Merge tag 'drm-atmel-hlcdc-fixes/for-4.7-rc5' of github.com:bbrezillon/linux-at91...
[linux-2.6-block.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
273dda76
CH
39/* flags for direct write completions */
40#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41#define XFS_DIO_FLAG_APPEND (1 << 1)
42
fbcc0256
DC
43/*
44 * structure owned by writepages passed to individual writepage calls
45 */
46struct xfs_writepage_ctx {
47 struct xfs_bmbt_irec imap;
48 bool imap_valid;
49 unsigned int io_type;
fbcc0256
DC
50 struct xfs_ioend *ioend;
51 sector_t last_block;
52};
53
0b1b213f 54void
f51623b2
NS
55xfs_count_page_state(
56 struct page *page,
57 int *delalloc,
f51623b2
NS
58 int *unwritten)
59{
60 struct buffer_head *bh, *head;
61
20cb52eb 62 *delalloc = *unwritten = 0;
f51623b2
NS
63
64 bh = head = page_buffers(page);
65 do {
20cb52eb 66 if (buffer_unwritten(bh))
f51623b2
NS
67 (*unwritten) = 1;
68 else if (buffer_delay(bh))
69 (*delalloc) = 1;
70 } while ((bh = bh->b_this_page) != head);
71}
72
20a90f58 73struct block_device *
6214ed44 74xfs_find_bdev_for_inode(
046f1685 75 struct inode *inode)
6214ed44 76{
046f1685 77 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
78 struct xfs_mount *mp = ip->i_mount;
79
71ddabb9 80 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
81 return mp->m_rtdev_targp->bt_bdev;
82 else
83 return mp->m_ddev_targp->bt_bdev;
84}
85
f6d6d4fc 86/*
37992c18
DC
87 * We're now finished for good with this page. Update the page state via the
88 * associated buffer_heads, paying attention to the start and end offsets that
89 * we need to process on the page.
90 */
91static void
92xfs_finish_page_writeback(
93 struct inode *inode,
94 struct bio_vec *bvec,
95 int error)
96{
37992c18
DC
97 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
98 struct buffer_head *head, *bh;
99 unsigned int off = 0;
100
101 ASSERT(bvec->bv_offset < PAGE_SIZE);
690a7871 102 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
37992c18 103 ASSERT(end < PAGE_SIZE);
690a7871 104 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
37992c18
DC
105
106 bh = head = page_buffers(bvec->bv_page);
107
108 do {
109 if (off < bvec->bv_offset)
110 goto next_bh;
111 if (off > end)
112 break;
113 bh->b_end_io(bh, !error);
114next_bh:
115 off += bh->b_size;
116 } while ((bh = bh->b_this_page) != head);
117}
118
119/*
120 * We're now finished for good with this ioend structure. Update the page
121 * state, release holds on bios, and finally free up memory. Do not use the
122 * ioend after this.
f6d6d4fc 123 */
0829c360
CH
124STATIC void
125xfs_destroy_ioend(
0e51a8e1
CH
126 struct xfs_ioend *ioend,
127 int error)
0829c360 128{
37992c18 129 struct inode *inode = ioend->io_inode;
0e51a8e1 130 struct bio *last = ioend->io_bio;
37992c18 131 struct bio *bio, *next;
f6d6d4fc 132
0e51a8e1 133 for (bio = &ioend->io_inline_bio; bio; bio = next) {
37992c18
DC
134 struct bio_vec *bvec;
135 int i;
136
0e51a8e1
CH
137 /*
138 * For the last bio, bi_private points to the ioend, so we
139 * need to explicitly end the iteration here.
140 */
141 if (bio == last)
142 next = NULL;
143 else
144 next = bio->bi_private;
583fa586 145
37992c18
DC
146 /* walk each page on bio, ending page IO on them */
147 bio_for_each_segment_all(bvec, bio, i)
148 xfs_finish_page_writeback(inode, bvec, error);
149
150 bio_put(bio);
f6d6d4fc 151 }
0829c360
CH
152}
153
fc0063c4
CH
154/*
155 * Fast and loose check if this write could update the on-disk inode size.
156 */
157static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
158{
159 return ioend->io_offset + ioend->io_size >
160 XFS_I(ioend->io_inode)->i_d.di_size;
161}
162
281627df
CH
163STATIC int
164xfs_setfilesize_trans_alloc(
165 struct xfs_ioend *ioend)
166{
167 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
168 struct xfs_trans *tp;
169 int error;
170
253f4911
CH
171 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
172 if (error)
281627df 173 return error;
281627df
CH
174
175 ioend->io_append_trans = tp;
176
d9457dc0 177 /*
437a255a 178 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
179 * we released it.
180 */
bee9182d 181 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
182 /*
183 * We hand off the transaction to the completion thread now, so
184 * clear the flag here.
185 */
186 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
187 return 0;
188}
189
ba87ea69 190/*
2813d682 191 * Update on-disk file size now that data has been written to disk.
ba87ea69 192 */
281627df 193STATIC int
ba87ea69 194xfs_setfilesize(
2ba66237
CH
195 struct xfs_inode *ip,
196 struct xfs_trans *tp,
197 xfs_off_t offset,
198 size_t size)
ba87ea69 199{
ba87ea69 200 xfs_fsize_t isize;
ba87ea69 201
aa6bf01d 202 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 203 isize = xfs_new_eof(ip, offset + size);
281627df
CH
204 if (!isize) {
205 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 206 xfs_trans_cancel(tp);
281627df 207 return 0;
ba87ea69
LM
208 }
209
2ba66237 210 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
211
212 ip->i_d.di_size = isize;
213 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
214 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
215
70393313 216 return xfs_trans_commit(tp);
77d7a0c2
DC
217}
218
2ba66237
CH
219STATIC int
220xfs_setfilesize_ioend(
0e51a8e1
CH
221 struct xfs_ioend *ioend,
222 int error)
2ba66237
CH
223{
224 struct xfs_inode *ip = XFS_I(ioend->io_inode);
225 struct xfs_trans *tp = ioend->io_append_trans;
226
227 /*
228 * The transaction may have been allocated in the I/O submission thread,
229 * thus we need to mark ourselves as being in a transaction manually.
230 * Similarly for freeze protection.
231 */
232 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 233 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 234
5cb13dcd 235 /* we abort the update if there was an IO error */
0e51a8e1 236 if (error) {
5cb13dcd 237 xfs_trans_cancel(tp);
0e51a8e1 238 return error;
5cb13dcd
Z
239 }
240
2ba66237
CH
241 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
242}
243
0829c360 244/*
5ec4fabb 245 * IO write completion.
f6d6d4fc
CH
246 */
247STATIC void
5ec4fabb 248xfs_end_io(
77d7a0c2 249 struct work_struct *work)
0829c360 250{
0e51a8e1
CH
251 struct xfs_ioend *ioend =
252 container_of(work, struct xfs_ioend, io_work);
253 struct xfs_inode *ip = XFS_I(ioend->io_inode);
254 int error = ioend->io_bio->bi_error;
ba87ea69 255
af055e37
BF
256 /*
257 * Set an error if the mount has shut down and proceed with end I/O
258 * processing so it can perform whatever cleanups are necessary.
259 */
260 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
0e51a8e1 261 error = -EIO;
04f658ee 262
5ec4fabb
CH
263 /*
264 * For unwritten extents we need to issue transactions to convert a
265 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
266 * Detecting and handling completion IO errors is done individually
267 * for each case as different cleanup operations need to be performed
268 * on error.
