make new_sync_{read,write}() static
[linux-2.6-block.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
0b1b213f 39void
f51623b2
NS
40xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
f51623b2
NS
43 int *unwritten)
44{
45 struct buffer_head *bh, *head;
46
20cb52eb 47 *delalloc = *unwritten = 0;
f51623b2
NS
48
49 bh = head = page_buffers(page);
50 do {
20cb52eb 51 if (buffer_unwritten(bh))
f51623b2
NS
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56}
57
6214ed44
CH
58STATIC struct block_device *
59xfs_find_bdev_for_inode(
046f1685 60 struct inode *inode)
6214ed44 61{
046f1685 62 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
63 struct xfs_mount *mp = ip->i_mount;
64
71ddabb9 65 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69}
70
f6d6d4fc
CH
71/*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
0829c360
CH
77STATIC void
78xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80{
f6d6d4fc
CH
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
7d04a335 85 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 86 }
583fa586 87
0829c360
CH
88 mempool_free(ioend, xfs_ioend_pool);
89}
90
fc0063c4
CH
91/*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95{
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98}
99
281627df
CH
100STATIC int
101xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103{
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
3d3c8b52 110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df
CH
111 if (error) {
112 xfs_trans_cancel(tp, 0);
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
d9457dc0 118 /*
437a255a 119 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
120 * we released it.
121 */
122 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
123 1, _THIS_IP_);
281627df
CH
124 /*
125 * We hand off the transaction to the completion thread now, so
126 * clear the flag here.
127 */
128 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
129 return 0;
130}
131
ba87ea69 132/*
2813d682 133 * Update on-disk file size now that data has been written to disk.
ba87ea69 134 */
281627df 135STATIC int
ba87ea69 136xfs_setfilesize(
2ba66237
CH
137 struct xfs_inode *ip,
138 struct xfs_trans *tp,
139 xfs_off_t offset,
140 size_t size)
ba87ea69 141{
ba87ea69 142 xfs_fsize_t isize;
ba87ea69 143
aa6bf01d 144 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 145 isize = xfs_new_eof(ip, offset + size);
281627df
CH
146 if (!isize) {
147 xfs_iunlock(ip, XFS_ILOCK_EXCL);
148 xfs_trans_cancel(tp, 0);
149 return 0;
ba87ea69
LM
150 }
151
2ba66237 152 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
153
154 ip->i_d.di_size = isize;
155 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
156 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
157
158 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
159}
160
2ba66237
CH
161STATIC int
162xfs_setfilesize_ioend(
163 struct xfs_ioend *ioend)
164{
165 struct xfs_inode *ip = XFS_I(ioend->io_inode);
166 struct xfs_trans *tp = ioend->io_append_trans;
167
168 /*
169 * The transaction may have been allocated in the I/O submission thread,
170 * thus we need to mark ourselves as being in a transaction manually.
171 * Similarly for freeze protection.
172 */
173 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
174 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
175 0, 1, _THIS_IP_);
176
177 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
178}
179
77d7a0c2 180/*
209fb87a 181 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
182 *
183 * If there is no work to do we might as well call it a day and free the
184 * ioend right now.
77d7a0c2
DC
185 */
186STATIC void
187xfs_finish_ioend(
209fb87a 188 struct xfs_ioend *ioend)
77d7a0c2
DC
189{
190 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
191 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
192
0d882a36 193 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 194 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 195 else if (ioend->io_append_trans)
aa6bf01d 196 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
197 else
198 xfs_destroy_ioend(ioend);
77d7a0c2 199 }
ba87ea69
LM
200}
201
0829c360 202/*
5ec4fabb 203 * IO write completion.
f6d6d4fc
CH
204 */
205STATIC void
5ec4fabb 206xfs_end_io(
77d7a0c2 207 struct work_struct *work)
0829c360 208{
77d7a0c2
DC
209 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
210 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 211 int error = 0;
ba87ea69 212
04f658ee 213 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 214 ioend->io_error = -EIO;
04f658ee
CH
215 goto done;
216 }
217 if (ioend->io_error)
218 goto done;
219
5ec4fabb
CH
220 /*
221 * For unwritten extents we need to issue transactions to convert a
222 * range to normal written extens after the data I/O has finished.
223 */
0d882a36 224 if (ioend->io_type == XFS_IO_UNWRITTEN) {
437a255a
DC
225 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 ioend->io_size);
281627df 227 } else if (ioend->io_append_trans) {
2ba66237 228 error = xfs_setfilesize_ioend(ioend);
84803fb7 229 } else {
281627df 230 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 231 }
ba87ea69 232
04f658ee 233done:
437a255a 234 if (error)
2451337d 235 ioend->io_error = error;
aa6bf01d 236 xfs_destroy_ioend(ioend);
c626d174
DC
237}
238
0829c360
CH
239/*
240 * Allocate and initialise an IO completion structure.
241 * We need to track unwritten extent write completion here initially.
242 * We'll need to extend this for updating the ondisk inode size later
243 * (vs. incore size).
244 */
245STATIC xfs_ioend_t *
246xfs_alloc_ioend(
f6d6d4fc
CH
247 struct inode *inode,
248 unsigned int type)
0829c360
CH
249{
250 xfs_ioend_t *ioend;
251
252 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
253
254 /*
255 * Set the count to 1 initially, which will prevent an I/O
256 * completion callback from happening before we have started
257 * all the I/O from calling the completion routine too early.
258 */
259 atomic_set(&ioend->io_remaining, 1);
7d04a335 260 ioend->io_error = 0;
f6d6d4fc
CH
261 ioend->io_list = NULL;
262 ioend->io_type = type;
b677c210 263 ioend->io_inode = inode;
c1a073bd 264 ioend->io_buffer_head = NULL;
f6d6d4fc 265 ioend->io_buffer_tail = NULL;
0829c360
CH
266 ioend->io_offset = 0;
267 ioend->io_size = 0;
281627df 268 ioend->io_append_trans = NULL;
0829c360 269
5ec4fabb 270 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
271 return ioend;
272}
273
1da177e4
LT
274STATIC int
275xfs_map_blocks(
276 struct inode *inode,
277 loff_t offset,
207d0416 278 struct xfs_bmbt_irec *imap,
a206c817
CH
279 int type,
280 int nonblocking)
1da177e4 281{
a206c817
CH
282 struct xfs_inode *ip = XFS_I(inode);
283 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 284 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
285 xfs_fileoff_t offset_fsb, end_fsb;
286 int error = 0;
a206c817
CH
287 int bmapi_flags = XFS_BMAPI_ENTIRE;
288 int nimaps = 1;
289
290 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 291 return -EIO;
a206c817 292
0d882a36 293 if (type == XFS_IO_UNWRITTEN)
a206c817 294 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
295
296 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
297 if (nonblocking)
b474c7ae 298 return -EAGAIN;
8ff2957d 299 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
300 }
301
8ff2957d
CH
302 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
303 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 304 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 305
d2c28191
DC
306 if (offset + count > mp->m_super->s_maxbytes)
307 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
308 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
309 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
310 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
311 imap, &nimaps, bmapi_flags);
8ff2957d 312 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 313
8ff2957d 314 if (error)
2451337d 315 return error;
a206c817 316
0d882a36 317 if (type == XFS_IO_DELALLOC &&
8ff2957d 318 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 319 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
320 if (!error)
321 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 322 return error;
a206c817
CH
323 }
324
8ff2957d 325#ifdef DEBUG
0d882a36 326 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
327 ASSERT(nimaps);
328 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
329 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
330 }
331#endif
332 if (nimaps)
333 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
334 return 0;
1da177e4
LT
335}
336
b8f82a4a 337STATIC int
558e6891 338xfs_imap_valid(
8699bb0a 339 struct inode *inode,
207d0416 340 struct xfs_bmbt_irec *imap,
558e6891 341 xfs_off_t offset)
1da177e4 342{
558e6891 343 offset >>= inode->i_blkbits;
8699bb0a 344
558e6891
CH
345 return offset >= imap->br_startoff &&
346 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
347}
348
f6d6d4fc
CH
349/*
350 * BIO completion handler for buffered IO.
