[XFS] Fix use-after-free during log unmount.
[linux-2.6-block.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
7989cb8e
DC
37static kmem_zone_t *xfs_buf_zone;
38static kmem_shaker_t xfs_buf_shake;
a6867a68 39STATIC int xfsbufd(void *);
27496a8c 40STATIC int xfsbufd_wakeup(int, gfp_t);
ce8e922c 41STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
23ea4032 42
7989cb8e 43static struct workqueue_struct *xfslogd_workqueue;
0829c360 44struct workqueue_struct *xfsdatad_workqueue;
1da177e4 45
ce8e922c 46#ifdef XFS_BUF_TRACE
1da177e4 47void
ce8e922c
NS
48xfs_buf_trace(
49 xfs_buf_t *bp,
1da177e4
LT
50 char *id,
51 void *data,
52 void *ra)
53{
ce8e922c
NS
54 ktrace_enter(xfs_buf_trace_buf,
55 bp, id,
56 (void *)(unsigned long)bp->b_flags,
57 (void *)(unsigned long)bp->b_hold.counter,
58 (void *)(unsigned long)bp->b_sema.count.counter,
1da177e4
LT
59 (void *)current,
60 data, ra,
ce8e922c
NS
61 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
62 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
63 (void *)(unsigned long)bp->b_buffer_length,
1da177e4
LT
64 NULL, NULL, NULL, NULL, NULL);
65}
ce8e922c
NS
66ktrace_t *xfs_buf_trace_buf;
67#define XFS_BUF_TRACE_SIZE 4096
68#define XB_TRACE(bp, id, data) \
69 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
1da177e4 70#else
ce8e922c 71#define XB_TRACE(bp, id, data) do { } while (0)
1da177e4
LT
72#endif
73
ce8e922c
NS
74#ifdef XFS_BUF_LOCK_TRACKING
75# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
76# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
77# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 78#else
ce8e922c
NS
79# define XB_SET_OWNER(bp) do { } while (0)
80# define XB_CLEAR_OWNER(bp) do { } while (0)
81# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
82#endif
83
ce8e922c
NS
84#define xb_to_gfp(flags) \
85 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
86 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 87
ce8e922c
NS
88#define xb_to_km(flags) \
89 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 90
ce8e922c
NS
91#define xfs_buf_allocate(flags) \
92 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
93#define xfs_buf_deallocate(bp) \
94 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4
LT
95
96/*
ce8e922c 97 * Page Region interfaces.
1da177e4 98 *
ce8e922c
NS
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
1da177e4 102 *
ce8e922c 103 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 104 *
ce8e922c
NS
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
108 */
109#if (BITS_PER_LONG == 32)
110#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111#elif (BITS_PER_LONG == 64)
112#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113#else
114#error BITS_PER_LONG must be 32 or 64
115#endif
116#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120STATIC unsigned long
121page_region_mask(
122 size_t offset,
123 size_t length)
124{
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140}
141
7989cb8e 142STATIC_INLINE void
1da177e4
LT
143set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147{
4c21e2f2
HD
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
1da177e4
LT
151 SetPageUptodate(page);
152}
153
7989cb8e 154STATIC_INLINE int
1da177e4
LT
155test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159{
160 unsigned long mask = page_region_mask(offset, length);
161
4c21e2f2 162 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
163}
164
165/*
ce8e922c 166 * Mapping of multi-page buffers into contiguous virtual space
1da177e4
LT
167 */
168
169typedef struct a_list {
170 void *vm_addr;
171 struct a_list *next;
172} a_list_t;
173
7989cb8e
DC
174static a_list_t *as_free_head;
175static int as_list_len;
176static DEFINE_SPINLOCK(as_lock);
1da177e4
LT
177
178/*
ce8e922c 179 * Try to batch vunmaps because they are costly.
