Merge tag 'loongarch-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai...
[linux-2.6-block.git] / fs / xfs / scrub / common.c
CommitLineData
739a2fe0 1// SPDX-License-Identifier: GPL-2.0-or-later
dcb660f9 2/*
ecc73f8a 3 * Copyright (C) 2017-2023 Oracle. All Rights Reserved.
739a2fe0 4 * Author: Darrick J. Wong <djwong@kernel.org>
dcb660f9
DW
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_mount.h"
dcb660f9 12#include "xfs_btree.h"
dcb660f9
DW
13#include "xfs_log_format.h"
14#include "xfs_trans.h"
dcb660f9 15#include "xfs_inode.h"
80e4e126 16#include "xfs_icache.h"
dcb660f9
DW
17#include "xfs_alloc.h"
18#include "xfs_alloc_btree.h"
dcb660f9
DW
19#include "xfs_ialloc.h"
20#include "xfs_ialloc_btree.h"
dcb660f9
DW
21#include "xfs_refcount_btree.h"
22#include "xfs_rmap.h"
23#include "xfs_rmap_btree.h"
3daa6641
DW
24#include "xfs_log.h"
25#include "xfs_trans_priv.h"
fd920008
AH
26#include "xfs_da_format.h"
27#include "xfs_da_btree.h"
6c728952 28#include "xfs_dir2_priv.h"
87d9d609
DW
29#include "xfs_attr.h"
30#include "xfs_reflink.h"
9bbafc71 31#include "xfs_ag.h"
48dd9117 32#include "xfs_error.h"
20049187 33#include "xfs_quota.h"
dcb660f9
DW
34#include "scrub/scrub.h"
35#include "scrub/common.h"
36#include "scrub/trace.h"
0a9633fa 37#include "scrub/repair.h"
4fb7951f 38#include "scrub/health.h"
dcb660f9
DW
39
40/* Common code for the metadata scrubbers. */
41
4700d229
DW
42/*
43 * Handling operational errors.
44 *
45 * The *_process_error() family of functions are used to process error return
46 * codes from functions called as part of a scrub operation.
47 *
48 * If there's no error, we return true to tell the caller that it's ok
49 * to move on to the next check in its list.
50 *
51 * For non-verifier errors (e.g. ENOMEM) we return false to tell the
52 * caller that something bad happened, and we preserve *error so that
53 * the caller can return the *error up the stack to userspace.
54 *
55 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
56 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words,
57 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
58 * not via return codes. We return false to tell the caller that
59 * something bad happened. Since the error has been cleared, the caller
60 * will (presumably) return that zero and scrubbing will move on to
61 * whatever's next.
62 *
63 * ftrace can be used to record the precise metadata location and the
64 * approximate code location of the failed operation.
65 */
66
67/* Check for operational errors. */
64b12563 68static bool
c517b3aa 69__xchk_process_error(
1d8a748a 70 struct xfs_scrub *sc,
032d91f9
DW
71 xfs_agnumber_t agno,
72 xfs_agblock_t bno,
73 int *error,
74 __u32 errflag,
75 void *ret_ip)
4700d229
DW
76{
77 switch (*error) {
78 case 0:
79 return true;
80 case -EDEADLOCK:
88accf17 81 case -ECHRNG:
4700d229 82 /* Used to restart an op with deadlock avoidance. */
16c9de54
DW
83 trace_xchk_deadlock_retry(
84 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
85 sc->sm, *error);
4700d229 86 break;
48dd9117
DW
87 case -ECANCELED:
88 /*
89 * ECANCELED here means that the caller set one of the scrub
90 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
91 * quickly. Set error to zero and do not continue.
92 */
93 trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
94 *error = 0;
95 break;
4700d229
DW
96 case -EFSBADCRC:
97 case -EFSCORRUPTED:
98 /* Note the badness but don't abort. */
64b12563 99 sc->sm->sm_flags |= errflag;
4700d229 100 *error = 0;
53004ee7 101 fallthrough;
4700d229 102 default:
48dd9117 103 trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
4700d229
DW
104 break;
105 }
106 return false;
107}
108
4700d229 109bool
c517b3aa 110xchk_process_error(
1d8a748a 111 struct xfs_scrub *sc,
032d91f9
DW
112 xfs_agnumber_t agno,
113 xfs_agblock_t bno,
114 int *error)
64b12563 115{
c517b3aa 116 return __xchk_process_error(sc, agno, bno, error,
64b12563
DW
117 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
118}
119
120bool
c517b3aa 121xchk_xref_process_error(
1d8a748a 122 struct xfs_scrub *sc,
032d91f9
DW
123 xfs_agnumber_t agno,
124 xfs_agblock_t bno,
125 int *error)
64b12563 126{
c517b3aa 127 return __xchk_process_error(sc, agno, bno, error,
64b12563
DW
128 XFS_SCRUB_OFLAG_XFAIL, __return_address);
129}
130
131/* Check for operational errors for a file offset. */
132static bool
c517b3aa 133__xchk_fblock_process_error(
1d8a748a 134 struct xfs_scrub *sc,
032d91f9
DW
135 int whichfork,
136 xfs_fileoff_t offset,
137 int *error,
138 __u32 errflag,
139 void *ret_ip)
4700d229
DW
140{
141 switch (*error) {
142 case 0:
143 return true;
144 case -EDEADLOCK:
88accf17 145 case -ECHRNG:
4700d229 146 /* Used to restart an op with deadlock avoidance. */
c517b3aa 147 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
4700d229 148 break;
48dd9117
DW
149 case -ECANCELED:
150 /*
151 * ECANCELED here means that the caller set one of the scrub
152 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
153 * quickly. Set error to zero and do not continue.