351 */
782e3b3b 352STATIC void
f6d6d4fc
CH
353xfs_end_bio(
354 struct bio *bio,
f6d6d4fc
CH
355 int error)
356{
357 xfs_ioend_t *ioend = bio->bi_private;
358
f6d6d4fc 359 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 360 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
361
362 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
363 bio->bi_private = NULL;
364 bio->bi_end_io = NULL;
f6d6d4fc 365 bio_put(bio);
7d04a335 366
209fb87a 367 xfs_finish_ioend(ioend);
f6d6d4fc
CH
368}
369
370STATIC void
371xfs_submit_ioend_bio(
06342cf8
CH
372 struct writeback_control *wbc,
373 xfs_ioend_t *ioend,
374 struct bio *bio)
f6d6d4fc
CH
375{
376 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
377 bio->bi_private = ioend;
378 bio->bi_end_io = xfs_end_bio;
721a9602 379 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
380}
381
382STATIC struct bio *
383xfs_alloc_ioend_bio(
384 struct buffer_head *bh)
385{
f6d6d4fc 386 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 387 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
388
389 ASSERT(bio->bi_private == NULL);
4f024f37 390 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 391 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
392 return bio;
393}
394
395STATIC void
396xfs_start_buffer_writeback(
397 struct buffer_head *bh)
398{
399 ASSERT(buffer_mapped(bh));
400 ASSERT(buffer_locked(bh));
401 ASSERT(!buffer_delay(bh));
402 ASSERT(!buffer_unwritten(bh));
403
404 mark_buffer_async_write(bh);
405 set_buffer_uptodate(bh);
406 clear_buffer_dirty(bh);
407}
408
409STATIC void
410xfs_start_page_writeback(
411 struct page *page,
f6d6d4fc
CH
412 int clear_dirty,
413 int buffers)
414{
415 ASSERT(PageLocked(page));
416 ASSERT(!PageWriteback(page));
0d085a52
DC
417
418 /*
419 * if the page was not fully cleaned, we need to ensure that the higher
420 * layers come back to it correctly. That means we need to keep the page
421 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
422 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
423 * write this page in this writeback sweep will be made.
424 */
425 if (clear_dirty) {
92132021 426 clear_page_dirty_for_io(page);
0d085a52
DC
427 set_page_writeback(page);
428 } else
429 set_page_writeback_keepwrite(page);
430
f6d6d4fc 431 unlock_page(page);
0d085a52 432
1f7decf6
FW
433 /* If no buffers on the page are to be written, finish it here */
434 if (!buffers)
f6d6d4fc 435 end_page_writeback(page);
f6d6d4fc
CH
436}
437
c7c1a7d8 438static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
439{
440 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
441}
442
443/*
d88992f6
DC
444 * Submit all of the bios for all of the ioends we have saved up, covering the
445 * initial writepage page and also any probed pages.
446 *
447 * Because we may have multiple ioends spanning a page, we need to start
448 * writeback on all the buffers before we submit them for I/O. If we mark the
449 * buffers as we got, then we can end up with a page that only has buffers
450 * marked async write and I/O complete on can occur before we mark the other
451 * buffers async write.
452 *
453 * The end result of this is that we trip a bug in end_page_writeback() because
454 * we call it twice for the one page as the code in end_buffer_async_write()
455 * assumes that all buffers on the page are started at the same time.
456 *
457 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 458 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
459 *
460 * If @fail is non-zero, it means that we have a situation where some part of
461 * the submission process has failed after we have marked paged for writeback
462 * and unlocked them. In this situation, we need to fail the ioend chain rather
463 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
464 */
465STATIC void
466xfs_submit_ioend(
06342cf8 467 struct writeback_control *wbc,
7bf7f352
DC
468 xfs_ioend_t *ioend,
469 int fail)
f6d6d4fc 470{
d88992f6 471 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
472 xfs_ioend_t *next;
473 struct buffer_head *bh;
474 struct bio *bio;
475 sector_t lastblock = 0;
476
d88992f6
DC
477 /* Pass 1 - start writeback */
478 do {
479 next = ioend->io_list;
221cb251 480 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 481 xfs_start_buffer_writeback(bh);
d88992f6
DC
482 } while ((ioend = next) != NULL);
483
484 /* Pass 2 - submit I/O */
485 ioend = head;
f6d6d4fc
CH
486 do {
487 next = ioend->io_list;
488 bio = NULL;
489
7bf7f352
DC
490 /*
491 * If we are failing the IO now, just mark the ioend with an
492 * error and finish it. This will run IO completion immediately
493 * as there is only one reference to the ioend at this point in
494 * time.
495 */
496 if (fail) {
2451337d 497 ioend->io_error = fail;
7bf7f352
DC
498 xfs_finish_ioend(ioend);
499 continue;
500 }
501
f6d6d4fc 502 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
503
504 if (!bio) {
505 retry:
506 bio = xfs_alloc_ioend_bio(bh);
507 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 508 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
509 goto retry;
510 }
511
c7c1a7d8 512 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 513 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
514 goto retry;
515 }
516
517 lastblock = bh->b_blocknr;
518 }
519 if (bio)
06342cf8 520 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 521 xfs_finish_ioend(ioend);
f6d6d4fc
CH
522 } while ((ioend = next) != NULL);
523}
524
525/*
526 * Cancel submission of all buffer_heads so far in this endio.
527 * Toss the endio too. Only ever called for the initial page
528 * in a writepage request, so only ever one page.
529 */
530STATIC void
531xfs_cancel_ioend(
532 xfs_ioend_t *ioend)
533{
534 xfs_ioend_t *next;
535 struct buffer_head *bh, *next_bh;
536
537 do {
538 next = ioend->io_list;
539 bh = ioend->io_buffer_head;
540 do {
541 next_bh = bh->b_private;
542 clear_buffer_async_write(bh);
07d08681
BF
543 /*
544 * The unwritten flag is cleared when added to the
545 * ioend. We're not submitting for I/O so mark the
546 * buffer unwritten again for next time around.
547 */
548 if (ioend->io_type == XFS_IO_UNWRITTEN)
549 set_buffer_unwritten(bh);
f6d6d4fc
CH
550 unlock_buffer(bh);
551 } while ((bh = next_bh) != NULL);
552
f6d6d4fc
CH
553 mempool_free(ioend, xfs_ioend_pool);
554 } while ((ioend = next) != NULL);
555}
556
557/*
558 * Test to see if we've been building up a completion structure for
559 * earlier buffers -- if so, we try to append to this ioend if we
560 * can, otherwise we finish off any current ioend and start another.
561 * Return true if we've finished the given ioend.