1da177e4
LT
180 */
181STATIC void
182free_address(
183 void *addr)
184{
185 a_list_t *aentry;
186
7b04d717 187 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
1da177e4
LT
188 if (likely(aentry)) {
189 spin_lock(&as_lock);
190 aentry->next = as_free_head;
191 aentry->vm_addr = addr;
192 as_free_head = aentry;
193 as_list_len++;
194 spin_unlock(&as_lock);
195 } else {
196 vunmap(addr);
197 }
198}
199
200STATIC void
201purge_addresses(void)
202{
203 a_list_t *aentry, *old;
204
205 if (as_free_head == NULL)
206 return;
207
208 spin_lock(&as_lock);
209 aentry = as_free_head;
210 as_free_head = NULL;
211 as_list_len = 0;
212 spin_unlock(&as_lock);
213
214 while ((old = aentry) != NULL) {
215 vunmap(aentry->vm_addr);
216 aentry = aentry->next;
217 kfree(old);
218 }
219}
220
221/*
ce8e922c 222 * Internal xfs_buf_t object manipulation
1da177e4
LT
223 */
224
225STATIC void
ce8e922c
NS
226_xfs_buf_initialize(
227 xfs_buf_t *bp,
1da177e4 228 xfs_buftarg_t *target,
204ab25f 229 xfs_off_t range_base,
1da177e4 230 size_t range_length,
ce8e922c 231 xfs_buf_flags_t flags)
1da177e4
LT
232{
233 /*
ce8e922c 234 * We don't want certain flags to appear in b_flags.
1da177e4 235 */
ce8e922c
NS
236 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
237
238 memset(bp, 0, sizeof(xfs_buf_t));
239 atomic_set(&bp->b_hold, 1);
240 init_MUTEX_LOCKED(&bp->b_iodonesema);
241 INIT_LIST_HEAD(&bp->b_list);
242 INIT_LIST_HEAD(&bp->b_hash_list);
243 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
244 XB_SET_OWNER(bp);
245 bp->b_target = target;
246 bp->b_file_offset = range_base;
1da177e4
LT
247 /*
248 * Set buffer_length and count_desired to the same value initially.
249 * I/O routines should use count_desired, which will be the same in
250 * most cases but may be reset (e.g. XFS recovery).
251 */
ce8e922c
NS
252 bp->b_buffer_length = bp->b_count_desired = range_length;
253 bp->b_flags = flags;
254 bp->b_bn = XFS_BUF_DADDR_NULL;
255 atomic_set(&bp->b_pin_count, 0);
256 init_waitqueue_head(&bp->b_waiters);
257
258 XFS_STATS_INC(xb_create);
259 XB_TRACE(bp, "initialize", target);
1da177e4
LT
260}
261
262/*
ce8e922c
NS
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
1da177e4
LT
265 */
266STATIC int
ce8e922c
NS
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
1da177e4 269 int page_count,
ce8e922c 270 xfs_buf_flags_t flags)
1da177e4
LT
271{
272 /* Make sure that we have a page list */
ce8e922c
NS
273 if (bp->b_pages == NULL) {
274 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
1da177e4 278 } else {
ce8e922c
NS
279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
280 page_count, xb_to_km(flags));
281 if (bp->b_pages == NULL)
1da177e4
LT
282 return -ENOMEM;
283 }
ce8e922c 284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
285 }
286 return 0;
287}
288
289/*
ce8e922c 290 * Frees b_pages if it was allocated.
