Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / fs / xfs / xfs_aops.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
70a9883c 7#include "xfs_shared.h"
239880ef
DC
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
1da177e4 11#include "xfs_mount.h"
1da177e4 12#include "xfs_inode.h"
239880ef 13#include "xfs_trans.h"
281627df 14#include "xfs_inode_item.h"
a844f451 15#include "xfs_alloc.h"
1da177e4 16#include "xfs_error.h"
1da177e4 17#include "xfs_iomap.h"
0b1b213f 18#include "xfs_trace.h"
3ed3a434 19#include "xfs_bmap.h"
68988114 20#include "xfs_bmap_util.h"
a4fbe6ab 21#include "xfs_bmap_btree.h"
ef473667 22#include "xfs_reflink.h"
5a0e3ad6 23#include <linux/gfp.h>
1da177e4 24#include <linux/mpage.h>
10ce4444 25#include <linux/pagevec.h>
1da177e4
LT
26#include <linux/writeback.h>
27
fbcc0256
DC
28/*
29 * structure owned by writepages passed to individual writepage calls
30 */
31struct xfs_writepage_ctx {
32 struct xfs_bmbt_irec imap;
33 bool imap_valid;
34 unsigned int io_type;
fbcc0256
DC
35 struct xfs_ioend *ioend;
36 sector_t last_block;
37};
38
0b1b213f 39void
f51623b2
NS
40xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
f51623b2
NS
43 int *unwritten)
44{
45 struct buffer_head *bh, *head;
46
20cb52eb 47 *delalloc = *unwritten = 0;
f51623b2
NS
48
49 bh = head = page_buffers(page);
50 do {
20cb52eb 51 if (buffer_unwritten(bh))
f51623b2
NS
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56}
57
20a90f58 58struct block_device *
6214ed44 59xfs_find_bdev_for_inode(
046f1685 60 struct inode *inode)
6214ed44 61{
046f1685 62 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
63 struct xfs_mount *mp = ip->i_mount;
64
71ddabb9 65 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69}
70
486aff5e
DW
71struct dax_device *
72xfs_find_daxdev_for_inode(
73 struct inode *inode)
74{
75 struct xfs_inode *ip = XFS_I(inode);
76 struct xfs_mount *mp = ip->i_mount;
77
78 if (XFS_IS_REALTIME_INODE(ip))
79 return mp->m_rtdev_targp->bt_daxdev;
80 else
81 return mp->m_ddev_targp->bt_daxdev;
82}
83
f6d6d4fc 84/*
37992c18
DC
85 * We're now finished for good with this page. Update the page state via the
86 * associated buffer_heads, paying attention to the start and end offsets that
87 * we need to process on the page.
28b783e4 88 *
8353a814
CH
89 * Note that we open code the action in end_buffer_async_write here so that we
90 * only have to iterate over the buffers attached to the page once. This is not
91 * only more efficient, but also ensures that we only calls end_page_writeback
92 * at the end of the iteration, and thus avoids the pitfall of having the page
93 * and buffers potentially freed after every call to end_buffer_async_write.
37992c18
DC
94 */
95static void
96xfs_finish_page_writeback(
97 struct inode *inode,
98 struct bio_vec *bvec,
99 int error)
100{
8353a814
CH
101 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
102 bool busy = false;
37992c18 103 unsigned int off = 0;
8353a814 104 unsigned long flags;
37992c18
DC
105
106 ASSERT(bvec->bv_offset < PAGE_SIZE);
93407472 107 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
8353a814 108 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
93407472 109 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
37992c18 110
8353a814
CH
111 local_irq_save(flags);
112 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
37992c18 113 do {
8353a814
CH
114 if (off >= bvec->bv_offset &&
115 off < bvec->bv_offset + bvec->bv_len) {
116 ASSERT(buffer_async_write(bh));
117 ASSERT(bh->b_end_io == NULL);
118
119 if (error) {
120 mark_buffer_write_io_error(bh);
121 clear_buffer_uptodate(bh);
122 SetPageError(bvec->bv_page);
123 } else {
124 set_buffer_uptodate(bh);
125 }
126 clear_buffer_async_write(bh);
127 unlock_buffer(bh);
128 } else if (buffer_async_write(bh)) {
129 ASSERT(buffer_locked(bh));
130 busy = true;
131 }
132 off += bh->b_size;
133 } while ((bh = bh->b_this_page) != head);
134 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
135 local_irq_restore(flags);
136
137 if (!busy)
138 end_page_writeback(bvec->bv_page);
37992c18
DC
139}
140
141/*
142 * We're now finished for good with this ioend structure. Update the page
143 * state, release holds on bios, and finally free up memory. Do not use the
144 * ioend after this.
f6d6d4fc 145 */
0829c360
CH
146STATIC void
147xfs_destroy_ioend(
0e51a8e1
CH
148 struct xfs_ioend *ioend,
149 int error)
0829c360 150{
37992c18 151 struct inode *inode = ioend->io_inode;
8353a814
CH
152 struct bio *bio = &ioend->io_inline_bio;
153 struct bio *last = ioend->io_bio, *next;
154 u64 start = bio->bi_iter.bi_sector;
155 bool quiet = bio_flagged(bio, BIO_QUIET);
f6d6d4fc 156
0e51a8e1 157 for (bio = &ioend->io_inline_bio; bio; bio = next) {
37992c18
DC
158 struct bio_vec *bvec;
159 int i;
160
0e51a8e1
CH
161 /*
162 * For the last bio, bi_private points to the ioend, so we
163 * need to explicitly end the iteration here.
164 */
165 if (bio == last)
166 next = NULL;
167 else
168 next = bio->bi_private;
583fa586 169
37992c18
DC
170 /* walk each page on bio, ending page IO on them */
171 bio_for_each_segment_all(bvec, bio, i)
172 xfs_finish_page_writeback(inode, bvec, error);
173
174 bio_put(bio);
f6d6d4fc 175 }
8353a814
CH
176
177 if (unlikely(error && !quiet)) {
178 xfs_err_ratelimited(XFS_I(inode)->i_mount,
179 "writeback error on sector %llu", start);
180 }
0829c360
CH
181}
182
fc0063c4
CH
183/*
184 * Fast and loose check if this write could update the on-disk inode size.
185 */
186static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
187{
188 return ioend->io_offset + ioend->io_size >
189 XFS_I(ioend->io_inode)->i_d.di_size;
190}
191
281627df
CH
192STATIC int
193xfs_setfilesize_trans_alloc(
194 struct xfs_ioend *ioend)
195{
196 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
197 struct xfs_trans *tp;
198 int error;
199
4df0f7f1
DC
200 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
201 XFS_TRANS_NOFS, &tp);
253f4911 202 if (error)
281627df 203 return error;
281627df
CH
204
205 ioend->io_append_trans = tp;
206
d9457dc0 207 /*
437a255a 208 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
209 * we released it.
