Merge tag 'pwm/for-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[linux-block.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
6f643c57 8#include <linux/dax.h>
1da177e4 9
5467b34b 10#include "xfs_shared.h"
4fb6e8ad 11#include "xfs_format.h"
239880ef 12#include "xfs_log_format.h"
7fd36c44 13#include "xfs_trans_resv.h"
b7963133 14#include "xfs_mount.h"
0b1b213f 15#include "xfs_trace.h"
239880ef 16#include "xfs_log.h"
9fe5c77c 17#include "xfs_log_recover.h"
01728b44 18#include "xfs_log_priv.h"
f593bf14
DC
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
e9e899a2 21#include "xfs_errortag.h"
7561d27e 22#include "xfs_error.h"
9bbafc71 23#include "xfs_ag.h"
b7963133 24
231f91ab 25struct kmem_cache *xfs_buf_cache;
23ea4032 26
37fd1678
DC
27/*
28 * Locking orders
29 *
30 * xfs_buf_ioacct_inc:
31 * xfs_buf_ioacct_dec:
32 * b_sema (caller holds)
33 * b_lock
34 *
35 * xfs_buf_stale:
36 * b_sema (caller holds)
37 * b_lock
38 * lru_lock
39 *
40 * xfs_buf_rele:
41 * b_lock
42 * pag_buf_lock
43 * lru_lock
44 *
10fb9ac1 45 * xfs_buftarg_drain_rele
37fd1678
DC
46 * lru_lock
47 * b_lock (trylock due to inversion)
48 *
49 * xfs_buftarg_isolate
50 * lru_lock
51 * b_lock (trylock due to inversion)
52 */
1da177e4 53
26e32875
CH
54static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55
56static inline int
57xfs_buf_submit(
58 struct xfs_buf *bp)
59{
60 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61}
62
73c77e2c
JB
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
611c9946
DC
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 73 */
611c9946 74 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
54cd3aa6 81 return (bp->b_page_count * PAGE_SIZE);
73c77e2c
JB
82}
83
9c7504aa
BF
84/*
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
10fb9ac1 90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
9c7504aa
BF
91 * in-flight buffers.
92 *
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
96 */
97static inline void
98xfs_buf_ioacct_inc(
99 struct xfs_buf *bp)
100{
63db7c81 101 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
102 return;
103
104 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
105 spin_lock(&bp->b_lock);
106 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 percpu_counter_inc(&bp->b_target->bt_io_count);
109 }
110 spin_unlock(&bp->b_lock);
9c7504aa
BF
111}
112
113/*
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
116 */
117static inline void
63db7c81 118__xfs_buf_ioacct_dec(
9c7504aa
BF
119 struct xfs_buf *bp)
120{
95989c46 121 lockdep_assert_held(&bp->b_lock);
9c7504aa 122
63db7c81
BF
123 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 percpu_counter_dec(&bp->b_target->bt_io_count);
126 }
127}
128
129static inline void
130xfs_buf_ioacct_dec(
131 struct xfs_buf *bp)
132{
133 spin_lock(&bp->b_lock);
134 __xfs_buf_ioacct_dec(bp);
135 spin_unlock(&bp->b_lock);
9c7504aa
BF
136}
137
430cbeb8
DC
138/*
139 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140 * b_lru_ref count so that the buffer is freed immediately when the buffer
141 * reference count falls to zero. If the buffer is already on the LRU, we need
142 * to remove the reference that LRU holds on the buffer.
143 *
144 * This prevents build-up of stale buffers on the LRU.
145 */
146void
147xfs_buf_stale(
148 struct xfs_buf *bp)
149{
43ff2122
CH
150 ASSERT(xfs_buf_islocked(bp));
151
430cbeb8 152 bp->b_flags |= XBF_STALE;
43ff2122
CH
153
154 /*
155 * Clear the delwri status so that a delwri queue walker will not
156 * flush this buffer to disk now that it is stale. The delwri queue has
157 * a reference to the buffer, so this is safe to do.
158 */
159 bp->b_flags &= ~_XBF_DELWRI_Q;
160
9c7504aa
BF
161 /*
162 * Once the buffer is marked stale and unlocked, a subsequent lookup
163 * could reset b_flags. There is no guarantee that the buffer is
164 * unaccounted (released to LRU) before that occurs. Drop in-flight
165 * status now to preserve accounting consistency.
166 */
a4082357 167 spin_lock(&bp->b_lock);
63db7c81
BF
168 __xfs_buf_ioacct_dec(bp);
169
a4082357
DC
170 atomic_set(&bp->b_lru_ref, 0);
171 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
172 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
173 atomic_dec(&bp->b_hold);
174
430cbeb8 175 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 176 spin_unlock(&bp->b_lock);
430cbeb8 177}
1da177e4 178
3e85c868
DC
179static int
180xfs_buf_get_maps(
181 struct xfs_buf *bp,
182 int map_count)
183{
184 ASSERT(bp->b_maps == NULL);
185 bp->b_map_count = map_count;
186
187 if (map_count == 1) {
f4b42421 188 bp->b_maps = &bp->__b_map;
3e85c868
DC
189 return 0;
190 }
191
192 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
193 KM_NOFS);
194 if (!bp->b_maps)
2451337d 195 return -ENOMEM;
3e85c868
DC
196 return 0;
197}
198
199/*
200 * Frees b_pages if it was allocated.
201 */
202static void
203xfs_buf_free_maps(
204 struct xfs_buf *bp)
205{
f4b42421 206 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
207 kmem_free(bp->b_maps);
208 bp->b_maps = NULL;
209 }
210}
211
32dff5e5 212static int
3e85c868 213_xfs_buf_alloc(
4347b9d7 214 struct xfs_buftarg *target,
3e85c868
DC
215 struct xfs_buf_map *map,
216 int nmaps,
32dff5e5
DW
217 xfs_buf_flags_t flags,
218 struct xfs_buf **bpp)
1da177e4 219{
4347b9d7 220 struct xfs_buf *bp;
3e85c868
DC
221 int error;
222 int i;
4347b9d7 223
32dff5e5 224 *bpp = NULL;
182696fb 225 bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
4347b9d7 226
1da177e4 227 /*
12bcb3f7
DC
228 * We don't want certain flags to appear in b_flags unless they are
229 * specifically set by later operations on the buffer.
1da177e4 230 */
611c9946 231 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 232
ce8e922c 233 atomic_set(&bp->b_hold, 1);
430cbeb8 234 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 235 init_completion(&bp->b_iowait);
430cbeb8 236 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 237 INIT_LIST_HEAD(&bp->b_list);
643c8c05 238 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 239 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 240 spin_lock_init(&bp->b_lock);
ce8e922c 241 bp->b_target = target;
dbd329f1 242 bp->b_mount = target->bt_mount;
3e85c868 243 bp->b_flags = flags;
de1cbee4 244
1da177e4 245 /*
aa0e8833
DC
246 * Set length and io_length to the same value initially.
247 * I/O routines should use io_length, which will be the same in
1da177e4
LT
248 * most cases but may be reset (e.g. XFS recovery).
249 */
3e85c868
DC
250 error = xfs_buf_get_maps(bp, nmaps);
251 if (error) {
182696fb 252 kmem_cache_free(xfs_buf_cache, bp);
32dff5e5 253 return error;
3e85c868
DC
254 }
255
4c7f65ae 256 bp->b_rhash_key = map[0].bm_bn;
3e85c868
DC
257 bp->b_length = 0;
258 for (i = 0; i < nmaps; i++) {
259 bp->b_maps[i].bm_bn = map[i].bm_bn;
260 bp->b_maps[i].bm_len = map[i].bm_len;
261 bp->b_length += map[i].bm_len;
262 }
3e85c868 263
ce8e922c
NS
264 atomic_set(&bp->b_pin_count, 0);
265 init_waitqueue_head(&bp->b_waiters);
266
dbd329f1 267 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 268 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7 269
32dff5e5
DW
270 *bpp = bp;
271 return 0;
1da177e4
LT
272}
273
e7d236a6
DC
274static void
275xfs_buf_free_pages(
e8222613 276 struct xfs_buf *bp)
1da177e4 277{
e7d236a6
DC
278 uint i;
279
280 ASSERT(bp->b_flags & _XBF_PAGES);
281
282 if (xfs_buf_is_vmapped(bp))
54cd3aa6 283 vm_unmap_ram(bp->b_addr, bp->b_page_count);
e7d236a6
DC
284
285 for (i = 0; i < bp->b_page_count; i++) {
286 if (bp->b_pages[i])
287 __free_page(bp->b_pages[i]);
288 }
c7b23b68 289 mm_account_reclaimed_pages(bp->b_page_count);
e7d236a6 290
02c51173 291 if (bp->b_pages != bp->b_page_array)
f0e2d93c 292 kmem_free(bp->b_pages);
02c51173 293 bp->b_pages = NULL;
e7d236a6 294 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
295}
296
298f3422
DC
297static void
298xfs_buf_free_callback(
299 struct callback_head *cb)
300{
301 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
302
303 xfs_buf_free_maps(bp);
304 kmem_cache_free(xfs_buf_cache, bp);
305}
306
25a40957 307static void
ce8e922c 308xfs_buf_free(
e8222613 309 struct xfs_buf *bp)
1da177e4 310{
0b1b213f 311 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 312
430cbeb8
DC
313 ASSERT(list_empty(&bp->b_lru));
314
e7d236a6
DC
315 if (bp->b_flags & _XBF_PAGES)
316 xfs_buf_free_pages(bp);
317 else if (bp->b_flags & _XBF_KMEM)
0e6e847f 318 kmem_free(bp->b_addr);
e7d236a6 319
298f3422 320 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
1da177e4
LT
321}
322
0a683794
DC
323static int
324xfs_buf_alloc_kmem(
325 struct xfs_buf *bp,
0a683794 326 xfs_buf_flags_t flags)
1da177e4 327{
0a683794 328 xfs_km_flags_t kmflag_mask = KM_NOFS;
8bcac744 329 size_t size = BBTOB(bp->b_length);
3219e8cf 330
0a683794
DC
331 /* Assure zeroed buffer for non-read cases. */
332 if (!(flags & XBF_READ))
3219e8cf 333 kmflag_mask |= KM_ZERO;
1da177e4 334
98fe2c3c 335 bp->b_addr = kmem_alloc(size, kmflag_mask);
0a683794
DC
336 if (!bp->b_addr)
337 return -ENOMEM;
0e6e847f 338
0a683794
DC
339 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
340 ((unsigned long)bp->b_addr & PAGE_MASK)) {
341 /* b_addr spans two pages - use alloc_page instead */
342 kmem_free(bp->b_addr);
343 bp->b_addr = NULL;
344 return -ENOMEM;
0e6e847f 345 }
0a683794
DC
346 bp->b_offset = offset_in_page(bp->b_addr);
347 bp->b_pages = bp->b_page_array;
348 bp->b_pages[0] = kmem_to_page(bp->b_addr);
349 bp->b_page_count = 1;
350 bp->b_flags |= _XBF_KMEM;
351 return 0;
352}
353
354static int
355xfs_buf_alloc_pages(
356 struct xfs_buf *bp,
0a683794
DC
357 xfs_buf_flags_t flags)
358{
289ae7b4 359 gfp_t gfp_mask = __GFP_NOWARN;
c9fa5630 360 long filled = 0;
0a683794 361
289ae7b4
DC
362 if (flags & XBF_READ_AHEAD)
363 gfp_mask |= __GFP_NORETRY;
364 else
365 gfp_mask |= GFP_NOFS;
366
02c51173 367 /* Make sure that we have a page list */
934d1076 368 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
02c51173
DC
369 if (bp->b_page_count <= XB_PAGES) {
370 bp->b_pages = bp->b_page_array;
371 } else {
372 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
373 gfp_mask);
374 if (!bp->b_pages)
375 return -ENOMEM;
376 }
377 bp->b_flags |= _XBF_PAGES;
378
0a683794
DC
379 /* Assure zeroed buffer for non-read cases. */
380 if (!(flags & XBF_READ))
381 gfp_mask |= __GFP_ZERO;
0e6e847f 382
c9fa5630
DC
383 /*
384 * Bulk filling of pages can take multiple calls. Not filling the entire
385 * array is not an allocation failure, so don't back off if we get at
386 * least one extra page.
