Merge tag 'for-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-power...
[linux-block.git] / fs / xfs / xfs_aops.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
98c1a7c0 4 * Copyright (c) 2016-2018 Christoph Hellwig.
7b718769 5 * All Rights Reserved.
1da177e4 6 */
1da177e4 7#include "xfs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
1da177e4 13#include "xfs_inode.h"
239880ef 14#include "xfs_trans.h"
1da177e4 15#include "xfs_iomap.h"
0b1b213f 16#include "xfs_trace.h"
3ed3a434 17#include "xfs_bmap.h"
68988114 18#include "xfs_bmap_util.h"
ef473667 19#include "xfs_reflink.h"
c2beff99
DW
20#include "xfs_errortag.h"
21#include "xfs_error.h"
1da177e4 22
fbcc0256 23struct xfs_writepage_ctx {
598ecfba 24 struct iomap_writepage_ctx ctx;
d9252d52 25 unsigned int data_seq;
e666aa37 26 unsigned int cow_seq;
fbcc0256
DC
27};
28
598ecfba
CH
29static inline struct xfs_writepage_ctx *
30XFS_WPC(struct iomap_writepage_ctx *ctx)
31{
32 return container_of(ctx, struct xfs_writepage_ctx, ctx);
33}
34
fc0063c4
CH
35/*
36 * Fast and loose check if this write could update the on-disk inode size.
37 */
598ecfba 38static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
fc0063c4
CH
39{
40 return ioend->io_offset + ioend->io_size >
13d2c10b 41 XFS_I(ioend->io_inode)->i_disk_size;
fc0063c4
CH
42}
43
ba87ea69 44/*
2813d682 45 * Update on-disk file size now that data has been written to disk.
ba87ea69 46 */
e7a3d7e7
BF
47int
48xfs_setfilesize(
2ba66237 49 struct xfs_inode *ip,
2ba66237
CH
50 xfs_off_t offset,
51 size_t size)
ba87ea69 52{
e7a3d7e7
BF
53 struct xfs_mount *mp = ip->i_mount;
54 struct xfs_trans *tp;
ba87ea69 55 xfs_fsize_t isize;
e7a3d7e7
BF
56 int error;
57
58 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
59 if (error)
60 return error;
ba87ea69 61
aa6bf01d 62 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 63 isize = xfs_new_eof(ip, offset + size);
281627df
CH
64 if (!isize) {
65 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 66 xfs_trans_cancel(tp);
281627df 67 return 0;
ba87ea69
LM
68 }
69
2ba66237 70 trace_xfs_setfilesize(ip, offset, size);
281627df 71
13d2c10b 72 ip->i_disk_size = isize;
281627df
CH
73 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
74 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
75
70393313 76 return xfs_trans_commit(tp);
77d7a0c2
DC
77}
78
0829c360 79/*
5ec4fabb 80 * IO write completion.
f6d6d4fc
CH
81 */
82STATIC void
cb357bf3 83xfs_end_ioend(
598ecfba 84 struct iomap_ioend *ioend)
0829c360 85{
0e51a8e1 86 struct xfs_inode *ip = XFS_I(ioend->io_inode);
5ca5916b 87 struct xfs_mount *mp = ip->i_mount;
787eb485
CH
88 xfs_off_t offset = ioend->io_offset;
89 size_t size = ioend->io_size;
73d30d48 90 unsigned int nofs_flag;
4e4cbee9 91 int error;
ba87ea69 92
73d30d48
CH
93 /*
94 * We can allocate memory here while doing writeback on behalf of
95 * memory reclaim. To avoid memory allocation deadlocks set the
96 * task-wide nofs context for the following operations.
97 */
98 nofs_flag = memalloc_nofs_save();
99
af055e37 100 /*
f9dd7ba4 101 * Just clean up the in-memory structures if the fs has been shut down.
af055e37 102 */
5ca5916b 103 if (xfs_is_shutdown(mp)) {
0e51a8e1 104 error = -EIO;
787eb485
CH
105 goto done;
106 }
04f658ee 107
43caeb18 108 /*
5ca5916b
BF
109 * Clean up all COW blocks and underlying data fork delalloc blocks on
110 * I/O error. The delalloc punch is required because this ioend was
111 * mapped to blocks in the COW fork and the associated pages are no
112 * longer dirty. If we don't remove delalloc blocks here, they become
113 * stale and can corrupt free space accounting on unmount.