210 */
bee9182d 211 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
212 /*
213 * We hand off the transaction to the completion thread now, so
214 * clear the flag here.
215 */
9070733b 216 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
281627df
CH
217 return 0;
218}
219
ba87ea69 220/*
2813d682 221 * Update on-disk file size now that data has been written to disk.
ba87ea69 222 */
281627df 223STATIC int
e372843a 224__xfs_setfilesize(
2ba66237
CH
225 struct xfs_inode *ip,
226 struct xfs_trans *tp,
227 xfs_off_t offset,
228 size_t size)
ba87ea69 229{
ba87ea69 230 xfs_fsize_t isize;
ba87ea69 231
aa6bf01d 232 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 233 isize = xfs_new_eof(ip, offset + size);
281627df
CH
234 if (!isize) {
235 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 236 xfs_trans_cancel(tp);
281627df 237 return 0;
ba87ea69
LM
238 }
239
2ba66237 240 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
241
242 ip->i_d.di_size = isize;
243 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
244 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
245
70393313 246 return xfs_trans_commit(tp);
77d7a0c2
DC
247}
248
e372843a
CH
249int
250xfs_setfilesize(
251 struct xfs_inode *ip,
252 xfs_off_t offset,
253 size_t size)
254{
255 struct xfs_mount *mp = ip->i_mount;
256 struct xfs_trans *tp;
257 int error;
258
259 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
260 if (error)
261 return error;
262
263 return __xfs_setfilesize(ip, tp, offset, size);
264}
265
2ba66237
CH
266STATIC int
267xfs_setfilesize_ioend(
0e51a8e1
CH
268 struct xfs_ioend *ioend,
269 int error)
2ba66237
CH
270{
271 struct xfs_inode *ip = XFS_I(ioend->io_inode);
272 struct xfs_trans *tp = ioend->io_append_trans;
273
274 /*
275 * The transaction may have been allocated in the I/O submission thread,
276 * thus we need to mark ourselves as being in a transaction manually.
277 * Similarly for freeze protection.
278 */
9070733b 279 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
bee9182d 280 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 281
5cb13dcd 282 /* we abort the update if there was an IO error */
0e51a8e1 283 if (error) {
5cb13dcd 284 xfs_trans_cancel(tp);
0e51a8e1 285 return error;
5cb13dcd
Z
286 }
287
e372843a 288 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
2ba66237
CH
289}
290
0829c360 291/*
5ec4fabb 292 * IO write completion.
f6d6d4fc
CH
293 */
294STATIC void
5ec4fabb 295xfs_end_io(
77d7a0c2 296 struct work_struct *work)
0829c360 297{
0e51a8e1
CH
298 struct xfs_ioend *ioend =
299 container_of(work, struct xfs_ioend, io_work);
300 struct xfs_inode *ip = XFS_I(ioend->io_inode);
787eb485
CH
301 xfs_off_t offset = ioend->io_offset;
302 size_t size = ioend->io_size;
4e4cbee9 303 int error;
ba87ea69 304
af055e37 305 /*
787eb485 306 * Just clean up the in-memory strutures if the fs has been shut down.
af055e37 307 */
787eb485 308 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
0e51a8e1 309 error = -EIO;
787eb485
CH
310 goto done;
311 }
04f658ee 312
43caeb18 313 /*
787eb485 314 * Clean up any COW blocks on an I/O error.
43caeb18 315 */
4e4cbee9 316 error = blk_status_to_errno(ioend->io_bio->bi_status);
787eb485
CH
317 if (unlikely(error)) {
318 switch (ioend->io_type) {
319 case XFS_IO_COW:
320 xfs_reflink_cancel_cow_range(ip, offset, size, true);
321 break;
43caeb18 322 }
787eb485
CH
323
324 goto done;
43caeb18
DW
325 }
326
5ec4fabb 327 /*
787eb485 328 * Success: commit the COW or unwritten blocks if needed.
5ec4fabb 329 */
787eb485
CH
330 switch (ioend->io_type) {
331 case XFS_IO_COW:
332 error = xfs_reflink_end_cow(ip, offset, size);
333 break;
334 case XFS_IO_UNWRITTEN:
ee70daab
EG
335 /* writeback should never update isize */
336 error = xfs_iomap_write_unwritten(ip, offset, size, false);
787eb485
CH
337 break;
338 default:
339 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
340 break;
5ec4fabb 341 }
ba87ea69 342
04f658ee 343done:
787eb485
CH
344 if (ioend->io_append_trans)
345 error = xfs_setfilesize_ioend(ioend, error);
0e51a8e1 346 xfs_destroy_ioend(ioend, error);
c626d174
DC
347}
348
0e51a8e1
CH
349STATIC void
350xfs_end_bio(
351 struct bio *bio)
0829c360 352{
0e51a8e1
CH
353 struct xfs_ioend *ioend = bio->bi_private;
354 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
0829c360 355
43caeb18 356 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
0e51a8e1
CH
357 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
358 else if (ioend->io_append_trans)
359 queue_work(mp->m_data_workqueue, &ioend->io_work);
360 else
4e4cbee9 361 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
0829c360
CH
362}
363
1da177e4
LT
364STATIC int
365xfs_map_blocks(
366 struct inode *inode,
367 loff_t offset,
207d0416 368 struct xfs_bmbt_irec *imap,
988ef927 369 int type)
1da177e4 370{
a206c817
CH
371 struct xfs_inode *ip = XFS_I(inode);
372 struct xfs_mount *mp = ip->i_mount;
93407472 373 ssize_t count = i_blocksize(inode);
a206c817
CH
374 xfs_fileoff_t offset_fsb, end_fsb;
375 int error = 0;
a206c817
CH
376 int bmapi_flags = XFS_BMAPI_ENTIRE;
377 int nimaps = 1;
378
379 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 380 return -EIO;
a206c817 381
70c57dcd
DW
382 /*
383 * Truncate can race with writeback since writeback doesn't take the
384 * iolock and truncate decreases the file size before it starts
385 * truncating the pages between new_size and old_size. Therefore, we
386 * can end up in the situation where writeback gets a CoW fork mapping
387 * but the truncate makes the mapping invalid and we end up in here
388 * trying to get a new mapping. Bail out here so that we simply never
389 * get a valid mapping and so we drop the write altogether. The page
390 * truncation will kill the contents anyway.