5ec4fabb 269 */
0d882a36 270 if (ioend->io_type == XFS_IO_UNWRITTEN) {
0e51a8e1 271 if (error)
5cb13dcd 272 goto done;
437a255a
DC
273 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
274 ioend->io_size);
281627df 275 } else if (ioend->io_append_trans) {
0e51a8e1 276 error = xfs_setfilesize_ioend(ioend, error);
84803fb7 277 } else {
281627df 278 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 279 }
ba87ea69 280
04f658ee 281done:
0e51a8e1 282 xfs_destroy_ioend(ioend, error);
c626d174
DC
283}
284
0e51a8e1
CH
285STATIC void
286xfs_end_bio(
287 struct bio *bio)
0829c360 288{
0e51a8e1
CH
289 struct xfs_ioend *ioend = bio->bi_private;
290 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
0829c360 291
0e51a8e1
CH
292 if (ioend->io_type == XFS_IO_UNWRITTEN)
293 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
294 else if (ioend->io_append_trans)
295 queue_work(mp->m_data_workqueue, &ioend->io_work);
296 else
297 xfs_destroy_ioend(ioend, bio->bi_error);
0829c360
CH
298}
299
1da177e4
LT
300STATIC int
301xfs_map_blocks(
302 struct inode *inode,
303 loff_t offset,
207d0416 304 struct xfs_bmbt_irec *imap,
988ef927 305 int type)
1da177e4 306{
a206c817
CH
307 struct xfs_inode *ip = XFS_I(inode);
308 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 309 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
310 xfs_fileoff_t offset_fsb, end_fsb;
311 int error = 0;
a206c817
CH
312 int bmapi_flags = XFS_BMAPI_ENTIRE;
313 int nimaps = 1;
314
315 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 316 return -EIO;
a206c817 317
0d882a36 318 if (type == XFS_IO_UNWRITTEN)
a206c817 319 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 320
988ef927 321 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
323 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 324 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 325
d2c28191
DC
326 if (offset + count > mp->m_super->s_maxbytes)
327 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
329 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
331 imap, &nimaps, bmapi_flags);
8ff2957d 332 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 333
8ff2957d 334 if (error)
2451337d 335 return error;
a206c817 336
0d882a36 337 if (type == XFS_IO_DELALLOC &&
8ff2957d 338 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 339 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
340 if (!error)
341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 342 return error;
a206c817
CH
343 }
344
8ff2957d 345#ifdef DEBUG
0d882a36 346 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
347 ASSERT(nimaps);
348 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
350 }
351#endif
352 if (nimaps)
353 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
354 return 0;
1da177e4
LT
355}
356
fbcc0256 357STATIC bool
558e6891 358xfs_imap_valid(
8699bb0a 359 struct inode *inode,
207d0416 360 struct xfs_bmbt_irec *imap,
558e6891 361 xfs_off_t offset)
1da177e4 362{
558e6891 363 offset >>= inode->i_blkbits;
8699bb0a 364
558e6891
CH
365 return offset >= imap->br_startoff &&
366 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
367}
368
f6d6d4fc
CH
369STATIC void
370xfs_start_buffer_writeback(
371 struct buffer_head *bh)
372{
373 ASSERT(buffer_mapped(bh));
374 ASSERT(buffer_locked(bh));
375 ASSERT(!buffer_delay(bh));
376 ASSERT(!buffer_unwritten(bh));
377
378 mark_buffer_async_write(bh);
379 set_buffer_uptodate(bh);
380 clear_buffer_dirty(bh);
381}
382
383STATIC void
384xfs_start_page_writeback(
385 struct page *page,
e10de372 386 int clear_dirty)
f6d6d4fc
CH
387{
388 ASSERT(PageLocked(page));
389 ASSERT(!PageWriteback(page));
0d085a52
DC
390
391 /*
392 * if the page was not fully cleaned, we need to ensure that the higher
393 * layers come back to it correctly. That means we need to keep the page
394 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
395 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
396 * write this page in this writeback sweep will be made.
397 */
398 if (clear_dirty) {
92132021 399 clear_page_dirty_for_io(page);
0d085a52
DC
400 set_page_writeback(page);
401 } else
402 set_page_writeback_keepwrite(page);
403
f6d6d4fc 404 unlock_page(page);
f6d6d4fc
CH
405}
406
c7c1a7d8 407static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
408{
409 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
410}
411
412/*
bb18782a
DC
413 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
414 * it, and we submit that bio. The ioend may be used for multiple bio
415 * submissions, so we only want to allocate an append transaction for the ioend
416 * once. In the case of multiple bio submission, each bio will take an IO
417 * reference to the ioend to ensure that the ioend completion is only done once
418 * all bios have been submitted and the ioend is really done.
7bf7f352
DC
419 *
420 * If @fail is non-zero, it means that we have a situation where some part of
421 * the submission process has failed after we have marked paged for writeback
bb18782a
DC
422 * and unlocked them. In this situation, we need to fail the bio and ioend
423 * rather than submit it to IO. This typically only happens on a filesystem
424 * shutdown.
f6d6d4fc 425 */
e10de372 426STATIC int
f6d6d4fc 427xfs_submit_ioend(
06342cf8 428 struct writeback_control *wbc,
0e51a8e1 429 struct xfs_ioend *ioend,
e10de372 430 int status)
f6d6d4fc 431{
e10de372
DC
432 /* Reserve log space if we might write beyond the on-disk inode size. */
433 if (!status &&
0e51a8e1 434 ioend->io_type != XFS_IO_UNWRITTEN &&
bb18782a
DC
435 xfs_ioend_is_append(ioend) &&
436 !ioend->io_append_trans)
e10de372 437 status = xfs_setfilesize_trans_alloc(ioend);
bb18782a 438
0e51a8e1
CH
439 ioend->io_bio->bi_private = ioend;
440 ioend->io_bio->bi_end_io = xfs_end_bio;
441
e10de372
DC
442 /*
443 * If we are failing the IO now, just mark the ioend with an
444 * error and finish it. This will run IO completion immediately
445 * as there is only one reference to the ioend at this point in
446 * time.
447 */
448 if (status) {
0e51a8e1
CH
449 ioend->io_bio->bi_error = status;
450 bio_endio(ioend->io_bio);
e10de372
DC
451 return status;
452 }
d88992f6 453
0e51a8e1
CH
454 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE,
455 ioend->io_bio);
e10de372 456 return 0;
f6d6d4fc 457}
f6d6d4fc 458
0e51a8e1
CH
459static void
460xfs_init_bio_from_bh(
461 struct bio *bio,
462 struct buffer_head *bh)
463{
464 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
465 bio->bi_bdev = bh->b_bdev;
466}
7bf7f352 467
0e51a8e1
CH
468static struct xfs_ioend *
469xfs_alloc_ioend(
470 struct inode *inode,
471 unsigned int type,
472 xfs_off_t offset,
473 struct buffer_head *bh)
474{
475 struct xfs_ioend *ioend;
476 struct bio *bio;
f6d6d4fc 477
0e51a8e1
CH
478 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
479 xfs_init_bio_from_bh(bio, bh);
480
481 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
482 INIT_LIST_HEAD(&ioend->io_list);
483 ioend->io_type = type;
484 ioend->io_inode = inode;
485 ioend->io_size = 0;
486 ioend->io_offset = offset;
487 INIT_WORK(&ioend->io_work, xfs_end_io);
488 ioend->io_append_trans = NULL;
489 ioend->io_bio = bio;
490 return ioend;
491}
492
493/*
494 * Allocate a new bio, and chain the old bio to the new one.
495 *
496 * Note that we have to do perform the chaining in this unintuitive order
497 * so that the bi_private linkage is set up in the right direction for the
498 * traversal in xfs_destroy_ioend().