387 */
388 for (;;) {
389 long last = filled;
390
391 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
392 bp->b_pages);
393 if (filled == bp->b_page_count) {
394 XFS_STATS_INC(bp->b_mount, xb_page_found);
395 break;
1da177e4
LT
396 }
397
c9fa5630
DC
398 if (filled != last)
399 continue;
400
401 if (flags & XBF_READ_AHEAD) {
e7d236a6
DC
402 xfs_buf_free_pages(bp);
403 return -ENOMEM;
c9fa5630 404 }
1da177e4 405
c9fa5630 406 XFS_STATS_INC(bp->b_mount, xb_page_retries);
4034247a 407 memalloc_retry_wait(gfp_mask);
1da177e4 408 }
0e6e847f 409 return 0;
1da177e4
LT
410}
411
412/*
25985edc 413 * Map buffer into kernel address-space if necessary.
1da177e4
LT
414 */
415STATIC int
ce8e922c 416_xfs_buf_map_pages(
e8222613 417 struct xfs_buf *bp,
b9b3fe15 418 xfs_buf_flags_t flags)
1da177e4 419{
0e6e847f 420 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 421 if (bp->b_page_count == 1) {
0e6e847f 422 /* A single page buffer is always mappable */
54cd3aa6 423 bp->b_addr = page_address(bp->b_pages[0]);
611c9946
DC
424 } else if (flags & XBF_UNMAPPED) {
425 bp->b_addr = NULL;
426 } else {
a19fb380 427 int retried = 0;
9ba1fb2c 428 unsigned nofs_flag;
ae687e58
DC
429
430 /*
cf085a1b 431 * vm_map_ram() will allocate auxiliary structures (e.g.
ae687e58
DC
432 * pagetables) with GFP_KERNEL, yet we are likely to be under
433 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 434 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
435 * memory reclaim re-entering the filesystem here and
436 * potentially deadlocking.
437 */
9ba1fb2c 438 nofs_flag = memalloc_nofs_save();
a19fb380
DC
439 do {
440 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
d4efd79a 441 -1);
a19fb380
DC
442 if (bp->b_addr)
443 break;
444 vm_unmap_aliases();
445 } while (retried++ <= 1);
9ba1fb2c 446 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
447
448 if (!bp->b_addr)
1da177e4 449 return -ENOMEM;
1da177e4
LT
450 }
451
452 return 0;
453}
454
455/*
456 * Finding and Reading Buffers
457 */
6031e73a
LS
458static int
459_xfs_buf_obj_cmp(
460 struct rhashtable_compare_arg *arg,
461 const void *obj)
462{
463 const struct xfs_buf_map *map = arg->key;
464 const struct xfs_buf *bp = obj;
465
466 /*
467 * The key hashing in the lookup path depends on the key being the
468 * first element of the compare_arg, make sure to assert this.
469 */
470 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
471
4c7f65ae 472 if (bp->b_rhash_key != map->bm_bn)
6031e73a
LS
473 return 1;
474
475 if (unlikely(bp->b_length != map->bm_len)) {
476 /*
477 * found a block number match. If the range doesn't
478 * match, the only way this is allowed is if the buffer
479 * in the cache is stale and the transaction that made
480 * it stale has not yet committed. i.e. we are
481 * reallocating a busy extent. Skip this buffer and
482 * continue searching for an exact match.
483 */
484 ASSERT(bp->b_flags & XBF_STALE);
485 return 1;
486 }
487 return 0;
488}
489
490static const struct rhashtable_params xfs_buf_hash_params = {
491 .min_size = 32, /* empty AGs have minimal footprint */
492 .nelem_hint = 16,
493 .key_len = sizeof(xfs_daddr_t),
4c7f65ae 494 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
6031e73a
LS
495 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
496 .automatic_shrinking = true,
497 .obj_cmpfn = _xfs_buf_obj_cmp,
498};
499
500int
501xfs_buf_hash_init(
502 struct xfs_perag *pag)
503{
504 spin_lock_init(&pag->pag_buf_lock);
505 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
506}
507
508void
509xfs_buf_hash_destroy(
510 struct xfs_perag *pag)
511{
512 rhashtable_destroy(&pag->pag_buf_hash);
513}
1da177e4 514
b027d4c9 515static int
de67dc57 516xfs_buf_map_verify(
e70b73f8 517 struct xfs_buftarg *btp,
de67dc57 518 struct xfs_buf_map *map)
1da177e4 519{
10616b80 520 xfs_daddr_t eofs;
1da177e4
LT
521
522 /* Check for IOs smaller than the sector size / not sector aligned */
de67dc57
DC
523 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
524 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 525
10616b80
DC
526 /*
527 * Corrupted block numbers can get through to here, unfortunately, so we
528 * have to check that the buffer falls within the filesystem bounds.
529 */
530 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
de67dc57 531 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
10616b80 532 xfs_alert(btp->bt_mount,
c219b015 533 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
de67dc57 534 __func__, map->bm_bn, eofs);
7bc0dc27 535 WARN_ON(1);
b027d4c9 536 return -EFSCORRUPTED;
10616b80 537 }
b027d4c9 538 return 0;
de67dc57 539}
1da177e4 540
de67dc57
DC
541static int
542xfs_buf_find_lock(
543 struct xfs_buf *bp,
544 xfs_buf_flags_t flags)
545{
d8d9bbb0
DC
546 if (flags & XBF_TRYLOCK) {
547 if (!xfs_buf_trylock(bp)) {
de67dc57 548 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
b027d4c9 549 return -EAGAIN;
1da177e4 550 }
d8d9bbb0 551 } else {
0c842ad4 552 xfs_buf_lock(bp);
de67dc57 553 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
1da177e4
LT
554 }
555
0e6e847f
DC
556 /*
557 * if the buffer is stale, clear all the external state associated with
558 * it. We need to keep flags such as how we allocated the buffer memory
559 * intact here.
560 */
ce8e922c
NS
561 if (bp->b_flags & XBF_STALE) {
562 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 563 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 564 bp->b_ops = NULL;
2f926587 565 }
b027d4c9 566 return 0;
1da177e4
LT
567}
568
34800080 569static inline int
de67dc57
DC
570xfs_buf_lookup(
571 struct xfs_perag *pag,
34800080
DC
572 struct xfs_buf_map *map,
573 xfs_buf_flags_t flags,
574 struct xfs_buf **bpp)
8925a3dc 575{
de67dc57 576 struct xfs_buf *bp;
b027d4c9 577 int error;
b027d4c9 578
298f3422 579 rcu_read_lock();
de67dc57 580 bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
298f3422
DC
581 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
582 rcu_read_unlock();
34800080
DC
583 return -ENOENT;
584 }
298f3422 585 rcu_read_unlock();
de67dc57 586
34800080
DC
587 error = xfs_buf_find_lock(bp, flags);
588 if (error) {
589 xfs_buf_rele(bp);
590 return error;
de67dc57
DC
591 }
592
34800080
DC
593 trace_xfs_buf_find(bp, flags, _RET_IP_);
594 *bpp = bp;
de67dc57 595 return 0;
8925a3dc
DC
596}
597
1da177e4 598/*
34800080
DC
599 * Insert the new_bp into the hash table. This consumes the perag reference
600 * taken for the lookup regardless of the result of the insert.
1da177e4 601 */
b027d4c9 602static int
34800080 603xfs_buf_find_insert(
e70b73f8 604 struct xfs_buftarg *btp,
34800080
DC
605 struct xfs_perag *pag,
606 struct xfs_buf_map *cmap,
6dde2707
DC
607 struct xfs_buf_map *map,
608 int nmaps,
3848b5f6
DW
609 xfs_buf_flags_t flags,
610 struct xfs_buf **bpp)
1da177e4 611{
3815832a 612 struct xfs_buf *new_bp;
e8222613 613 struct xfs_buf *bp;
9bb38aa0 614 int error;
1da177e4 615
34800080 616 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
32dff5e5 617 if (error)
34800080 618 goto out_drop_pag;
1da177e4 619
8bcac744
DC
620 /*
621 * For buffers that fit entirely within a single page, first attempt to
622 * allocate the memory from the heap to minimise memory usage. If we
623 * can't get heap memory for these small buffers, we fall back to using
624 * the page allocator.