391 */
392 if (type == XFS_IO_COW && offset > i_size_read(inode))
393 return 0;
394
ef473667 395 ASSERT(type != XFS_IO_COW);
0d882a36 396 if (type == XFS_IO_UNWRITTEN)
a206c817 397 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 398
988ef927 399 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
400 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
401 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 402 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 403
b4d8ad7f 404 if (offset > mp->m_super->s_maxbytes - count)
d2c28191 405 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
406 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
407 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
408 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
409 imap, &nimaps, bmapi_flags);
ef473667
DW
410 /*
411 * Truncate an overwrite extent if there's a pending CoW
412 * reservation before the end of this extent. This forces us
413 * to come back to writepage to take care of the CoW.
414 */
415 if (nimaps && type == XFS_IO_OVERWRITE)
416 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
8ff2957d 417 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 418
8ff2957d 419 if (error)
2451337d 420 return error;
a206c817 421
0d882a36 422 if (type == XFS_IO_DELALLOC &&
8ff2957d 423 (!nimaps || isnullstartblock(imap->br_startblock))) {
60b4984f
DW
424 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
425 imap);
a206c817 426 if (!error)
ef473667 427 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 428 return error;
a206c817
CH
429 }
430
8ff2957d 431#ifdef DEBUG
0d882a36 432 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
433 ASSERT(nimaps);
434 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
435 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
436 }
437#endif
438 if (nimaps)
439 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
440 return 0;
1da177e4
LT
441}
442
fbcc0256 443STATIC bool
558e6891 444xfs_imap_valid(
8699bb0a 445 struct inode *inode,
207d0416 446 struct xfs_bmbt_irec *imap,
558e6891 447 xfs_off_t offset)
1da177e4 448{
558e6891 449 offset >>= inode->i_blkbits;
8699bb0a 450
40214d12
BF
451 /*
452 * We have to make sure the cached mapping is within EOF to protect
453 * against eofblocks trimming on file release leaving us with a stale
454 * mapping. Otherwise, a page for a subsequent file extending buffered
455 * write could get picked up by this writeback cycle and written to the
456 * wrong blocks.
457 *
458 * Note that what we really want here is a generic mapping invalidation
459 * mechanism to protect us from arbitrary extent modifying contexts, not
460 * just eofblocks.
461 */
462 xfs_trim_extent_eof(imap, XFS_I(inode));
463
558e6891
CH
464 return offset >= imap->br_startoff &&
465 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
466}
467
f6d6d4fc
CH
468STATIC void
469xfs_start_buffer_writeback(
470 struct buffer_head *bh)
471{
472 ASSERT(buffer_mapped(bh));
473 ASSERT(buffer_locked(bh));
474 ASSERT(!buffer_delay(bh));
475 ASSERT(!buffer_unwritten(bh));
476
8353a814
CH
477 bh->b_end_io = NULL;
478 set_buffer_async_write(bh);
f6d6d4fc
CH
479 set_buffer_uptodate(bh);
480 clear_buffer_dirty(bh);
481}
482
483STATIC void
484xfs_start_page_writeback(
485 struct page *page,
e10de372 486 int clear_dirty)
f6d6d4fc
CH
487{
488 ASSERT(PageLocked(page));
489 ASSERT(!PageWriteback(page));
0d085a52
DC
490
491 /*
492 * if the page was not fully cleaned, we need to ensure that the higher
493 * layers come back to it correctly. That means we need to keep the page
494 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
495 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
496 * write this page in this writeback sweep will be made.
497 */
498 if (clear_dirty) {
92132021 499 clear_page_dirty_for_io(page);
0d085a52
DC
500 set_page_writeback(page);
501 } else
502 set_page_writeback_keepwrite(page);
503
f6d6d4fc 504 unlock_page(page);
f6d6d4fc
CH
505}
506
c7c1a7d8 507static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
508{
509 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
510}
511
512/*
bb18782a
DC
513 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
514 * it, and we submit that bio. The ioend may be used for multiple bio
515 * submissions, so we only want to allocate an append transaction for the ioend
516 * once. In the case of multiple bio submission, each bio will take an IO
517 * reference to the ioend to ensure that the ioend completion is only done once
518 * all bios have been submitted and the ioend is really done.
7bf7f352
DC
519 *
520 * If @fail is non-zero, it means that we have a situation where some part of
521 * the submission process has failed after we have marked paged for writeback
bb18782a
DC
522 * and unlocked them. In this situation, we need to fail the bio and ioend
523 * rather than submit it to IO. This typically only happens on a filesystem
524 * shutdown.
f6d6d4fc 525 */
e10de372 526STATIC int
f6d6d4fc 527xfs_submit_ioend(
06342cf8 528 struct writeback_control *wbc,
0e51a8e1 529 struct xfs_ioend *ioend,
e10de372 530 int status)
f6d6d4fc 531{
5eda4300
DW
532 /* Convert CoW extents to regular */
533 if (!status && ioend->io_type == XFS_IO_COW) {
4a2d01b0
DC
534 /*
535 * Yuk. This can do memory allocation, but is not a
536 * transactional operation so everything is done in GFP_KERNEL
537 * context. That can deadlock, because we hold pages in
538 * writeback state and GFP_KERNEL allocations can block on them.
539 * Hence we must operate in nofs conditions here.
540 */
541 unsigned nofs_flag;
542
543 nofs_flag = memalloc_nofs_save();
5eda4300
DW
544 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
545 ioend->io_offset, ioend->io_size);
4a2d01b0 546 memalloc_nofs_restore(nofs_flag);
5eda4300
DW
547 }
548
e10de372
DC
549 /* Reserve log space if we might write beyond the on-disk inode size. */
550 if (!status &&
0e51a8e1 551 ioend->io_type != XFS_IO_UNWRITTEN &&
bb18782a
DC
552 xfs_ioend_is_append(ioend) &&
553 !ioend->io_append_trans)
e10de372 554 status = xfs_setfilesize_trans_alloc(ioend);
bb18782a 555
0e51a8e1
CH
556 ioend->io_bio->bi_private = ioend;
557 ioend->io_bio->bi_end_io = xfs_end_bio;
7637241e 558 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
70fd7614 559
e10de372
DC
560 /*
561 * If we are failing the IO now, just mark the ioend with an
562 * error and finish it. This will run IO completion immediately
563 * as there is only one reference to the ioend at this point in
564 * time.
