_list) {
1762 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1763 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1764
43ff2122
CH
1765 if (!wait) {
1766 bp->b_flags |= XBF_ASYNC;
ce8e922c 1767 list_del_init(&bp->b_list);
1da177e4 1768 }
43ff2122
CH
1769 xfs_bdstrat_cb(bp);
1770 }
1771 blk_finish_plug(&plug);
1da177e4 1772
43ff2122 1773 return pinned;
1da177e4
LT
1774}
1775
1776/*
43ff2122
CH
1777 * Write out a buffer list asynchronously.
1778 *
1779 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1780 * out and not wait for I/O completion on any of the buffers. This interface
1781 * is only safely useable for callers that can track I/O completion by higher
1782 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1783 * function.
1da177e4
LT
1784 */
1785int
43ff2122
CH
1786xfs_buf_delwri_submit_nowait(
1787 struct list_head *buffer_list)
1da177e4 1788{
43ff2122
CH
1789 LIST_HEAD (io_list);
1790 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1791}
1da177e4 1792
43ff2122
CH
1793/*
1794 * Write out a buffer list synchronously.
1795 *
1796 * This will take the @buffer_list, write all buffers out and wait for I/O
1797 * completion on all of the buffers. @buffer_list is consumed by the function,
1798 * so callers must have some other way of tracking buffers if they require such
1799 * functionality.
1800 */
1801int
1802xfs_buf_delwri_submit(
1803 struct list_head *buffer_list)
1804{
1805 LIST_HEAD (io_list);
1806 int error = 0, error2;
1807 struct xfs_buf *bp;
1da177e4 1808
43ff2122 1809 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1810
43ff2122
CH
1811 /* Wait for IO to complete. */
1812 while (!list_empty(&io_list)) {
1813 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1814
089716aa 1815 list_del_init(&bp->b_list);
43ff2122
CH
1816 error2 = xfs_buf_iowait(bp);
1817 xfs_buf_relse(bp);
1818 if (!error)
1819 error = error2;
1da177e4
LT
1820 }
1821
43ff2122 1822 return error;
1da177e4
LT
1823}
1824
04d8b284 1825int __init
ce8e922c 1826xfs_buf_init(void)
1da177e4 1827{
8758280f
NS
1828 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1829 KM_ZONE_HWALIGN, NULL);
ce8e922c 1830 if (!xfs_buf_zone)
0b1b213f 1831 goto out;
04d8b284 1832
51749e47 1833 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1834 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1835 if (!xfslogd_workqueue)
04d8b284 1836 goto out_free_buf_zone;
1da177e4 1837
23ea4032 1838 return 0;
1da177e4 1839
23ea4032 1840 out_free_buf_zone:
ce8e922c 1841 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1842 out:
8758280f 1843 return -ENOMEM;
1da177e4
LT
1844}
1845
1da177e4 1846void
ce8e922c 1847xfs_buf_terminate(void)
1da177e4 1848{
04d8b284 1849 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1850 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1851}