562 */
563STATIC void
564xfs_add_to_ioend(
565 struct inode *inode,
566 struct buffer_head *bh,
7336cea8 567 xfs_off_t offset,
f6d6d4fc
CH
568 unsigned int type,
569 xfs_ioend_t **result,
570 int need_ioend)
571{
572 xfs_ioend_t *ioend = *result;
573
574 if (!ioend || need_ioend || type != ioend->io_type) {
575 xfs_ioend_t *previous = *result;
f6d6d4fc 576
f6d6d4fc
CH
577 ioend = xfs_alloc_ioend(inode, type);
578 ioend->io_offset = offset;
579 ioend->io_buffer_head = bh;
580 ioend->io_buffer_tail = bh;
581 if (previous)
582 previous->io_list = ioend;
583 *result = ioend;
584 } else {
585 ioend->io_buffer_tail->b_private = bh;
586 ioend->io_buffer_tail = bh;
587 }
588
589 bh->b_private = NULL;
590 ioend->io_size += bh->b_size;
591}
592
87cbc49c
NS
593STATIC void
594xfs_map_buffer(
046f1685 595 struct inode *inode,
87cbc49c 596 struct buffer_head *bh,
207d0416 597 struct xfs_bmbt_irec *imap,
046f1685 598 xfs_off_t offset)
87cbc49c
NS
599{
600 sector_t bn;
8699bb0a 601 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
602 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
603 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 604
207d0416
CH
605 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
606 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 607
e513182d 608 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 609 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 610
046f1685 611 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
612
613 bh->b_blocknr = bn;
614 set_buffer_mapped(bh);
615}
616
1da177e4
LT
617STATIC void
618xfs_map_at_offset(
046f1685 619 struct inode *inode,
1da177e4 620 struct buffer_head *bh,
207d0416 621 struct xfs_bmbt_irec *imap,
046f1685 622 xfs_off_t offset)
1da177e4 623{
207d0416
CH
624 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 626
207d0416 627 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
628 set_buffer_mapped(bh);
629 clear_buffer_delay(bh);
f6d6d4fc 630 clear_buffer_unwritten(bh);
1da177e4
LT
631}
632
1da177e4 633/*
a49935f2
DC
634 * Test if a given page contains at least one buffer of a given @type.
635 * If @check_all_buffers is true, then we walk all the buffers in the page to
636 * try to find one of the type passed in. If it is not set, then the caller only
637 * needs to check the first buffer on the page for a match.
1da177e4 638 */
a49935f2 639STATIC bool
6ffc4db5 640xfs_check_page_type(
10ce4444 641 struct page *page,
a49935f2
DC
642 unsigned int type,
643 bool check_all_buffers)
1da177e4 644{
a49935f2
DC
645 struct buffer_head *bh;
646 struct buffer_head *head;
1da177e4 647
a49935f2
DC
648 if (PageWriteback(page))
649 return false;
650 if (!page->mapping)
651 return false;
652 if (!page_has_buffers(page))
653 return false;
1da177e4 654
a49935f2
DC
655 bh = head = page_buffers(page);
656 do {
657 if (buffer_unwritten(bh)) {
658 if (type == XFS_IO_UNWRITTEN)
659 return true;
660 } else if (buffer_delay(bh)) {
805eeb8e 661 if (type == XFS_IO_DELALLOC)
a49935f2
DC
662 return true;
663 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 664 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
665 return true;
666 }
1da177e4 667
a49935f2
DC
668 /* If we are only checking the first buffer, we are done now. */
669 if (!check_all_buffers)
670 break;
671 } while ((bh = bh->b_this_page) != head);
1da177e4 672
a49935f2 673 return false;
1da177e4
LT
674}
675
1da177e4
LT
676/*
677 * Allocate & map buffers for page given the extent map. Write it out.
678 * except for the original page of a writepage, this is called on
679 * delalloc/unwritten pages only, for the original page it is possible
680 * that the page has no mapping at all.
681 */
f6d6d4fc 682STATIC int
1da177e4
LT
683xfs_convert_page(
684 struct inode *inode,
685 struct page *page,
10ce4444 686 loff_t tindex,
207d0416 687 struct xfs_bmbt_irec *imap,
f6d6d4fc 688 xfs_ioend_t **ioendp,
2fa24f92 689 struct writeback_control *wbc)
1da177e4 690{
f6d6d4fc 691 struct buffer_head *bh, *head;
9260dc6b
CH
692 xfs_off_t end_offset;
693 unsigned long p_offset;
f6d6d4fc 694 unsigned int type;
24e17b5f 695 int len, page_dirty;
f6d6d4fc 696 int count = 0, done = 0, uptodate = 1;
9260dc6b 697 xfs_off_t offset = page_offset(page);
1da177e4 698
10ce4444
CH
699 if (page->index != tindex)
700 goto fail;
529ae9aa 701 if (!trylock_page(page))
10ce4444
CH
702 goto fail;
703 if (PageWriteback(page))
704 goto fail_unlock_page;
705 if (page->mapping != inode->i_mapping)
706 goto fail_unlock_page;
a49935f2 707 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
10ce4444
CH
708 goto fail_unlock_page;
709
24e17b5f
NS
710 /*
711 * page_dirty is initially a count of buffers on the page before
c41564b5 712 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
713 *
714 * Derivation:
715 *
716 * End offset is the highest offset that this page should represent.
717 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
718 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
719 * hence give us the correct page_dirty count. On any other page,
720 * it will be zero and in that case we need page_dirty to be the
721 * count of buffers on the page.
24e17b5f 722 */
9260dc6b
CH
723 end_offset = min_t(unsigned long long,
724 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
725 i_size_read(inode));
726
480d7467
DC
727 /*
728 * If the current map does not span the entire page we are about to try
729 * to write, then give up. The only way we can write a page that spans
730 * multiple mappings in a single writeback iteration is via the
731 * xfs_vm_writepage() function. Data integrity writeback requires the
732 * entire page to be written in a single attempt, otherwise the part of
733 * the page we don't write here doesn't get written as part of the data
734 * integrity sync.
735 *
736 * For normal writeback, we also don't attempt to write partial pages
737 * here as it simply means that write_cache_pages() will see it under
738 * writeback and ignore the page until some point in the future, at
739 * which time this will be the only page in the file that needs
740 * writeback. Hence for more optimal IO patterns, we should always
741 * avoid partial page writeback due to multiple mappings on a page here.
742 */
743 if (!xfs_imap_valid(inode, imap, end_offset))
744 goto fail_unlock_page;
745
24e17b5f 746 len = 1 << inode->i_blkbits;
9260dc6b
CH
747 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
748 PAGE_CACHE_SIZE);
749 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
750 page_dirty = p_offset / len;
24e17b5f 751
a49935f2
DC
752 /*
753 * The moment we find a buffer that doesn't match our current type
754 * specification or can't be written, abort the loop and start
755 * writeback. As per the above xfs_imap_valid() check, only
756 * xfs_vm_writepage() can handle partial page writeback fully - we are
757 * limited here to the buffers that are contiguous with the current
758 * ioend, and hence a buffer we can't write breaks that contiguity and
759 * we have to defer the rest of the IO to xfs_vm_writepage().