1da177e4
LT
291 */
292STATIC void
ce8e922c 293_xfs_buf_free_pages(
1da177e4
LT
294 xfs_buf_t *bp)
295{
ce8e922c
NS
296 if (bp->b_pages != bp->b_page_array) {
297 kmem_free(bp->b_pages,
298 bp->b_page_count * sizeof(struct page *));
1da177e4
LT
299 }
300}
301
302/*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
ce8e922c 306 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
307 * hashed and refcounted buffers
308 */
309void
ce8e922c 310xfs_buf_free(
1da177e4
LT
311 xfs_buf_t *bp)
312{
ce8e922c 313 XB_TRACE(bp, "free", 0);
1da177e4 314
ce8e922c 315 ASSERT(list_empty(&bp->b_hash_list));
1da177e4 316
1fa40b01 317 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
318 uint i;
319
ce8e922c
NS
320 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
321 free_address(bp->b_addr - bp->b_offset);
1da177e4 322
948ecdb4
NS
323 for (i = 0; i < bp->b_page_count; i++) {
324 struct page *page = bp->b_pages[i];
325
1fa40b01
CH
326 if (bp->b_flags & _XBF_PAGE_CACHE)
327 ASSERT(!PagePrivate(page));
948ecdb4
NS
328 page_cache_release(page);
329 }
ce8e922c 330 _xfs_buf_free_pages(bp);
1da177e4
LT
331 }
332
ce8e922c 333 xfs_buf_deallocate(bp);
1da177e4
LT
334}
335
336/*
337 * Finds all pages for buffer in question and builds it's page list.
338 */
339STATIC int
ce8e922c 340_xfs_buf_lookup_pages(
1da177e4
LT
341 xfs_buf_t *bp,
342 uint flags)
343{
ce8e922c
NS
344 struct address_space *mapping = bp->b_target->bt_mapping;
345 size_t blocksize = bp->b_target->bt_bsize;
346 size_t size = bp->b_count_desired;
1da177e4 347 size_t nbytes, offset;
ce8e922c 348 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
349 unsigned short page_count, i;
350 pgoff_t first;
204ab25f 351 xfs_off_t end;
1da177e4
LT
352 int error;
353
ce8e922c
NS
354 end = bp->b_file_offset + bp->b_buffer_length;
355 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 356
ce8e922c 357 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
358 if (unlikely(error))
359 return error;
ce8e922c 360 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 361
ce8e922c
NS
362 offset = bp->b_offset;
363 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 364
ce8e922c 365 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
366 struct page *page;
367 uint retries = 0;
368
369 retry:
370 page = find_or_create_page(mapping, first + i, gfp_mask);
371 if (unlikely(page == NULL)) {
ce8e922c
NS
372 if (flags & XBF_READ_AHEAD) {
373 bp->b_page_count = i;
374 for (i = 0; i < bp->b_page_count; i++)
375 unlock_page(bp->b_pages[i]);
1da177e4
LT
376 return -ENOMEM;
377 }
378
379 /*
380 * This could deadlock.
381 *
382 * But until all the XFS lowlevel code is revamped to
383 * handle buffer allocation failures we can't do much.
384 */
385 if (!(++retries % 100))
386 printk(KERN_ERR
387 "XFS: possible memory allocation "
388 "deadlock in %s (mode:0x%x)\n",
389 __FUNCTION__, gfp_mask);
390
ce8e922c 391 XFS_STATS_INC(xb_page_retries);
23ea4032 392 xfsbufd_wakeup(0, gfp_mask);
3fcfab16 393 congestion_wait(WRITE, HZ/50);
1da177e4
LT
394 goto retry;
395 }
396
ce8e922c 397 XFS_STATS_INC(xb_page_found);
1da177e4
LT
398
399 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
400 size -= nbytes;
401
948ecdb4 402 ASSERT(!PagePrivate(page));
1da177e4
LT
403 if (!PageUptodate(page)) {
404 page_count--;
405 if (blocksize >= PAGE_CACHE_SIZE) {
ce8e922c
NS
406 if (flags & XBF_READ)
407 bp->b_locked = 1;
1da177e4
LT
408 } else if (!PagePrivate(page)) {
409 if (test_page_region(page, offset, nbytes))
410 page_count++;
411 }
412 }
413
ce8e922c 414 bp->b_pages[i] = page;
1da177e4
LT
415 offset = 0;
416 }
417
ce8e922c
NS
418 if (!bp->b_locked) {
419 for (i = 0; i < bp->b_page_count; i++)
420 unlock_page(bp->b_pages[i]);
1da177e4
LT
421 }
422
ce8e922c
NS
423 if (page_count == bp->b_page_count)
424 bp->b_flags |= XBF_DONE;
1da177e4 425
ce8e922c 426 XB_TRACE(bp, "lookup_pages", (long)page_count);
1da177e4
LT
427 return error;
428}
429
430/*
431 * Map buffer into kernel address-space if nessecary.