43caeb18 114 */
4e4cbee9 115 error = blk_status_to_errno(ioend->io_bio->bi_status);
787eb485 116 if (unlikely(error)) {
5ca5916b 117 if (ioend->io_flags & IOMAP_F_SHARED) {
787eb485 118 xfs_reflink_cancel_cow_range(ip, offset, size, true);
7348b322
DC
119 xfs_bmap_punch_delalloc_range(ip, offset,
120 offset + size);
5ca5916b 121 }
787eb485 122 goto done;
43caeb18
DW
123 }
124
5ec4fabb 125 /*
be225fec 126 * Success: commit the COW or unwritten blocks if needed.
5ec4fabb 127 */
760fea8b 128 if (ioend->io_flags & IOMAP_F_SHARED)
787eb485 129 error = xfs_reflink_end_cow(ip, offset, size);
4e087a3b 130 else if (ioend->io_type == IOMAP_UNWRITTEN)
ee70daab 131 error = xfs_iomap_write_unwritten(ip, offset, size, false);
ba87ea69 132
7cd3099f
BF
133 if (!error && xfs_ioend_is_append(ioend))
134 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
04f658ee 135done:
598ecfba 136 iomap_finish_ioends(ioend, error);
73d30d48 137 memalloc_nofs_restore(nofs_flag);
3994fc48
DW
138}
139
ebb7fb15
DC
140/*
141 * Finish all pending IO completions that require transactional modifications.
142 *
143 * We try to merge physical and logically contiguous ioends before completion to
144 * minimise the number of transactions we need to perform during IO completion.
145 * Both unwritten extent conversion and COW remapping need to iterate and modify
146 * one physical extent at a time, so we gain nothing by merging physically
147 * discontiguous extents here.
148 *
149 * The ioend chain length that we can be processing here is largely unbound in
150 * length and we may have to perform significant amounts of work on each ioend
151 * to complete it. Hence we have to be careful about holding the CPU for too
152 * long in this loop.
153 */
cb357bf3
DW
154void
155xfs_end_io(
156 struct work_struct *work)
157{
433dad94
CH
158 struct xfs_inode *ip =
159 container_of(work, struct xfs_inode, i_ioend_work);
598ecfba 160 struct iomap_ioend *ioend;
433dad94 161 struct list_head tmp;
cb357bf3
DW
162 unsigned long flags;
163
cb357bf3 164 spin_lock_irqsave(&ip->i_ioend_lock, flags);
433dad94 165 list_replace_init(&ip->i_ioend_list, &tmp);
cb357bf3
DW
166 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167
598ecfba
CH
168 iomap_sort_ioends(&tmp);
169 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
433dad94 170 io_list))) {
cb357bf3 171 list_del_init(&ioend->io_list);
6e552494 172 iomap_ioend_try_merge(ioend, &tmp);
cb357bf3 173 xfs_end_ioend(ioend);
ebb7fb15 174 cond_resched();
cb357bf3
DW
175 }
176}
177
0e51a8e1
CH
178STATIC void
179xfs_end_bio(
180 struct bio *bio)
0829c360 181{
598ecfba 182 struct iomap_ioend *ioend = bio->bi_private;
cb357bf3 183 struct xfs_inode *ip = XFS_I(ioend->io_inode);
cb357bf3 184 unsigned long flags;
0829c360 185
598ecfba
CH
186 spin_lock_irqsave(&ip->i_ioend_lock, flags);
187 if (list_empty(&ip->i_ioend_list))
188 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189 &ip->i_ioend_work));
190 list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
0829c360
CH
192}
193
d9252d52
BF
194/*
195 * Fast revalidation of the cached writeback mapping. Return true if the current
196 * mapping is valid, false otherwise.