760 */
1da177e4
LT
761 bh = head = page_buffers(page);
762 do {
9260dc6b 763 if (offset >= end_offset)
1da177e4 764 break;
f6d6d4fc
CH
765 if (!buffer_uptodate(bh))
766 uptodate = 0;
767 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
768 done = 1;
a49935f2 769 break;
f6d6d4fc
CH
770 }
771
2fa24f92
CH
772 if (buffer_unwritten(bh) || buffer_delay(bh) ||
773 buffer_mapped(bh)) {
9260dc6b 774 if (buffer_unwritten(bh))
0d882a36 775 type = XFS_IO_UNWRITTEN;
2fa24f92 776 else if (buffer_delay(bh))
0d882a36 777 type = XFS_IO_DELALLOC;
2fa24f92 778 else
0d882a36 779 type = XFS_IO_OVERWRITE;
9260dc6b 780
a49935f2
DC
781 /*
782 * imap should always be valid because of the above
783 * partial page end_offset check on the imap.
784 */
785 ASSERT(xfs_imap_valid(inode, imap, offset));
9260dc6b 786
ecff71e6 787 lock_buffer(bh);
0d882a36 788 if (type != XFS_IO_OVERWRITE)
2fa24f92 789 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
790 xfs_add_to_ioend(inode, bh, offset, type,
791 ioendp, done);
792
9260dc6b
CH
793 page_dirty--;
794 count++;
795 } else {
2fa24f92 796 done = 1;
a49935f2 797 break;
1da177e4 798 }
7336cea8 799 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 800
f6d6d4fc
CH
801 if (uptodate && bh == head)
802 SetPageUptodate(page);
803
89f3b363 804 if (count) {
efceab1d
DC
805 if (--wbc->nr_to_write <= 0 &&
806 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 807 done = 1;
1da177e4 808 }
89f3b363 809 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
810
811 return done;
10ce4444
CH
812 fail_unlock_page:
813 unlock_page(page);
814 fail:
815 return 1;
1da177e4
LT
816}
817
818/*
819 * Convert & write out a cluster of pages in the same extent as defined
820 * by mp and following the start page.
821 */
822STATIC void
823xfs_cluster_write(
824 struct inode *inode,
825 pgoff_t tindex,
207d0416 826 struct xfs_bmbt_irec *imap,
f6d6d4fc 827 xfs_ioend_t **ioendp,
1da177e4 828 struct writeback_control *wbc,
1da177e4
LT
829 pgoff_t tlast)
830{
10ce4444
CH
831 struct pagevec pvec;
832 int done = 0, i;
1da177e4 833
10ce4444
CH
834 pagevec_init(&pvec, 0);
835 while (!done && tindex <= tlast) {
836 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
837
838 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 839 break;
10ce4444
CH
840
841 for (i = 0; i < pagevec_count(&pvec); i++) {
842 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 843 imap, ioendp, wbc);
10ce4444
CH
844 if (done)
845 break;
846 }
847
848 pagevec_release(&pvec);
849 cond_resched();
1da177e4
LT
850 }
851}
852
3ed3a434
DC
853STATIC void
854xfs_vm_invalidatepage(
855 struct page *page,
d47992f8
LC
856 unsigned int offset,
857 unsigned int length)
3ed3a434 858{
34097dfe
LC
859 trace_xfs_invalidatepage(page->mapping->host, page, offset,
860 length);
861 block_invalidatepage(page, offset, length);
3ed3a434
DC
862}
863
864/*
865 * If the page has delalloc buffers on it, we need to punch them out before we
866 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
867 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
868 * is done on that same region - the delalloc extent is returned when none is
869 * supposed to be there.
870 *
871 * We prevent this by truncating away the delalloc regions on the page before
872 * invalidating it. Because they are delalloc, we can do this without needing a
873 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
874 * truncation without a transaction as there is no space left for block
875 * reservation (typically why we see a ENOSPC in writeback).
876 *
877 * This is not a performance critical path, so for now just do the punching a
878 * buffer head at a time.
879 */
880STATIC void
881xfs_aops_discard_page(
882 struct page *page)
883{
884 struct inode *inode = page->mapping->host;
885 struct xfs_inode *ip = XFS_I(inode);
886 struct buffer_head *bh, *head;
887 loff_t offset = page_offset(page);
3ed3a434 888
a49935f2 889 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
890 goto out_invalidate;
891
e8c3753c
DC
892 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
893 goto out_invalidate;
894
4f10700a 895 xfs_alert(ip->i_mount,
3ed3a434
DC
896 "page discard on page %p, inode 0x%llx, offset %llu.",
897 page, ip->i_ino, offset);
898
899 xfs_ilock(ip, XFS_ILOCK_EXCL);
900 bh = head = page_buffers(page);
901 do {
3ed3a434 902 int error;
c726de44 903 xfs_fileoff_t start_fsb;
3ed3a434
DC
904
905 if (!buffer_delay(bh))
906 goto next_buffer;
907
c726de44
DC
908 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
909 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
910 if (error) {
911 /* something screwed, just bail */
e8c3753c 912 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 913 xfs_alert(ip->i_mount,
3ed3a434 914 "page discard unable to remove delalloc mapping.");
e8c3753c 915 }
3ed3a434
DC
916 break;
917 }
918next_buffer:
c726de44 919 offset += 1 << inode->i_blkbits;
3ed3a434
DC
920
921 } while ((bh = bh->b_this_page) != head);
922
923 xfs_iunlock(ip, XFS_ILOCK_EXCL);
924out_invalidate:
d47992f8 925 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
926 return;
927}
928
1da177e4 929/*
89f3b363
CH
930 * Write out a dirty page.
931 *
932 * For delalloc space on the page we need to allocate space and flush it.
933 * For unwritten space on the page we need to start the conversion to
934 * regular allocated space.
89f3b363 935 * For any other dirty buffer heads on the page we should flush them.
1da177e4 936 */
1da177e4 937STATIC int
89f3b363
CH
938xfs_vm_writepage(
939 struct page *page,
940 struct writeback_control *wbc)
1da177e4 941{
89f3b363 942 struct inode *inode = page->mapping->host;
f6d6d4fc 943 struct buffer_head *bh, *head;
207d0416 944 struct xfs_bmbt_irec imap;
f6d6d4fc 945 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 946 loff_t offset;
f6d6d4fc 947 unsigned int type;
1da177e4 948 __uint64_t end_offset;
bd1556a1 949 pgoff_t end_index, last_index;
ed1e7b7e 950 ssize_t len;
a206c817 951 int err, imap_valid = 0, uptodate = 1;
89f3b363 952 int count = 0;
a206c817 953 int nonblocking = 0;
89f3b363 954
34097dfe 955 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 956
20cb52eb
CH
957 ASSERT(page_has_buffers(page));
958
89f3b363
CH
959 /*
960 * Refuse to write the page out if we are called from reclaim context.
961 *
d4f7a5cb
CH
962 * This avoids stack overflows when called from deeply used stacks in
963 * random callers for direct reclaim or memcg reclaim. We explicitly
964 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 965 *
94054fa3
MG
966 * This should never happen except in the case of a VM regression so
967 * warn about it.
89f3b363 968 */
94054fa3
MG
969 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
970 PF_MEMALLOC))
b5420f23 971 goto redirty;
1da177e4 972
89f3b363 973 /*
680a647b
CH
974 * Given that we do not allow direct reclaim to call us, we should
975 * never be called while in a filesystem transaction.