625 */
626 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
627 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
628 error = xfs_buf_alloc_pages(new_bp, flags);
629 if (error)
630 goto out_free_buf;
631 }
fe2429b0 632
74f75a0c 633 spin_lock(&pag->pag_buf_lock);
32dd4f9c
DC
634 bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
635 &new_bp->b_rhash_head, xfs_buf_hash_params);
636 if (IS_ERR(bp)) {
637 error = PTR_ERR(bp);
638 spin_unlock(&pag->pag_buf_lock);
170041f7 639 goto out_free_buf;
32dd4f9c 640 }
34800080 641 if (bp) {
32dd4f9c 642 /* found an existing buffer */
34800080
DC
643 atomic_inc(&bp->b_hold);
644 spin_unlock(&pag->pag_buf_lock);
645 error = xfs_buf_find_lock(bp, flags);
646 if (error)
647 xfs_buf_rele(bp);
648 else
649 *bpp = bp;
650 goto out_free_buf;
651 }
1da177e4 652
32dd4f9c 653 /* The new buffer keeps the perag reference until it is freed. */
34800080 654 new_bp->b_pag = pag;
b027d4c9 655 spin_unlock(&pag->pag_buf_lock);
34800080 656 *bpp = new_bp;
b027d4c9 657 return 0;
3815832a 658
34800080
DC
659out_free_buf:
660 xfs_buf_free(new_bp);
661out_drop_pag:
74f75a0c 662 xfs_perag_put(pag);
34800080 663 return error;
1da177e4 664}
1da177e4 665
1da177e4 666/*
3815832a
DC
667 * Assembles a buffer covering the specified range. The code is optimised for
668 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
669 * more hits than misses.
1da177e4 670 */
3848b5f6 671int
6dde2707 672xfs_buf_get_map(
34800080 673 struct xfs_buftarg *btp,
6dde2707
DC
674 struct xfs_buf_map *map,
675 int nmaps,
3848b5f6
DW
676 xfs_buf_flags_t flags,
677 struct xfs_buf **bpp)
1da177e4 678{
34800080
DC
679 struct xfs_perag *pag;
680 struct xfs_buf *bp = NULL;
681 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
9bb38aa0 682 int error;
34800080 683 int i;
1da177e4 684
34800080
DC
685 for (i = 0; i < nmaps; i++)
686 cmap.bm_len += map[i].bm_len;
3815832a 687
34800080 688 error = xfs_buf_map_verify(btp, &cmap);
32dff5e5 689 if (error)
3848b5f6 690 return error;
1da177e4 691
34800080
DC
692 pag = xfs_perag_get(btp->bt_mount,
693 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
fe2429b0 694
34800080
DC
695 error = xfs_buf_lookup(pag, &cmap, flags, &bp);
696 if (error && error != -ENOENT)
697 goto out_put_perag;
698
699 /* cache hits always outnumber misses by at least 10:1 */
700 if (unlikely(!bp)) {
701 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
3815832a 702
34800080
DC
703 if (flags & XBF_INCORE)
704 goto out_put_perag;
1da177e4 705
34800080
DC
706 /* xfs_buf_find_insert() consumes the perag reference. */
707 error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
708 flags, &bp);
709 if (error)
710 return error;
711 } else {
712 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
713 xfs_perag_put(pag);
714 }
715
716 /* We do not hold a perag reference anymore. */
611c9946 717 if (!bp->b_addr) {
ce8e922c 718 error = _xfs_buf_map_pages(bp, flags);
1da177e4 719 if (unlikely(error)) {
34800080 720 xfs_warn_ratelimited(btp->bt_mount,
93baa55a
DW
721 "%s: failed to map %u pages", __func__,
722 bp->b_page_count);
a8acad70 723 xfs_buf_relse(bp);
3848b5f6 724 return error;
1da177e4
LT
725 }
726 }
727
b79f4a1c
DC
728 /*
729 * Clear b_error if this is a lookup from a caller that doesn't expect
730 * valid data to be found in the buffer.
731 */
732 if (!(flags & XBF_READ))
733 xfs_buf_ioerror(bp, 0);
734
34800080 735 XFS_STATS_INC(btp->bt_mount, xb_get);
0b1b213f 736 trace_xfs_buf_get(bp, flags, _RET_IP_);
3848b5f6
DW
737 *bpp = bp;
738 return 0;
34800080
DC
739
740out_put_perag:
741 xfs_perag_put(pag);
170041f7 742 return error;
1da177e4
LT
743}
744
26e32875 745int
5d765b97 746_xfs_buf_read(
e8222613 747 struct xfs_buf *bp,
5d765b97
CH
748 xfs_buf_flags_t flags)
749{
43ff2122 750 ASSERT(!(flags & XBF_WRITE));
f4b42421 751 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 752
26e32875 753 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
1d5ae5df 754 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 755
6af88cda 756 return xfs_buf_submit(bp);
5d765b97
CH
757}
758
1aff5696 759/*
75d02303 760 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 761 *
75d02303
BF
762 * If the caller passed an ops structure and the buffer doesn't have ops
763 * assigned, set the ops and use it to verify the contents. If verification
764 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
765 * already in XBF_DONE state on entry.
add46b3b 766 *
75d02303
BF
767 * Under normal operations, every in-core buffer is verified on read I/O
768 * completion. There are two scenarios that can lead to in-core buffers without
769 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
770 * filesystem, though these buffers are purged at the end of recovery. The
771 * other is online repair, which intentionally reads with a NULL buffer ops to
772 * run several verifiers across an in-core buffer in order to establish buffer
773 * type. If repair can't establish that, the buffer will be left in memory
774 * with NULL buffer ops.
1aff5696
DW
775 */
776int
75d02303 777xfs_buf_reverify(
1aff5696
DW
778 struct xfs_buf *bp,
779 const struct xfs_buf_ops *ops)
780{
781 ASSERT(bp->b_flags & XBF_DONE);
782 ASSERT(bp->b_error == 0);
783
784 if (!ops || bp->b_ops)
785 return 0;
786
787 bp->b_ops = ops;
788 bp->b_ops->verify_read(bp);
789 if (bp->b_error)
790 bp->b_flags &= ~XBF_DONE;
791 return bp->b_error;
792}
793
4ed8e27b 794int
6dde2707
DC
795xfs_buf_read_map(
796 struct xfs_buftarg *target,
797 struct xfs_buf_map *map,
798 int nmaps,
c3f8fc73 799 xfs_buf_flags_t flags,
4ed8e27b 800 struct xfs_buf **bpp,
cdbcf82b
DW
801 const struct xfs_buf_ops *ops,
802 xfs_failaddr_t fa)
1da177e4 803{
6dde2707 804 struct xfs_buf *bp;
3848b5f6 805 int error;
ce8e922c
NS
806
807 flags |= XBF_READ;
4ed8e27b 808 *bpp = NULL;
ce8e922c 809
3848b5f6
DW
810 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
811 if (error)
4ed8e27b 812 return error;
0b1b213f 813
1aff5696
DW
814 trace_xfs_buf_read(bp, flags, _RET_IP_);
815
816 if (!(bp->b_flags & XBF_DONE)) {
4ed8e27b 817 /* Initiate the buffer read and wait. */
1aff5696
DW
818 XFS_STATS_INC(target->bt_mount, xb_get_read);
819 bp->b_ops = ops;
4ed8e27b
DW
820 error = _xfs_buf_read(bp, flags);
821
822 /* Readahead iodone already dropped the buffer, so exit. */
823 if (flags & XBF_ASYNC)
824 return 0;
825 } else {
826 /* Buffer already read; all we need to do is check it. */
827 error = xfs_buf_reverify(bp, ops);
828
829 /* Readahead already finished; drop the buffer and exit. */
830 if (flags & XBF_ASYNC) {
831 xfs_buf_relse(bp);
832 return 0;
833 }
834
835 /* We do not want read in the flags */
836 bp->b_flags &= ~XBF_READ;
837 ASSERT(bp->b_ops != NULL || ops == NULL);
1aff5696
DW
838 }
839
4ed8e27b
DW
840 /*
841 * If we've had a read error, then the contents of the buffer are
842 * invalid and should not be used. To ensure that a followup read tries
843 * to pull the buffer from disk again, we clear the XBF_DONE flag and
844 * mark the buffer stale. This ensures that anyone who has a current
845 * reference to the buffer will interpret it's contents correctly and
846 * future cache lookups will also treat it as an empty, uninitialised
847 * buffer.
848 */
849 if (error) {
01728b44
DC
850 /*
851 * Check against log shutdown for error reporting because
852 * metadata writeback may require a read first and we need to
853 * report errors in metadata writeback until the log is shut
854 * down. High level transaction read functions already check
855 * against mount shutdown, anyway, so we only need to be
856 * concerned about low level IO interactions here.
857 */
858 if (!xlog_is_shutdown(target->bt_mount->m_log))
cdbcf82b 859 xfs_buf_ioerror_alert(bp, fa);
1aff5696 860
4ed8e27b
DW
861 bp->b_flags &= ~XBF_DONE;
862 xfs_buf_stale(bp);
1aff5696 863 xfs_buf_relse(bp);
4ed8e27b
DW
864
865 /* bad CRC means corrupted metadata */
866 if (error == -EFSBADCRC)
867 error = -EFSCORRUPTED;
868 return error;
1da177e4
LT
869 }
870
4ed8e27b
DW
871 *bpp = bp;
872 return 0;
1da177e4
LT
873}
874
1da177e4 875/*
ce8e922c
NS
876 * If we are not low on memory then do the readahead in a deadlock
877 * safe manner.
1da177e4
LT
878 */
879void
6dde2707
DC
880xfs_buf_readahead_map(
881 struct xfs_buftarg *target,
882 struct xfs_buf_map *map,
c3f8fc73 883 int nmaps,
1813dd64 884 const struct xfs_buf_ops *ops)
1da177e4 885{
4ed8e27b
DW
886 struct xfs_buf *bp;
887
6dde2707 888 xfs_buf_read_map(target, map, nmaps,
cdbcf82b
DW
889 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
890 __this_address);
1da177e4
LT
891}
892
5adc94c2
DC
893/*
894 * Read an uncached buffer from disk. Allocates and returns a locked
4c7f65ae
DC
895 * buffer containing the disk contents or nothing. Uncached buffers always have
896 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
897 * is cached or uncached during fault diagnosis.