499 */
500static void
501xfs_chain_bio(
502 struct xfs_ioend *ioend,
503 struct writeback_control *wbc,
504 struct buffer_head *bh)
505{
506 struct bio *new;
507
508 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
509 xfs_init_bio_from_bh(new, bh);
510
511 bio_chain(ioend->io_bio, new);
512 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
513 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE,
514 ioend->io_bio);
515 ioend->io_bio = new;
f6d6d4fc
CH
516}
517
518/*
519 * Test to see if we've been building up a completion structure for
520 * earlier buffers -- if so, we try to append to this ioend if we
521 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
522 * Return the ioend we finished off so that the caller can submit it
523 * once it has finished processing the dirty page.
f6d6d4fc
CH
524 */
525STATIC void
526xfs_add_to_ioend(
527 struct inode *inode,
528 struct buffer_head *bh,
7336cea8 529 xfs_off_t offset,
e10de372 530 struct xfs_writepage_ctx *wpc,
bb18782a 531 struct writeback_control *wbc,
e10de372 532 struct list_head *iolist)
f6d6d4fc 533{
fbcc0256 534 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
0df61da8
DW
535 bh->b_blocknr != wpc->last_block + 1 ||
536 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
e10de372
DC
537 if (wpc->ioend)
538 list_add(&wpc->ioend->io_list, iolist);
0e51a8e1 539 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
f6d6d4fc
CH
540 }
541
0e51a8e1
CH
542 /*
543 * If the buffer doesn't fit into the bio we need to allocate a new
544 * one. This shouldn't happen more than once for a given buffer.
545 */
546 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
547 xfs_chain_bio(wpc->ioend, wbc, bh);
bb18782a 548
fbcc0256
DC
549 wpc->ioend->io_size += bh->b_size;
550 wpc->last_block = bh->b_blocknr;
e10de372 551 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
552}
553
87cbc49c
NS
554STATIC void
555xfs_map_buffer(
046f1685 556 struct inode *inode,
87cbc49c 557 struct buffer_head *bh,
207d0416 558 struct xfs_bmbt_irec *imap,
046f1685 559 xfs_off_t offset)
87cbc49c
NS
560{
561 sector_t bn;
8699bb0a 562 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
563 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
564 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 565
207d0416
CH
566 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
567 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 568
e513182d 569 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 570 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 571
046f1685 572 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
573
574 bh->b_blocknr = bn;
575 set_buffer_mapped(bh);
576}
577
1da177e4
LT
578STATIC void
579xfs_map_at_offset(
046f1685 580 struct inode *inode,
1da177e4 581 struct buffer_head *bh,
207d0416 582 struct xfs_bmbt_irec *imap,
046f1685 583 xfs_off_t offset)
1da177e4 584{
207d0416
CH
585 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
586 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 587
207d0416 588 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
589 set_buffer_mapped(bh);
590 clear_buffer_delay(bh);
f6d6d4fc 591 clear_buffer_unwritten(bh);
1da177e4
LT
592}
593
1da177e4 594/*
a49935f2
DC
595 * Test if a given page contains at least one buffer of a given @type.
596 * If @check_all_buffers is true, then we walk all the buffers in the page to
597 * try to find one of the type passed in. If it is not set, then the caller only
598 * needs to check the first buffer on the page for a match.
1da177e4 599 */
a49935f2 600STATIC bool
6ffc4db5 601xfs_check_page_type(
10ce4444 602 struct page *page,
a49935f2
DC
603 unsigned int type,
604 bool check_all_buffers)
1da177e4 605{
a49935f2
DC
606 struct buffer_head *bh;
607 struct buffer_head *head;
1da177e4 608
a49935f2
DC
609 if (PageWriteback(page))
610 return false;
611 if (!page->mapping)
612 return false;
613 if (!page_has_buffers(page))
614 return false;
1da177e4 615
a49935f2
DC
616 bh = head = page_buffers(page);
617 do {
618 if (buffer_unwritten(bh)) {
619 if (type == XFS_IO_UNWRITTEN)
620 return true;
621 } else if (buffer_delay(bh)) {
805eeb8e 622 if (type == XFS_IO_DELALLOC)
a49935f2
DC
623 return true;
624 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 625 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
626 return true;
627 }
1da177e4 628
a49935f2
DC
629 /* If we are only checking the first buffer, we are done now. */
630 if (!check_all_buffers)
631 break;
632 } while ((bh = bh->b_this_page) != head);
1da177e4 633
a49935f2 634 return false;
1da177e4
LT
635}
636
3ed3a434
DC
637STATIC void
638xfs_vm_invalidatepage(
639 struct page *page,
d47992f8
LC
640 unsigned int offset,
641 unsigned int length)
3ed3a434 642{
34097dfe
LC
643 trace_xfs_invalidatepage(page->mapping->host, page, offset,
644 length);
645 block_invalidatepage(page, offset, length);
3ed3a434
DC
646}
647
648/*
649 * If the page has delalloc buffers on it, we need to punch them out before we
650 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
651 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
652 * is done on that same region - the delalloc extent is returned when none is
653 * supposed to be there.
654 *
655 * We prevent this by truncating away the delalloc regions on the page before
656 * invalidating it. Because they are delalloc, we can do this without needing a
657 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
658 * truncation without a transaction as there is no space left for block
659 * reservation (typically why we see a ENOSPC in writeback).
660 *
661 * This is not a performance critical path, so for now just do the punching a
662 * buffer head at a time.
663 */
664STATIC void
665xfs_aops_discard_page(
666 struct page *page)
667{
668 struct inode *inode = page->mapping->host;
669 struct xfs_inode *ip = XFS_I(inode);
670 struct buffer_head *bh, *head;
671 loff_t offset = page_offset(page);
3ed3a434 672
a49935f2 673 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
674 goto out_invalidate;
675
e8c3753c
DC
676 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
677 goto out_invalidate;
678
4f10700a 679 xfs_alert(ip->i_mount,
3ed3a434
DC
680 "page discard on page %p, inode 0x%llx, offset %llu.",
681 page, ip->i_ino, offset);
682
683 xfs_ilock(ip, XFS_ILOCK_EXCL);
684 bh = head = page_buffers(page);
685 do {
3ed3a434 686 int error;
c726de44 687 xfs_fileoff_t start_fsb;
3ed3a434
DC
688
689 if (!buffer_delay(bh))
690 goto next_buffer;
691
c726de44
DC
692 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
693 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
694 if (error) {
695 /* something screwed, just bail */
e8c3753c 696 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 697 xfs_alert(ip->i_mount,
3ed3a434 698 "page discard unable to remove delalloc mapping.");
e8c3753c 699 }
3ed3a434
DC
700 break;
701 }
702next_buffer:
c726de44 703 offset += 1 << inode->i_blkbits;
3ed3a434
DC
704
705 } while ((bh = bh->b_this_page) != head);
706
707 xfs_iunlock(ip, XFS_ILOCK_EXCL);
708out_invalidate:
09cbfeaf 709 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
3ed3a434
DC
710 return;
711}
712
e10de372
DC
713/*
714 * We implement an immediate ioend submission policy here to avoid needing to
715 * chain multiple ioends and hence nest mempool allocations which can violate
716 * forward progress guarantees we need to provide. The current ioend we are
717 * adding buffers to is cached on the writepage context, and if the new buffer
718 * does not append to the cached ioend it will create a new ioend and cache that
719 * instead.
720 *
721 * If a new ioend is created and cached, the old ioend is returned and queued
722 * locally for submission once the entire page is processed or an error has been
723 * detected. While ioends are submitted immediately after they are completed,
724 * batching optimisations are provided by higher level block plugging.