432 */
433STATIC int
ce8e922c 434_xfs_buf_map_pages(
1da177e4
LT
435 xfs_buf_t *bp,
436 uint flags)
437{
438 /* A single page buffer is always mappable */
ce8e922c
NS
439 if (bp->b_page_count == 1) {
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 bp->b_flags |= XBF_MAPPED;
442 } else if (flags & XBF_MAPPED) {
1da177e4
LT
443 if (as_list_len > 64)
444 purge_addresses();
ce8e922c
NS
445 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
446 VM_MAP, PAGE_KERNEL);
447 if (unlikely(bp->b_addr == NULL))
1da177e4 448 return -ENOMEM;
ce8e922c
NS
449 bp->b_addr += bp->b_offset;
450 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
451 }
452
453 return 0;
454}
455
456/*
457 * Finding and Reading Buffers
458 */
459
460/*
ce8e922c 461 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
462 * a given range of an inode. The buffer is returned
463 * locked. If other overlapping buffers exist, they are
464 * released before the new buffer is created and locked,
465 * which may imply that this call will block until those buffers
466 * are unlocked. No I/O is implied by this call.
467 */
468xfs_buf_t *
ce8e922c 469_xfs_buf_find(
1da177e4 470 xfs_buftarg_t *btp, /* block device target */
204ab25f 471 xfs_off_t ioff, /* starting offset of range */
1da177e4 472 size_t isize, /* length of range */
ce8e922c
NS
473 xfs_buf_flags_t flags,
474 xfs_buf_t *new_bp)
1da177e4 475{
204ab25f 476 xfs_off_t range_base;
1da177e4
LT
477 size_t range_length;
478 xfs_bufhash_t *hash;
ce8e922c 479 xfs_buf_t *bp, *n;
1da177e4
LT
480
481 range_base = (ioff << BBSHIFT);
482 range_length = (isize << BBSHIFT);
483
484 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 485 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 486 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4
LT
487
488 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
489
490 spin_lock(&hash->bh_lock);
491
ce8e922c
NS
492 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
493 ASSERT(btp == bp->b_target);
494 if (bp->b_file_offset == range_base &&
495 bp->b_buffer_length == range_length) {
1da177e4 496 /*
ce8e922c 497 * If we look at something, bring it to the
1da177e4
LT
498 * front of the list for next time.
499 */
ce8e922c
NS
500 atomic_inc(&bp->b_hold);
501 list_move(&bp->b_hash_list, &hash->bh_list);
1da177e4
LT
502 goto found;
503 }
504 }
505
506 /* No match found */
ce8e922c
NS
507 if (new_bp) {
508 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 509 range_length, flags);
ce8e922c
NS
510 new_bp->b_hash = hash;
511 list_add(&new_bp->b_hash_list, &hash->bh_list);
1da177e4 512 } else {
ce8e922c 513 XFS_STATS_INC(xb_miss_locked);
1da177e4
LT
514 }
515
516 spin_unlock(&hash->bh_lock);
ce8e922c 517 return new_bp;
1da177e4
LT
518
519found:
520 spin_unlock(&hash->bh_lock);
521
522 /* Attempt to get the semaphore without sleeping,
523 * if this does not work then we need to drop the
524 * spinlock and do a hard attempt on the semaphore.