197 */
198static bool
199xfs_imap_valid(
598ecfba 200 struct iomap_writepage_ctx *wpc,
d9252d52 201 struct xfs_inode *ip,
4e087a3b 202 loff_t offset)
d9252d52 203{
4e087a3b
CH
204 if (offset < wpc->iomap.offset ||
205 offset >= wpc->iomap.offset + wpc->iomap.length)
d9252d52
BF
206 return false;
207 /*
208 * If this is a COW mapping, it is sufficient to check that the mapping
209 * covers the offset. Be careful to check this first because the caller
210 * can revalidate a COW mapping without updating the data seqno.
211 */
760fea8b 212 if (wpc->iomap.flags & IOMAP_F_SHARED)
d9252d52
BF
213 return true;
214
215 /*
216 * This is not a COW mapping. Check the sequence number of the data fork
217 * because concurrent changes could have invalidated the extent. Check
218 * the COW fork because concurrent changes since the last time we
219 * checked (and found nothing at this offset) could have added
220 * overlapping blocks.
221 */
c2beff99
DW
222 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223 trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224 XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
d9252d52 225 return false;
c2beff99 226 }
d9252d52 227 if (xfs_inode_has_cow_data(ip) &&
c2beff99
DW
228 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229 trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230 XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
d9252d52 231 return false;
c2beff99 232 }
d9252d52
BF
233 return true;
234}
235
4ad765ed
CH
236/*
237 * Pass in a dellalloc extent and convert it to real extents, return the real
4e087a3b 238 * extent that maps offset_fsb in wpc->iomap.
4ad765ed
CH
239 *
240 * The current page is held locked so nothing could have removed the block
7588cbee
CH
241 * backing offset_fsb, although it could have moved from the COW to the data
242 * fork by another thread.
4ad765ed
CH
243 */
244static int
245xfs_convert_blocks(
598ecfba 246 struct iomap_writepage_ctx *wpc,
4ad765ed 247 struct xfs_inode *ip,
760fea8b 248 int whichfork,
4e087a3b 249 loff_t offset)
4ad765ed
CH
250{
251 int error;
598ecfba
CH
252 unsigned *seq;
253
254 if (whichfork == XFS_COW_FORK)
255 seq = &XFS_WPC(wpc)->cow_seq;
256 else
257 seq = &XFS_WPC(wpc)->data_seq;
4ad765ed
CH
258
259 /*
4e087a3b
CH
260 * Attempt to allocate whatever delalloc extent currently backs offset
261 * and put the result into wpc->iomap. Allocate in a loop because it
262 * may take several attempts to allocate real blocks for a contiguous
263 * delalloc extent if free space is sufficiently fragmented.
4ad765ed
CH
264 */
265 do {
760fea8b 266 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
598ecfba 267 &wpc->iomap, seq);
4ad765ed
CH
268 if (error)
269 return error;
4e087a3b 270 } while (wpc->iomap.offset + wpc->iomap.length <= offset);
4ad765ed
CH
271
272 return 0;
273}
274
598ecfba 275static int
1da177e4 276xfs_map_blocks(
598ecfba 277 struct iomap_writepage_ctx *wpc,
1da177e4 278 struct inode *inode,
5c665e5b 279 loff_t offset)
1da177e4 280{
a206c817
CH
281 struct xfs_inode *ip = XFS_I(inode);
282 struct xfs_mount *mp = ip->i_mount;
93407472 283 ssize_t count = i_blocksize(inode);
b4e29032
CH
284 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
285 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
c2f09217
DW
286 xfs_fileoff_t cow_fsb;
287 int whichfork;
5c665e5b 288 struct xfs_bmbt_irec imap;
060d4eaa 289 struct xfs_iext_cursor icur;
7588cbee 290 int retries = 0;
a206c817 291 int error = 0;
a206c817 292
75c8c50f 293 if (xfs_is_shutdown(mp))
d9252d52
BF
294 return -EIO;
295
c2beff99
DW
296 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
297
889c65b3
CH
298 /*
299 * COW fork blocks can overlap data fork blocks even if the blocks
300 * aren't shared. COW I/O always takes precedent, so we must always
301 * check for overlap on reflink inodes unless the mapping is already a
e666aa37
CH
302 * COW one, or the COW fork hasn't changed from the last time we looked
303 * at it.