725 *
726 * At the end of a writeback pass, there will be a cached ioend remaining on the
727 * writepage context that the caller will need to submit.
728 */
bfce7d2e
DC
729static int
730xfs_writepage_map(
731 struct xfs_writepage_ctx *wpc,
e10de372 732 struct writeback_control *wbc,
bfce7d2e
DC
733 struct inode *inode,
734 struct page *page,
735 loff_t offset,
736 __uint64_t end_offset)
737{
e10de372
DC
738 LIST_HEAD(submit_list);
739 struct xfs_ioend *ioend, *next;
bfce7d2e
DC
740 struct buffer_head *bh, *head;
741 ssize_t len = 1 << inode->i_blkbits;
742 int error = 0;
bfce7d2e 743 int count = 0;
e10de372 744 int uptodate = 1;
bfce7d2e
DC
745
746 bh = head = page_buffers(page);
747 offset = page_offset(page);
bfce7d2e
DC
748 do {
749 if (offset >= end_offset)
750 break;
751 if (!buffer_uptodate(bh))
752 uptodate = 0;
753
754 /*
755 * set_page_dirty dirties all buffers in a page, independent
756 * of their state. The dirty state however is entirely
757 * meaningless for holes (!mapped && uptodate), so skip
758 * buffers covering holes here.
759 */
760 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
761 wpc->imap_valid = false;
762 continue;
763 }
764
765 if (buffer_unwritten(bh)) {
766 if (wpc->io_type != XFS_IO_UNWRITTEN) {
767 wpc->io_type = XFS_IO_UNWRITTEN;
768 wpc->imap_valid = false;
769 }
770 } else if (buffer_delay(bh)) {
771 if (wpc->io_type != XFS_IO_DELALLOC) {
772 wpc->io_type = XFS_IO_DELALLOC;
773 wpc->imap_valid = false;
774 }
775 } else if (buffer_uptodate(bh)) {
776 if (wpc->io_type != XFS_IO_OVERWRITE) {
777 wpc->io_type = XFS_IO_OVERWRITE;
778 wpc->imap_valid = false;
779 }
780 } else {
781 if (PageUptodate(page))
782 ASSERT(buffer_mapped(bh));
783 /*
784 * This buffer is not uptodate and will not be
785 * written to disk. Ensure that we will put any
786 * subsequent writeable buffers into a new
787 * ioend.
788 */
789 wpc->imap_valid = false;
790 continue;
791 }
792
793 if (wpc->imap_valid)
794 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
795 offset);
796 if (!wpc->imap_valid) {
797 error = xfs_map_blocks(inode, offset, &wpc->imap,
798 wpc->io_type);
799 if (error)
e10de372 800 goto out;
bfce7d2e
DC
801 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
802 offset);
803 }
804 if (wpc->imap_valid) {
805 lock_buffer(bh);
806 if (wpc->io_type != XFS_IO_OVERWRITE)
807 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
bb18782a 808 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
bfce7d2e
DC
809 count++;
810 }
811
bfce7d2e
DC
812 } while (offset += len, ((bh = bh->b_this_page) != head));
813
814 if (uptodate && bh == head)
815 SetPageUptodate(page);
816
e10de372 817 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 818
e10de372 819out:
bfce7d2e 820 /*
e10de372
DC
821 * On error, we have to fail the ioend here because we have locked
822 * buffers in the ioend. If we don't do this, we'll deadlock
823 * invalidating the page as that tries to lock the buffers on the page.
824 * Also, because we may have set pages under writeback, we have to make
825 * sure we run IO completion to mark the error state of the IO
826 * appropriately, so we can't cancel the ioend directly here. That means
827 * we have to mark this page as under writeback if we included any
828 * buffers from it in the ioend chain so that completion treats it
829 * correctly.
bfce7d2e 830 *
e10de372
DC
831 * If we didn't include the page in the ioend, the on error we can
832 * simply discard and unlock it as there are no other users of the page
833 * or it's buffers right now. The caller will still need to trigger
834 * submission of outstanding ioends on the writepage context so they are
835 * treated correctly on error.
bfce7d2e 836 */
e10de372
DC
837 if (count) {
838 xfs_start_page_writeback(page, !error);
839
840 /*
841 * Preserve the original error if there was one, otherwise catch
842 * submission errors here and propagate into subsequent ioend
843 * submissions.
844 */
845 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
846 int error2;
847
848 list_del_init(&ioend->io_list);
849 error2 = xfs_submit_ioend(wbc, ioend, error);
850 if (error2 && !error)
851 error = error2;
852 }
853 } else if (error) {
bfce7d2e
DC
854 xfs_aops_discard_page(page);
855 ClearPageUptodate(page);
856 unlock_page(page);
e10de372
DC
857 } else {
858 /*
859 * We can end up here with no error and nothing to write if we
860 * race with a partial page truncate on a sub-page block sized
861 * filesystem. In that case we need to mark the page clean.
862 */
863 xfs_start_page_writeback(page, 1);
864 end_page_writeback(page);
bfce7d2e 865 }
e10de372 866
bfce7d2e
DC
867 mapping_set_error(page->mapping, error);
868 return error;
869}
870
1da177e4 871/*
89f3b363
CH
872 * Write out a dirty page.
873 *
874 * For delalloc space on the page we need to allocate space and flush it.
875 * For unwritten space on the page we need to start the conversion to
876 * regular allocated space.
89f3b363 877 * For any other dirty buffer heads on the page we should flush them.
1da177e4 878 */
1da177e4 879STATIC int
fbcc0256 880xfs_do_writepage(
89f3b363 881 struct page *page,
fbcc0256
DC
882 struct writeback_control *wbc,
883 void *data)
1da177e4 884{
fbcc0256 885 struct xfs_writepage_ctx *wpc = data;
89f3b363 886 struct inode *inode = page->mapping->host;
1da177e4 887 loff_t offset;
1da177e4 888 __uint64_t end_offset;
ad68972a 889 pgoff_t end_index;
89f3b363 890
34097dfe 891 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 892
20cb52eb
CH
893 ASSERT(page_has_buffers(page));
894
89f3b363
CH
895 /*
896 * Refuse to write the page out if we are called from reclaim context.
897 *
d4f7a5cb
CH
898 * This avoids stack overflows when called from deeply used stacks in
899 * random callers for direct reclaim or memcg reclaim. We explicitly
900 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 901 *
94054fa3
MG
902 * This should never happen except in the case of a VM regression so
903 * warn about it.
89f3b363 904 */
94054fa3
MG
905 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
906 PF_MEMALLOC))
b5420f23 907 goto redirty;
1da177e4 908
89f3b363 909 /*
680a647b
CH
910 * Given that we do not allow direct reclaim to call us, we should
911 * never be called while in a filesystem transaction.
89f3b363 912 */
448011e2 913 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 914 goto redirty;
89f3b363 915
8695d27e 916 /*
ad68972a
DC
917 * Is this page beyond the end of the file?
918 *
8695d27e
JL
919 * The page index is less than the end_index, adjust the end_offset
920 * to the highest offset that this page should represent.
921 * -----------------------------------------------------
922 * | file mapping | <EOF> |
923 * -----------------------------------------------------
924 * | Page ... | Page N-2 | Page N-1 | Page N | |
925 * ^--------------------------------^----------|--------
926 * | desired writeback range | see else |
927 * ---------------------------------^------------------|
928 */
ad68972a 929 offset = i_size_read(inode);
09cbfeaf 930 end_index = offset >> PAGE_SHIFT;
8695d27e 931 if (page->index < end_index)
09cbfeaf 932 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
8695d27e
JL
933 else {
934 /*
935 * Check whether the page to write out is beyond or straddles
936 * i_size or not.