565 */
566 if (status) {
4e4cbee9 567 ioend->io_bio->bi_status = errno_to_blk_status(status);
0e51a8e1 568 bio_endio(ioend->io_bio);
e10de372
DC
569 return status;
570 }
d88992f6 571
31d7d58d 572 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
4e49ea4a 573 submit_bio(ioend->io_bio);
e10de372 574 return 0;
f6d6d4fc 575}
f6d6d4fc 576
0e51a8e1
CH
577static void
578xfs_init_bio_from_bh(
579 struct bio *bio,
580 struct buffer_head *bh)
581{
582 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
74d46992 583 bio_set_dev(bio, bh->b_bdev);
0e51a8e1 584}
7bf7f352 585
0e51a8e1
CH
586static struct xfs_ioend *
587xfs_alloc_ioend(
588 struct inode *inode,
589 unsigned int type,
590 xfs_off_t offset,
591 struct buffer_head *bh)
592{
593 struct xfs_ioend *ioend;
594 struct bio *bio;
f6d6d4fc 595
e292d7bc 596 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
0e51a8e1
CH
597 xfs_init_bio_from_bh(bio, bh);
598
599 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
600 INIT_LIST_HEAD(&ioend->io_list);
601 ioend->io_type = type;
602 ioend->io_inode = inode;
603 ioend->io_size = 0;
604 ioend->io_offset = offset;
605 INIT_WORK(&ioend->io_work, xfs_end_io);
606 ioend->io_append_trans = NULL;
607 ioend->io_bio = bio;
608 return ioend;
609}
610
611/*
612 * Allocate a new bio, and chain the old bio to the new one.
613 *
614 * Note that we have to do perform the chaining in this unintuitive order
615 * so that the bi_private linkage is set up in the right direction for the
616 * traversal in xfs_destroy_ioend().
617 */
618static void
619xfs_chain_bio(
620 struct xfs_ioend *ioend,
621 struct writeback_control *wbc,
622 struct buffer_head *bh)
623{
624 struct bio *new;
625
626 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
627 xfs_init_bio_from_bh(new, bh);
628
629 bio_chain(ioend->io_bio, new);
630 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
7637241e 631 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
31d7d58d 632 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
4e49ea4a 633 submit_bio(ioend->io_bio);
0e51a8e1 634 ioend->io_bio = new;
f6d6d4fc
CH
635}
636
637/*
638 * Test to see if we've been building up a completion structure for
639 * earlier buffers -- if so, we try to append to this ioend if we
640 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
641 * Return the ioend we finished off so that the caller can submit it
642 * once it has finished processing the dirty page.
f6d6d4fc
CH
643 */
644STATIC void
645xfs_add_to_ioend(
646 struct inode *inode,
647 struct buffer_head *bh,
7336cea8 648 xfs_off_t offset,
e10de372 649 struct xfs_writepage_ctx *wpc,
bb18782a 650 struct writeback_control *wbc,
e10de372 651 struct list_head *iolist)
f6d6d4fc 652{
fbcc0256 653 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
0df61da8
DW
654 bh->b_blocknr != wpc->last_block + 1 ||
655 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
e10de372
DC
656 if (wpc->ioend)
657 list_add(&wpc->ioend->io_list, iolist);
0e51a8e1 658 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
f6d6d4fc
CH
659 }
660
0e51a8e1
CH
661 /*
662 * If the buffer doesn't fit into the bio we need to allocate a new
663 * one. This shouldn't happen more than once for a given buffer.
664 */
665 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
666 xfs_chain_bio(wpc->ioend, wbc, bh);
bb18782a 667
fbcc0256
DC
668 wpc->ioend->io_size += bh->b_size;
669 wpc->last_block = bh->b_blocknr;
e10de372 670 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
671}
672
87cbc49c
NS
673STATIC void
674xfs_map_buffer(
046f1685 675 struct inode *inode,
87cbc49c 676 struct buffer_head *bh,
207d0416 677 struct xfs_bmbt_irec *imap,
046f1685 678 xfs_off_t offset)
87cbc49c
NS
679{
680 sector_t bn;
8699bb0a 681 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
682 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
683 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 684
207d0416
CH
685 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
686 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 687
e513182d 688 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 689 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 690
046f1685 691 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
692
693 bh->b_blocknr = bn;
694 set_buffer_mapped(bh);
695}
696
1da177e4
LT
697STATIC void
698xfs_map_at_offset(
046f1685 699 struct inode *inode,
1da177e4 700 struct buffer_head *bh,
207d0416 701 struct xfs_bmbt_irec *imap,
046f1685 702 xfs_off_t offset)
1da177e4 703{
207d0416
CH
704 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
705 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 706
207d0416 707 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
708 set_buffer_mapped(bh);
709 clear_buffer_delay(bh);
f6d6d4fc 710 clear_buffer_unwritten(bh);
1da177e4
LT
711}
712
1da177e4 713/*
a49935f2
DC
714 * Test if a given page contains at least one buffer of a given @type.
715 * If @check_all_buffers is true, then we walk all the buffers in the page to
716 * try to find one of the type passed in. If it is not set, then the caller only
717 * needs to check the first buffer on the page for a match.
1da177e4 718 */
a49935f2 719STATIC bool
6ffc4db5 720xfs_check_page_type(
10ce4444 721 struct page *page,
a49935f2
DC
722 unsigned int type,
723 bool check_all_buffers)
1da177e4 724{
a49935f2
DC
725 struct buffer_head *bh;
726 struct buffer_head *head;
1da177e4 727
a49935f2
DC
728 if (PageWriteback(page))
729 return false;
730 if (!page->mapping)
731 return false;
732 if (!page_has_buffers(page))
733 return false;
1da177e4 734
a49935f2
DC
735 bh = head = page_buffers(page);
736 do {
737 if (buffer_unwritten(bh)) {
738 if (type == XFS_IO_UNWRITTEN)
739 return true;
740 } else if (buffer_delay(bh)) {
805eeb8e 741 if (type == XFS_IO_DELALLOC)
a49935f2
DC
742 return true;
743 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 744 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
745 return true;
746 }
1da177e4 747
a49935f2
DC
748 /* If we are only checking the first buffer, we are done now. */
749 if (!check_all_buffers)
750 break;
751 } while ((bh = bh->b_this_page) != head);
1da177e4 752
a49935f2 753 return false;
1da177e4
LT
754}
755
3ed3a434
DC
756STATIC void
757xfs_vm_invalidatepage(
758 struct page *page,
d47992f8
LC
759 unsigned int offset,
760 unsigned int length)
3ed3a434 761{
34097dfe
LC
762 trace_xfs_invalidatepage(page->mapping->host, page, offset,
763 length);
793d7dbe
DC
764
765 /*
766 * If we are invalidating the entire page, clear the dirty state from it
767 * so that we can check for attempts to release dirty cached pages in
768 * xfs_vm_releasepage().
769 */
770 if (offset == 0 && length >= PAGE_SIZE)
771 cancel_dirty_page(page);
34097dfe 772 block_invalidatepage(page, offset, length);
3ed3a434
DC
773}
774
775/*
776 * If the page has delalloc buffers on it, we need to punch them out before we
777 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
778 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
779 * is done on that same region - the delalloc extent is returned when none is
780 * supposed to be there.