525 */
ce8e922c
NS
526 if (down_trylock(&bp->b_sema)) {
527 if (!(flags & XBF_TRYLOCK)) {
1da177e4 528 /* wait for buffer ownership */
ce8e922c
NS
529 XB_TRACE(bp, "get_lock", 0);
530 xfs_buf_lock(bp);
531 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
532 } else {
533 /* We asked for a trylock and failed, no need
534 * to look at file offset and length here, we
ce8e922c
NS
535 * know that this buffer at least overlaps our
536 * buffer and is locked, therefore our buffer
537 * either does not exist, or is this buffer.
1da177e4 538 */
ce8e922c
NS
539 xfs_buf_rele(bp);
540 XFS_STATS_INC(xb_busy_locked);
541 return NULL;
1da177e4
LT
542 }
543 } else {
544 /* trylock worked */
ce8e922c 545 XB_SET_OWNER(bp);
1da177e4
LT
546 }
547
ce8e922c
NS
548 if (bp->b_flags & XBF_STALE) {
549 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
550 bp->b_flags &= XBF_MAPPED;
2f926587 551 }
ce8e922c
NS
552 XB_TRACE(bp, "got_lock", 0);
553 XFS_STATS_INC(xb_get_locked);
554 return bp;
1da177e4
LT
555}
556
557/*
ce8e922c 558 * Assembles a buffer covering the specified range.
1da177e4
LT
559 * Storage in memory for all portions of the buffer will be allocated,
560 * although backing storage may not be.
561 */
562xfs_buf_t *
ce8e922c 563xfs_buf_get_flags(
1da177e4 564 xfs_buftarg_t *target,/* target for buffer */
204ab25f 565 xfs_off_t ioff, /* starting offset of range */
1da177e4 566 size_t isize, /* length of range */
ce8e922c 567 xfs_buf_flags_t flags)
1da177e4 568{
ce8e922c 569 xfs_buf_t *bp, *new_bp;
1da177e4
LT
570 int error = 0, i;
571
ce8e922c
NS
572 new_bp = xfs_buf_allocate(flags);
573 if (unlikely(!new_bp))
1da177e4
LT
574 return NULL;
575
ce8e922c
NS
576 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
577 if (bp == new_bp) {
578 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
579 if (error)
580 goto no_buffer;
581 } else {
ce8e922c
NS
582 xfs_buf_deallocate(new_bp);
583 if (unlikely(bp == NULL))
1da177e4
LT
584 return NULL;
585 }
586
ce8e922c
NS
587 for (i = 0; i < bp->b_page_count; i++)
588 mark_page_accessed(bp->b_pages[i]);
1da177e4 589
ce8e922c
NS
590 if (!(bp->b_flags & XBF_MAPPED)) {
591 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
592 if (unlikely(error)) {
593 printk(KERN_WARNING "%s: failed to map pages\n",
594 __FUNCTION__);
595 goto no_buffer;
596 }
597 }
598
ce8e922c 599 XFS_STATS_INC(xb_get);
1da177e4
LT
600
601 /*
602 * Always fill in the block number now, the mapped cases can do
603 * their own overlay of this later.