937 * -------------------------------------------------------
938 * | file mapping | <EOF> |
939 * -------------------------------------------------------
940 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
941 * ^--------------------------------^-----------|---------
942 * | | Straddles |
943 * ---------------------------------^-----------|--------|
944 */
09cbfeaf 945 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
6b7a03f0
CH
946
947 /*
ff9a28f6
JK
948 * Skip the page if it is fully outside i_size, e.g. due to a
949 * truncate operation that is in progress. We must redirty the
950 * page so that reclaim stops reclaiming it. Otherwise
951 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
952 *
953 * Note that the end_index is unsigned long, it would overflow
954 * if the given offset is greater than 16TB on 32-bit system
955 * and if we do check the page is fully outside i_size or not
956 * via "if (page->index >= end_index + 1)" as "end_index + 1"
957 * will be evaluated to 0. Hence this page will be redirtied
958 * and be written out repeatedly which would result in an
959 * infinite loop, the user program that perform this operation
960 * will hang. Instead, we can verify this situation by checking
961 * if the page to write is totally beyond the i_size or if it's
962 * offset is just equal to the EOF.
6b7a03f0 963 */
8695d27e
JL
964 if (page->index > end_index ||
965 (page->index == end_index && offset_into_page == 0))
ff9a28f6 966 goto redirty;
6b7a03f0
CH
967
968 /*
969 * The page straddles i_size. It must be zeroed out on each
970 * and every writepage invocation because it may be mmapped.
971 * "A file is mapped in multiples of the page size. For a file
8695d27e 972 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
973 * memory is zeroed when mapped, and writes to that region are
974 * not written out to the file."
975 */
09cbfeaf 976 zero_user_segment(page, offset_into_page, PAGE_SIZE);
8695d27e
JL
977
978 /* Adjust the end_offset to the end of file */
979 end_offset = offset;
1da177e4
LT
980 }
981
e10de372 982 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
f51623b2 983
b5420f23 984redirty:
f51623b2
NS
985 redirty_page_for_writepage(wbc, page);
986 unlock_page(page);
987 return 0;
f51623b2
NS
988}
989
fbcc0256
DC
990STATIC int
991xfs_vm_writepage(
992 struct page *page,
993 struct writeback_control *wbc)
994{
995 struct xfs_writepage_ctx wpc = {
996 .io_type = XFS_IO_INVALID,
997 };
998 int ret;
999
1000 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
1001 if (wpc.ioend)
1002 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1003 return ret;
fbcc0256
DC
1004}
1005
7d4fb40a
NS
1006STATIC int
1007xfs_vm_writepages(
1008 struct address_space *mapping,
1009 struct writeback_control *wbc)
1010{
fbcc0256
DC
1011 struct xfs_writepage_ctx wpc = {
1012 .io_type = XFS_IO_INVALID,
1013 };
1014 int ret;
1015
b3aea4ed 1016 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7f6d5b52
RZ
1017 if (dax_mapping(mapping))
1018 return dax_writeback_mapping_range(mapping,
1019 xfs_find_bdev_for_inode(mapping->host), wbc);
1020
fbcc0256 1021 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1022 if (wpc.ioend)
1023 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1024 return ret;
7d4fb40a
NS
1025}
1026
f51623b2
NS
1027/*
1028 * Called to move a page into cleanable state - and from there
89f3b363 1029 * to be released. The page should already be clean. We always
f51623b2
NS
1030 * have buffer heads in this call.
1031 *
89f3b363 1032 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1033 */
1034STATIC int
238f4c54 1035xfs_vm_releasepage(
f51623b2
NS
1036 struct page *page,
1037 gfp_t gfp_mask)
1038{
20cb52eb 1039 int delalloc, unwritten;
f51623b2 1040
34097dfe 1041 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1042
20cb52eb 1043 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1044
448011e2 1045 if (WARN_ON_ONCE(delalloc))
f51623b2 1046 return 0;
448011e2 1047 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1048 return 0;
1049
f51623b2
NS
1050 return try_to_free_buffers(page);
1051}
1052
a719370b 1053/*
273dda76
CH
1054 * When we map a DIO buffer, we may need to pass flags to
1055 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
3e12dbbd
DC
1056 *
1057 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1058 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1059 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1060 * extending the file size. We won't know for sure until IO completion is run
1061 * and the actual max write offset is communicated to the IO completion
1062 * routine.
a719370b
DC
1063 */
1064static void
1065xfs_map_direct(
1066 struct inode *inode,
1067 struct buffer_head *bh_result,
1068 struct xfs_bmbt_irec *imap,
273dda76 1069 xfs_off_t offset)
a719370b 1070{
273dda76 1071 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
d5cc2e3f 1072 xfs_off_t size = bh_result->b_size;
d5cc2e3f 1073
273dda76
CH
1074 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1075 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
d5cc2e3f 1076
273dda76
CH
1077 if (ISUNWRITTEN(imap)) {
1078 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1079 set_buffer_defer_completion(bh_result);
1080 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1081 *flags |= XFS_DIO_FLAG_APPEND;
a06c277a 1082 set_buffer_defer_completion(bh_result);
a719370b
DC
1083 }
1084}
1085
1fdca9c2
DC
1086/*
1087 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1088 * is, so that we can avoid repeated get_blocks calls.
1089 *
1090 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1091 * for blocks beyond EOF must be marked new so that sub block regions can be
1092 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1093 * was just allocated or is unwritten, otherwise the callers would overwrite
1094 * existing data with zeros. Hence we have to split the mapping into a range up
1095 * to and including EOF, and a second mapping for beyond EOF.
1096 */
1097static void
1098xfs_map_trim_size(
1099 struct inode *inode,
1100 sector_t iblock,
1101 struct buffer_head *bh_result,
1102 struct xfs_bmbt_irec *imap,
1103 xfs_off_t offset,
1104 ssize_t size)
1105{
1106 xfs_off_t mapping_size;
1107
1108 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1109 mapping_size <<= inode->i_blkbits;
1110
1111 ASSERT(mapping_size > 0);
1112 if (mapping_size > size)
1113 mapping_size = size;
1114 if (offset < i_size_read(inode) &&
1115 offset + mapping_size >= i_size_read(inode)) {
1116 /* limit mapping to block that spans EOF */
1117 mapping_size = roundup_64(i_size_read(inode) - offset,
1118 1 << inode->i_blkbits);
1119 }
1120 if (mapping_size > LONG_MAX)
1121 mapping_size = LONG_MAX;
1122
1123 bh_result->b_size = mapping_size;
1124}
1125
1da177e4 1126STATIC int
c2536668 1127__xfs_get_blocks(
1da177e4
LT
1128 struct inode *inode,
1129 sector_t iblock,
1da177e4
LT
1130 struct buffer_head *bh_result,
1131 int create,
3e12dbbd
DC
1132 bool direct,
1133 bool dax_fault)
1da177e4 1134{
a206c817
CH
1135 struct xfs_inode *ip = XFS_I(inode);
1136 struct xfs_mount *mp = ip->i_mount;
1137 xfs_fileoff_t offset_fsb, end_fsb;
1138 int error = 0;
1139 int lockmode = 0;
207d0416 1140 struct xfs_bmbt_irec imap;
a206c817 1141 int nimaps = 1;
fdc7ed75
NS
1142 xfs_off_t offset;
1143 ssize_t size;
207d0416 1144 int new = 0;
a206c817
CH
1145
1146 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1147 return -EIO;
1da177e4 1148
fdc7ed75 1149 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1150 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1151 size = bh_result->b_size;
364f358a
LM
1152
1153 if (!create && direct && offset >= i_size_read(inode))
1154 return 0;
1155
507630b2
DC
1156 /*
1157 * Direct I/O is usually done on preallocated files, so try getting
1158 * a block mapping without an exclusive lock first. For buffered
1159 * writes we already have the exclusive iolock anyway, so avoiding
1160 * a lock roundtrip here by taking the ilock exclusive from the
1161 * beginning is a useful micro optimization.