89f3b363 976 */
448011e2 977 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 978 goto redirty;
89f3b363 979
1da177e4
LT
980 /* Is this page beyond the end of the file? */
981 offset = i_size_read(inode);
982 end_index = offset >> PAGE_CACHE_SHIFT;
983 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
984
985 /*
986 * The page index is less than the end_index, adjust the end_offset
987 * to the highest offset that this page should represent.
988 * -----------------------------------------------------
989 * | file mapping | <EOF> |
990 * -----------------------------------------------------
991 * | Page ... | Page N-2 | Page N-1 | Page N | |
992 * ^--------------------------------^----------|--------
993 * | desired writeback range | see else |
994 * ---------------------------------^------------------|
995 */
996 if (page->index < end_index)
997 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
998 else {
999 /*
1000 * Check whether the page to write out is beyond or straddles
1001 * i_size or not.
1002 * -------------------------------------------------------
1003 * | file mapping | <EOF> |
1004 * -------------------------------------------------------
1005 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1006 * ^--------------------------------^-----------|---------
1007 * | | Straddles |
1008 * ---------------------------------^-----------|--------|
1009 */
6b7a03f0
CH
1010 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1011
1012 /*
ff9a28f6
JK
1013 * Skip the page if it is fully outside i_size, e.g. due to a
1014 * truncate operation that is in progress. We must redirty the
1015 * page so that reclaim stops reclaiming it. Otherwise
1016 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1017 *
1018 * Note that the end_index is unsigned long, it would overflow
1019 * if the given offset is greater than 16TB on 32-bit system
1020 * and if we do check the page is fully outside i_size or not
1021 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1022 * will be evaluated to 0. Hence this page will be redirtied
1023 * and be written out repeatedly which would result in an
1024 * infinite loop, the user program that perform this operation
1025 * will hang. Instead, we can verify this situation by checking
1026 * if the page to write is totally beyond the i_size or if it's
1027 * offset is just equal to the EOF.
6b7a03f0 1028 */
8695d27e
JL
1029 if (page->index > end_index ||
1030 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1031 goto redirty;
6b7a03f0
CH
1032
1033 /*
1034 * The page straddles i_size. It must be zeroed out on each
1035 * and every writepage invocation because it may be mmapped.
1036 * "A file is mapped in multiples of the page size. For a file
8695d27e 1037 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1038 * memory is zeroed when mapped, and writes to that region are
1039 * not written out to the file."
1040 */
1041 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1042
1043 /* Adjust the end_offset to the end of file */
1044 end_offset = offset;
1da177e4
LT
1045 }
1046
24e17b5f 1047 len = 1 << inode->i_blkbits;
24e17b5f 1048
24e17b5f 1049 bh = head = page_buffers(page);
f6d6d4fc 1050 offset = page_offset(page);
0d882a36 1051 type = XFS_IO_OVERWRITE;
a206c817 1052
dbcdde3e 1053 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1054 nonblocking = 1;
f6d6d4fc 1055
1da177e4 1056 do {
6ac7248e
CH
1057 int new_ioend = 0;
1058
1da177e4
LT
1059 if (offset >= end_offset)
1060 break;
1061 if (!buffer_uptodate(bh))
1062 uptodate = 0;
1da177e4 1063
3d9b02e3 1064 /*
ece413f5
CH
1065 * set_page_dirty dirties all buffers in a page, independent
1066 * of their state. The dirty state however is entirely
1067 * meaningless for holes (!mapped && uptodate), so skip
1068 * buffers covering holes here.
3d9b02e3
ES
1069 */
1070 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1071 imap_valid = 0;
1072 continue;
1073 }
1074
aeea1b1f 1075 if (buffer_unwritten(bh)) {
0d882a36
AR
1076 if (type != XFS_IO_UNWRITTEN) {
1077 type = XFS_IO_UNWRITTEN;
aeea1b1f 1078 imap_valid = 0;
1da177e4 1079 }
aeea1b1f 1080 } else if (buffer_delay(bh)) {
0d882a36
AR
1081 if (type != XFS_IO_DELALLOC) {
1082 type = XFS_IO_DELALLOC;
aeea1b1f 1083 imap_valid = 0;
1da177e4 1084 }
89f3b363 1085 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1086 if (type != XFS_IO_OVERWRITE) {
1087 type = XFS_IO_OVERWRITE;
85da94c6
CH
1088 imap_valid = 0;
1089 }
aeea1b1f 1090 } else {
7d0fa3ec 1091 if (PageUptodate(page))
aeea1b1f 1092 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1093 /*
1094 * This buffer is not uptodate and will not be
1095 * written to disk. Ensure that we will put any
1096 * subsequent writeable buffers into a new
1097 * ioend.
1098 */
1099 imap_valid = 0;
aeea1b1f
CH
1100 continue;
1101 }
d5cb48aa 1102
aeea1b1f
CH
1103 if (imap_valid)
1104 imap_valid = xfs_imap_valid(inode, &imap, offset);
1105 if (!imap_valid) {
1106 /*
1107 * If we didn't have a valid mapping then we need to
1108 * put the new mapping into a separate ioend structure.
1109 * This ensures non-contiguous extents always have
1110 * separate ioends, which is particularly important
1111 * for unwritten extent conversion at I/O completion
1112 * time.
1113 */
1114 new_ioend = 1;
1115 err = xfs_map_blocks(inode, offset, &imap, type,
1116 nonblocking);
1117 if (err)
1118 goto error;
1119 imap_valid = xfs_imap_valid(inode, &imap, offset);
1120 }
1121 if (imap_valid) {
ecff71e6 1122 lock_buffer(bh);
0d882a36 1123 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1124 xfs_map_at_offset(inode, bh, &imap, offset);
1125 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1126 new_ioend);
1127 count++;
1da177e4 1128 }
f6d6d4fc
CH
1129
1130 if (!iohead)
1131 iohead = ioend;
1132
1133 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1134
1135 if (uptodate && bh == head)
1136 SetPageUptodate(page);
1137
89f3b363 1138 xfs_start_page_writeback(page, 1, count);
1da177e4 1139
7bf7f352
DC
1140 /* if there is no IO to be submitted for this page, we are done */
1141 if (!ioend)
1142 return 0;
1143
1144 ASSERT(iohead);
1145
1146 /*
1147 * Any errors from this point onwards need tobe reported through the IO
1148 * completion path as we have marked the initial page as under writeback
1149 * and unlocked it.
1150 */
1151 if (imap_valid) {
bd1556a1
CH
1152 xfs_off_t end_index;
1153
1154 end_index = imap.br_startoff + imap.br_blockcount;
1155
1156 /* to bytes */
1157 end_index <<= inode->i_blkbits;
1158
1159 /* to pages */
1160 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1161
1162 /* check against file size */
1163 if (end_index > last_index)
1164 end_index = last_index;
8699bb0a 1165
207d0416 1166 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1167 wbc, end_index);
1da177e4
LT
1168 }
1169
281627df 1170
7bf7f352
DC
1171 /*
1172 * Reserve log space if we might write beyond the on-disk inode size.