154 */
155 trace_xchk_file_op_error(sc, whichfork, offset, *error,
156 ret_ip);
157 *error = 0;
158 break;
4700d229
DW
159 case -EFSBADCRC:
160 case -EFSCORRUPTED:
161 /* Note the badness but don't abort. */
64b12563 162 sc->sm->sm_flags |= errflag;
4700d229 163 *error = 0;
53004ee7 164 fallthrough;
4700d229 165 default:
c517b3aa 166 trace_xchk_file_op_error(sc, whichfork, offset, *error,
64b12563 167 ret_ip);
4700d229
DW
168 break;
169 }
170 return false;
171}
172
64b12563 173bool
c517b3aa 174xchk_fblock_process_error(
1d8a748a 175 struct xfs_scrub *sc,
032d91f9
DW
176 int whichfork,
177 xfs_fileoff_t offset,
178 int *error)
64b12563 179{
c517b3aa 180 return __xchk_fblock_process_error(sc, whichfork, offset, error,
64b12563
DW
181 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
182}
183
184bool
c517b3aa 185xchk_fblock_xref_process_error(
1d8a748a 186 struct xfs_scrub *sc,
032d91f9
DW
187 int whichfork,
188 xfs_fileoff_t offset,
189 int *error)
64b12563 190{
c517b3aa 191 return __xchk_fblock_process_error(sc, whichfork, offset, error,
64b12563
DW
192 XFS_SCRUB_OFLAG_XFAIL, __return_address);
193}
194
4700d229
DW
195/*
196 * Handling scrub corruption/optimization/warning checks.
197 *
198 * The *_set_{corrupt,preen,warning}() family of functions are used to
199 * record the presence of metadata that is incorrect (corrupt), could be
200 * optimized somehow (preen), or should be flagged for administrative
201 * review but is not incorrect (warn).
202 *
203 * ftrace can be used to record the precise metadata location and
204 * approximate code location of the failed check.
205 */
206
207/* Record a block which could be optimized. */
208void
c517b3aa 209xchk_block_set_preen(
1d8a748a 210 struct xfs_scrub *sc,
032d91f9 211 struct xfs_buf *bp)
4700d229
DW
212{
213 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
9343ee76 214 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
4700d229
DW
215}
216
217/*
218 * Record an inode which could be optimized. The trace data will
219 * include the block given by bp if bp is given; otherwise it will use
220 * the block location of the inode record itself.
221 */
222void
c517b3aa 223xchk_ino_set_preen(
1d8a748a 224 struct xfs_scrub *sc,
032d91f9 225 xfs_ino_t ino)
4700d229
DW
226{
227 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
c517b3aa 228 trace_xchk_ino_preen(sc, ino, __return_address);
4700d229
DW
229}
230
75efa57d
DW
231/* Record something being wrong with the filesystem primary superblock. */
232void
233xchk_set_corrupt(
234 struct xfs_scrub *sc)
235{
236 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
237 trace_xchk_fs_error(sc, 0, __return_address);
238}
239
4700d229
DW
240/* Record a corrupt block. */
241void
c517b3aa 242xchk_block_set_corrupt(
1d8a748a 243 struct xfs_scrub *sc,
032d91f9 244 struct xfs_buf *bp)
4700d229
DW
245{
246 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
9343ee76 247 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
4700d229
DW
248}
249
48dd9117
DW
250#ifdef CONFIG_XFS_QUOTA
251/* Record a corrupt quota counter. */
252void
253xchk_qcheck_set_corrupt(
254 struct xfs_scrub *sc,
255 unsigned int dqtype,
256 xfs_dqid_t id)
257{
258 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
259 trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
260}
261#endif
262
64b12563
DW
263/* Record a corruption while cross-referencing. */
264void
c517b3aa 265xchk_block_xref_set_corrupt(
1d8a748a 266 struct xfs_scrub *sc,
032d91f9 267 struct xfs_buf *bp)
64b12563
DW
268{
269 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
9343ee76 270 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
64b12563
DW
271}
272
4700d229
DW
273/*
274 * Record a corrupt inode. The trace data will include the block given
275 * by bp if bp is given; otherwise it will use the block location of the
276 * inode record itself.
277 */
278void
c517b3aa 279xchk_ino_set_corrupt(
1d8a748a 280 struct xfs_scrub *sc,
032d91f9 281 xfs_ino_t ino)
4700d229
DW
282{
283 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
c517b3aa 284 trace_xchk_ino_error(sc, ino, __return_address);
4700d229
DW
285}
286
64b12563
DW
287/* Record a corruption while cross-referencing with an inode. */
288void
c517b3aa 289xchk_ino_xref_set_corrupt(
1d8a748a 290 struct xfs_scrub *sc,
032d91f9 291 xfs_ino_t ino)
64b12563
DW
292{
293 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
c517b3aa 294 trace_xchk_ino_error(sc, ino, __return_address);
64b12563
DW
295}
296
4700d229
DW
297/* Record corruption in a block indexed by a file fork. */
298void
c517b3aa 299xchk_fblock_set_corrupt(
1d8a748a 300 struct xfs_scrub *sc,
032d91f9
DW
301 int whichfork,
302 xfs_fileoff_t offset)
4700d229
DW
303{
304 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
c517b3aa 305 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
4700d229
DW
306}
307
64b12563
DW
308/* Record a corruption while cross-referencing a fork block. */
309void
c517b3aa 310xchk_fblock_xref_set_corrupt(
1d8a748a 311 struct xfs_scrub *sc,
032d91f9
DW
312 int whichfork,
313 xfs_fileoff_t offset)
64b12563
DW
314{
315 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
c517b3aa 316 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
64b12563
DW
317}
318
4700d229
DW
319/*
320 * Warn about inodes that need administrative review but is not
321 * incorrect.
322 */
323void
c517b3aa 324xchk_ino_set_warning(
1d8a748a 325 struct xfs_scrub *sc,
032d91f9 326 xfs_ino_t ino)
4700d229
DW
327{
328 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
c517b3aa 329 trace_xchk_ino_warning(sc, ino, __return_address);
4700d229
DW
330}
331
332/* Warn about a block indexed by a file fork that needs review. */
333void
c517b3aa 334xchk_fblock_set_warning(
1d8a748a 335 struct xfs_scrub *sc,
032d91f9
DW
336 int whichfork,
337 xfs_fileoff_t offset)
4700d229
DW
338{
339 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
c517b3aa 340 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
4700d229
DW
341}
342
343/* Signal an incomplete scrub. */
344void
c517b3aa 345xchk_set_incomplete(
1d8a748a 346 struct xfs_scrub *sc)
4700d229
DW
347{
348 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
c517b3aa 349 trace_xchk_incomplete(sc, __return_address);
4700d229
DW
350}
351
d852657c
DW
352/*
353 * rmap scrubbing -- compute the number of blocks with a given owner,
354 * at least according to the reverse mapping data.