5adc94c2 898 */
ba372674 899int
5adc94c2 900xfs_buf_read_uncached(
5adc94c2
DC
901 struct xfs_buftarg *target,
902 xfs_daddr_t daddr,
e70b73f8 903 size_t numblks,
b9b3fe15 904 xfs_buf_flags_t flags,
ba372674 905 struct xfs_buf **bpp,
1813dd64 906 const struct xfs_buf_ops *ops)
5adc94c2 907{
eab4e633 908 struct xfs_buf *bp;
2842b6db 909 int error;
5adc94c2 910
ba372674
DC
911 *bpp = NULL;
912
2842b6db
DW
913 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
914 if (error)
915 return error;
5adc94c2
DC
916
917 /* set up the buffer for a read IO */
3e85c868 918 ASSERT(bp->b_map_count == 1);
4c7f65ae 919 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
3e85c868 920 bp->b_maps[0].bm_bn = daddr;
cbb7baab 921 bp->b_flags |= XBF_READ;
1813dd64 922 bp->b_ops = ops;
5adc94c2 923
6af88cda 924 xfs_buf_submit(bp);
ba372674 925 if (bp->b_error) {
2842b6db 926 error = bp->b_error;
83a0adc3 927 xfs_buf_relse(bp);
ba372674 928 return error;
83a0adc3 929 }
ba372674
DC
930
931 *bpp = bp;
932 return 0;
1da177e4
LT
933}
934
2842b6db 935int
686865f7
DC
936xfs_buf_get_uncached(
937 struct xfs_buftarg *target,
e70b73f8 938 size_t numblks,
b9b3fe15 939 xfs_buf_flags_t flags,
2842b6db 940 struct xfs_buf **bpp)
1da177e4 941{
07b5c5ad 942 int error;
3e85c868
DC
943 struct xfs_buf *bp;
944 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 945
2842b6db
DW
946 *bpp = NULL;
947
c891c30a 948 /* flags might contain irrelevant bits, pass only what we care about */
32dff5e5
DW
949 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
950 if (error)
07b5c5ad 951 return error;
1da177e4 952
934d1076 953 error = xfs_buf_alloc_pages(bp, flags);
1fa40b01 954 if (error)
1da177e4
LT
955 goto fail_free_buf;
956
611c9946 957 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 958 if (unlikely(error)) {
4f10700a 959 xfs_warn(target->bt_mount,
08e96e1a 960 "%s: failed to map pages", __func__);
07b5c5ad 961 goto fail_free_buf;
1fa40b01 962 }
1da177e4 963
686865f7 964 trace_xfs_buf_get_uncached(bp, _RET_IP_);
2842b6db
DW
965 *bpp = bp;
966 return 0;
1fa40b01 967
07b5c5ad
DC
968fail_free_buf:
969 xfs_buf_free(bp);
2842b6db 970 return error;
1da177e4
LT
971}
972
973/*
1da177e4
LT
974 * Increment reference count on buffer, to hold the buffer concurrently
975 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
976 * Must hold the buffer already to call this function.
977 */
978void
ce8e922c 979xfs_buf_hold(
e8222613 980 struct xfs_buf *bp)
1da177e4 981{
0b1b213f 982 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 983 atomic_inc(&bp->b_hold);
1da177e4
LT
984}
985
986/*
9c7504aa
BF
987 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
988 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
989 */
990void
ce8e922c 991xfs_buf_rele(
e8222613 992 struct xfs_buf *bp)
1da177e4 993{
74f75a0c 994 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
995 bool release;
996 bool freebuf = false;
1da177e4 997
0b1b213f 998 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 999
74f75a0c 1000 if (!pag) {
430cbeb8 1001 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
1002 if (atomic_dec_and_test(&bp->b_hold)) {
1003 xfs_buf_ioacct_dec(bp);
fad3aa1e 1004 xfs_buf_free(bp);
9c7504aa 1005 }
fad3aa1e
NS
1006 return;
1007 }
1008
3790689f 1009 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 1010
37fd1678
DC
1011 /*
1012 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1013 * calls. The pag_buf_lock being taken on the last reference only
1014 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1015 * to last reference we drop here is not serialised against the last
1016 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1017 * first, the last "release" reference can win the race to the lock and
1018 * free the buffer before the second-to-last reference is processed,
1019 * leading to a use-after-free scenario.
1020 */
9c7504aa 1021 spin_lock(&bp->b_lock);
37fd1678 1022 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
1023 if (!release) {
1024 /*
1025 * Drop the in-flight state if the buffer is already on the LRU
1026 * and it holds the only reference. This is racy because we
1027 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1028 * ensures the decrement occurs only once per-buf.
1029 */
1030 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1031 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1032 goto out_unlock;
1033 }
1034
1035 /* the last reference has been dropped ... */
63db7c81 1036 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1037 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1038 /*
1039 * If the buffer is added to the LRU take a new reference to the
1040 * buffer for the LRU and clear the (now stale) dispose list
1041 * state flag
1042 */
1043 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1044 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1045 atomic_inc(&bp->b_hold);
1da177e4 1046 }
9c7504aa
BF
1047 spin_unlock(&pag->pag_buf_lock);
1048 } else {
1049 /*
1050 * most of the time buffers will already be removed from the
1051 * LRU, so optimise that case by checking for the
1052 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1053 * was on was the disposal list
1054 */
1055 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1056 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1057 } else {
1058 ASSERT(list_empty(&bp->b_lru));
1da177e4 1059 }
9c7504aa
BF
1060
1061 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1062 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1063 xfs_buf_hash_params);
9c7504aa
BF
1064 spin_unlock(&pag->pag_buf_lock);
1065 xfs_perag_put(pag);
1066 freebuf = true;
1da177e4 1067 }
9c7504aa
BF
1068
1069out_unlock:
1070 spin_unlock(&bp->b_lock);
1071
1072 if (freebuf)
1073 xfs_buf_free(bp);
1da177e4
LT
1074}
1075
1076
1077/*
0e6e847f 1078 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1079 *
1080 * If we come across a stale, pinned, locked buffer, we know that we are
1081 * being asked to lock a buffer that has been reallocated. Because it is
1082 * pinned, we know that the log has not been pushed to disk and hence it
1083 * will still be locked. Rather than continuing to have trylock attempts
1084 * fail until someone else pushes the log, push it ourselves before
1085 * returning. This means that the xfsaild will not get stuck trying
1086 * to push on stale inode buffers.
1da177e4
LT
1087 */
1088int
0c842ad4
CH
1089xfs_buf_trylock(
1090 struct xfs_buf *bp)
1da177e4
LT
1091{
1092 int locked;
1093
ce8e922c 1094 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1095 if (locked)
479c6412 1096 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1097 else
479c6412 1098 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1099 return locked;
1da177e4 1100}
1da177e4
LT
1101
1102/*
0e6e847f 1103 * Lock a buffer object.
ed3b4d6c
DC
1104 *
1105 * If we come across a stale, pinned, locked buffer, we know that we
1106 * are being asked to lock a buffer that has been reallocated. Because
1107 * it is pinned, we know that the log has not been pushed to disk and
1108 * hence it will still be locked. Rather than sleeping until someone
1109 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1110 */
ce8e922c
NS
1111void
1112xfs_buf_lock(
0c842ad4 1113 struct xfs_buf *bp)
1da177e4 1114{
0b1b213f
CH
1115 trace_xfs_buf_lock(bp, _RET_IP_);
1116
ed3b4d6c 1117 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1118 xfs_log_force(bp->b_mount, 0);
ce8e922c 1119 down(&bp->b_sema);
0b1b213f
CH
1120
1121 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1122}
1123
1da177e4 1124void
ce8e922c 1125xfs_buf_unlock(
0c842ad4 1126 struct xfs_buf *bp)
1da177e4 1127{
20e8a063
BF
1128 ASSERT(xfs_buf_islocked(bp));
1129
ce8e922c 1130 up(&bp->b_sema);
0b1b213f 1131 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1132}
1133
ce8e922c
NS
1134STATIC void
1135xfs_buf_wait_unpin(
e8222613 1136 struct xfs_buf *bp)
1da177e4
LT
1137{
1138 DECLARE_WAITQUEUE (wait, current);
1139
ce8e922c 1140 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1141 return;
1142
ce8e922c 1143 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1144 for (;;) {
1145 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1146 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1147 break;
7eaceacc 1148 io_schedule();
1da177e4 1149 }
ce8e922c 1150 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1151 set_current_state(TASK_RUNNING);
1152}
1153
f58d0ea9
CH
1154static void
1155xfs_buf_ioerror_alert_ratelimited(
664ffb8a
CH
1156 struct xfs_buf *bp)
1157{
664ffb8a
CH
1158 static unsigned long lasttime;
1159 static struct xfs_buftarg *lasttarg;
1160
664ffb8a
CH
1161 if (bp->b_target != lasttarg ||
1162 time_after(jiffies, (lasttime + 5*HZ))) {
1163 lasttime = jiffies;
1164 xfs_buf_ioerror_alert(bp, __this_address);
1165 }
1166 lasttarg = bp->b_target;
664ffb8a
CH
1167}
1168
664ffb8a
CH
1169/*
1170 * Account for this latest trip around the retry handler, and decide if
1171 * we've failed enough times to constitute a permanent failure.
1172 */
1173static bool
1174xfs_buf_ioerror_permanent(
1175 struct xfs_buf *bp,
1176 struct xfs_error_cfg *cfg)
1177{
1178 struct xfs_mount *mp = bp->b_mount;
1179
1180 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1181 ++bp->b_retries > cfg->max_retries)
1182 return true;
1183 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1184 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1185 return true;
1186
1187 /* At unmount we may treat errors differently */
2e973b2c 1188 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
664ffb8a
CH
1189 return true;
1190
1191 return false;
1192}
1193
1194/*
1195 * On a sync write or shutdown we just want to stale the buffer and let the
1196 * caller handle the error in bp->b_error appropriately.
1197 *
1198 * If the write was asynchronous then no one will be looking for the error. If
1199 * this is the first failure of this type, clear the error state and write the
1200 * buffer out again. This means we always retry an async write failure at least
1201 * once, but we also need to set the buffer up to behave correctly now for
1202 * repeated failures.
1203 *
1204 * If we get repeated async write failures, then we take action according to the
1205 * error configuration we have been set up to use.
1206 *
70796c6b
CH
1207 * Returns true if this function took care of error handling and the caller must
1208 * not touch the buffer again. Return false if the caller should proceed with
1209 * normal I/O completion handling.