604 */
ce8e922c
NS
605 bp->b_bn = ioff;
606 bp->b_count_desired = bp->b_buffer_length;
1da177e4 607
ce8e922c
NS
608 XB_TRACE(bp, "get", (unsigned long)flags);
609 return bp;
1da177e4
LT
610
611 no_buffer:
ce8e922c
NS
612 if (flags & (XBF_LOCK | XBF_TRYLOCK))
613 xfs_buf_unlock(bp);
614 xfs_buf_rele(bp);
1da177e4
LT
615 return NULL;
616}
617
618xfs_buf_t *
619xfs_buf_read_flags(
620 xfs_buftarg_t *target,
204ab25f 621 xfs_off_t ioff,
1da177e4 622 size_t isize,
ce8e922c 623 xfs_buf_flags_t flags)
1da177e4 624{
ce8e922c
NS
625 xfs_buf_t *bp;
626
627 flags |= XBF_READ;
628
629 bp = xfs_buf_get_flags(target, ioff, isize, flags);
630 if (bp) {
631 if (!XFS_BUF_ISDONE(bp)) {
632 XB_TRACE(bp, "read", (unsigned long)flags);
633 XFS_STATS_INC(xb_get_read);
634 xfs_buf_iostart(bp, flags);
635 } else if (flags & XBF_ASYNC) {
636 XB_TRACE(bp, "read_async", (unsigned long)flags);
1da177e4
LT
637 /*
638 * Read ahead call which is already satisfied,
639 * drop the buffer
640 */
641 goto no_buffer;
642 } else {
ce8e922c 643 XB_TRACE(bp, "read_done", (unsigned long)flags);
1da177e4 644 /* We do not want read in the flags */
ce8e922c 645 bp->b_flags &= ~XBF_READ;
1da177e4
LT
646 }
647 }
648
ce8e922c 649 return bp;
1da177e4
LT
650
651 no_buffer:
ce8e922c
NS
652 if (flags & (XBF_LOCK | XBF_TRYLOCK))
653 xfs_buf_unlock(bp);
654 xfs_buf_rele(bp);
1da177e4
LT
655 return NULL;
656}
657
1da177e4 658/*
ce8e922c
NS
659 * If we are not low on memory then do the readahead in a deadlock
660 * safe manner.
1da177e4
LT
661 */
662void
ce8e922c 663xfs_buf_readahead(
1da177e4 664 xfs_buftarg_t *target,
204ab25f 665 xfs_off_t ioff,
1da177e4 666 size_t isize,
ce8e922c 667 xfs_buf_flags_t flags)
1da177e4
LT
668{
669 struct backing_dev_info *bdi;
670
ce8e922c 671 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
672 if (bdi_read_congested(bdi))
673 return;
674
ce8e922c 675 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
1da177e4
LT
676 xfs_buf_read_flags(target, ioff, isize, flags);
677}
678
679xfs_buf_t *
ce8e922c 680xfs_buf_get_empty(
1da177e4
LT
681 size_t len,
682 xfs_buftarg_t *target)
683{
ce8e922c 684 xfs_buf_t *bp;
1da177e4 685
ce8e922c
NS
686 bp = xfs_buf_allocate(0);
687 if (bp)
688 _xfs_buf_initialize(bp, target, 0, len, 0);
689 return bp;
1da177e4
LT
690}
691
692static inline struct page *
693mem_to_page(
694 void *addr)
695{
696 if (((unsigned long)addr < VMALLOC_START) ||
697 ((unsigned long)addr >= VMALLOC_END)) {
698 return virt_to_page(addr);
699 } else {
700 return vmalloc_to_page(addr);
701 }
702}
703
704int
ce8e922c
NS
705xfs_buf_associate_memory(
706 xfs_buf_t *bp,
1da177e4
LT
707 void *mem,
708 size_t len)
709{
710 int rval;
711 int i = 0;
712 size_t ptr;
713 size_t end, end_cur;
714 off_t offset;
715 int page_count;
716
717 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
718 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
719 if (offset && (len > PAGE_CACHE_SIZE))
720 page_count++;
721
722 /* Free any previous set of page pointers */
ce8e922c
NS
723 if (bp->b_pages)
724 _xfs_buf_free_pages(bp);
1da177e4 725
ce8e922c
NS
726 bp->b_pages = NULL;
727 bp->b_addr = mem;
1da177e4 728
ce8e922c 729 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
730 if (rval)
731 return rval;
732
ce8e922c 733 bp->b_offset = offset;
1da177e4
LT
734 ptr = (size_t) mem & PAGE_CACHE_MASK;
735 end = PAGE_CACHE_ALIGN((size_t) mem + len);
736 end_cur = end;
737 /* set up first page */
ce8e922c 738 bp->b_pages[0] = mem_to_page(mem);
1da177e4
LT
739
740 ptr += PAGE_CACHE_SIZE;