355 */
356
c517b3aa 357struct xchk_rmap_ownedby_info {
66e3237e
DW
358 const struct xfs_owner_info *oinfo;
359 xfs_filblks_t *blocks;
d852657c
DW
360};
361
362STATIC int
c517b3aa 363xchk_count_rmap_ownedby_irec(
032d91f9 364 struct xfs_btree_cur *cur,
159eb69d 365 const struct xfs_rmap_irec *rec,
032d91f9 366 void *priv)
d852657c 367{
032d91f9
DW
368 struct xchk_rmap_ownedby_info *sroi = priv;
369 bool irec_attr;
370 bool oinfo_attr;
d852657c
DW
371
372 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
373 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
374
375 if (rec->rm_owner != sroi->oinfo->oi_owner)
376 return 0;
377
378 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
379 (*sroi->blocks) += rec->rm_blockcount;
380
381 return 0;
382}
383
384/*
385 * Calculate the number of blocks the rmap thinks are owned by something.
386 * The caller should pass us an rmapbt cursor.
387 */
388int
c517b3aa 389xchk_count_rmap_ownedby_ag(
1d8a748a 390 struct xfs_scrub *sc,
032d91f9 391 struct xfs_btree_cur *cur,
66e3237e 392 const struct xfs_owner_info *oinfo,
032d91f9 393 xfs_filblks_t *blocks)
d852657c 394{
66e3237e
DW
395 struct xchk_rmap_ownedby_info sroi = {
396 .oinfo = oinfo,
397 .blocks = blocks,
398 };
d852657c 399
d852657c 400 *blocks = 0;
c517b3aa 401 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
d852657c
DW
402 &sroi);
403}
404
b6c1beb9
DW
405/*
406 * AG scrubbing
407 *
408 * These helpers facilitate locking an allocation group's header
409 * buffers, setting up cursors for all btrees that are present, and
410 * cleaning everything up once we're through.
411 */
412
ab9d5dc5
DW
413/* Decide if we want to return an AG header read failure. */
414static inline bool
415want_ag_read_header_failure(
1d8a748a 416 struct xfs_scrub *sc,
032d91f9 417 unsigned int type)
ab9d5dc5
DW
418{
419 /* Return all AG header read failures when scanning btrees. */
420 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
a12890ae
DW
421 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
422 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
ab9d5dc5
DW
423 return true;
424 /*
425 * If we're scanning a given type of AG header, we only want to
426 * see read failures from that specific header. We'd like the
427 * other headers to cross-check them, but this isn't required.
428 */
429 if (sc->sm->sm_type == type)
430 return true;
431 return false;
432}
433
b6c1beb9 434/*
d5c88131 435 * Grab the AG header buffers for the attached perag structure.
b6c1beb9 436 *
48c6615c
DW
437 * The headers should be released by xchk_ag_free, but as a fail safe we attach
438 * all the buffers we grab to the scrub transaction so they'll all be freed
d5c88131 439 * when we cancel it.
b6c1beb9 440 */
d5c88131
DW
441static inline int
442xchk_perag_read_headers(
1d8a748a 443 struct xfs_scrub *sc,
de9d2a78 444 struct xchk_ag *sa)
b6c1beb9 445{
032d91f9 446 int error;
b6c1beb9 447
99b13c7f 448 error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp);
a12890ae 449 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
48c6615c 450 return error;
b6c1beb9 451
08d3e84f 452 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
ab9d5dc5 453 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
48c6615c 454 return error;
b6c1beb9 455
48c6615c 456 return 0;
b6c1beb9
DW
457}
458
d5c88131
DW
459/*
460 * Grab the AG headers for the attached perag structure and wait for pending
461 * intents to drain.
462 */
32080a9b 463int
d5c88131
DW
464xchk_perag_drain_and_lock(
465 struct xfs_scrub *sc)
466{
467 struct xchk_ag *sa = &sc->sa;
468 int error = 0;
469
470 ASSERT(sa->pag != NULL);
471 ASSERT(sa->agi_bp == NULL);
472 ASSERT(sa->agf_bp == NULL);
473
474 do {
475 if (xchk_should_terminate(sc, &error))
476 return error;
477
478 error = xchk_perag_read_headers(sc, sa);
479 if (error)
480 return error;
481
482 /*
483 * If we've grabbed an inode for scrubbing then we assume that
484 * holding its ILOCK will suffice to coordinate with any intent
485 * chains involving this inode.
486 */
487 if (sc->ip)
488 return 0;
489
490 /*
491 * Decide if this AG is quiet enough for all metadata to be
492 * consistent with each other. XFS allows the AG header buffer
493 * locks to cycle across transaction rolls while processing
494 * chains of deferred ops, which means that there could be
495 * other threads in the middle of processing a chain of
496 * deferred ops. For regular operations we are careful about
497 * ordering operations to prevent collisions between threads
498 * (which is why we don't need a per-AG lock), but scrub and
499 * repair have to serialize against chained operations.
500 *
501 * We just locked all the AG headers buffers; now take a look
502 * to see if there are any intents in progress. If there are,
503 * drop the AG headers and wait for the intents to drain.
504 * Since we hold all the AG header locks for the duration of
505 * the scrub, this is the only time we have to sample the
506 * intents counter; any threads increasing it after this point
507 * can't possibly be in the middle of a chain of AG metadata
508 * updates.
509 *
510 * Obviously, this should be slanted against scrub and in favor
511 * of runtime threads.
512 */
513 if (!xfs_perag_intent_busy(sa->pag))
514 return 0;
515
516 if (sa->agf_bp) {
517 xfs_trans_brelse(sc->tp, sa->agf_bp);
518 sa->agf_bp = NULL;
519 }
520
521 if (sa->agi_bp) {
522 xfs_trans_brelse(sc->tp, sa->agi_bp);
523 sa->agi_bp = NULL;
524 }
525
466c525d 526 if (!(sc->flags & XCHK_FSGATES_DRAIN))
88accf17 527 return -ECHRNG;
d5c88131
DW
528 error = xfs_perag_intent_drain(sa->pag);
529 if (error == -ERESTARTSYS)
530 error = -EINTR;
531 } while (!error);
532
533 return error;
534}
535
536/*
537 * Grab the per-AG structure, grab all AG header buffers, and wait until there
538 * aren't any pending intents. Returns -ENOENT if we can't grab the perag
539 * structure.