304 *
305 * It's safe to check the COW fork if_seq here without the ILOCK because
306 * we've indirectly protected against concurrent updates: writeback has
307 * the page locked, which prevents concurrent invalidations by reflink
308 * and directio and prevents concurrent buffered writes to the same
309 * page. Changes to if_seq always happen under i_lock, which protects
310 * against concurrent updates and provides a memory barrier on the way
311 * out that ensures that we always see the current value.
889c65b3 312 */
4e087a3b 313 if (xfs_imap_valid(wpc, ip, offset))
889c65b3
CH
314 return 0;
315
889c65b3
CH
316 /*
317 * If we don't have a valid map, now it's time to get a new one for this
318 * offset. This will convert delayed allocations (including COW ones)
319 * into real extents. If we return without a valid map, it means we
320 * landed in a hole and we skip the block.
321 */
7588cbee 322retry:
c2f09217
DW
323 cow_fsb = NULLFILEOFF;
324 whichfork = XFS_DATA_FORK;
988ef927 325 xfs_ilock(ip, XFS_ILOCK_SHARED);
b2197a36 326 ASSERT(!xfs_need_iread_extents(&ip->i_df));
060d4eaa
CH
327
328 /*
329 * Check if this is offset is covered by a COW extents, and if yes use
330 * it directly instead of looking up anything in the data fork.
331 */
51d62690 332 if (xfs_inode_has_cow_data(ip) &&
e666aa37
CH
333 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
334 cow_fsb = imap.br_startoff;
335 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
598ecfba 336 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
5c665e5b 337 xfs_iunlock(ip, XFS_ILOCK_SHARED);
be225fec 338
760fea8b 339 whichfork = XFS_COW_FORK;
5c665e5b
CH
340 goto allocate_blocks;
341 }
342
343 /*
d9252d52
BF
344 * No COW extent overlap. Revalidate now that we may have updated
345 * ->cow_seq. If the data mapping is still valid, we're done.
5c665e5b 346 */
4e087a3b 347 if (xfs_imap_valid(wpc, ip, offset)) {
5c665e5b
CH
348 xfs_iunlock(ip, XFS_ILOCK_SHARED);
349 return 0;
350 }
351
352 /*
353 * If we don't have a valid map, now it's time to get a new one for this
354 * offset. This will convert delayed allocations (including COW ones)
355 * into real extents.
356 */
3345746e
CH
357 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
358 imap.br_startoff = end_fsb; /* fake a hole past EOF */
598ecfba 359 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
8ff2957d 360 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 361
12df89f2 362 /* landed in a hole or beyond EOF? */
3345746e 363 if (imap.br_startoff > offset_fsb) {
3345746e 364 imap.br_blockcount = imap.br_startoff - offset_fsb;
5c665e5b 365 imap.br_startoff = offset_fsb;
5c665e5b 366 imap.br_startblock = HOLESTARTBLOCK;
be225fec 367 imap.br_state = XFS_EXT_NORM;
8ff2957d 368 }
e2f6ad46 369
12df89f2
CH
370 /*
371 * Truncate to the next COW extent if there is one. This is the only
372 * opportunity to do this because we can skip COW fork lookups for the
373 * subsequent blocks in the mapping; however, the requirement to treat
374 * the COW range separately remains.
375 */
376 if (cow_fsb != NULLFILEOFF &&
377 cow_fsb < imap.br_startoff + imap.br_blockcount)
378 imap.br_blockcount = cow_fsb - imap.br_startoff;
379
380 /* got a delalloc extent? */
381 if (imap.br_startblock != HOLESTARTBLOCK &&
382 isnullstartblock(imap.br_startblock))
383 goto allocate_blocks;
384
304a68b9 385 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
760fea8b 386 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
5c665e5b
CH
387 return 0;
388allocate_blocks:
760fea8b 389 error = xfs_convert_blocks(wpc, ip, whichfork, offset);
7588cbee
CH
390 if (error) {
391 /*
392 * If we failed to find the extent in the COW fork we might have
393 * raced with a COW to data fork conversion or truncate.
394 * Restart the lookup to catch the extent in the data fork for
395 * the former case, but prevent additional retries to avoid
396 * looping forever for the latter case.