664ffb8a 1210 */
70796c6b
CH
1211static bool
1212xfs_buf_ioend_handle_error(
664ffb8a
CH
1213 struct xfs_buf *bp)
1214{
1215 struct xfs_mount *mp = bp->b_mount;
1216 struct xfs_error_cfg *cfg;
1217
f58d0ea9 1218 /*
01728b44
DC
1219 * If we've already shutdown the journal because of I/O errors, there's
1220 * no point in giving this a retry.
f58d0ea9 1221 */
01728b44 1222 if (xlog_is_shutdown(mp->m_log))
f58d0ea9
CH
1223 goto out_stale;
1224
1225 xfs_buf_ioerror_alert_ratelimited(bp);
1226
22c10589
CH
1227 /*
1228 * We're not going to bother about retrying this during recovery.
1229 * One strike!
1230 */
1231 if (bp->b_flags & _XBF_LOGRECOVERY) {
1232 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1233 return false;
1234 }
1235
f58d0ea9
CH
1236 /*
1237 * Synchronous writes will have callers process the error.
1238 */
1239 if (!(bp->b_flags & XBF_ASYNC))
664ffb8a
CH
1240 goto out_stale;
1241
1242 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1243
1244 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
3cc49884
CH
1245 if (bp->b_last_error != bp->b_error ||
1246 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1247 bp->b_last_error = bp->b_error;
1248 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1249 !bp->b_first_retry_time)
1250 bp->b_first_retry_time = jiffies;
1251 goto resubmit;
664ffb8a
CH
1252 }
1253
1254 /*
1255 * Permanent error - we need to trigger a shutdown if we haven't already
1256 * to indicate that inconsistency will result from this action.
1257 */
1258 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1259 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1260 goto out_stale;
1261 }
1262
1263 /* Still considered a transient error. Caller will schedule retries. */
844c9358
CH
1264 if (bp->b_flags & _XBF_INODES)
1265 xfs_buf_inode_io_fail(bp);
1266 else if (bp->b_flags & _XBF_DQUOTS)
1267 xfs_buf_dquot_io_fail(bp);
1268 else
1269 ASSERT(list_empty(&bp->b_li_list));
1270 xfs_buf_ioerror(bp, 0);
1271 xfs_buf_relse(bp);
70796c6b 1272 return true;
664ffb8a 1273
3cc49884
CH
1274resubmit:
1275 xfs_buf_ioerror(bp, 0);
55b7d711 1276 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
3cc49884 1277 xfs_buf_submit(bp);
70796c6b 1278 return true;
664ffb8a
CH
1279out_stale:
1280 xfs_buf_stale(bp);
1281 bp->b_flags |= XBF_DONE;
55b7d711 1282 bp->b_flags &= ~XBF_WRITE;
664ffb8a 1283 trace_xfs_buf_error_relse(bp, _RET_IP_);
70796c6b 1284 return false;
664ffb8a 1285}
1da177e4 1286
76b2d323 1287static void
e8aaba9a
DC
1288xfs_buf_ioend(
1289 struct xfs_buf *bp)
1da177e4 1290{
e8aaba9a 1291 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64 1292
61be9c52
DC
1293 /*
1294 * Pull in IO completion errors now. We are guaranteed to be running
1295 * single threaded, so we don't need the lock to read b_io_error.
1296 */
1297 if (!bp->b_error && bp->b_io_error)
1298 xfs_buf_ioerror(bp, bp->b_io_error);
1299
55b7d711 1300 if (bp->b_flags & XBF_READ) {
b01d1461
DC
1301 if (!bp->b_error && bp->b_ops)
1302 bp->b_ops->verify_read(bp);
1303 if (!bp->b_error)
1304 bp->b_flags |= XBF_DONE;
23fb5a93
CH
1305 } else {
1306 if (!bp->b_error) {
1307 bp->b_flags &= ~XBF_WRITE_FAIL;
1308 bp->b_flags |= XBF_DONE;
1309 }
f593bf14 1310
70796c6b 1311 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
664ffb8a 1312 return;
664ffb8a
CH
1313
1314 /* clear the retry state */
1315 bp->b_last_error = 0;
1316 bp->b_retries = 0;
1317 bp->b_first_retry_time = 0;
1318
1319 /*
1320 * Note that for things like remote attribute buffers, there may
1321 * not be a buffer log item here, so processing the buffer log
1322 * item must remain optional.
1323 */
1324 if (bp->b_log_item)
1325 xfs_buf_item_done(bp);
1326
23fb5a93
CH
1327 if (bp->b_flags & _XBF_INODES)
1328 xfs_buf_inode_iodone(bp);
1329 else if (bp->b_flags & _XBF_DQUOTS)
1330 xfs_buf_dquot_iodone(bp);
22c10589 1331
0c7e5afb 1332 }
6a7584b1 1333
22c10589
CH
1334 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1335 _XBF_LOGRECOVERY);
55b7d711 1336
6a7584b1
CH
1337 if (bp->b_flags & XBF_ASYNC)
1338 xfs_buf_relse(bp);
1339 else
1340 complete(&bp->b_iowait);
1da177e4
LT
1341}
1342
e8aaba9a
DC
1343static void
1344xfs_buf_ioend_work(
1345 struct work_struct *work)
1da177e4 1346{
e8aaba9a 1347 struct xfs_buf *bp =
e8222613 1348 container_of(work, struct xfs_buf, b_ioend_work);
0b1b213f 1349
e8aaba9a
DC
1350 xfs_buf_ioend(bp);
1351}
1da177e4 1352
211fe1a4 1353static void
e8aaba9a
DC
1354xfs_buf_ioend_async(
1355 struct xfs_buf *bp)
1356{
b29c70f5 1357 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1358 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1359}
1360
1da177e4 1361void
31ca03c9 1362__xfs_buf_ioerror(
e8222613 1363 struct xfs_buf *bp,
31ca03c9
DW
1364 int error,
1365 xfs_failaddr_t failaddr)
1da177e4 1366{
2451337d
DC
1367 ASSERT(error <= 0 && error >= -1000);
1368 bp->b_error = error;
31ca03c9 1369 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1370}
1371
901796af
CH
1372void
1373xfs_buf_ioerror_alert(
1374 struct xfs_buf *bp,
cdbcf82b 1375 xfs_failaddr_t func)
901796af 1376{
f9bccfcc
BF
1377 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1378 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
04fcad80 1379 func, (uint64_t)xfs_buf_daddr(bp),
f9bccfcc 1380 bp->b_length, -bp->b_error);
901796af
CH
1381}
1382
54b3b1f6
BF
1383/*
1384 * To simulate an I/O failure, the buffer must be locked and held with at least
1385 * three references. The LRU reference is dropped by the stale call. The buf
1386 * item reference is dropped via ioend processing. The third reference is owned
1387 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1388 */
1389void
1390xfs_buf_ioend_fail(
1391 struct xfs_buf *bp)
1392{
1393 bp->b_flags &= ~XBF_DONE;
1394 xfs_buf_stale(bp);
1395 xfs_buf_ioerror(bp, -EIO);
1396 xfs_buf_ioend(bp);
901796af
CH
1397}
1398
a2dcf5df
CH
1399int
1400xfs_bwrite(
1401 struct xfs_buf *bp)
1402{
1403 int error;
1404
1405 ASSERT(xfs_buf_islocked(bp));
1406
1407 bp->b_flags |= XBF_WRITE;
27187754 1408 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
b6983e80 1409 XBF_DONE);
a2dcf5df 1410
6af88cda 1411 error = xfs_buf_submit(bp);
dbd329f1
CH
1412 if (error)
1413 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1414 return error;
1415}
1416
9bdd9bd6 1417static void
ce8e922c 1418xfs_buf_bio_end_io(
4246a0b6 1419 struct bio *bio)
1da177e4 1420{
9bdd9bd6 1421 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1422
7376d745
BF
1423 if (!bio->bi_status &&
1424 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
43dc0aa8 1425 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
7376d745 1426 bio->bi_status = BLK_STS_IOERR;
1da177e4 1427
37eb17e6
DC
1428 /*
1429 * don't overwrite existing errors - otherwise we can lose errors on
1430 * buffers that require multiple bios to complete.
1431 */
4e4cbee9
CH
1432 if (bio->bi_status) {
1433 int error = blk_status_to_errno(bio->bi_status);
1434
1435 cmpxchg(&bp->b_io_error, 0, error);
1436 }
1da177e4 1437
37eb17e6 1438 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1439 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1440
e8aaba9a
DC
1441 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1442 xfs_buf_ioend_async(bp);
1da177e4 1443 bio_put(bio);
1da177e4
LT
1444}
1445
3e85c868
DC
1446static void
1447xfs_buf_ioapply_map(
1448 struct xfs_buf *bp,
1449 int map,
1450 int *buf_offset,
1451 int *count,
d03025ae 1452 blk_opf_t op)
1da177e4 1453{
3e85c868 1454 int page_index;
5f7136db 1455 unsigned int total_nr_pages = bp->b_page_count;
3e85c868
DC
1456 int nr_pages;
1457 struct bio *bio;
1458 sector_t sector = bp->b_maps[map].bm_bn;
1459 int size;
1460 int offset;
1da177e4 1461
3e85c868
DC
1462 /* skip the pages in the buffer before the start offset */
1463 page_index = 0;
1464 offset = *buf_offset;
1465 while (offset >= PAGE_SIZE) {
1466 page_index++;
1467 offset -= PAGE_SIZE;
f538d4da
CH
1468 }
1469
3e85c868
DC
1470 /*
1471 * Limit the IO size to the length of the current vector, and update the
1472 * remaining IO count for the next time around.