540 */
541int
542xchk_ag_read_headers(
543 struct xfs_scrub *sc,
544 xfs_agnumber_t agno,
545 struct xchk_ag *sa)
546{
547 struct xfs_mount *mp = sc->mp;
548
549 ASSERT(!sa->pag);
550 sa->pag = xfs_perag_get(mp, agno);
551 if (!sa->pag)
552 return -ENOENT;
553
554 return xchk_perag_drain_and_lock(sc);
555}
556
b6c1beb9
DW
557/* Release all the AG btree cursors. */
558void
c517b3aa
DW
559xchk_ag_btcur_free(
560 struct xchk_ag *sa)
b6c1beb9
DW
561{
562 if (sa->refc_cur)
563 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
564 if (sa->rmap_cur)
565 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
566 if (sa->fino_cur)
567 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
568 if (sa->ino_cur)
569 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
570 if (sa->cnt_cur)
571 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
572 if (sa->bno_cur)
573 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
574
575 sa->refc_cur = NULL;
576 sa->rmap_cur = NULL;
577 sa->fino_cur = NULL;
578 sa->ino_cur = NULL;
579 sa->bno_cur = NULL;
580 sa->cnt_cur = NULL;
581}
582
583/* Initialize all the btree cursors for an AG. */
f53acfac 584void
c517b3aa 585xchk_ag_btcur_init(
1d8a748a 586 struct xfs_scrub *sc,
c517b3aa 587 struct xchk_ag *sa)
b6c1beb9 588{
032d91f9 589 struct xfs_mount *mp = sc->mp;
b6c1beb9 590
48039926 591 if (sa->agf_bp) {
b6c1beb9 592 /* Set up a bnobt cursor for cross-referencing. */
1c8b9fd2
CH
593 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
594 sa->pag);
48039926
CH
595 xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
596 XFS_SCRUB_TYPE_BNOBT);
b6c1beb9
DW
597
598 /* Set up a cntbt cursor for cross-referencing. */
1c8b9fd2
CH
599 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
600 sa->pag);
48039926
CH
601 xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
602 XFS_SCRUB_TYPE_CNTBT);
603
604 /* Set up a rmapbt cursor for cross-referencing. */
605 if (xfs_has_rmapbt(mp)) {
606 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
607 sa->agf_bp, sa->pag);
608 xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
609 XFS_SCRUB_TYPE_RMAPBT);
610 }
611
612 /* Set up a refcountbt cursor for cross-referencing. */
613 if (xfs_has_reflink(mp)) {
614 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
615 sa->agf_bp, sa->pag);
616 xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
617 XFS_SCRUB_TYPE_REFCNTBT);
618 }
b6c1beb9
DW
619 }
620
48039926
CH
621 if (sa->agi_bp) {
622 /* Set up a inobt cursor for cross-referencing. */
14dd46cf
CH
623 sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
624 sa->agi_bp);
48039926
CH
625 xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
626 XFS_SCRUB_TYPE_INOBT);
627
628 /* Set up a finobt cursor for cross-referencing. */
629 if (xfs_has_finobt(mp)) {
14dd46cf
CH
630 sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
631 sa->agi_bp);
48039926
CH
632 xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
633 XFS_SCRUB_TYPE_FINOBT);
634 }
b6c1beb9 635 }
b6c1beb9
DW
636}
637
638/* Release the AG header context and btree cursors. */
639void
c517b3aa 640xchk_ag_free(
1d8a748a 641 struct xfs_scrub *sc,
c517b3aa 642 struct xchk_ag *sa)
b6c1beb9 643{
c517b3aa 644 xchk_ag_btcur_free(sa);
dbfbf3bd 645 xrep_reset_perag_resv(sc);
b6c1beb9
DW
646 if (sa->agf_bp) {
647 xfs_trans_brelse(sc->tp, sa->agf_bp);
648 sa->agf_bp = NULL;
649 }
650 if (sa->agi_bp) {
651 xfs_trans_brelse(sc->tp, sa->agi_bp);
652 sa->agi_bp = NULL;
653 }
51863d7d
DW
654 if (sa->pag) {
655 xfs_perag_put(sa->pag);
656 sa->pag = NULL;
657 }
b6c1beb9
DW
658}
659
660/*
48c6615c
DW
661 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
662 * order. Locking order requires us to get the AGI before the AGF. We use the
663 * transaction to avoid deadlocking on crosslinked metadata buffers; either the
664 * caller passes one in (bmap scrub) or we have to create a transaction
665 * ourselves. Returns ENOENT if the perag struct cannot be grabbed.
b6c1beb9
DW
666 */
667int
c517b3aa 668xchk_ag_init(
1d8a748a 669 struct xfs_scrub *sc,
032d91f9 670 xfs_agnumber_t agno,
c517b3aa 671 struct xchk_ag *sa)
b6c1beb9 672{
032d91f9 673 int error;
b6c1beb9 674
de9d2a78 675 error = xchk_ag_read_headers(sc, agno, sa);
b6c1beb9
DW
676 if (error)
677 return error;
678
f53acfac
DW
679 xchk_ag_btcur_init(sc, sa);
680 return 0;
b6c1beb9
DW
681}
682
dcb660f9
DW
683/* Per-scrubber setup functions */
684
302436c2
DW
685void
686xchk_trans_cancel(
687 struct xfs_scrub *sc)
688{
689 xfs_trans_cancel(sc->tp);
690 sc->tp = NULL;
691}
692
564fee6d
DW
693int
694xchk_trans_alloc_empty(
695 struct xfs_scrub *sc)
696{
697 return xfs_trans_alloc_empty(sc->mp, &sc->tp);
698}
699
9d9c9028
DW
700/*
701 * Grab an empty transaction so that we can re-grab locked buffers if
702 * one of our btrees turns out to be cyclic.
0a9633fa
DW
703 *
704 * If we're going to repair something, we need to ask for the largest possible
705 * log reservation so that we can handle the worst case scenario for metadata
706 * updates while rebuilding a metadata item. We also need to reserve as many
707 * blocks in the head transaction as we think we're going to need to rebuild
708 * the metadata object.