ce8e922c 741 bp->b_page_count = ++i;
1da177e4 742 while (ptr < end) {
ce8e922c
NS
743 bp->b_pages[i] = mem_to_page((void *)ptr);
744 bp->b_page_count = ++i;
1da177e4
LT
745 ptr += PAGE_CACHE_SIZE;
746 }
ce8e922c 747 bp->b_locked = 0;
1da177e4 748
ce8e922c
NS
749 bp->b_count_desired = bp->b_buffer_length = len;
750 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
751
752 return 0;
753}
754
755xfs_buf_t *
ce8e922c 756xfs_buf_get_noaddr(
1da177e4
LT
757 size_t len,
758 xfs_buftarg_t *target)
759{
1fa40b01
CH
760 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
761 int error, i;
1da177e4 762 xfs_buf_t *bp;
1da177e4 763
ce8e922c 764 bp = xfs_buf_allocate(0);
1da177e4
LT
765 if (unlikely(bp == NULL))
766 goto fail;
ce8e922c 767 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 768
1fa40b01
CH
769 error = _xfs_buf_get_pages(bp, page_count, 0);
770 if (error)
1da177e4
LT
771 goto fail_free_buf;
772
1fa40b01
CH
773 for (i = 0; i < page_count; i++) {
774 bp->b_pages[i] = alloc_page(GFP_KERNEL);
775 if (!bp->b_pages[i])
776 goto fail_free_mem;
1da177e4 777 }
1fa40b01 778 bp->b_flags |= _XBF_PAGES;
1da177e4 779
1fa40b01
CH
780 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
781 if (unlikely(error)) {
782 printk(KERN_WARNING "%s: failed to map pages\n",
783 __FUNCTION__);
1da177e4 784 goto fail_free_mem;
1fa40b01 785 }
1da177e4 786
ce8e922c 787 xfs_buf_unlock(bp);
1da177e4 788
1fa40b01 789 XB_TRACE(bp, "no_daddr", len);
1da177e4 790 return bp;
1fa40b01 791
1da177e4 792 fail_free_mem:
1fa40b01
CH
793 while (--i >= 0)
794 __free_page(bp->b_pages[i]);
1da177e4 795 fail_free_buf:
ce8e922c 796 xfs_buf_free(bp);
1da177e4
LT
797 fail:
798 return NULL;
799}
800
801/*
1da177e4
LT
802 * Increment reference count on buffer, to hold the buffer concurrently
803 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
804 * Must hold the buffer already to call this function.
805 */
806void
ce8e922c
NS
807xfs_buf_hold(
808 xfs_buf_t *bp)
1da177e4 809{
ce8e922c
NS
810 atomic_inc(&bp->b_hold);
811 XB_TRACE(bp, "hold", 0);
1da177e4
LT
812}
813
814/*
ce8e922c
NS
815 * Releases a hold on the specified buffer. If the
816 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
817 */
818void
ce8e922c
NS
819xfs_buf_rele(
820 xfs_buf_t *bp)
1da177e4 821{
ce8e922c 822 xfs_bufhash_t *hash = bp->b_hash;
1da177e4 823
ce8e922c 824 XB_TRACE(bp, "rele", bp->b_relse);
1da177e4 825
fad3aa1e
NS
826 if (unlikely(!hash)) {
827 ASSERT(!bp->b_relse);
828 if (atomic_dec_and_test(&bp->b_hold))
829 xfs_buf_free(bp);
830 return;
831 }
832
ce8e922c
NS
833 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
834 if (bp->b_relse) {
835 atomic_inc(&bp->b_hold);
1da177e4 836 spin_unlock(&hash->bh_lock);
ce8e922c
NS
837 (*(bp->b_relse)) (bp);
838 } else if (bp->b_flags & XBF_FS_MANAGED) {
1da177e4 839 spin_unlock(&hash->bh_lock);
1da177e4 840 } else {
ce8e922c
NS
841 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
842 list_del_init(&bp->b_hash_list);
1da177e4 843 spin_unlock(&hash->bh_lock);
ce8e922c 844 xfs_buf_free(bp);
1da177e4 845 }
2f926587
DC
846 } else {
847 /*
848 * Catch reference count leaks
849 */
ce8e922c 850 ASSERT(atomic_read(&bp->b_hold) >= 0);
1da177e4
LT
851 }
852}
853
854
855/*
856 * Mutual exclusion on buffers. Locking model:
857 *
858 * Buffers associated with inodes for which buffer locking
859 * is not enabled are not protected by semaphores, and are
860 * assumed to be exclusively owned by the caller. There is a
861 * spinlock in the buffer, used by the caller when concurrent
862 * access is possible.