1173 */
1174 err = 0;
1175 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1176 err = xfs_setfilesize_trans_alloc(ioend);
1177
1178 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1179
89f3b363 1180 return 0;
1da177e4
LT
1181
1182error:
f6d6d4fc
CH
1183 if (iohead)
1184 xfs_cancel_ioend(iohead);
1da177e4 1185
b5420f23
CH
1186 if (err == -EAGAIN)
1187 goto redirty;
1188
20cb52eb 1189 xfs_aops_discard_page(page);
89f3b363
CH
1190 ClearPageUptodate(page);
1191 unlock_page(page);
1da177e4 1192 return err;
f51623b2 1193
b5420f23 1194redirty:
f51623b2
NS
1195 redirty_page_for_writepage(wbc, page);
1196 unlock_page(page);
1197 return 0;
f51623b2
NS
1198}
1199
7d4fb40a
NS
1200STATIC int
1201xfs_vm_writepages(
1202 struct address_space *mapping,
1203 struct writeback_control *wbc)
1204{
b3aea4ed 1205 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1206 return generic_writepages(mapping, wbc);
1207}
1208
f51623b2
NS
1209/*
1210 * Called to move a page into cleanable state - and from there
89f3b363 1211 * to be released. The page should already be clean. We always
f51623b2
NS
1212 * have buffer heads in this call.
1213 *
89f3b363 1214 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1215 */
1216STATIC int
238f4c54 1217xfs_vm_releasepage(
f51623b2
NS
1218 struct page *page,
1219 gfp_t gfp_mask)
1220{
20cb52eb 1221 int delalloc, unwritten;
f51623b2 1222
34097dfe 1223 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1224
20cb52eb 1225 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1226
448011e2 1227 if (WARN_ON_ONCE(delalloc))
f51623b2 1228 return 0;
448011e2 1229 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1230 return 0;
1231
f51623b2
NS
1232 return try_to_free_buffers(page);
1233}
1234
1da177e4 1235STATIC int
c2536668 1236__xfs_get_blocks(
1da177e4
LT
1237 struct inode *inode,
1238 sector_t iblock,
1da177e4
LT
1239 struct buffer_head *bh_result,
1240 int create,
f2bde9b8 1241 int direct)
1da177e4 1242{
a206c817
CH
1243 struct xfs_inode *ip = XFS_I(inode);
1244 struct xfs_mount *mp = ip->i_mount;
1245 xfs_fileoff_t offset_fsb, end_fsb;
1246 int error = 0;
1247 int lockmode = 0;
207d0416 1248 struct xfs_bmbt_irec imap;
a206c817 1249 int nimaps = 1;
fdc7ed75
NS
1250 xfs_off_t offset;
1251 ssize_t size;
207d0416 1252 int new = 0;
a206c817
CH
1253
1254 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1255 return -EIO;
1da177e4 1256
fdc7ed75 1257 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1258 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1259 size = bh_result->b_size;
364f358a
LM
1260
1261 if (!create && direct && offset >= i_size_read(inode))
1262 return 0;
1263
507630b2
DC
1264 /*
1265 * Direct I/O is usually done on preallocated files, so try getting
1266 * a block mapping without an exclusive lock first. For buffered
1267 * writes we already have the exclusive iolock anyway, so avoiding
1268 * a lock roundtrip here by taking the ilock exclusive from the
1269 * beginning is a useful micro optimization.
1270 */
1271 if (create && !direct) {
a206c817
CH
1272 lockmode = XFS_ILOCK_EXCL;
1273 xfs_ilock(ip, lockmode);
1274 } else {
309ecac8 1275 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1276 }
f2bde9b8 1277
d2c28191
DC
1278 ASSERT(offset <= mp->m_super->s_maxbytes);
1279 if (offset + size > mp->m_super->s_maxbytes)
1280 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1281 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1282 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1283
5c8ed202
DC
1284 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1285 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1286 if (error)
a206c817
CH
1287 goto out_unlock;
1288
1289 if (create &&
1290 (!nimaps ||
1291 (imap.br_startblock == HOLESTARTBLOCK ||
1292 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1293 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1294 /*
1295 * Drop the ilock in preparation for starting the block
1296 * allocation transaction. It will be retaken
1297 * exclusively inside xfs_iomap_write_direct for the
1298 * actual allocation.
1299 */
1300 xfs_iunlock(ip, lockmode);
a206c817
CH
1301 error = xfs_iomap_write_direct(ip, offset, size,
1302 &imap, nimaps);
507630b2 1303 if (error)
2451337d 1304 return error;
d3bc815a 1305 new = 1;
a206c817 1306 } else {
507630b2
DC
1307 /*
1308 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1309 * we can go on without dropping the lock here. If we
1310 * are allocating a new delalloc block, make sure that
1311 * we set the new flag so that we mark the buffer new so
1312 * that we know that it is newly allocated if the write
1313 * fails.
507630b2 1314 */
d3bc815a
DC
1315 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1316 new = 1;
a206c817 1317 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1318 if (error)
1319 goto out_unlock;
1320
1321 xfs_iunlock(ip, lockmode);
a206c817 1322 }
a206c817
CH
1323
1324 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1325 } else if (nimaps) {
1326 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
507630b2 1327 xfs_iunlock(ip, lockmode);
a206c817
CH
1328 } else {
1329 trace_xfs_get_blocks_notfound(ip, offset, size);
1330 goto out_unlock;
1331 }
1da177e4 1332
207d0416
CH
1333 if (imap.br_startblock != HOLESTARTBLOCK &&
1334 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1335 /*
1336 * For unwritten extents do not report a disk address on
1da177e4
LT
1337 * the read case (treat as if we're reading into a hole).
1338 */
207d0416
CH
1339 if (create || !ISUNWRITTEN(&imap))
1340 xfs_map_buffer(inode, bh_result, &imap, offset);
1341 if (create && ISUNWRITTEN(&imap)) {
7b7a8665 1342 if (direct) {
1da177e4 1343 bh_result->b_private = inode;
7b7a8665
CH
1344 set_buffer_defer_completion(bh_result);
1345 }
1da177e4 1346 set_buffer_unwritten(bh_result);
1da177e4
LT
1347 }
1348 }
1349
c2536668
NS
1350 /*
1351 * If this is a realtime file, data may be on a different device.
1352 * to that pointed to from the buffer_head b_bdev currently.
1353 */
046f1685 1354 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1355
c2536668 1356 /*
549054af
DC
1357 * If we previously allocated a block out beyond eof and we are now
1358 * coming back to use it then we will need to flag it as new even if it
1359 * has a disk address.
1360 *
1361 * With sub-block writes into unwritten extents we also need to mark
1362 * the buffer as new so that the unwritten parts of the buffer gets
1363 * correctly zeroed.
1da177e4
LT
1364 */
1365 if (create &&
1366 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1367 (offset >= i_size_read(inode)) ||
207d0416 1368 (new || ISUNWRITTEN(&imap))))
1da177e4 1369 set_buffer_new(bh_result);
1da177e4 1370
207d0416 1371 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1372 BUG_ON(direct);
1373 if (create) {
1374 set_buffer_uptodate(bh_result);
1375 set_buffer_mapped(bh_result);
1376 set_buffer_delay(bh_result);
1377 }
1378 }
1379
2b8f12b7
CH
1380 /*
1381 * If this is O_DIRECT or the mpage code calling tell them how large
1382 * the mapping is, so that we can avoid repeated get_blocks calls.
0e1f789d
DC
1383 *
1384 * If the mapping spans EOF, then we have to break the mapping up as the
1385 * mapping for blocks beyond EOF must be marked new so that sub block
1386 * regions can be correctly zeroed. We can't do this for mappings within
1387 * EOF unless the mapping was just allocated or is unwritten, otherwise
1388 * the callers would overwrite existing data with zeros. Hence we have
1389 * to split the mapping into a range up to and including EOF, and a
1390 * second mapping for beyond EOF.