781 *
782 * We prevent this by truncating away the delalloc regions on the page before
783 * invalidating it. Because they are delalloc, we can do this without needing a
784 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
785 * truncation without a transaction as there is no space left for block
786 * reservation (typically why we see a ENOSPC in writeback).
787 *
788 * This is not a performance critical path, so for now just do the punching a
789 * buffer head at a time.
790 */
791STATIC void
792xfs_aops_discard_page(
793 struct page *page)
794{
795 struct inode *inode = page->mapping->host;
796 struct xfs_inode *ip = XFS_I(inode);
797 struct buffer_head *bh, *head;
798 loff_t offset = page_offset(page);
3ed3a434 799
a49935f2 800 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
801 goto out_invalidate;
802
e8c3753c
DC
803 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
804 goto out_invalidate;
805
4f10700a 806 xfs_alert(ip->i_mount,
c9690043 807 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
3ed3a434
DC
808 page, ip->i_ino, offset);
809
810 xfs_ilock(ip, XFS_ILOCK_EXCL);
811 bh = head = page_buffers(page);
812 do {
3ed3a434 813 int error;
c726de44 814 xfs_fileoff_t start_fsb;
3ed3a434
DC
815
816 if (!buffer_delay(bh))
817 goto next_buffer;
818
c726de44
DC
819 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
820 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
821 if (error) {
822 /* something screwed, just bail */
e8c3753c 823 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 824 xfs_alert(ip->i_mount,
3ed3a434 825 "page discard unable to remove delalloc mapping.");
e8c3753c 826 }
3ed3a434
DC
827 break;
828 }
829next_buffer:
93407472 830 offset += i_blocksize(inode);
3ed3a434
DC
831
832 } while ((bh = bh->b_this_page) != head);
833
834 xfs_iunlock(ip, XFS_ILOCK_EXCL);
835out_invalidate:
09cbfeaf 836 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
3ed3a434
DC
837 return;
838}
839
ef473667
DW
840static int
841xfs_map_cow(
842 struct xfs_writepage_ctx *wpc,
843 struct inode *inode,
844 loff_t offset,
845 unsigned int *new_type)
846{
847 struct xfs_inode *ip = XFS_I(inode);
848 struct xfs_bmbt_irec imap;
092d5d9d 849 bool is_cow = false;
ef473667
DW
850 int error;
851
852 /*
853 * If we already have a valid COW mapping keep using it.
854 */
855 if (wpc->io_type == XFS_IO_COW) {
856 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
857 if (wpc->imap_valid) {
858 *new_type = XFS_IO_COW;
859 return 0;
860 }
861 }
862
863 /*
864 * Else we need to check if there is a COW mapping at this offset.
865 */
866 xfs_ilock(ip, XFS_ILOCK_SHARED);
092d5d9d 867 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
ef473667
DW
868 xfs_iunlock(ip, XFS_ILOCK_SHARED);
869
870 if (!is_cow)
871 return 0;
872
873 /*
874 * And if the COW mapping has a delayed extent here we need to
875 * allocate real space for it now.
876 */
092d5d9d 877 if (isnullstartblock(imap.br_startblock)) {
ef473667
DW
878 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
879 &imap);
880 if (error)
881 return error;
882 }
883
884 wpc->io_type = *new_type = XFS_IO_COW;
885 wpc->imap_valid = true;
886 wpc->imap = imap;
887 return 0;
888}
889
e10de372
DC
890/*
891 * We implement an immediate ioend submission policy here to avoid needing to
892 * chain multiple ioends and hence nest mempool allocations which can violate
893 * forward progress guarantees we need to provide. The current ioend we are
894 * adding buffers to is cached on the writepage context, and if the new buffer
895 * does not append to the cached ioend it will create a new ioend and cache that
896 * instead.
897 *
898 * If a new ioend is created and cached, the old ioend is returned and queued
899 * locally for submission once the entire page is processed or an error has been
900 * detected. While ioends are submitted immediately after they are completed,
901 * batching optimisations are provided by higher level block plugging.
902 *
903 * At the end of a writeback pass, there will be a cached ioend remaining on the
904 * writepage context that the caller will need to submit.
905 */
bfce7d2e
DC
906static int
907xfs_writepage_map(
908 struct xfs_writepage_ctx *wpc,
e10de372 909 struct writeback_control *wbc,
bfce7d2e
DC
910 struct inode *inode,
911 struct page *page,
2d5f4b5b 912 uint64_t end_offset)
bfce7d2e 913{
e10de372
DC
914 LIST_HEAD(submit_list);
915 struct xfs_ioend *ioend, *next;
bfce7d2e 916 struct buffer_head *bh, *head;
93407472 917 ssize_t len = i_blocksize(inode);
2d5f4b5b 918 uint64_t offset;
bfce7d2e 919 int error = 0;
bfce7d2e 920 int count = 0;
e10de372 921 int uptodate = 1;
ef473667 922 unsigned int new_type;
bfce7d2e
DC
923
924 bh = head = page_buffers(page);
925 offset = page_offset(page);
bfce7d2e
DC
926 do {
927 if (offset >= end_offset)
928 break;
929 if (!buffer_uptodate(bh))
930 uptodate = 0;
931
932 /*
933 * set_page_dirty dirties all buffers in a page, independent
934 * of their state. The dirty state however is entirely
935 * meaningless for holes (!mapped && uptodate), so skip
936 * buffers covering holes here.
937 */
938 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
939 wpc->imap_valid = false;
940 continue;
941 }
942
ef473667
DW
943 if (buffer_unwritten(bh))
944 new_type = XFS_IO_UNWRITTEN;
945 else if (buffer_delay(bh))
946 new_type = XFS_IO_DELALLOC;
947 else if (buffer_uptodate(bh))
948 new_type = XFS_IO_OVERWRITE;
949 else {
bfce7d2e
DC
950 if (PageUptodate(page))
951 ASSERT(buffer_mapped(bh));
952 /*
953 * This buffer is not uptodate and will not be
954 * written to disk. Ensure that we will put any
955 * subsequent writeable buffers into a new
956 * ioend.