9d9c9028
DW
709 */
710int
c517b3aa 711xchk_trans_alloc(
1d8a748a 712 struct xfs_scrub *sc,
032d91f9 713 uint resblks)
9d9c9028 714{
0a9633fa
DW
715 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
716 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
717 resblks, 0, 0, &sc->tp);
718
564fee6d 719 return xchk_trans_alloc_empty(sc);
9d9c9028
DW
720}
721
dcb660f9
DW
722/* Set us up with a transaction and an empty context. */
723int
c517b3aa 724xchk_setup_fs(
026f57eb 725 struct xfs_scrub *sc)
dcb660f9 726{
032d91f9 727 uint resblks;
0a9633fa 728
b5e2196e 729 resblks = xrep_calc_ag_resblks(sc);
c517b3aa 730 return xchk_trans_alloc(sc, resblks);
dcb660f9 731}
efa7a99c
DW
732
733/* Set us up with AG headers and btree cursors. */
734int
c517b3aa 735xchk_setup_ag_btree(
1d8a748a 736 struct xfs_scrub *sc,
032d91f9 737 bool force_log)
efa7a99c 738{
032d91f9
DW
739 struct xfs_mount *mp = sc->mp;
740 int error;
efa7a99c 741
3daa6641
DW
742 /*
743 * If the caller asks us to checkpont the log, do so. This
744 * expensive operation should be performed infrequently and only
745 * as a last resort. Any caller that sets force_log should
746 * document why they need to do so.
747 */
748 if (force_log) {
c517b3aa 749 error = xchk_checkpoint_log(mp);
3daa6641
DW
750 if (error)
751 return error;
752 }
753
026f57eb 754 error = xchk_setup_fs(sc);
efa7a99c
DW
755 if (error)
756 return error;
757
c517b3aa 758 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
efa7a99c 759}
3daa6641
DW
760
761/* Push everything out of the log onto disk. */
762int
c517b3aa 763xchk_checkpoint_log(
3daa6641
DW
764 struct xfs_mount *mp)
765{
766 int error;
767
60e5bb78 768 error = xfs_log_force(mp, XFS_LOG_SYNC);
3daa6641
DW
769 if (error)
770 return error;
771 xfs_ail_push_all_sync(mp->m_ail);
772 return 0;
773}
80e4e126 774
a03297a0
DW
775/* Verify that an inode is allocated ondisk, then return its cached inode. */
776int
777xchk_iget(
778 struct xfs_scrub *sc,
779 xfs_ino_t inum,
780 struct xfs_inode **ipp)
781{
3f113c27
DW
782 ASSERT(sc->tp != NULL);
783
a03297a0
DW
784 return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp);
785}
786
302436c2
DW
787/*
788 * Try to grab an inode in a manner that avoids races with physical inode
789 * allocation. If we can't, return the locked AGI buffer so that the caller
790 * can single-step the loading process to see where things went wrong.
791 * Callers must have a valid scrub transaction.
792 *
793 * If the iget succeeds, return 0, a NULL AGI, and the inode.
794 *
795 * If the iget fails, return the error, the locked AGI, and a NULL inode. This
796 * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
797 * no longer allocated; or any other corruption or runtime error.
798 *
799 * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
800 *
801 * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
802 */
803int
804xchk_iget_agi(
805 struct xfs_scrub *sc,
806 xfs_ino_t inum,
807 struct xfs_buf **agi_bpp,
808 struct xfs_inode **ipp)
809{
810 struct xfs_mount *mp = sc->mp;
811 struct xfs_trans *tp = sc->tp;
812 struct xfs_perag *pag;
813 int error;
814
815 ASSERT(sc->tp != NULL);
816
817again:
818 *agi_bpp = NULL;
819 *ipp = NULL;
820 error = 0;
821
822 if (xchk_should_terminate(sc, &error))
823 return error;
824
825 /*
826 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
827 * in the iget cache miss path.
828 */
829 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
830 error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
831 xfs_perag_put(pag);
832 if (error)
833 return error;
834
835 error = xfs_iget(mp, tp, inum,
836 XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp);
837 if (error == -EAGAIN) {
838 /*
839 * The inode may be in core but temporarily unavailable and may
840 * require the AGI buffer before it can be returned. Drop the
841 * AGI buffer and retry the lookup.
842 *
843 * Incore lookup will fail with EAGAIN on a cache hit if the
844 * inode is queued to the inactivation list. The inactivation
845 * worker may remove the inode from the unlinked list and hence
846 * needs the AGI.
847 *
848 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
849 * to allow inodegc to make progress and move the inode to
850 * IRECLAIMABLE state where xfs_iget will be able to return it
851 * again if it can lock the inode.
852 */
853 xfs_trans_brelse(tp, *agi_bpp);
854 delay(1);
855 goto again;
856 }
857 if (error)
858 return error;
859
860 /* We got the inode, so we can release the AGI. */
861 ASSERT(*ipp != NULL);
862 xfs_trans_brelse(tp, *agi_bpp);
863 *agi_bpp = NULL;
864 return 0;
865}
866
259ba1d3
DW
867#ifdef CONFIG_XFS_QUOTA
868/*
869 * Try to attach dquots to this inode if we think we might want to repair it.
870 * Callers must not hold any ILOCKs. If the dquots are broken and cannot be
871 * attached, a quotacheck will be scheduled.
872 */
873int
874xchk_ino_dqattach(
875 struct xfs_scrub *sc)
876{
877 ASSERT(sc->tp != NULL);
878 ASSERT(sc->ip != NULL);
879
880 if (!xchk_could_repair(sc))
881 return 0;
882
883 return xrep_ino_dqattach(sc);
884}
885#endif
886
302436c2 887/* Install an inode that we opened by handle for scrubbing. */
38bb1310 888int
302436c2
DW
889xchk_install_handle_inode(
890 struct xfs_scrub *sc,
891 struct xfs_inode *ip)
892{
893 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
894 xchk_irele(sc, ip);
895 return -ENOENT;
896 }
897
898 sc->ip = ip;
899 return 0;
900}
901
17308539
DW
902/*
903 * Install an already-referenced inode for scrubbing. Get our own reference to
904 * the inode to make disposal simpler. The inode must not be in I_FREEING or
905 * I_WILL_FREE state!
906 */
907int
908xchk_install_live_inode(
909 struct xfs_scrub *sc,
910 struct xfs_inode *ip)
911{
912 if (!igrab(VFS_I(ip))) {
913 xchk_ino_set_corrupt(sc, ip->i_ino);
914 return -EFSCORRUPTED;
915 }
916
917 sc->ip = ip;
918 return 0;
919}
920
80e4e126 921/*
46e0dd89
DW
922 * In preparation to scrub metadata structures that hang off of an inode,
923 * grab either the inode referenced in the scrub control structure or the
924 * inode passed in. If the inumber does not reference an allocated inode
925 * record, the function returns ENOENT to end the scrub early. The inode
926 * is not locked.