1473 */
1474 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1475 *count -= size;
1476 *buf_offset += size;
34951f5c 1477
1da177e4 1478next_chunk:
ce8e922c 1479 atomic_inc(&bp->b_io_remaining);
5f7136db 1480 nr_pages = bio_max_segs(total_nr_pages);
1da177e4 1481
07888c66 1482 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
4f024f37 1483 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1484 bio->bi_end_io = xfs_buf_bio_end_io;
1485 bio->bi_private = bp;
0e6e847f 1486
3e85c868 1487 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1488 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1489
1490 if (nbytes > size)
1491 nbytes = size;
1492
3e85c868
DC
1493 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1494 offset);
ce8e922c 1495 if (rbytes < nbytes)
1da177e4
LT
1496 break;
1497
1498 offset = 0;
aa0e8833 1499 sector += BTOBB(nbytes);
1da177e4
LT
1500 size -= nbytes;
1501 total_nr_pages--;
1502 }
1503
4f024f37 1504 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1505 if (xfs_buf_is_vmapped(bp)) {
1506 flush_kernel_vmap_range(bp->b_addr,
1507 xfs_buf_vmap_len(bp));
1508 }
4e49ea4a 1509 submit_bio(bio);
1da177e4
LT
1510 if (size)
1511 goto next_chunk;
1512 } else {
37eb17e6
DC
1513 /*
1514 * This is guaranteed not to be the last io reference count
595bff75 1515 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1516 */
1517 atomic_dec(&bp->b_io_remaining);
2451337d 1518 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1519 bio_put(bio);
1da177e4 1520 }
3e85c868
DC
1521
1522}
1523
1524STATIC void
1525_xfs_buf_ioapply(
1526 struct xfs_buf *bp)
1527{
1528 struct blk_plug plug;
d03025ae 1529 blk_opf_t op;
3e85c868
DC
1530 int offset;
1531 int size;
1532 int i;
1533
c163f9a1
DC
1534 /*
1535 * Make sure we capture only current IO errors rather than stale errors
1536 * left over from previous use of the buffer (e.g. failed readahead).
1537 */
1538 bp->b_error = 0;
1539
3e85c868 1540 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1541 op = REQ_OP_WRITE;
1813dd64
DC
1542
1543 /*
1544 * Run the write verifier callback function if it exists. If
1545 * this function fails it will mark the buffer with an error and
1546 * the IO should not be dispatched.
1547 */
1548 if (bp->b_ops) {
1549 bp->b_ops->verify_write(bp);
1550 if (bp->b_error) {
dbd329f1 1551 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1552 SHUTDOWN_CORRUPT_INCORE);
1553 return;
1554 }
4c7f65ae 1555 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
dbd329f1 1556 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1557
1558 /*
1559 * non-crc filesystems don't attach verifiers during
1560 * log recovery, so don't warn for such filesystems.
1561 */
38c26bfd 1562 if (xfs_has_crc(mp)) {
400b9d88 1563 xfs_warn(mp,
c219b015 1564 "%s: no buf ops on daddr 0x%llx len %d",
4c7f65ae
DC
1565 __func__, xfs_buf_daddr(bp),
1566 bp->b_length);
9c712a13
DW
1567 xfs_hex_dump(bp->b_addr,
1568 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1569 dump_stack();
1570 }
1813dd64 1571 }
3e85c868 1572 } else {
50bfcd0c 1573 op = REQ_OP_READ;
2123ef85
CH
1574 if (bp->b_flags & XBF_READ_AHEAD)
1575 op |= REQ_RAHEAD;
3e85c868
DC
1576 }
1577
1578 /* we only use the buffer cache for meta-data */
2123ef85 1579 op |= REQ_META;
3e85c868
DC
1580
1581 /*
1582 * Walk all the vectors issuing IO on them. Set up the initial offset
1583 * into the buffer and the desired IO size before we start -
1584 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1585 * subsequent call.
1586 */
1587 offset = bp->b_offset;
8124b9b6 1588 size = BBTOB(bp->b_length);
3e85c868
DC
1589 blk_start_plug(&plug);
1590 for (i = 0; i < bp->b_map_count; i++) {
2123ef85 1591 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
3e85c868
DC
1592 if (bp->b_error)
1593 break;
1594 if (size <= 0)
1595 break; /* all done */
1596 }
1597 blk_finish_plug(&plug);
1da177e4
LT
1598}
1599
595bff75 1600/*
bb00b6f1 1601 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1602 */
eaebb515 1603static int
bb00b6f1 1604xfs_buf_iowait(
595bff75 1605 struct xfs_buf *bp)
1da177e4 1606{
bb00b6f1
BF
1607 ASSERT(!(bp->b_flags & XBF_ASYNC));
1608
1609 trace_xfs_buf_iowait(bp, _RET_IP_);
1610 wait_for_completion(&bp->b_iowait);
1611 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1612
1613 return bp->b_error;
1614}
1615
1616/*
1617 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1618 * the buffer lock ownership and the current reference to the IO. It is not
1619 * safe to reference the buffer after a call to this function unless the caller
1620 * holds an additional reference itself.
1621 */
26e32875 1622static int
bb00b6f1
BF
1623__xfs_buf_submit(
1624 struct xfs_buf *bp,
1625 bool wait)
1626{
1627 int error = 0;
1628
595bff75 1629 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1630
43ff2122 1631 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75 1632
01728b44
DC
1633 /*
1634 * On log shutdown we stale and complete the buffer immediately. We can
1635 * be called to read the superblock before the log has been set up, so
1636 * be careful checking the log state.
1637 *
1638 * Checking the mount shutdown state here can result in the log tail
1639 * moving inappropriately on disk as the log may not yet be shut down.
1640 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1641 * and move the tail of the log forwards without having written this
1642 * buffer to disk. This corrupts the log tail state in memory, and
1643 * because the log may not be shut down yet, it can then be propagated
1644 * to disk before the log is shutdown. Hence we check log shutdown
1645 * state here rather than mount state to avoid corrupting the log tail
1646 * on shutdown.
1647 */
1648 if (bp->b_mount->m_log &&
1649 xlog_is_shutdown(bp->b_mount->m_log)) {
54b3b1f6 1650 xfs_buf_ioend_fail(bp);
eaebb515 1651 return -EIO;
595bff75 1652 }
1da177e4 1653
bb00b6f1
BF
1654 /*
1655 * Grab a reference so the buffer does not go away underneath us. For
1656 * async buffers, I/O completion drops the callers reference, which
1657 * could occur before submission returns.
1658 */
1659 xfs_buf_hold(bp);
1660
375ec69d 1661 if (bp->b_flags & XBF_WRITE)
ce8e922c 1662 xfs_buf_wait_unpin(bp);
e11bb805 1663
61be9c52
DC
1664 /* clear the internal error state to avoid spurious errors */
1665 bp->b_io_error = 0;
1666
8d6c1210 1667 /*
e11bb805
DC
1668 * Set the count to 1 initially, this will stop an I/O completion
1669 * callout which happens before we have started all the I/O from calling
1670 * xfs_buf_ioend too early.
1da177e4 1671 */
ce8e922c 1672 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1673 if (bp->b_flags & XBF_ASYNC)
1674 xfs_buf_ioacct_inc(bp);
ce8e922c 1675 _xfs_buf_ioapply(bp);
e11bb805 1676
8d6c1210 1677 /*
595bff75
DC
1678 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1679 * reference we took above. If we drop it to zero, run completion so
1680 * that we don't return to the caller with completion still pending.
8d6c1210 1681 */
e8aaba9a 1682 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1683 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1684 xfs_buf_ioend(bp);
1685 else
1686 xfs_buf_ioend_async(bp);
1687 }
1da177e4 1688
6af88cda
BF
1689 if (wait)
1690 error = xfs_buf_iowait(bp);
bb00b6f1 1691
595bff75 1692 /*
6af88cda
BF
1693 * Release the hold that keeps the buffer referenced for the entire
1694 * I/O. Note that if the buffer is async, it is not safe to reference
1695 * after this release.
595bff75
DC
1696 */
1697 xfs_buf_rele(bp);
1698 return error;
1da177e4
LT
1699}
1700
88ee2df7 1701void *
ce8e922c 1702xfs_buf_offset(
88ee2df7 1703 struct xfs_buf *bp,
1da177e4
LT
1704 size_t offset)
1705{
1706 struct page *page;
1707
611c9946 1708 if (bp->b_addr)
62926044 1709 return bp->b_addr + offset;
1da177e4 1710
0e6e847f 1711 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1712 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1713}
1714
1da177e4 1715void
f9a196ee
CH
1716xfs_buf_zero(
1717 struct xfs_buf *bp,
1718 size_t boff,
1719 size_t bsize)
1da177e4 1720{
795cac72 1721 size_t bend;
1da177e4
LT
1722
1723 bend = boff + bsize;
1724 while (boff < bend) {
795cac72
DC
1725 struct page *page;
1726 int page_index, page_offset, csize;
1727
1728 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1729 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1730 page = bp->b_pages[page_index];
1731 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1732 BBTOB(bp->b_length) - boff);
1da177e4 1733
795cac72 1734 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1735
f9a196ee 1736 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1737
1738 boff += csize;
1da177e4
LT
1739 }
1740}
1741
8d57c216
DW
1742/*
1743 * Log a message about and stale a buffer that a caller has decided is corrupt.
1744 *
1745 * This function should be called for the kinds of metadata corruption that
1746 * cannot be detect from a verifier, such as incorrect inter-block relationship
1747 * data. Do /not/ call this function from a verifier function.
1748 *
1749 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1750 * be marked stale, but b_error will not be set. The caller is responsible for
1751 * releasing the buffer or fixing it.
1752 */
1753void
1754__xfs_buf_mark_corrupt(
1755 struct xfs_buf *bp,
1756 xfs_failaddr_t fa)
1757{
1758 ASSERT(bp->b_flags & XBF_DONE);
1759
e83cf875 1760 xfs_buf_corruption_error(bp, fa);
8d57c216
DW
1761 xfs_buf_stale(bp);
1762}
1763
1da177e4 1764/*
ce8e922c 1765 * Handling of buffer targets (buftargs).
1da177e4
LT
1766 */
1767
1768/*
430cbeb8
DC
1769 * Wait for any bufs with callbacks that have been submitted but have not yet
1770 * returned. These buffers will have an elevated hold count, so wait on those
1771 * while freeing all the buffers only held by the LRU.
1da177e4 1772 */
e80dfa19 1773static enum lru_status
10fb9ac1 1774xfs_buftarg_drain_rele(
e80dfa19 1775 struct list_head *item,
3f97b163 1776 struct list_lru_one *lru,
e80dfa19
DC
1777 spinlock_t *lru_lock,
1778 void *arg)
1779
1da177e4 1780{
e80dfa19 1781 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1782 struct list_head *dispose = arg;
430cbeb8 1783
e80dfa19 1784 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1785 /* need to wait, so skip it this pass */
10fb9ac1 1786 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
a4082357 1787 return LRU_SKIP;
1da177e4 1788 }
a4082357
DC
1789 if (!spin_trylock(&bp->b_lock))
1790 return LRU_SKIP;
e80dfa19 1791
a4082357
DC
1792 /*
1793 * clear the LRU reference count so the buffer doesn't get
1794 * ignored in xfs_buf_rele().