957 */
958 wpc->imap_valid = false;
959 continue;
960 }
961
ef473667
DW
962 if (xfs_is_reflink_inode(XFS_I(inode))) {
963 error = xfs_map_cow(wpc, inode, offset, &new_type);
964 if (error)
965 goto out;
966 }
967
968 if (wpc->io_type != new_type) {
969 wpc->io_type = new_type;
970 wpc->imap_valid = false;
971 }
972
bfce7d2e
DC
973 if (wpc->imap_valid)
974 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
975 offset);
976 if (!wpc->imap_valid) {
977 error = xfs_map_blocks(inode, offset, &wpc->imap,
978 wpc->io_type);
979 if (error)
e10de372 980 goto out;
bfce7d2e
DC
981 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
982 offset);
983 }
984 if (wpc->imap_valid) {
985 lock_buffer(bh);
986 if (wpc->io_type != XFS_IO_OVERWRITE)
987 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
bb18782a 988 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
bfce7d2e
DC
989 count++;
990 }
991
bfce7d2e
DC
992 } while (offset += len, ((bh = bh->b_this_page) != head));
993
994 if (uptodate && bh == head)
995 SetPageUptodate(page);
996
e10de372 997 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 998
e10de372 999out:
bfce7d2e 1000 /*
e10de372
DC
1001 * On error, we have to fail the ioend here because we have locked
1002 * buffers in the ioend. If we don't do this, we'll deadlock
1003 * invalidating the page as that tries to lock the buffers on the page.
1004 * Also, because we may have set pages under writeback, we have to make
1005 * sure we run IO completion to mark the error state of the IO
1006 * appropriately, so we can't cancel the ioend directly here. That means
1007 * we have to mark this page as under writeback if we included any
1008 * buffers from it in the ioend chain so that completion treats it
1009 * correctly.
bfce7d2e 1010 *
e10de372
DC
1011 * If we didn't include the page in the ioend, the on error we can
1012 * simply discard and unlock it as there are no other users of the page
1013 * or it's buffers right now. The caller will still need to trigger
1014 * submission of outstanding ioends on the writepage context so they are
1015 * treated correctly on error.
bfce7d2e 1016 */
e10de372
DC
1017 if (count) {
1018 xfs_start_page_writeback(page, !error);
1019
1020 /*
1021 * Preserve the original error if there was one, otherwise catch
1022 * submission errors here and propagate into subsequent ioend
1023 * submissions.
1024 */
1025 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1026 int error2;
1027
1028 list_del_init(&ioend->io_list);
1029 error2 = xfs_submit_ioend(wbc, ioend, error);
1030 if (error2 && !error)
1031 error = error2;
1032 }
1033 } else if (error) {
bfce7d2e
DC
1034 xfs_aops_discard_page(page);
1035 ClearPageUptodate(page);
1036 unlock_page(page);
e10de372
DC
1037 } else {
1038 /*
1039 * We can end up here with no error and nothing to write if we
1040 * race with a partial page truncate on a sub-page block sized
1041 * filesystem. In that case we need to mark the page clean.
1042 */
1043 xfs_start_page_writeback(page, 1);
1044 end_page_writeback(page);
bfce7d2e 1045 }
e10de372 1046
bfce7d2e
DC
1047 mapping_set_error(page->mapping, error);
1048 return error;
1049}
1050
1da177e4 1051/*
89f3b363
CH
1052 * Write out a dirty page.
1053 *
1054 * For delalloc space on the page we need to allocate space and flush it.
1055 * For unwritten space on the page we need to start the conversion to
1056 * regular allocated space.
89f3b363 1057 * For any other dirty buffer heads on the page we should flush them.
1da177e4 1058 */
1da177e4 1059STATIC int
fbcc0256 1060xfs_do_writepage(
89f3b363 1061 struct page *page,
fbcc0256
DC
1062 struct writeback_control *wbc,
1063 void *data)
1da177e4 1064{
fbcc0256 1065 struct xfs_writepage_ctx *wpc = data;
89f3b363 1066 struct inode *inode = page->mapping->host;
1da177e4 1067 loff_t offset;
c8ce540d 1068 uint64_t end_offset;
ad68972a 1069 pgoff_t end_index;
89f3b363 1070
34097dfe 1071 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 1072
20cb52eb
CH
1073 ASSERT(page_has_buffers(page));
1074
89f3b363
CH
1075 /*
1076 * Refuse to write the page out if we are called from reclaim context.
1077 *
d4f7a5cb
CH
1078 * This avoids stack overflows when called from deeply used stacks in
1079 * random callers for direct reclaim or memcg reclaim. We explicitly
1080 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 1081 *
94054fa3
MG
1082 * This should never happen except in the case of a VM regression so
1083 * warn about it.
89f3b363 1084 */
94054fa3
MG
1085 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1086 PF_MEMALLOC))
b5420f23 1087 goto redirty;
1da177e4 1088
89f3b363 1089 /*
680a647b
CH
1090 * Given that we do not allow direct reclaim to call us, we should
1091 * never be called while in a filesystem transaction.
89f3b363 1092 */
9070733b 1093 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
b5420f23 1094 goto redirty;
89f3b363 1095
8695d27e 1096 /*
ad68972a
DC
1097 * Is this page beyond the end of the file?
1098 *
8695d27e
JL
1099 * The page index is less than the end_index, adjust the end_offset
1100 * to the highest offset that this page should represent.
1101 * -----------------------------------------------------
1102 * | file mapping | <EOF> |
1103 * -----------------------------------------------------
1104 * | Page ... | Page N-2 | Page N-1 | Page N | |
1105 * ^--------------------------------^----------|--------
1106 * | desired writeback range | see else |
1107 * ---------------------------------^------------------|
1108 */
ad68972a 1109 offset = i_size_read(inode);
09cbfeaf 1110 end_index = offset >> PAGE_SHIFT;
8695d27e 1111 if (page->index < end_index)
09cbfeaf 1112 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
8695d27e
JL
1113 else {
1114 /*
1115 * Check whether the page to write out is beyond or straddles
1116 * i_size or not.
1117 * -------------------------------------------------------
1118 * | file mapping | <EOF> |
1119 * -------------------------------------------------------
1120 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1121 * ^--------------------------------^-----------|---------
1122 * | | Straddles |
1123 * ---------------------------------^-----------|--------|
1124 */
09cbfeaf 1125 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
6b7a03f0
CH
1126
1127 /*
ff9a28f6
JK
1128 * Skip the page if it is fully outside i_size, e.g. due to a
1129 * truncate operation that is in progress. We must redirty the
1130 * page so that reclaim stops reclaiming it. Otherwise
1131 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1132 *
1133 * Note that the end_index is unsigned long, it would overflow
1134 * if the given offset is greater than 16TB on 32-bit system
1135 * and if we do check the page is fully outside i_size or not
1136 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1137 * will be evaluated to 0. Hence this page will be redirtied
1138 * and be written out repeatedly which would result in an
1139 * infinite loop, the user program that perform this operation
1140 * will hang. Instead, we can verify this situation by checking
1141 * if the page to write is totally beyond the i_size or if it's
1142 * offset is just equal to the EOF.
6b7a03f0 1143 */
8695d27e
JL
1144 if (page->index > end_index ||
1145 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1146 goto redirty;
6b7a03f0
CH
1147
1148 /*
1149 * The page straddles i_size. It must be zeroed out on each
1150 * and every writepage invocation because it may be mmapped.