80e4e126
DW
927 */
928int
46e0dd89 929xchk_iget_for_scrubbing(
026f57eb 930 struct xfs_scrub *sc)
80e4e126 931{
032d91f9
DW
932 struct xfs_imap imap;
933 struct xfs_mount *mp = sc->mp;
498f0adb 934 struct xfs_perag *pag;
302436c2 935 struct xfs_buf *agi_bp;
026f57eb 936 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file));
032d91f9 937 struct xfs_inode *ip = NULL;
302436c2 938 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
032d91f9 939 int error;
80e4e126 940
302436c2
DW
941 ASSERT(sc->tp == NULL);
942
80e4e126 943 /* We want to scan the inode we already had opened. */
17308539
DW
944 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
945 return xchk_install_live_inode(sc, ip_in);
80e4e126 946
302436c2 947 /* Reject internal metadata files and obviously bad inode numbers. */
80e4e126
DW
948 if (xfs_internal_inum(mp, sc->sm->sm_ino))
949 return -ENOENT;
302436c2
DW
950 if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
951 return -ENOENT;
952
3f113c27
DW
953 /* Try a safe untrusted iget. */
954 error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
302436c2
DW
955 if (!error)
956 return xchk_install_handle_inode(sc, ip);
957 if (error == -ENOENT)
80e4e126 958 return error;
302436c2
DW
959 if (error != -EINVAL)
960 goto out_error;
961
962 /*
963 * EINVAL with IGET_UNTRUSTED probably means one of several things:
964 * userspace gave us an inode number that doesn't correspond to fs
965 * space; the inode btree lacks a record for this inode; or there is a
966 * record, and it says this inode is free.
967 *
968 * We want to look up this inode in the inobt to distinguish two
969 * scenarios: (1) the inobt says the inode is free, in which case
970 * there's nothing to do; and (2) the inobt says the inode is
971 * allocated, but loading it failed due to corruption.
972 *
973 * Allocate a transaction and grab the AGI to prevent inobt activity
974 * in this AG. Retry the iget in case someone allocated a new inode
975 * after the first iget failed.
976 */
977 error = xchk_trans_alloc(sc, 0);
978 if (error)
979 goto out_error;
980
981 error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
982 if (error == 0) {
983 /* Actually got the inode, so install it. */
984 xchk_trans_cancel(sc);
985 return xchk_install_handle_inode(sc, ip);
80e4e126 986 }
302436c2
DW
987 if (error == -ENOENT)
988 goto out_gone;
989 if (error != -EINVAL)
990 goto out_cancel;
991
992 /* Ensure that we have protected against inode allocation/freeing. */
993 if (agi_bp == NULL) {
994 ASSERT(agi_bp != NULL);
995 error = -ECANCELED;
996 goto out_cancel;
80e4e126
DW
997 }
998
302436c2
DW
999 /*
1000 * Untrusted iget failed a second time. Let's try an inobt lookup.
1001 * If the inobt thinks this the inode neither can exist inside the
1002 * filesystem nor is allocated, return ENOENT to signal that the check
1003 * can be skipped.
1004 *
1005 * If the lookup returns corruption, we'll mark this inode corrupt and
1006 * exit to userspace. There's little chance of fixing anything until
1007 * the inobt is straightened out, but there's nothing we can do here.
1008 *
1009 * If the lookup encounters any other error, exit to userspace.
1010 *
1011 * If the lookup succeeds, something else must be very wrong in the fs
1012 * such that setting up the incore inode failed in some strange way.
1013 * Treat those as corruptions.
1014 */
1015 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
1016 if (!pag) {
1017 error = -EFSCORRUPTED;
1018 goto out_cancel;
1019 }
1020
1021 error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
1022 XFS_IGET_UNTRUSTED);
1023 xfs_perag_put(pag);
1024 if (error == -EINVAL || error == -ENOENT)
1025 goto out_gone;
1026 if (!error)
1027 error = -EFSCORRUPTED;
1028
1029out_cancel:
1030 xchk_trans_cancel(sc);
1031out_error:
1032 trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
1033 error, __return_address);
1034 return error;
1035out_gone:
1036 /* The file is gone, so there's nothing to check. */
1037 xchk_trans_cancel(sc);
1038 return -ENOENT;
80e4e126 1039}
a5c46e5e 1040
a03297a0
DW
1041/* Release an inode, possibly dropping it in the process. */
1042void
1043xchk_irele(
1044 struct xfs_scrub *sc,
1045 struct xfs_inode *ip)
1046{
1047 if (current->journal_info != NULL) {
1048 ASSERT(current->journal_info == sc->tp);
1049
1050 /*
1051 * If we are in a transaction, we /cannot/ drop the inode
1052 * ourselves, because the VFS will trigger writeback, which
1053 * can require a transaction. Clear DONTCACHE to force the
1054 * inode to the LRU, where someone else can take care of
1055 * dropping it.
1056 *
1057 * Note that when we grabbed our reference to the inode, it
1058 * could have had an active ref and DONTCACHE set if a sysadmin
1059 * is trying to coerce a change in file access mode. icache
1060 * hits do not clear DONTCACHE, so we must do it here.
1061 */
1062 spin_lock(&VFS_I(ip)->i_lock);
1063 VFS_I(ip)->i_state &= ~I_DONTCACHE;
1064 spin_unlock(&VFS_I(ip)->i_lock);
1065 } else if (atomic_read(&VFS_I(ip)->i_count) == 1) {
1066 /*
1067 * If this is the last reference to the inode and the caller
1068 * permits it, set DONTCACHE to avoid thrashing.
1069 */
1070 d_mark_dontcache(VFS_I(ip));
1071 }
1072
1073 xfs_irele(ip);
1074}
1075
1fc7a059
DW
1076/*
1077 * Set us up to scrub metadata mapped by a file's fork. Callers must not use
1078 * this to operate on user-accessible regular file data because the MMAPLOCK is
1079 * not taken.