1162 */
1163 if (create && !direct) {
a206c817
CH
1164 lockmode = XFS_ILOCK_EXCL;
1165 xfs_ilock(ip, lockmode);
1166 } else {
309ecac8 1167 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1168 }
f2bde9b8 1169
d2c28191
DC
1170 ASSERT(offset <= mp->m_super->s_maxbytes);
1171 if (offset + size > mp->m_super->s_maxbytes)
1172 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1173 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1174 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1175
5c8ed202
DC
1176 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1177 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1178 if (error)
a206c817
CH
1179 goto out_unlock;
1180
1ca19157 1181 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1182 if (create &&
1183 (!nimaps ||
1184 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1185 imap.br_startblock == DELAYSTARTBLOCK) ||
1186 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
aff3a9ed 1187 if (direct || xfs_get_extsz_hint(ip)) {
507630b2 1188 /*
009c6e87
BF
1189 * xfs_iomap_write_direct() expects the shared lock. It
1190 * is unlocked on return.
507630b2 1191 */
009c6e87
BF
1192 if (lockmode == XFS_ILOCK_EXCL)
1193 xfs_ilock_demote(ip, lockmode);
1194
a206c817
CH
1195 error = xfs_iomap_write_direct(ip, offset, size,
1196 &imap, nimaps);
507630b2 1197 if (error)
2451337d 1198 return error;
d3bc815a 1199 new = 1;
6b698ede 1200
a206c817 1201 } else {
507630b2
DC
1202 /*
1203 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1204 * we can go on without dropping the lock here. If we
1205 * are allocating a new delalloc block, make sure that
1206 * we set the new flag so that we mark the buffer new so
1207 * that we know that it is newly allocated if the write
1208 * fails.
507630b2 1209 */
d3bc815a
DC
1210 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1211 new = 1;
a206c817 1212 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1213 if (error)
1214 goto out_unlock;
1215
1216 xfs_iunlock(ip, lockmode);
a206c817 1217 }
d5cc2e3f
DC
1218 trace_xfs_get_blocks_alloc(ip, offset, size,
1219 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1220 : XFS_IO_DELALLOC, &imap);
a206c817 1221 } else if (nimaps) {
d5cc2e3f
DC
1222 trace_xfs_get_blocks_found(ip, offset, size,
1223 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1224 : XFS_IO_OVERWRITE, &imap);
507630b2 1225 xfs_iunlock(ip, lockmode);
a206c817
CH
1226 } else {
1227 trace_xfs_get_blocks_notfound(ip, offset, size);
1228 goto out_unlock;
1229 }
1da177e4 1230
1ca19157
DC
1231 if (IS_DAX(inode) && create) {
1232 ASSERT(!ISUNWRITTEN(&imap));
1233 /* zeroing is not needed at a higher layer */
1234 new = 0;
1235 }
1236
1fdca9c2
DC
1237 /* trim mapping down to size requested */
1238 if (direct || size > (1 << inode->i_blkbits))
1239 xfs_map_trim_size(inode, iblock, bh_result,
1240 &imap, offset, size);
1241
a719370b
DC
1242 /*
1243 * For unwritten extents do not report a disk address in the buffered
1244 * read case (treat as if we're reading into a hole).
1245 */
207d0416 1246 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1247 imap.br_startblock != DELAYSTARTBLOCK &&
1248 (create || !ISUNWRITTEN(&imap))) {
1249 xfs_map_buffer(inode, bh_result, &imap, offset);
1250 if (ISUNWRITTEN(&imap))
1da177e4 1251 set_buffer_unwritten(bh_result);
a719370b 1252 /* direct IO needs special help */
273dda76
CH
1253 if (create && direct) {
1254 if (dax_fault)
1255 ASSERT(!ISUNWRITTEN(&imap));
1256 else
1257 xfs_map_direct(inode, bh_result, &imap, offset);
1258 }
1da177e4
LT
1259 }
1260
c2536668
NS
1261 /*
1262 * If this is a realtime file, data may be on a different device.
1263 * to that pointed to from the buffer_head b_bdev currently.
1264 */
046f1685 1265 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1266
c2536668 1267 /*
549054af
DC
1268 * If we previously allocated a block out beyond eof and we are now
1269 * coming back to use it then we will need to flag it as new even if it
1270 * has a disk address.
1271 *
1272 * With sub-block writes into unwritten extents we also need to mark
1273 * the buffer as new so that the unwritten parts of the buffer gets
1274 * correctly zeroed.
1da177e4
LT
1275 */
1276 if (create &&
1277 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1278 (offset >= i_size_read(inode)) ||
207d0416 1279 (new || ISUNWRITTEN(&imap))))
1da177e4 1280 set_buffer_new(bh_result);
1da177e4 1281
207d0416 1282 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1283 BUG_ON(direct);
1284 if (create) {
1285 set_buffer_uptodate(bh_result);
1286 set_buffer_mapped(bh_result);
1287 set_buffer_delay(bh_result);
1288 }
1289 }
1290
1da177e4 1291 return 0;
a206c817
CH
1292
1293out_unlock:
1294 xfs_iunlock(ip, lockmode);
2451337d 1295 return error;
1da177e4
LT
1296}
1297
1298int
c2536668 1299xfs_get_blocks(
1da177e4
LT
1300 struct inode *inode,
1301 sector_t iblock,
1302 struct buffer_head *bh_result,
1303 int create)
1304{
3e12dbbd 1305 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1306}
1307
6b698ede 1308int
e4c573bb 1309xfs_get_blocks_direct(
1da177e4
LT
1310 struct inode *inode,
1311 sector_t iblock,
1da177e4
LT
1312 struct buffer_head *bh_result,
1313 int create)
1314{
3e12dbbd
DC
1315 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1316}
1317
1318int
1319xfs_get_blocks_dax_fault(
1320 struct inode *inode,
1321 sector_t iblock,
1322 struct buffer_head *bh_result,
1323 int create)
1324{
1325 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1326}
1327
273dda76
CH
1328/*
1329 * Complete a direct I/O write request.
1330 *
1331 * xfs_map_direct passes us some flags in the private data to tell us what to
1332 * do. If no flags are set, then the write IO is an overwrite wholly within
1333 * the existing allocated file size and so there is nothing for us to do.
1334 *
1335 * Note that in this case the completion can be called in interrupt context,
1336 * whereas if we have flags set we will always be called in task context
1337 * (i.e. from a workqueue).