1151 * "A file is mapped in multiples of the page size. For a file
8695d27e 1152 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1153 * memory is zeroed when mapped, and writes to that region are
1154 * not written out to the file."
1155 */
09cbfeaf 1156 zero_user_segment(page, offset_into_page, PAGE_SIZE);
8695d27e
JL
1157
1158 /* Adjust the end_offset to the end of file */
1159 end_offset = offset;
1da177e4
LT
1160 }
1161
2d5f4b5b 1162 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
f51623b2 1163
b5420f23 1164redirty:
f51623b2
NS
1165 redirty_page_for_writepage(wbc, page);
1166 unlock_page(page);
1167 return 0;
f51623b2
NS
1168}
1169
fbcc0256
DC
1170STATIC int
1171xfs_vm_writepage(
1172 struct page *page,
1173 struct writeback_control *wbc)
1174{
1175 struct xfs_writepage_ctx wpc = {
1176 .io_type = XFS_IO_INVALID,
1177 };
1178 int ret;
1179
1180 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
1181 if (wpc.ioend)
1182 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1183 return ret;
fbcc0256
DC
1184}
1185
7d4fb40a
NS
1186STATIC int
1187xfs_vm_writepages(
1188 struct address_space *mapping,
1189 struct writeback_control *wbc)
1190{
fbcc0256
DC
1191 struct xfs_writepage_ctx wpc = {
1192 .io_type = XFS_IO_INVALID,
1193 };
1194 int ret;
1195
b3aea4ed 1196 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
fbcc0256 1197 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1198 if (wpc.ioend)
1199 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1200 return ret;
7d4fb40a
NS
1201}
1202
6e2608df
DW
1203STATIC int
1204xfs_dax_writepages(
1205 struct address_space *mapping,
1206 struct writeback_control *wbc)
1207{
1208 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1209 return dax_writeback_mapping_range(mapping,
1210 xfs_find_bdev_for_inode(mapping->host), wbc);
1211}
1212
f51623b2
NS
1213/*
1214 * Called to move a page into cleanable state - and from there
89f3b363 1215 * to be released. The page should already be clean. We always
f51623b2
NS
1216 * have buffer heads in this call.
1217 *
89f3b363 1218 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1219 */
1220STATIC int
238f4c54 1221xfs_vm_releasepage(
f51623b2
NS
1222 struct page *page,
1223 gfp_t gfp_mask)
1224{
20cb52eb 1225 int delalloc, unwritten;
f51623b2 1226
34097dfe 1227 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1228
99579cce
BF
1229 /*
1230 * mm accommodates an old ext3 case where clean pages might not have had
1231 * the dirty bit cleared. Thus, it can send actual dirty pages to
1232 * ->releasepage() via shrink_active_list(). Conversely,
793d7dbe
DC
1233 * block_invalidatepage() can send pages that are still marked dirty but
1234 * otherwise have invalidated buffers.
99579cce 1235 *
0a417b8d 1236 * We want to release the latter to avoid unnecessary buildup of the
793d7dbe
DC
1237 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1238 * that are entirely invalidated and need to be released. Hence the
1239 * only time we should get dirty pages here is through
1240 * shrink_active_list() and so we can simply skip those now.
1241 *
1242 * warn if we've left any lingering delalloc/unwritten buffers on clean
1243 * or invalidated pages we are about to release.
99579cce 1244 */
793d7dbe
DC
1245 if (PageDirty(page))
1246 return 0;
1247
20cb52eb 1248 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1249
793d7dbe 1250 if (WARN_ON_ONCE(delalloc))
f51623b2 1251 return 0;
793d7dbe 1252 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1253 return 0;
1254
f51623b2
NS
1255 return try_to_free_buffers(page);
1256}
1257
1fdca9c2
DC
1258/*
1259 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1260 * is, so that we can avoid repeated get_blocks calls.
1261 *
1262 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1263 * for blocks beyond EOF must be marked new so that sub block regions can be
1264 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1265 * was just allocated or is unwritten, otherwise the callers would overwrite
1266 * existing data with zeros. Hence we have to split the mapping into a range up
1267 * to and including EOF, and a second mapping for beyond EOF.
1268 */
1269static void
1270xfs_map_trim_size(
1271 struct inode *inode,
1272 sector_t iblock,
1273 struct buffer_head *bh_result,
1274 struct xfs_bmbt_irec *imap,
1275 xfs_off_t offset,
1276 ssize_t size)
1277{
1278 xfs_off_t mapping_size;
1279
1280 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1281 mapping_size <<= inode->i_blkbits;
1282
1283 ASSERT(mapping_size > 0);
1284 if (mapping_size > size)
1285 mapping_size = size;
1286 if (offset < i_size_read(inode) &&
22a6c837 1287 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1fdca9c2
DC
1288 /* limit mapping to block that spans EOF */
1289 mapping_size = roundup_64(i_size_read(inode) - offset,
93407472 1290 i_blocksize(inode));
1fdca9c2
DC
1291 }
1292 if (mapping_size > LONG_MAX)
1293 mapping_size = LONG_MAX;
1294
1295 bh_result->b_size = mapping_size;
1296}
1297
0613f16c 1298static int
acdda3aa 1299xfs_get_blocks(
1da177e4
LT
1300 struct inode *inode,
1301 sector_t iblock,
1da177e4 1302 struct buffer_head *bh_result,
acdda3aa 1303 int create)
1da177e4 1304{
a206c817
CH
1305 struct xfs_inode *ip = XFS_I(inode);
1306 struct xfs_mount *mp = ip->i_mount;
1307 xfs_fileoff_t offset_fsb, end_fsb;
1308 int error = 0;
1309 int lockmode = 0;
207d0416 1310 struct xfs_bmbt_irec imap;
a206c817 1311 int nimaps = 1;
fdc7ed75
NS
1312 xfs_off_t offset;
1313 ssize_t size;
a206c817 1314
acdda3aa 1315 BUG_ON(create);
6e8a27a8 1316
a206c817 1317 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1318 return -EIO;
1da177e4 1319
fdc7ed75 1320 offset = (xfs_off_t)iblock << inode->i_blkbits;
93407472 1321 ASSERT(bh_result->b_size >= i_blocksize(inode));
c2536668 1322 size = bh_result->b_size;
364f358a 1323
acdda3aa 1324 if (offset >= i_size_read(inode))
364f358a
LM
1325 return 0;
1326
507630b2
DC
1327 /*
1328 * Direct I/O is usually done on preallocated files, so try getting
6e8a27a8 1329 * a block mapping without an exclusive lock first.