1795 */
1796 atomic_set(&bp->b_lru_ref, 0);
1797 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1798 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1799 spin_unlock(&bp->b_lock);
1800 return LRU_REMOVED;
1da177e4
LT
1801}
1802
8321ddb2
BF
1803/*
1804 * Wait for outstanding I/O on the buftarg to complete.
1805 */
e80dfa19 1806void
8321ddb2 1807xfs_buftarg_wait(
e80dfa19
DC
1808 struct xfs_buftarg *btp)
1809{
85bec546 1810 /*
9c7504aa
BF
1811 * First wait on the buftarg I/O count for all in-flight buffers to be
1812 * released. This is critical as new buffers do not make the LRU until
1813 * they are released.
1814 *
1815 * Next, flush the buffer workqueue to ensure all completion processing
1816 * has finished. Just waiting on buffer locks is not sufficient for
1817 * async IO as the reference count held over IO is not released until
1818 * after the buffer lock is dropped. Hence we need to ensure here that
1819 * all reference counts have been dropped before we start walking the
1820 * LRU list.
85bec546 1821 */
9c7504aa
BF
1822 while (percpu_counter_sum(&btp->bt_io_count))
1823 delay(100);
800b2694 1824 flush_workqueue(btp->bt_mount->m_buf_workqueue);
8321ddb2
BF
1825}
1826
1827void
1828xfs_buftarg_drain(
1829 struct xfs_buftarg *btp)
1830{
1831 LIST_HEAD(dispose);
1832 int loop = 0;
1833 bool write_fail = false;
1834
1835 xfs_buftarg_wait(btp);
85bec546 1836
a4082357
DC
1837 /* loop until there is nothing left on the lru list. */
1838 while (list_lru_count(&btp->bt_lru)) {
10fb9ac1 1839 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
a4082357
DC
1840 &dispose, LONG_MAX);
1841
1842 while (!list_empty(&dispose)) {
1843 struct xfs_buf *bp;
1844 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1845 list_del_init(&bp->b_lru);
ac8809f9 1846 if (bp->b_flags & XBF_WRITE_FAIL) {
61948b6f
BF
1847 write_fail = true;
1848 xfs_buf_alert_ratelimited(bp,
1849 "XFS: Corruption Alert",
c219b015 1850"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
4c7f65ae 1851 (long long)xfs_buf_daddr(bp));
ac8809f9 1852 }
a4082357
DC
1853 xfs_buf_rele(bp);
1854 }
1855 if (loop++ != 0)
1856 delay(100);
1857 }
61948b6f
BF
1858
1859 /*
1860 * If one or more failed buffers were freed, that means dirty metadata
1861 * was thrown away. This should only ever happen after I/O completion
1862 * handling has elevated I/O error(s) to permanent failures and shuts
01728b44 1863 * down the journal.
61948b6f
BF
1864 */
1865 if (write_fail) {
01728b44 1866 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
61948b6f
BF
1867 xfs_alert(btp->bt_mount,
1868 "Please run xfs_repair to determine the extent of the problem.");
1869 }
e80dfa19
DC
1870}
1871
1872static enum lru_status
1873xfs_buftarg_isolate(
1874 struct list_head *item,
3f97b163 1875 struct list_lru_one *lru,
e80dfa19
DC
1876 spinlock_t *lru_lock,
1877 void *arg)
1878{
1879 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1880 struct list_head *dispose = arg;
1881
a4082357
DC
1882 /*
1883 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1884 * If we fail to get the lock, just skip it.
1885 */
1886 if (!spin_trylock(&bp->b_lock))
1887 return LRU_SKIP;
e80dfa19
DC
1888 /*
1889 * Decrement the b_lru_ref count unless the value is already
1890 * zero. If the value is already zero, we need to reclaim the
1891 * buffer, otherwise it gets another trip through the LRU.
1892 */
19957a18 1893 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1894 spin_unlock(&bp->b_lock);
e80dfa19 1895 return LRU_ROTATE;
a4082357 1896 }
e80dfa19 1897
a4082357 1898 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1899 list_lru_isolate_move(lru, item, dispose);
a4082357 1900 spin_unlock(&bp->b_lock);
e80dfa19
DC
1901 return LRU_REMOVED;
1902}
1903
addbda40 1904static unsigned long
e80dfa19 1905xfs_buftarg_shrink_scan(
ff57ab21 1906 struct shrinker *shrink,
1495f230 1907 struct shrink_control *sc)
a6867a68 1908{
ff57ab21
DC
1909 struct xfs_buftarg *btp = container_of(shrink,
1910 struct xfs_buftarg, bt_shrinker);
430cbeb8 1911 LIST_HEAD(dispose);
addbda40 1912 unsigned long freed;
430cbeb8 1913
503c358c
VD
1914 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1915 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1916
1917 while (!list_empty(&dispose)) {
e80dfa19 1918 struct xfs_buf *bp;
430cbeb8
DC
1919 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1920 list_del_init(&bp->b_lru);
1921 xfs_buf_rele(bp);
1922 }
1923
e80dfa19
DC
1924 return freed;
1925}
1926
addbda40 1927static unsigned long
e80dfa19
DC
1928xfs_buftarg_shrink_count(
1929 struct shrinker *shrink,
1930 struct shrink_control *sc)
1931{
1932 struct xfs_buftarg *btp = container_of(shrink,
1933 struct xfs_buftarg, bt_shrinker);
503c358c 1934 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1935}
1936
1da177e4
LT
1937void
1938xfs_free_buftarg(
b7963133 1939 struct xfs_buftarg *btp)
1da177e4 1940{
ff57ab21 1941 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1942 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1943 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1944 list_lru_destroy(&btp->bt_lru);
ff57ab21 1945
b5071ada 1946 blkdev_issue_flush(btp->bt_bdev);
032e1603 1947 invalidate_bdev(btp->bt_bdev);
6f643c57 1948 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
a6867a68 1949
f0e2d93c 1950 kmem_free(btp);
1da177e4
LT
1951}
1952
3fefdeee
ES
1953int
1954xfs_setsize_buftarg(
1da177e4 1955 xfs_buftarg_t *btp,
3fefdeee 1956 unsigned int sectorsize)
1da177e4 1957{
7c71ee78 1958 /* Set up metadata sector size info */
6da54179
ES
1959 btp->bt_meta_sectorsize = sectorsize;
1960 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1961
ce8e922c 1962 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1963 xfs_warn(btp->bt_mount,
a1c6f057
DM
1964 "Cannot set_blocksize to %u on device %pg",
1965 sectorsize, btp->bt_bdev);
2451337d 1966 return -EINVAL;
1da177e4
LT
1967 }
1968
7c71ee78
ES
1969 /* Set up device logical sector size mask */
1970 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1971 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1972
1da177e4
LT
1973 return 0;
1974}
1975
1976/*
3fefdeee
ES
1977 * When allocating the initial buffer target we have not yet
1978 * read in the superblock, so don't know what sized sectors
1979 * are being used at this early stage. Play safe.
ce8e922c 1980 */
1da177e4
LT
1981STATIC int
1982xfs_setsize_buftarg_early(
1983 xfs_buftarg_t *btp,
1984 struct block_device *bdev)
1985{
a96c4151 1986 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1987}
1988
5b5abbef 1989struct xfs_buftarg *
1da177e4 1990xfs_alloc_buftarg(
ebad861b 1991 struct xfs_mount *mp,
5b5abbef 1992 struct block_device *bdev)
1da177e4
LT
1993{
1994 xfs_buftarg_t *btp;
6f643c57 1995 const struct dax_holder_operations *ops = NULL;
1da177e4 1996
6f643c57
SR
1997#if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
1998 ops = &xfs_dax_holder_operations;
1999#endif
707e0dda 2000 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 2001
ebad861b 2002 btp->bt_mount = mp;
ce8e922c
NS
2003 btp->bt_dev = bdev->bd_dev;
2004 btp->bt_bdev = bdev;
6f643c57
SR
2005 btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off,
2006 mp, ops);
0e6e847f 2007
f9bccfcc
BF
2008 /*
2009 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2010 * per 30 seconds so as to not spam logs too much on repeated errors.
2011 */
2012 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2013 DEFAULT_RATELIMIT_BURST);
2014
1da177e4 2015 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 2016 goto error_free;
5ca302c8
GC
2017
2018 if (list_lru_init(&btp->bt_lru))
d210a987 2019 goto error_free;
5ca302c8 2020
9c7504aa 2021 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 2022 goto error_lru;
9c7504aa 2023
e80dfa19
DC
2024 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
2025 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 2026 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 2027 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
e33c267a
RG
2028 if (register_shrinker(&btp->bt_shrinker, "xfs-buf:%s",
2029 mp->m_super->s_id))
d210a987 2030 goto error_pcpu;
1da177e4
LT
2031 return btp;
2032
d210a987
MH
2033error_pcpu:
2034 percpu_counter_destroy(&btp->bt_io_count);
2035error_lru:
2036 list_lru_destroy(&btp->bt_lru);
2037error_free:
f0e2d93c 2038 kmem_free(btp);
1da177e4
LT
2039 return NULL;
2040}
2041
20e8a063
BF
2042/*
2043 * Cancel a delayed write list.
2044 *
2045 * Remove each buffer from the list, clear the delwri queue flag and drop the
2046 * associated buffer reference.
2047 */
2048void
2049xfs_buf_delwri_cancel(
2050 struct list_head *list)
2051{
2052 struct xfs_buf *bp;
2053
2054 while (!list_empty(list)) {
2055 bp = list_first_entry(list, struct xfs_buf, b_list);
2056
2057 xfs_buf_lock(bp);
2058 bp->b_flags &= ~_XBF_DELWRI_Q;
2059 list_del_init(&bp->b_list);
2060 xfs_buf_relse(bp);
2061 }
2062}
2063
1da177e4 2064/*
43ff2122
CH
2065 * Add a buffer to the delayed write list.
2066 *
2067 * This queues a buffer for writeout if it hasn't already been. Note that
2068 * neither this routine nor the buffer list submission functions perform
2069 * any internal synchronization. It is expected that the lists are thread-local
2070 * to the callers.