1080 */
a5c46e5e 1081int
c517b3aa 1082xchk_setup_inode_contents(
1d8a748a 1083 struct xfs_scrub *sc,
032d91f9 1084 unsigned int resblks)
a5c46e5e 1085{
032d91f9 1086 int error;
a5c46e5e 1087
46e0dd89 1088 error = xchk_iget_for_scrubbing(sc);
a5c46e5e
DW
1089 if (error)
1090 return error;
1091
1fc7a059 1092 /* Lock the inode so the VFS cannot touch this file. */
294012fb 1093 xchk_ilock(sc, XFS_IOLOCK_EXCL);
1fc7a059 1094
c517b3aa 1095 error = xchk_trans_alloc(sc, resblks);
a5c46e5e
DW
1096 if (error)
1097 goto out;
259ba1d3
DW
1098
1099 error = xchk_ino_dqattach(sc);
1100 if (error)
1101 goto out;
1102
294012fb 1103 xchk_ilock(sc, XFS_ILOCK_EXCL);
a5c46e5e
DW
1104out:
1105 /* scrub teardown will unlock and release the inode for us */
1106 return error;
1107}
64b12563 1108
294012fb
DW
1109void
1110xchk_ilock(
1111 struct xfs_scrub *sc,
1112 unsigned int ilock_flags)
1113{
1114 xfs_ilock(sc->ip, ilock_flags);
1115 sc->ilock_flags |= ilock_flags;
1116}
1117
1118bool
1119xchk_ilock_nowait(
1120 struct xfs_scrub *sc,
1121 unsigned int ilock_flags)
1122{
1123 if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1124 sc->ilock_flags |= ilock_flags;
1125 return true;
1126 }
1127
1128 return false;
1129}
1130
1131void
1132xchk_iunlock(
1133 struct xfs_scrub *sc,
1134 unsigned int ilock_flags)
1135{
1136 sc->ilock_flags &= ~ilock_flags;
1137 xfs_iunlock(sc->ip, ilock_flags);
1138}
1139
64b12563
DW
1140/*
1141 * Predicate that decides if we need to evaluate the cross-reference check.
1142 * If there was an error accessing the cross-reference btree, just delete
1143 * the cursor and skip the check.
1144 */
1145bool
c517b3aa 1146xchk_should_check_xref(
1d8a748a 1147 struct xfs_scrub *sc,
032d91f9
DW
1148 int *error,
1149 struct xfs_btree_cur **curpp)
64b12563 1150{
8389f3ff 1151 /* No point in xref if we already know we're corrupt. */
c517b3aa 1152 if (xchk_skip_xref(sc->sm))
8389f3ff
DW
1153 return false;
1154
64b12563
DW
1155 if (*error == 0)
1156 return true;
1157
1158 if (curpp) {
1159 /* If we've already given up on xref, just bail out. */
1160 if (!*curpp)
1161 return false;
1162
1163 /* xref error, delete cursor and bail out. */
1164 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1165 *curpp = NULL;
1166 }
1167
1168 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
c517b3aa 1169 trace_xchk_xref_error(sc, *error, __return_address);
64b12563
DW
1170
1171 /*
1172 * Errors encountered during cross-referencing with another
1173 * data structure should not cause this scrubber to abort.
1174 */
1175 *error = 0;
1176 return false;
1177}
cf1b0b8b
DW
1178
1179/* Run the structure verifiers on in-memory buffers to detect bad memory. */
1180void
c517b3aa 1181xchk_buffer_recheck(
1d8a748a 1182 struct xfs_scrub *sc,
032d91f9 1183 struct xfs_buf *bp)
cf1b0b8b 1184{
032d91f9 1185 xfs_failaddr_t fa;
cf1b0b8b
DW
1186
1187 if (bp->b_ops == NULL) {
c517b3aa 1188 xchk_block_set_corrupt(sc, bp);
cf1b0b8b
DW
1189 return;
1190 }
1191 if (bp->b_ops->verify_struct == NULL) {
c517b3aa 1192 xchk_set_incomplete(sc);
cf1b0b8b
DW
1193 return;
1194 }
1195 fa = bp->b_ops->verify_struct(bp);
1196 if (!fa)
1197 return;
1198 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
9343ee76 1199 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
cf1b0b8b 1200}
87d9d609 1201
f36b954a
DW
1202static inline int
1203xchk_metadata_inode_subtype(
1204 struct xfs_scrub *sc,
1205 unsigned int scrub_type)
1206{
1207 __u32 smtype = sc->sm->sm_type;
d9041681 1208 unsigned int sick_mask = sc->sick_mask;
f36b954a
DW
1209 int error;
1210
1211 sc->sm->sm_type = scrub_type;
1212
1213 switch (scrub_type) {
1214 case XFS_SCRUB_TYPE_INODE:
1215 error = xchk_inode(sc);
1216 break;
1217 case XFS_SCRUB_TYPE_BMBTD:
1218 error = xchk_bmap_data(sc);
1219 break;
1220 default:
1221 ASSERT(0);
1222 error = -EFSCORRUPTED;
1223 break;
1224 }
1225
d9041681 1226 sc->sick_mask = sick_mask;
f36b954a
DW
1227 sc->sm->sm_type = smtype;
1228 return error;
1229}
1230
87d9d609
DW
1231/*
1232 * Scrub the attr/data forks of a metadata inode. The metadata inode must be
1233 * pointed to by sc->ip and the ILOCK must be held.
1234 */
1235int
c517b3aa 1236xchk_metadata_inode_forks(
1d8a748a 1237 struct xfs_scrub *sc)
87d9d609 1238{
032d91f9
DW
1239 bool shared;
1240 int error;
87d9d609
DW
1241
1242 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1243 return 0;
1244
f36b954a
DW
1245 /* Check the inode record. */
1246 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1247 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1248 return error;
1249
87d9d609 1250 /* Metadata inodes don't live on the rt device. */
db07349d 1251 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
c517b3aa 1252 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
87d9d609
DW
1253 return 0;
1254 }
1255
1256 /* They should never participate in reflink. */
1257 if (xfs_is_reflink_inode(sc->ip)) {
c517b3aa 1258 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
87d9d609
DW
1259 return 0;
1260 }
1261
1262 /* They also should never have extended attributes. */
1263 if (xfs_inode_hasattr(sc->ip)) {
c517b3aa 1264 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
87d9d609
DW
1265 return 0;
1266 }
1267
1268 /* Invoke the data fork scrubber. */
f36b954a 1269 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
87d9d609
DW
1270 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1271 return error;
1272
1273 /* Look for incorrect shared blocks. */
38c26bfd 1274 if (xfs_has_reflink(sc->mp)) {
87d9d609
DW
1275 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1276 &shared);
c517b3aa 1277 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
87d9d609
DW
1278 &error))
1279 return error;
1280 if (shared)
c517b3aa 1281 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
87d9d609
DW
1282 }
1283
f36b954a 1284 return 0;
87d9d609 1285}
ddd10c2f 1286
466c525d
DW
1287/*
1288 * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1289 * operation. Callers must not hold any locks that intersect with the CPU
1290 * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1291 * to change kernel code.