1338 */
1339STATIC int
1340xfs_end_io_direct_write(
1341 struct kiocb *iocb,
209fb87a 1342 loff_t offset,
273dda76
CH
1343 ssize_t size,
1344 void *private)
f0973863 1345{
273dda76
CH
1346 struct inode *inode = file_inode(iocb->ki_filp);
1347 struct xfs_inode *ip = XFS_I(inode);
1348 struct xfs_mount *mp = ip->i_mount;
1349 uintptr_t flags = (uintptr_t)private;
1350 int error = 0;
a06c277a 1351
273dda76 1352 trace_xfs_end_io_direct_write(ip, offset, size);
f0973863 1353
273dda76
CH
1354 if (XFS_FORCED_SHUTDOWN(mp))
1355 return -EIO;
d5cc2e3f 1356
273dda76
CH
1357 if (size <= 0)
1358 return size;
f0973863 1359
2813d682 1360 /*
273dda76 1361 * The flags tell us whether we are doing unwritten extent conversions
6dfa1b67
DC
1362 * or an append transaction that updates the on-disk file size. These
1363 * cases are the only cases where we should *potentially* be needing
a06c277a 1364 * to update the VFS inode size.
273dda76
CH
1365 */
1366 if (flags == 0) {
1367 ASSERT(offset + size <= i_size_read(inode));
1368 return 0;
1369 }
1370
1371 /*
6dfa1b67 1372 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1373 * with the on-disk inode size being outside the in-core inode size. We
1374 * have no other method of updating EOF for AIO, so always do it here
1375 * if necessary.
b9d59846
DC
1376 *
1377 * We need to lock the test/set EOF update as we can be racing with
1378 * other IO completions here to update the EOF. Failing to serialise
1379 * here can result in EOF moving backwards and Bad Things Happen when
1380 * that occurs.
2813d682 1381 */
273dda76 1382 spin_lock(&ip->i_flags_lock);
2ba66237
CH
1383 if (offset + size > i_size_read(inode))
1384 i_size_write(inode, offset + size);
273dda76 1385 spin_unlock(&ip->i_flags_lock);
2813d682 1386
273dda76
CH
1387 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1388 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
209fb87a 1389
273dda76
CH
1390 error = xfs_iomap_write_unwritten(ip, offset, size);
1391 } else if (flags & XFS_DIO_FLAG_APPEND) {
1392 struct xfs_trans *tp;
f0973863 1393
273dda76 1394 trace_xfs_end_io_direct_write_append(ip, offset, size);
6b698ede 1395
253f4911
CH
1396 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0,
1397 &tp);
1398 if (!error)
1399 error = xfs_setfilesize(ip, tp, offset, size);
6b698ede
DC
1400 }
1401
273dda76 1402 return error;
6b698ede
DC
1403}
1404
c19b104a
CH
1405STATIC ssize_t
1406xfs_vm_direct_IO(
6e1ba0bc 1407 struct kiocb *iocb,
c8b8e32d 1408 struct iov_iter *iter)
6e1ba0bc 1409{
c19b104a
CH
1410 struct inode *inode = iocb->ki_filp->f_mapping->host;
1411 dio_iodone_t *endio = NULL;
1412 int flags = 0;
6e1ba0bc
DC
1413 struct block_device *bdev;
1414
c19b104a
CH
1415 if (iov_iter_rw(iter) == WRITE) {
1416 endio = xfs_end_io_direct_write;
1417 flags = DIO_ASYNC_EXTEND;
1418 }
1419
1420 if (IS_DAX(inode)) {
c8b8e32d 1421 return dax_do_io(iocb, inode, iter,
6e1ba0bc 1422 xfs_get_blocks_direct, endio, 0);
c19b104a 1423 }
6e1ba0bc
DC
1424
1425 bdev = xfs_find_bdev_for_inode(inode);
c8b8e32d 1426 return __blockdev_direct_IO(iocb, inode, bdev, iter,
c19b104a 1427 xfs_get_blocks_direct, endio, NULL, flags);
1da177e4
LT
1428}
1429
d3bc815a
DC
1430/*
1431 * Punch out the delalloc blocks we have already allocated.
1432 *
1433 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1434 * as the page is still locked at this point.
1435 */
1436STATIC void
1437xfs_vm_kill_delalloc_range(
1438 struct inode *inode,
1439 loff_t start,
1440 loff_t end)
1441{
1442 struct xfs_inode *ip = XFS_I(inode);
1443 xfs_fileoff_t start_fsb;
1444 xfs_fileoff_t end_fsb;
1445 int error;
1446
1447 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1448 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1449 if (end_fsb <= start_fsb)
1450 return;
1451
1452 xfs_ilock(ip, XFS_ILOCK_EXCL);
1453 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1454 end_fsb - start_fsb);
1455 if (error) {
1456 /* something screwed, just bail */
1457 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1458 xfs_alert(ip->i_mount,
1459 "xfs_vm_write_failed: unable to clean up ino %lld",
1460 ip->i_ino);
1461 }
1462 }
1463 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1464}
1465
fa9b227e
CH
1466STATIC void
1467xfs_vm_write_failed(
d3bc815a
DC
1468 struct inode *inode,
1469 struct page *page,
1470 loff_t pos,
1471 unsigned len)
fa9b227e 1472{
58e59854 1473 loff_t block_offset;
d3bc815a
DC
1474 loff_t block_start;
1475 loff_t block_end;
09cbfeaf 1476 loff_t from = pos & (PAGE_SIZE - 1);
d3bc815a
DC
1477 loff_t to = from + len;
1478 struct buffer_head *bh, *head;
801cc4e1 1479 struct xfs_mount *mp = XFS_I(inode)->i_mount;
fa9b227e 1480
58e59854
JL
1481 /*
1482 * The request pos offset might be 32 or 64 bit, this is all fine
1483 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1484 * platform, the high 32-bit will be masked off if we evaluate the
1485 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1486 * 0xfffff000 as an unsigned long, hence the result is incorrect
1487 * which could cause the following ASSERT failed in most cases.
1488 * In order to avoid this, we can evaluate the block_offset of the
1489 * start of the page by using shifts rather than masks the mismatch
1490 * problem.
1491 */
09cbfeaf 1492 block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
58e59854 1493
d3bc815a 1494 ASSERT(block_offset + from == pos);
c726de44 1495
d3bc815a
DC
1496 head = page_buffers(page);
1497 block_start = 0;
1498 for (bh = head; bh != head || !block_start;
1499 bh = bh->b_this_page, block_start = block_end,
1500 block_offset += bh->b_size) {
1501 block_end = block_start + bh->b_size;
c726de44 1502
d3bc815a
DC
1503 /* skip buffers before the write */
1504 if (block_end <= from)
1505 continue;
1506
1507 /* if the buffer is after the write, we're done */
1508 if (block_start >= to)
1509 break;
1510
60630fe6
BF
1511 /*
1512 * Process delalloc and unwritten buffers beyond EOF. We can
1513 * encounter unwritten buffers in the event that a file has
1514 * post-EOF unwritten extents and an extending write happens to
1515 * fail (e.g., an unaligned write that also involves a delalloc
1516 * to the same page).
1517 */
1518 if (!buffer_delay(bh) && !buffer_unwritten(bh))
d3bc815a
DC
1519 continue;
1520
801cc4e1
BF
1521 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1522 block_offset < i_size_read(inode))
d3bc815a
DC
1523 continue;
1524
60630fe6
BF
1525 if (buffer_delay(bh))
1526 xfs_vm_kill_delalloc_range(inode, block_offset,
1527 block_offset + bh->b_size);
4ab9ed57
DC
1528
1529 /*
1530 * This buffer does not contain data anymore. make sure anyone
1531 * who finds it knows that for certain.
1532 */
1533 clear_buffer_delay(bh);
1534 clear_buffer_uptodate(bh);
1535 clear_buffer_mapped(bh);
1536 clear_buffer_new(bh);
1537 clear_buffer_dirty(bh);
60630fe6 1538 clear_buffer_unwritten(bh);
fa9b227e 1539 }
d3bc815a 1540
fa9b227e
CH
1541}
1542
d3bc815a
DC
1543/*
1544 * This used to call block_write_begin(), but it unlocks and releases the page
1545 * on error, and we need that page to be able to punch stale delalloc blocks out
1546 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1547 * the appropriate point.