2071 *
2072 * Returns true if we queued up the buffer, or false if it already had
2073 * been on the buffer list.
1da177e4 2074 */
43ff2122 2075bool
ce8e922c 2076xfs_buf_delwri_queue(
43ff2122
CH
2077 struct xfs_buf *bp,
2078 struct list_head *list)
1da177e4 2079{
43ff2122 2080 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 2081 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 2082
43ff2122
CH
2083 /*
2084 * If the buffer is already marked delwri it already is queued up
2085 * by someone else for imediate writeout. Just ignore it in that
2086 * case.
2087 */
2088 if (bp->b_flags & _XBF_DELWRI_Q) {
2089 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2090 return false;
1da177e4 2091 }
1da177e4 2092
43ff2122 2093 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
2094
2095 /*
43ff2122
CH
2096 * If a buffer gets written out synchronously or marked stale while it
2097 * is on a delwri list we lazily remove it. To do this, the other party
2098 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2099 * It remains referenced and on the list. In a rare corner case it
2100 * might get readded to a delwri list after the synchronous writeout, in
2101 * which case we need just need to re-add the flag here.
d808f617 2102 */
43ff2122
CH
2103 bp->b_flags |= _XBF_DELWRI_Q;
2104 if (list_empty(&bp->b_list)) {
2105 atomic_inc(&bp->b_hold);
2106 list_add_tail(&bp->b_list, list);
585e6d88 2107 }
585e6d88 2108
43ff2122 2109 return true;
585e6d88
DC
2110}
2111
089716aa
DC
2112/*
2113 * Compare function is more complex than it needs to be because
2114 * the return value is only 32 bits and we are doing comparisons
2115 * on 64 bit values
2116 */
2117static int
2118xfs_buf_cmp(
4f0f586b
ST
2119 void *priv,
2120 const struct list_head *a,
2121 const struct list_head *b)
089716aa
DC
2122{
2123 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2124 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2125 xfs_daddr_t diff;
2126
f4b42421 2127 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
2128 if (diff < 0)
2129 return -1;
2130 if (diff > 0)
2131 return 1;
2132 return 0;
2133}
2134
26f1fe85 2135/*
e339dd8d
BF
2136 * Submit buffers for write. If wait_list is specified, the buffers are
2137 * submitted using sync I/O and placed on the wait list such that the caller can
2138 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2139 * at I/O completion time. In either case, buffers remain locked until I/O
2140 * completes and the buffer is released from the queue.
26f1fe85 2141 */
43ff2122 2142static int
26f1fe85 2143xfs_buf_delwri_submit_buffers(
43ff2122 2144 struct list_head *buffer_list,
26f1fe85 2145 struct list_head *wait_list)
1da177e4 2146{
43ff2122
CH
2147 struct xfs_buf *bp, *n;
2148 int pinned = 0;
26f1fe85 2149 struct blk_plug plug;
43ff2122 2150
26f1fe85 2151 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 2152
26f1fe85 2153 blk_start_plug(&plug);
43ff2122 2154 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 2155 if (!wait_list) {
dbd0f529
DC
2156 if (!xfs_buf_trylock(bp))
2157 continue;
43ff2122 2158 if (xfs_buf_ispinned(bp)) {
dbd0f529 2159 xfs_buf_unlock(bp);
43ff2122
CH
2160 pinned++;
2161 continue;
2162 }
43ff2122
CH
2163 } else {
2164 xfs_buf_lock(bp);
2165 }
978c7b2f 2166
43ff2122
CH
2167 /*
2168 * Someone else might have written the buffer synchronously or
2169 * marked it stale in the meantime. In that case only the
2170 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2171 * reference and remove it from the list here.
2172 */
2173 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2174 list_del_init(&bp->b_list);
2175 xfs_buf_relse(bp);
2176 continue;
2177 }
c9c12971 2178
43ff2122 2179 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 2180
cf53e99d 2181 /*
e339dd8d
BF
2182 * If we have a wait list, each buffer (and associated delwri
2183 * queue reference) transfers to it and is submitted
2184 * synchronously. Otherwise, drop the buffer from the delwri
2185 * queue and submit async.
cf53e99d 2186 */
b6983e80 2187 bp->b_flags &= ~_XBF_DELWRI_Q;
e339dd8d 2188 bp->b_flags |= XBF_WRITE;
26f1fe85 2189 if (wait_list) {
e339dd8d 2190 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 2191 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
2192 } else {
2193 bp->b_flags |= XBF_ASYNC;
ce8e922c 2194 list_del_init(&bp->b_list);
e339dd8d 2195 }
6af88cda 2196 __xfs_buf_submit(bp, false);
43ff2122
CH
2197 }
2198 blk_finish_plug(&plug);
1da177e4 2199
43ff2122 2200 return pinned;
1da177e4
LT
2201}
2202
2203/*
43ff2122
CH
2204 * Write out a buffer list asynchronously.
2205 *
2206 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2207 * out and not wait for I/O completion on any of the buffers. This interface
2208 * is only safely useable for callers that can track I/O completion by higher
2209 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2210 * function.
efc3289c
BF
2211 *
2212 * Note: this function will skip buffers it would block on, and in doing so
2213 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2214 * it is up to the caller to ensure that the buffer list is fully submitted or
2215 * cancelled appropriately when they are finished with the list. Failure to
2216 * cancel or resubmit the list until it is empty will result in leaked buffers
2217 * at unmount time.
1da177e4
LT
2218 */
2219int
43ff2122
CH
2220xfs_buf_delwri_submit_nowait(
2221 struct list_head *buffer_list)
1da177e4 2222{
26f1fe85 2223 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2224}
1da177e4 2225
43ff2122
CH
2226/*
2227 * Write out a buffer list synchronously.
2228 *
2229 * This will take the @buffer_list, write all buffers out and wait for I/O
2230 * completion on all of the buffers. @buffer_list is consumed by the function,
2231 * so callers must have some other way of tracking buffers if they require such
2232 * functionality.
2233 */
2234int
2235xfs_buf_delwri_submit(
2236 struct list_head *buffer_list)
2237{
26f1fe85 2238 LIST_HEAD (wait_list);
43ff2122
CH
2239 int error = 0, error2;
2240 struct xfs_buf *bp;
1da177e4 2241
26f1fe85 2242 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2243
43ff2122 2244 /* Wait for IO to complete. */
26f1fe85
DC
2245 while (!list_empty(&wait_list)) {
2246 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2247
089716aa 2248 list_del_init(&bp->b_list);
cf53e99d 2249
e339dd8d
BF
2250 /*
2251 * Wait on the locked buffer, check for errors and unlock and
2252 * release the delwri queue reference.
2253 */
2254 error2 = xfs_buf_iowait(bp);
43ff2122
CH
2255 xfs_buf_relse(bp);
2256 if (!error)
2257 error = error2;
1da177e4
LT
2258 }
2259
43ff2122 2260 return error;
1da177e4
LT
2261}
2262
7912e7fe
BF
2263/*
2264 * Push a single buffer on a delwri queue.
2265 *
2266 * The purpose of this function is to submit a single buffer of a delwri queue
2267 * and return with the buffer still on the original queue. The waiting delwri
2268 * buffer submission infrastructure guarantees transfer of the delwri queue
2269 * buffer reference to a temporary wait list. We reuse this infrastructure to
2270 * transfer the buffer back to the original queue.
2271 *
2272 * Note the buffer transitions from the queued state, to the submitted and wait
2273 * listed state and back to the queued state during this call. The buffer
2274 * locking and queue management logic between _delwri_pushbuf() and
2275 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2276 * before returning.
2277 */
2278int
2279xfs_buf_delwri_pushbuf(
2280 struct xfs_buf *bp,
2281 struct list_head *buffer_list)
2282{
2283 LIST_HEAD (submit_list);
2284 int error;
2285
2286 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2287
2288 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2289
2290 /*
2291 * Isolate the buffer to a new local list so we can submit it for I/O
2292 * independently from the rest of the original list.
2293 */
2294 xfs_buf_lock(bp);
2295 list_move(&bp->b_list, &submit_list);
2296 xfs_buf_unlock(bp);
2297
2298 /*
2299 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2300 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2301 * bounce the buffer from a local wait list back to the original list
2302 * after I/O completion, reuse the original list as the wait list.
2303 */
2304 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2305
2306 /*
e339dd8d
BF
2307 * The buffer is now locked, under I/O and wait listed on the original
2308 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2309 * return with the buffer unlocked and on the original queue.
7912e7fe 2310 */
e339dd8d 2311 error = xfs_buf_iowait(bp);
7912e7fe
BF
2312 bp->b_flags |= _XBF_DELWRI_Q;
2313 xfs_buf_unlock(bp);
2314
2315 return error;
2316}
2317
7561d27e
BF
2318void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2319{
7561d27e
BF
2320 /*
2321 * Set the lru reference count to 0 based on the error injection tag.
2322 * This allows userspace to disrupt buffer caching for debug/testing
2323 * purposes.
2324 */
dbd329f1 2325 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2326 lru_ref = 0;
2327
2328 atomic_set(&bp->b_lru_ref, lru_ref);
2329}
8473fee3
BF
2330
2331/*
2332 * Verify an on-disk magic value against the magic value specified in the
2333 * verifier structure. The verifier magic is in disk byte order so the caller is
2334 * expected to pass the value directly from disk.
2335 */
2336bool
2337xfs_verify_magic(
2338 struct xfs_buf *bp,
15baadf7 2339 __be32 dmagic)
8473fee3 2340{
dbd329f1 2341 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2342 int idx;
2343
38c26bfd 2344 idx = xfs_has_crc(mp);
14ed8688 2345 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
8473fee3
BF
2346 return false;
2347 return dmagic == bp->b_ops->magic[idx];
2348}
15baadf7
DW
2349/*
2350 * Verify an on-disk magic value against the magic value specified in the
2351 * verifier structure. The verifier magic is in disk byte order so the caller is
2352 * expected to pass the value directly from disk.
2353 */
2354bool
2355xfs_verify_magic16(
2356 struct xfs_buf *bp,
2357 __be16 dmagic)
2358{
dbd329f1 2359 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2360 int idx;
2361
38c26bfd 2362 idx = xfs_has_crc(mp);
14ed8688 2363 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
15baadf7
DW
2364 return false;
2365 return dmagic == bp->b_ops->magic16[idx];
2366}