397 */
760fea8b 398 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
7588cbee
CH
399 goto retry;
400 ASSERT(error != -EAGAIN);
5c665e5b 401 return error;
7588cbee 402 }
4ad765ed
CH
403
404 /*
405 * Due to merging the return real extent might be larger than the
406 * original delalloc one. Trim the return extent to the next COW
407 * boundary again to force a re-lookup.
408 */
760fea8b 409 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
4e087a3b
CH
410 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
411
412 if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
413 wpc->iomap.length = cow_offset - wpc->iomap.offset;
414 }
4ad765ed 415
4e087a3b
CH
416 ASSERT(wpc->iomap.offset <= offset);
417 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
760fea8b 418 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
8ff2957d 419 return 0;
1da177e4
LT
420}
421
598ecfba
CH
422static int
423xfs_prepare_ioend(
424 struct iomap_ioend *ioend,
e10de372 425 int status)
f6d6d4fc 426{
73d30d48
CH
427 unsigned int nofs_flag;
428
429 /*
430 * We can allocate memory here while doing writeback on behalf of
431 * memory reclaim. To avoid memory allocation deadlocks set the
432 * task-wide nofs context for the following operations.
433 */
434 nofs_flag = memalloc_nofs_save();
435
5eda4300 436 /* Convert CoW extents to regular */
760fea8b 437 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
5eda4300
DW
438 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
439 ioend->io_offset, ioend->io_size);
440 }
441
73d30d48
CH
442 memalloc_nofs_restore(nofs_flag);
443
7adb8f14
BF
444 /* send ioends that might require a transaction to the completion wq */
445 if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
446 (ioend->io_flags & IOMAP_F_SHARED))
598ecfba
CH
447 ioend->io_bio->bi_end_io = xfs_end_bio;
448 return status;
f6d6d4fc
CH
449}
450
3ed3a434 451/*
8ac5b996
DC
452 * If the folio has delalloc blocks on it, the caller is asking us to punch them
453 * out. If we don't, we can leave a stale delalloc mapping covered by a clean
454 * page that needs to be dirtied again before the delalloc mapping can be
455 * converted. This stale delalloc mapping can trip up a later direct I/O read
456 * operation on the same region.
3ed3a434 457 *
8ac5b996 458 * We prevent this by truncating away the delalloc regions on the folio. Because
82cb1417
CH
459 * they are delalloc, we can do this without needing a transaction. Indeed - if
460 * we get ENOSPC errors, we have to be able to do this truncation without a
8ac5b996
DC
461 * transaction as there is no space left for block reservation (typically why
462 * we see a ENOSPC in writeback).
3ed3a434 463 */
598ecfba 464static void
6e478521
MWO
465xfs_discard_folio(
466 struct folio *folio,
467 loff_t pos)
3ed3a434 468{
7348b322 469 struct xfs_inode *ip = XFS_I(folio->mapping->host);
03625721 470 struct xfs_mount *mp = ip->i_mount;
03625721 471 int error;
3ed3a434 472
75c8c50f 473 if (xfs_is_shutdown(mp))
e9c3a8e8 474 return;
e8c3753c 475
4ab45e25 476 xfs_alert_ratelimited(mp,
6e478521
MWO
477 "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
478 folio, ip->i_ino, pos);
3ed3a434 479
8ac5b996
DC
480 /*
481 * The end of the punch range is always the offset of the the first
482 * byte of the next folio. Hence the end offset is only dependent on the
483 * folio itself and not the start offset that is passed in.
484 */
7348b322 485 error = xfs_bmap_punch_delalloc_range(ip, pos,
8ac5b996 486 folio_pos(folio) + folio_size(folio));
7348b322 487
75c8c50f 488 if (error && !xfs_is_shutdown(mp))
03625721 489 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
3ed3a434
DC
490}
491
598ecfba
CH
492static const struct iomap_writeback_ops xfs_writeback_ops = {
493 .map_blocks = xfs_map_blocks,
494 .prepare_ioend = xfs_prepare_ioend,
6e478521 495 .discard_folio = xfs_discard_folio,
598ecfba 496};
f51623b2 497
7d4fb40a
NS
498STATIC int
499xfs_vm_writepages(
500 struct address_space *mapping,
501 struct writeback_control *wbc)
502{
be225fec 503 struct xfs_writepage_ctx wpc = { };
fbcc0256 504
756b1c34
DC
505 /*
506 * Writing back data in a transaction context can result in recursive
507 * transactions. This is bad, so issue a warning and get out of here.