507630b2 1330 */
6e8a27a8 1331 lockmode = xfs_ilock_data_map_shared(ip);
f2bde9b8 1332
d2c28191 1333 ASSERT(offset <= mp->m_super->s_maxbytes);
b4d8ad7f 1334 if (offset > mp->m_super->s_maxbytes - size)
d2c28191 1335 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1336 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1337 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1338
7d9df3c1
CH
1339 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1340 &nimaps, 0);
1da177e4 1341 if (error)
a206c817 1342 goto out_unlock;
1d4352de 1343 if (!nimaps) {
a206c817
CH
1344 trace_xfs_get_blocks_notfound(ip, offset, size);
1345 goto out_unlock;
1346 }
1da177e4 1347
1d4352de
CH
1348 trace_xfs_get_blocks_found(ip, offset, size,
1349 imap.br_state == XFS_EXT_UNWRITTEN ?
1350 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1351 xfs_iunlock(ip, lockmode);
1352
1fdca9c2 1353 /* trim mapping down to size requested */
6e8a27a8 1354 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1fdca9c2 1355
a719370b
DC
1356 /*
1357 * For unwritten extents do not report a disk address in the buffered
1358 * read case (treat as if we're reading into a hole).
1359 */
9c4f29d3 1360 if (xfs_bmap_is_real_extent(&imap))
a719370b 1361 xfs_map_buffer(inode, bh_result, &imap, offset);
1da177e4 1362
c2536668
NS
1363 /*
1364 * If this is a realtime file, data may be on a different device.
1365 * to that pointed to from the buffer_head b_bdev currently.
1366 */
046f1685 1367 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1368 return 0;
a206c817
CH
1369
1370out_unlock:
1371 xfs_iunlock(ip, lockmode);
2451337d 1372 return error;
1da177e4
LT
1373}
1374
1da177e4 1375STATIC sector_t
e4c573bb 1376xfs_vm_bmap(
1da177e4
LT
1377 struct address_space *mapping,
1378 sector_t block)
1379{
b84e7722 1380 struct xfs_inode *ip = XFS_I(mapping->host);
1da177e4 1381
b84e7722 1382 trace_xfs_vm_bmap(ip);
db1327b1
DW
1383
1384 /*
1385 * The swap code (ab-)uses ->bmap to get a block mapping and then
793057e1 1386 * bypasses the file system for actual I/O. We really can't allow
db1327b1 1387 * that on reflinks inodes, so we have to skip out here. And yes,
eb5e248d
DW
1388 * 0 is the magic code for a bmap error.
1389 *
1390 * Since we don't pass back blockdev info, we can't return bmap
1391 * information for rt files either.
db1327b1 1392 */
eb5e248d 1393 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
db1327b1 1394 return 0;
b84e7722 1395 return iomap_bmap(mapping, block, &xfs_iomap_ops);
1da177e4
LT
1396}
1397
1398STATIC int
e4c573bb 1399xfs_vm_readpage(
1da177e4
LT
1400 struct file *unused,
1401 struct page *page)
1402{
121e213e 1403 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1404 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1405}
1406
1407STATIC int
e4c573bb 1408xfs_vm_readpages(
1da177e4
LT
1409 struct file *unused,
1410 struct address_space *mapping,
1411 struct list_head *pages,
1412 unsigned nr_pages)
1413{
121e213e 1414 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1415 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1416}
1417
22e757a4
DC
1418/*
1419 * This is basically a copy of __set_page_dirty_buffers() with one
1420 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1421 * dirty, we'll never be able to clean them because we don't write buffers
1422 * beyond EOF, and that means we can't invalidate pages that span EOF
1423 * that have been marked dirty. Further, the dirty state can leak into
1424 * the file interior if the file is extended, resulting in all sorts of
1425 * bad things happening as the state does not match the underlying data.
1426 *
1427 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1428 * this only exist because of bufferheads and how the generic code manages them.
1429 */
1430STATIC int
1431xfs_vm_set_page_dirty(
1432 struct page *page)
1433{
1434 struct address_space *mapping = page->mapping;
1435 struct inode *inode = mapping->host;
1436 loff_t end_offset;
1437 loff_t offset;
1438 int newly_dirty;
1439
1440 if (unlikely(!mapping))
1441 return !TestSetPageDirty(page);
1442
1443 end_offset = i_size_read(inode);
1444 offset = page_offset(page);
1445
1446 spin_lock(&mapping->private_lock);
1447 if (page_has_buffers(page)) {
1448 struct buffer_head *head = page_buffers(page);
1449 struct buffer_head *bh = head;
1450
1451 do {
1452 if (offset < end_offset)
1453 set_buffer_dirty(bh);
1454 bh = bh->b_this_page;
93407472 1455 offset += i_blocksize(inode);
22e757a4
DC
1456 } while (bh != head);
1457 }
c4843a75 1458 /*
81f8c3a4
JW
1459 * Lock out page->mem_cgroup migration to keep PageDirty
1460 * synchronized with per-memcg dirty page counters.
c4843a75 1461 */
62cccb8c 1462 lock_page_memcg(page);
22e757a4
DC
1463 newly_dirty = !TestSetPageDirty(page);
1464 spin_unlock(&mapping->private_lock);
1465
f82b3764
MW
1466 if (newly_dirty)
1467 __set_page_dirty(page, mapping, 1);
62cccb8c 1468 unlock_page_memcg(page);
c4843a75
GT
1469 if (newly_dirty)
1470 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1471 return newly_dirty;
1472}
1473
67482129
DW
1474static int
1475xfs_iomap_swapfile_activate(
1476 struct swap_info_struct *sis,
1477 struct file *swap_file,
1478 sector_t *span)
1479{
1480 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1481 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1482}
1483
f5e54d6e 1484const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1485 .readpage = xfs_vm_readpage,
1486 .readpages = xfs_vm_readpages,
1487 .writepage = xfs_vm_writepage,
7d4fb40a 1488 .writepages = xfs_vm_writepages,
22e757a4 1489 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1490 .releasepage = xfs_vm_releasepage,
1491 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb 1492 .bmap = xfs_vm_bmap,
6e2608df 1493 .direct_IO = noop_direct_IO,
e965f963 1494 .migratepage = buffer_migrate_page,
bddaafa1 1495 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1496 .error_remove_page = generic_error_remove_page,
67482129 1497 .swap_activate = xfs_iomap_swapfile_activate,
1da177e4 1498};
6e2608df
DW
1499
1500const struct address_space_operations xfs_dax_aops = {
1501 .writepages = xfs_dax_writepages,
1502 .direct_IO = noop_direct_IO,
1503 .set_page_dirty = noop_set_page_dirty,
1504 .invalidatepage = noop_invalidatepage,
67482129 1505 .swap_activate = xfs_iomap_swapfile_activate,
6e2608df 1506};