1548 */
f51623b2 1549STATIC int
d79689c7 1550xfs_vm_write_begin(
f51623b2 1551 struct file *file,
d79689c7
NP
1552 struct address_space *mapping,
1553 loff_t pos,
1554 unsigned len,
1555 unsigned flags,
1556 struct page **pagep,
1557 void **fsdata)
f51623b2 1558{
09cbfeaf 1559 pgoff_t index = pos >> PAGE_SHIFT;
d3bc815a
DC
1560 struct page *page;
1561 int status;
801cc4e1 1562 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
155130a4 1563
ea1754a0 1564 ASSERT(len <= PAGE_SIZE);
d3bc815a 1565
ad22c7a0 1566 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1567 if (!page)
1568 return -ENOMEM;
1569
1570 status = __block_write_begin(page, pos, len, xfs_get_blocks);
801cc4e1
BF
1571 if (xfs_mp_fail_writes(mp))
1572 status = -EIO;
d3bc815a
DC
1573 if (unlikely(status)) {
1574 struct inode *inode = mapping->host;
72ab70a1 1575 size_t isize = i_size_read(inode);
d3bc815a
DC
1576
1577 xfs_vm_write_failed(inode, page, pos, len);
1578 unlock_page(page);
1579
72ab70a1
DC
1580 /*
1581 * If the write is beyond EOF, we only want to kill blocks
1582 * allocated in this write, not blocks that were previously
1583 * written successfully.
1584 */
801cc4e1
BF
1585 if (xfs_mp_fail_writes(mp))
1586 isize = 0;
72ab70a1
DC
1587 if (pos + len > isize) {
1588 ssize_t start = max_t(ssize_t, pos, isize);
1589
1590 truncate_pagecache_range(inode, start, pos + len);
1591 }
d3bc815a 1592
09cbfeaf 1593 put_page(page);
d3bc815a
DC
1594 page = NULL;
1595 }
1596
1597 *pagep = page;
1598 return status;
fa9b227e
CH
1599}
1600
d3bc815a 1601/*
aad3f375
DC
1602 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1603 * this specific write because they will never be written. Previous writes
1604 * beyond EOF where block allocation succeeded do not need to be trashed, so
1605 * only new blocks from this write should be trashed. For blocks within
1606 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1607 * written with all the other valid data.
d3bc815a 1608 */
fa9b227e
CH
1609STATIC int
1610xfs_vm_write_end(
1611 struct file *file,
1612 struct address_space *mapping,
1613 loff_t pos,
1614 unsigned len,
1615 unsigned copied,
1616 struct page *page,
1617 void *fsdata)
1618{
1619 int ret;
155130a4 1620
ea1754a0 1621 ASSERT(len <= PAGE_SIZE);
d3bc815a 1622
fa9b227e 1623 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1624 if (unlikely(ret < len)) {
1625 struct inode *inode = mapping->host;
1626 size_t isize = i_size_read(inode);
1627 loff_t to = pos + len;
1628
1629 if (to > isize) {
aad3f375
DC
1630 /* only kill blocks in this write beyond EOF */
1631 if (pos > isize)
1632 isize = pos;
d3bc815a 1633 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1634 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1635 }
1636 }
155130a4 1637 return ret;
f51623b2 1638}
1da177e4
LT
1639
1640STATIC sector_t
e4c573bb 1641xfs_vm_bmap(
1da177e4
LT
1642 struct address_space *mapping,
1643 sector_t block)
1644{
1645 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1646 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1647
cca28fb8 1648 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1649 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1650 filemap_write_and_wait(mapping);
126468b1 1651 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1652 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1653}
1654
1655STATIC int
e4c573bb 1656xfs_vm_readpage(
1da177e4
LT
1657 struct file *unused,
1658 struct page *page)
1659{
121e213e 1660 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1661 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1662}
1663
1664STATIC int
e4c573bb 1665xfs_vm_readpages(
1da177e4
LT
1666 struct file *unused,
1667 struct address_space *mapping,
1668 struct list_head *pages,
1669 unsigned nr_pages)
1670{
121e213e 1671 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1672 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1673}
1674
22e757a4
DC
1675/*
1676 * This is basically a copy of __set_page_dirty_buffers() with one
1677 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1678 * dirty, we'll never be able to clean them because we don't write buffers
1679 * beyond EOF, and that means we can't invalidate pages that span EOF
1680 * that have been marked dirty. Further, the dirty state can leak into
1681 * the file interior if the file is extended, resulting in all sorts of
1682 * bad things happening as the state does not match the underlying data.
1683 *
1684 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1685 * this only exist because of bufferheads and how the generic code manages them.
1686 */
1687STATIC int
1688xfs_vm_set_page_dirty(
1689 struct page *page)
1690{
1691 struct address_space *mapping = page->mapping;
1692 struct inode *inode = mapping->host;
1693 loff_t end_offset;
1694 loff_t offset;
1695 int newly_dirty;
1696
1697 if (unlikely(!mapping))
1698 return !TestSetPageDirty(page);
1699
1700 end_offset = i_size_read(inode);
1701 offset = page_offset(page);
1702
1703 spin_lock(&mapping->private_lock);
1704 if (page_has_buffers(page)) {
1705 struct buffer_head *head = page_buffers(page);
1706 struct buffer_head *bh = head;
1707
1708 do {
1709 if (offset < end_offset)
1710 set_buffer_dirty(bh);
1711 bh = bh->b_this_page;
1712 offset += 1 << inode->i_blkbits;
1713 } while (bh != head);
1714 }
c4843a75 1715 /*
81f8c3a4
JW
1716 * Lock out page->mem_cgroup migration to keep PageDirty
1717 * synchronized with per-memcg dirty page counters.
c4843a75 1718 */
62cccb8c 1719 lock_page_memcg(page);
22e757a4
DC
1720 newly_dirty = !TestSetPageDirty(page);
1721 spin_unlock(&mapping->private_lock);
1722
1723 if (newly_dirty) {
1724 /* sigh - __set_page_dirty() is static, so copy it here, too */
1725 unsigned long flags;
1726
1727 spin_lock_irqsave(&mapping->tree_lock, flags);
1728 if (page->mapping) { /* Race with truncate? */
1729 WARN_ON_ONCE(!PageUptodate(page));
62cccb8c 1730 account_page_dirtied(page, mapping);
22e757a4
DC
1731 radix_tree_tag_set(&mapping->page_tree,
1732 page_index(page), PAGECACHE_TAG_DIRTY);
1733 }
1734 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1735 }
62cccb8c 1736 unlock_page_memcg(page);
c4843a75
GT
1737 if (newly_dirty)
1738 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1739 return newly_dirty;
1740}
1741
f5e54d6e 1742const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1743 .readpage = xfs_vm_readpage,
1744 .readpages = xfs_vm_readpages,
1745 .writepage = xfs_vm_writepage,
7d4fb40a 1746 .writepages = xfs_vm_writepages,
22e757a4 1747 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1748 .releasepage = xfs_vm_releasepage,
1749 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1750 .write_begin = xfs_vm_write_begin,
fa9b227e 1751 .write_end = xfs_vm_write_end,
e4c573bb
NS
1752 .bmap = xfs_vm_bmap,
1753 .direct_IO = xfs_vm_direct_IO,
e965f963 1754 .migratepage = buffer_migrate_page,
bddaafa1 1755 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1756 .error_remove_page = generic_error_remove_page,
1da177e4 1757};