508 */
509 if (WARN_ON_ONCE(current->journal_info))
510 return 0;
511
b3aea4ed 512 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
598ecfba 513 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
7d4fb40a
NS
514}
515
6e2608df
DW
516STATIC int
517xfs_dax_writepages(
518 struct address_space *mapping,
519 struct writeback_control *wbc)
520{
30fa529e
CH
521 struct xfs_inode *ip = XFS_I(mapping->host);
522
523 xfs_iflags_clear(ip, XFS_ITRUNCATED);
6e2608df 524 return dax_writeback_mapping_range(mapping,
3f666c56 525 xfs_inode_buftarg(ip)->bt_daxdev, wbc);
6e2608df
DW
526}
527
1da177e4 528STATIC sector_t
e4c573bb 529xfs_vm_bmap(
1da177e4
LT
530 struct address_space *mapping,
531 sector_t block)
532{
b84e7722 533 struct xfs_inode *ip = XFS_I(mapping->host);
1da177e4 534
b84e7722 535 trace_xfs_vm_bmap(ip);
db1327b1
DW
536
537 /*
538 * The swap code (ab-)uses ->bmap to get a block mapping and then
793057e1 539 * bypasses the file system for actual I/O. We really can't allow
db1327b1 540 * that on reflinks inodes, so we have to skip out here. And yes,
eb5e248d
DW
541 * 0 is the magic code for a bmap error.
542 *
543 * Since we don't pass back blockdev info, we can't return bmap
544 * information for rt files either.
db1327b1 545 */
66ae56a5 546 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
db1327b1 547 return 0;
690c2a38 548 return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
1da177e4
LT
549}
550
551STATIC int
7479c505 552xfs_vm_read_folio(
1da177e4 553 struct file *unused,
7479c505 554 struct folio *folio)
1da177e4 555{
7479c505 556 return iomap_read_folio(folio, &xfs_read_iomap_ops);
1da177e4
LT
557}
558
9d24a13a
MWO
559STATIC void
560xfs_vm_readahead(
561 struct readahead_control *rac)
1da177e4 562{
9d24a13a 563 iomap_readahead(rac, &xfs_read_iomap_ops);
22e757a4
DC
564}
565
67482129
DW
566static int
567xfs_iomap_swapfile_activate(
568 struct swap_info_struct *sis,
569 struct file *swap_file,
570 sector_t *span)
571{
30fa529e 572 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
690c2a38
CH
573 return iomap_swapfile_activate(sis, swap_file, span,
574 &xfs_read_iomap_ops);
67482129
DW
575}
576
f5e54d6e 577const struct address_space_operations xfs_address_space_operations = {
7479c505 578 .read_folio = xfs_vm_read_folio,
9d24a13a 579 .readahead = xfs_vm_readahead,
7d4fb40a 580 .writepages = xfs_vm_writepages,
187c82cb 581 .dirty_folio = filemap_dirty_folio,
8597447d 582 .release_folio = iomap_release_folio,
d82354f6 583 .invalidate_folio = iomap_invalidate_folio,
e4c573bb 584 .bmap = xfs_vm_bmap,
6e2608df 585 .direct_IO = noop_direct_IO,
2ec810d5 586 .migrate_folio = filemap_migrate_folio,
82cb1417 587 .is_partially_uptodate = iomap_is_partially_uptodate,
aa261f54 588 .error_remove_page = generic_error_remove_page,
67482129 589 .swap_activate = xfs_iomap_swapfile_activate,
1da177e4 590};
6e2608df
DW
591
592const struct address_space_operations xfs_dax_aops = {
593 .writepages = xfs_dax_writepages,
594 .direct_IO = noop_direct_IO,
46de8b97 595 .dirty_folio = noop_dirty_folio,
67482129 596 .swap_activate = xfs_iomap_swapfile_activate,
6e2608df 597};