2b8f12b7 1391 */
c2536668 1392 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1393 xfs_off_t mapping_size;
1394
1395 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1396 mapping_size <<= inode->i_blkbits;
1397
1398 ASSERT(mapping_size > 0);
1399 if (mapping_size > size)
1400 mapping_size = size;
0e1f789d
DC
1401 if (offset < i_size_read(inode) &&
1402 offset + mapping_size >= i_size_read(inode)) {
1403 /* limit mapping to block that spans EOF */
1404 mapping_size = roundup_64(i_size_read(inode) - offset,
1405 1 << inode->i_blkbits);
1406 }
2b8f12b7
CH
1407 if (mapping_size > LONG_MAX)
1408 mapping_size = LONG_MAX;
1409
1410 bh_result->b_size = mapping_size;
1da177e4
LT
1411 }
1412
1413 return 0;
a206c817
CH
1414
1415out_unlock:
1416 xfs_iunlock(ip, lockmode);
2451337d 1417 return error;
1da177e4
LT
1418}
1419
1420int
c2536668 1421xfs_get_blocks(
1da177e4
LT
1422 struct inode *inode,
1423 sector_t iblock,
1424 struct buffer_head *bh_result,
1425 int create)
1426{
f2bde9b8 1427 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1428}
1429
1430STATIC int
e4c573bb 1431xfs_get_blocks_direct(
1da177e4
LT
1432 struct inode *inode,
1433 sector_t iblock,
1da177e4
LT
1434 struct buffer_head *bh_result,
1435 int create)
1436{
f2bde9b8 1437 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1438}
1439
209fb87a
CH
1440/*
1441 * Complete a direct I/O write request.
1442 *
1443 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1444 * need to issue a transaction to convert the range from unwritten to written
2ba66237 1445 * extents.
209fb87a 1446 */
f0973863 1447STATIC void
209fb87a
CH
1448xfs_end_io_direct_write(
1449 struct kiocb *iocb,
1450 loff_t offset,
1451 ssize_t size,
7b7a8665 1452 void *private)
f0973863 1453{
2ba66237
CH
1454 struct inode *inode = file_inode(iocb->ki_filp);
1455 struct xfs_inode *ip = XFS_I(inode);
1456 struct xfs_mount *mp = ip->i_mount;
1457
1458 if (XFS_FORCED_SHUTDOWN(mp))
1459 return;
f0973863 1460
2813d682
CH
1461 /*
1462 * While the generic direct I/O code updates the inode size, it does
1463 * so only after the end_io handler is called, which means our
1464 * end_io handler thinks the on-disk size is outside the in-core
1465 * size. To prevent this just update it a little bit earlier here.
1466 */
2ba66237
CH
1467 if (offset + size > i_size_read(inode))
1468 i_size_write(inode, offset + size);
2813d682 1469
f0973863 1470 /*
2ba66237
CH
1471 * For direct I/O we do not know if we need to allocate blocks or not,
1472 * so we can't preallocate an append transaction, as that results in
1473 * nested reservations and log space deadlocks. Hence allocate the
1474 * transaction here. While this is sub-optimal and can block IO
1475 * completion for some time, we're stuck with doing it this way until
1476 * we can pass the ioend to the direct IO allocation callbacks and
1477 * avoid nesting that way.
f0973863 1478 */
2ba66237
CH
1479 if (private && size > 0) {
1480 xfs_iomap_write_unwritten(ip, offset, size);
1481 } else if (offset + size > ip->i_d.di_size) {
1482 struct xfs_trans *tp;
1483 int error;
1484
1485 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1486 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1487 if (error) {
1488 xfs_trans_cancel(tp, 0);
1489 return;
1490 }
209fb87a 1491
2ba66237
CH
1492 xfs_setfilesize(ip, tp, offset, size);
1493 }
f0973863
CH
1494}
1495
1da177e4 1496STATIC ssize_t
e4c573bb 1497xfs_vm_direct_IO(
1da177e4
LT
1498 int rw,
1499 struct kiocb *iocb,
d8d3d94b
AV
1500 struct iov_iter *iter,
1501 loff_t offset)
1da177e4 1502{
209fb87a
CH
1503 struct inode *inode = iocb->ki_filp->f_mapping->host;
1504 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
209fb87a
CH
1505
1506 if (rw & WRITE) {
2ba66237 1507 return __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
31b14039 1508 offset, xfs_get_blocks_direct,
9862f62f
CH
1509 xfs_end_io_direct_write, NULL,
1510 DIO_ASYNC_EXTEND);
209fb87a 1511 }
2ba66237
CH
1512 return __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1513 offset, xfs_get_blocks_direct,
1514 NULL, NULL, 0);
1da177e4
LT
1515}
1516
d3bc815a
DC
1517/*
1518 * Punch out the delalloc blocks we have already allocated.
1519 *
1520 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1521 * as the page is still locked at this point.
1522 */
1523STATIC void
1524xfs_vm_kill_delalloc_range(
1525 struct inode *inode,
1526 loff_t start,
1527 loff_t end)
1528{
1529 struct xfs_inode *ip = XFS_I(inode);
1530 xfs_fileoff_t start_fsb;
1531 xfs_fileoff_t end_fsb;
1532 int error;
1533
1534 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1535 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1536 if (end_fsb <= start_fsb)
1537 return;
1538
1539 xfs_ilock(ip, XFS_ILOCK_EXCL);
1540 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1541 end_fsb - start_fsb);
1542 if (error) {
1543 /* something screwed, just bail */
1544 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1545 xfs_alert(ip->i_mount,
1546 "xfs_vm_write_failed: unable to clean up ino %lld",
1547 ip->i_ino);
1548 }
1549 }
1550 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1551}
1552
fa9b227e
CH
1553STATIC void
1554xfs_vm_write_failed(
d3bc815a
DC
1555 struct inode *inode,
1556 struct page *page,
1557 loff_t pos,
1558 unsigned len)
fa9b227e 1559{
58e59854 1560 loff_t block_offset;
d3bc815a
DC
1561 loff_t block_start;
1562 loff_t block_end;
1563 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1564 loff_t to = from + len;
1565 struct buffer_head *bh, *head;
fa9b227e 1566
58e59854
JL
1567 /*
1568 * The request pos offset might be 32 or 64 bit, this is all fine
1569 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1570 * platform, the high 32-bit will be masked off if we evaluate the
1571 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1572 * 0xfffff000 as an unsigned long, hence the result is incorrect
1573 * which could cause the following ASSERT failed in most cases.
1574 * In order to avoid this, we can evaluate the block_offset of the
1575 * start of the page by using shifts rather than masks the mismatch
1576 * problem.
1577 */
1578 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1579
d3bc815a 1580 ASSERT(block_offset + from == pos);
c726de44 1581
d3bc815a
DC
1582 head = page_buffers(page);
1583 block_start = 0;
1584 for (bh = head; bh != head || !block_start;
1585 bh = bh->b_this_page, block_start = block_end,
1586 block_offset += bh->b_size) {
1587 block_end = block_start + bh->b_size;
c726de44 1588
d3bc815a
DC
1589 /* skip buffers before the write */
1590 if (block_end <= from)
1591 continue;
1592
1593 /* if the buffer is after the write, we're done */
1594 if (block_start >= to)
1595 break;
1596
1597 if (!buffer_delay(bh))
1598 continue;
1599
1600 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1601 continue;
1602
1603 xfs_vm_kill_delalloc_range(inode, block_offset,
1604 block_offset + bh->b_size);
4ab9ed57
DC
1605
1606 /*
1607 * This buffer does not contain data anymore. make sure anyone
1608 * who finds it knows that for certain.