1292 */
1293void
1294xchk_fsgates_enable(
1295 struct xfs_scrub *sc,
1296 unsigned int scrub_fsgates)
1297{
1298 ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1299 ASSERT(!(sc->flags & scrub_fsgates));
1300
1301 trace_xchk_fsgates_enable(sc, scrub_fsgates);
1302
1303 if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1304 xfs_drain_wait_enable();
1305
20049187
DW
1306 if (scrub_fsgates & XCHK_FSGATES_QUOTA)
1307 xfs_dqtrx_hook_enable();
1308
86a1746e
DW
1309 if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
1310 xfs_dir_hook_enable();
1311
7e1b84b2
DW
1312 if (scrub_fsgates & XCHK_FSGATES_RMAP)
1313 xfs_rmap_hook_enable();
1314
466c525d
DW
1315 sc->flags |= scrub_fsgates;
1316}
0d296634
DW
1317
1318/*
369c001b
DW
1319 * Decide if this is this a cached inode that's also allocated. The caller
1320 * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1321 * from being allocated or freed.
0d296634 1322 *
369c001b
DW
1323 * Look up an inode by number in the given file system. If the inode number
1324 * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA.
1325 * If the inode is being reclaimed, return -ENODATA because we know the inode
1326 * cache cannot be updating the ondisk metadata.
0d296634 1327 *
369c001b
DW
1328 * Otherwise, the incore inode is the one we want, and it is either live,
1329 * somewhere in the inactivation machinery, or reclaimable. The inode is
1330 * allocated if i_mode is nonzero. In all three cases, the cached inode will
1331 * be more up to date than the ondisk inode buffer, so we must use the incore
1332 * i_mode.
0d296634
DW
1333 */
1334int
1335xchk_inode_is_allocated(
1336 struct xfs_scrub *sc,
369c001b 1337 xfs_agino_t agino,
0d296634
DW
1338 bool *inuse)
1339{
369c001b
DW
1340 struct xfs_mount *mp = sc->mp;
1341 struct xfs_perag *pag = sc->sa.pag;
1342 xfs_ino_t ino;
0d296634
DW
1343 struct xfs_inode *ip;
1344 int error;
1345
369c001b
DW
1346 /* caller must hold perag reference */
1347 if (pag == NULL) {
1348 ASSERT(pag != NULL);
1349 return -EINVAL;
1350 }
0d296634 1351
369c001b
DW
1352 /* caller must have AGI buffer */
1353 if (sc->sa.agi_bp == NULL) {
1354 ASSERT(sc->sa.agi_bp != NULL);
1355 return -EINVAL;
1356 }
1357
1358 /* reject inode numbers outside existing AGs */
1359 ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
1360 if (!xfs_verify_ino(mp, ino))
1361 return -EINVAL;
1362
1363 error = -ENODATA;
1364 rcu_read_lock();
1365 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1366 if (!ip) {
1367 /* cache miss */
1368 goto out_rcu;
1369 }
1370
1371 /*
1372 * If the inode number doesn't match, the incore inode got reused
1373 * during an RCU grace period and the radix tree hasn't been updated.
1374 * This isn't the inode we want.
1375 */
1376 spin_lock(&ip->i_flags_lock);
1377 if (ip->i_ino != ino)
1378 goto out_skip;
1379
1380 trace_xchk_inode_is_allocated(ip);
1381
1382 /*
1383 * We have an incore inode that matches the inode we want, and the
1384 * caller holds the perag structure and the AGI buffer. Let's check
1385 * our assumptions below:
1386 */
1387
1388#ifdef DEBUG
1389 /*
1390 * (1) If the incore inode is live (i.e. referenced from the dcache),
1391 * it will not be INEW, nor will it be in the inactivation or reclaim
1392 * machinery. The ondisk inode had better be allocated. This is the
1393 * most trivial case.
1394 */
1395 if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1396 XFS_INACTIVATING))) {
1397 /* live inode */
1398 ASSERT(VFS_I(ip)->i_mode != 0);
1399 }
1400
1401 /*
1402 * If the incore inode is INEW, there are several possibilities:
1403 *
1404 * (2) For a file that is being created, note that we allocate the
1405 * ondisk inode before allocating, initializing, and adding the incore
1406 * inode to the radix tree.
1407 *
1408 * (3) If the incore inode is being recycled, the inode has to be
1409 * allocated because we don't allow freed inodes to be recycled.
1410 * Recycling doesn't touch i_mode.
1411 */
1412 if (ip->i_flags & XFS_INEW) {
1413 /* created on disk already or recycling */
1414 ASSERT(VFS_I(ip)->i_mode != 0);
1415 }
1416
1417 /*
1418 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1419 * inactivation has not started (!INACTIVATING), it is still allocated.
1420 */
1421 if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1422 !(ip->i_flags & XFS_INACTIVATING)) {
1423 /* definitely before difree */
1424 ASSERT(VFS_I(ip)->i_mode != 0);
1425 }
1426#endif
1427
1428 /*
1429 * If the incore inode is undergoing inactivation (INACTIVATING), there
1430 * are two possibilities:
1431 *
1432 * (5) It is before the point where it would get freed ondisk, in which
1433 * case i_mode is still nonzero.
1434 *
1435 * (6) It has already been freed, in which case i_mode is zero.
1436 *
1437 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1438 * and we've taken the AGI buffer lock, which prevents that from
1439 * happening.
1440 */
1441
1442 /*
1443 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1444 * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still
1445 * reflects the ondisk state.
1446 */
1447
1448 /*
1449 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1450 * the flush code uses i_mode to format the ondisk inode.
1451 */
1452
1453 /*
1454 * (9) If the inode is in IRECLAIM and was reachable via the radix
1455 * tree, it still has the same i_mode as it did before it entered
1456 * reclaim. The inode object is still alive because we hold the RCU
1457 * read lock.
1458 */
1459
1460 *inuse = VFS_I(ip)->i_mode != 0;
1461 error = 0;
1462
1463out_skip:
1464 spin_unlock(&ip->i_flags_lock);
1465out_rcu:
1466 rcu_read_unlock();
1467 return error;
0d296634 1468}