1609 */
1610 clear_buffer_delay(bh);
1611 clear_buffer_uptodate(bh);
1612 clear_buffer_mapped(bh);
1613 clear_buffer_new(bh);
1614 clear_buffer_dirty(bh);
fa9b227e 1615 }
d3bc815a 1616
fa9b227e
CH
1617}
1618
d3bc815a
DC
1619/*
1620 * This used to call block_write_begin(), but it unlocks and releases the page
1621 * on error, and we need that page to be able to punch stale delalloc blocks out
1622 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1623 * the appropriate point.
1624 */
f51623b2 1625STATIC int
d79689c7 1626xfs_vm_write_begin(
f51623b2 1627 struct file *file,
d79689c7
NP
1628 struct address_space *mapping,
1629 loff_t pos,
1630 unsigned len,
1631 unsigned flags,
1632 struct page **pagep,
1633 void **fsdata)
f51623b2 1634{
d3bc815a
DC
1635 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1636 struct page *page;
1637 int status;
155130a4 1638
d3bc815a
DC
1639 ASSERT(len <= PAGE_CACHE_SIZE);
1640
ad22c7a0 1641 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1642 if (!page)
1643 return -ENOMEM;
1644
1645 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1646 if (unlikely(status)) {
1647 struct inode *inode = mapping->host;
72ab70a1 1648 size_t isize = i_size_read(inode);
d3bc815a
DC
1649
1650 xfs_vm_write_failed(inode, page, pos, len);
1651 unlock_page(page);
1652
72ab70a1
DC
1653 /*
1654 * If the write is beyond EOF, we only want to kill blocks
1655 * allocated in this write, not blocks that were previously
1656 * written successfully.
1657 */
1658 if (pos + len > isize) {
1659 ssize_t start = max_t(ssize_t, pos, isize);
1660
1661 truncate_pagecache_range(inode, start, pos + len);
1662 }
d3bc815a
DC
1663
1664 page_cache_release(page);
1665 page = NULL;
1666 }
1667
1668 *pagep = page;
1669 return status;
fa9b227e
CH
1670}
1671
d3bc815a 1672/*
aad3f375
DC
1673 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1674 * this specific write because they will never be written. Previous writes
1675 * beyond EOF where block allocation succeeded do not need to be trashed, so
1676 * only new blocks from this write should be trashed. For blocks within
1677 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1678 * written with all the other valid data.
d3bc815a 1679 */
fa9b227e
CH
1680STATIC int
1681xfs_vm_write_end(
1682 struct file *file,
1683 struct address_space *mapping,
1684 loff_t pos,
1685 unsigned len,
1686 unsigned copied,
1687 struct page *page,
1688 void *fsdata)
1689{
1690 int ret;
155130a4 1691
d3bc815a
DC
1692 ASSERT(len <= PAGE_CACHE_SIZE);
1693
fa9b227e 1694 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1695 if (unlikely(ret < len)) {
1696 struct inode *inode = mapping->host;
1697 size_t isize = i_size_read(inode);
1698 loff_t to = pos + len;
1699
1700 if (to > isize) {
aad3f375
DC
1701 /* only kill blocks in this write beyond EOF */
1702 if (pos > isize)
1703 isize = pos;
d3bc815a 1704 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1705 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1706 }
1707 }
155130a4 1708 return ret;
f51623b2 1709}
1da177e4
LT
1710
1711STATIC sector_t
e4c573bb 1712xfs_vm_bmap(
1da177e4
LT
1713 struct address_space *mapping,
1714 sector_t block)
1715{
1716 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1717 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1718
cca28fb8 1719 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1720 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1721 filemap_write_and_wait(mapping);
126468b1 1722 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1723 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1724}
1725
1726STATIC int
e4c573bb 1727xfs_vm_readpage(
1da177e4
LT
1728 struct file *unused,
1729 struct page *page)
1730{
c2536668 1731 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1732}
1733
1734STATIC int
e4c573bb 1735xfs_vm_readpages(
1da177e4
LT
1736 struct file *unused,
1737 struct address_space *mapping,
1738 struct list_head *pages,
1739 unsigned nr_pages)
1740{
c2536668 1741 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1742}
1743
22e757a4
DC
1744/*
1745 * This is basically a copy of __set_page_dirty_buffers() with one
1746 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1747 * dirty, we'll never be able to clean them because we don't write buffers
1748 * beyond EOF, and that means we can't invalidate pages that span EOF
1749 * that have been marked dirty. Further, the dirty state can leak into
1750 * the file interior if the file is extended, resulting in all sorts of
1751 * bad things happening as the state does not match the underlying data.
1752 *
1753 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1754 * this only exist because of bufferheads and how the generic code manages them.
1755 */
1756STATIC int
1757xfs_vm_set_page_dirty(
1758 struct page *page)
1759{
1760 struct address_space *mapping = page->mapping;
1761 struct inode *inode = mapping->host;
1762 loff_t end_offset;
1763 loff_t offset;
1764 int newly_dirty;
1765
1766 if (unlikely(!mapping))
1767 return !TestSetPageDirty(page);
1768
1769 end_offset = i_size_read(inode);
1770 offset = page_offset(page);
1771
1772 spin_lock(&mapping->private_lock);
1773 if (page_has_buffers(page)) {
1774 struct buffer_head *head = page_buffers(page);
1775 struct buffer_head *bh = head;
1776
1777 do {
1778 if (offset < end_offset)
1779 set_buffer_dirty(bh);
1780 bh = bh->b_this_page;
1781 offset += 1 << inode->i_blkbits;
1782 } while (bh != head);
1783 }
1784 newly_dirty = !TestSetPageDirty(page);
1785 spin_unlock(&mapping->private_lock);
1786
1787 if (newly_dirty) {
1788 /* sigh - __set_page_dirty() is static, so copy it here, too */
1789 unsigned long flags;
1790
1791 spin_lock_irqsave(&mapping->tree_lock, flags);
1792 if (page->mapping) { /* Race with truncate? */
1793 WARN_ON_ONCE(!PageUptodate(page));
1794 account_page_dirtied(page, mapping);
1795 radix_tree_tag_set(&mapping->page_tree,
1796 page_index(page), PAGECACHE_TAG_DIRTY);
1797 }
1798 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1799 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1800 }
1801 return newly_dirty;
1802}
1803
f5e54d6e 1804const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1805 .readpage = xfs_vm_readpage,
1806 .readpages = xfs_vm_readpages,
1807 .writepage = xfs_vm_writepage,
7d4fb40a 1808 .writepages = xfs_vm_writepages,
22e757a4 1809 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1810 .releasepage = xfs_vm_releasepage,
1811 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1812 .write_begin = xfs_vm_write_begin,
fa9b227e 1813 .write_end = xfs_vm_write_end,
e4c573bb
NS
1814 .bmap = xfs_vm_bmap,
1815 .direct_IO = xfs_vm_direct_IO,
e965f963 1816 .migratepage = buffer_migrate_page,
bddaafa1 1817 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1818 .error_remove_page = generic_error_remove_page,
1da177e4 1819};