863 */
864
865/*
ce8e922c
NS
866 * Locks a buffer object, if it is not already locked.
867 * Note that this in no way locks the underlying pages, so it is only
868 * useful for synchronizing concurrent use of buffer objects, not for
869 * synchronizing independent access to the underlying pages.
1da177e4
LT
870 */
871int
ce8e922c
NS
872xfs_buf_cond_lock(
873 xfs_buf_t *bp)
1da177e4
LT
874{
875 int locked;
876
ce8e922c 877 locked = down_trylock(&bp->b_sema) == 0;
1da177e4 878 if (locked) {
ce8e922c 879 XB_SET_OWNER(bp);
1da177e4 880 }
ce8e922c
NS
881 XB_TRACE(bp, "cond_lock", (long)locked);
882 return locked ? 0 : -EBUSY;
1da177e4
LT
883}
884
885#if defined(DEBUG) || defined(XFS_BLI_TRACE)
1da177e4 886int
ce8e922c
NS
887xfs_buf_lock_value(
888 xfs_buf_t *bp)
1da177e4 889{
ce8e922c 890 return atomic_read(&bp->b_sema.count);
1da177e4
LT
891}
892#endif
893
894/*
ce8e922c
NS
895 * Locks a buffer object.
896 * Note that this in no way locks the underlying pages, so it is only
897 * useful for synchronizing concurrent use of buffer objects, not for
898 * synchronizing independent access to the underlying pages.
1da177e4 899 */
ce8e922c
NS
900void
901xfs_buf_lock(
902 xfs_buf_t *bp)
1da177e4 903{
ce8e922c
NS
904 XB_TRACE(bp, "lock", 0);
905 if (atomic_read(&bp->b_io_remaining))
906 blk_run_address_space(bp->b_target->bt_mapping);
907 down(&bp->b_sema);
908 XB_SET_OWNER(bp);
909 XB_TRACE(bp, "locked", 0);
1da177e4
LT
910}
911
912/*
ce8e922c 913 * Releases the lock on the buffer object.
2f926587 914 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 915 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
916 * take a reference for the delwri queue because the unlocker is going to
917 * drop their's and they don't know we just queued it.
1da177e4
LT
918 */
919void
ce8e922c
NS
920xfs_buf_unlock(
921 xfs_buf_t *bp)
1da177e4 922{
ce8e922c
NS
923 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
924 atomic_inc(&bp->b_hold);
925 bp->b_flags |= XBF_ASYNC;
926 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
927 }
928
ce8e922c
NS
929 XB_CLEAR_OWNER(bp);
930 up(&bp->b_sema);
931 XB_TRACE(bp, "unlock", 0);
1da177e4
LT
932}
933
934
935/*
936 * Pinning Buffer Storage in Memory
ce8e922c 937 * Ensure that no attempt to force a buffer to disk will succeed.
1da177e4
LT
938 */
939void
ce8e922c
NS
940xfs_buf_pin(
941 xfs_buf_t *bp)
1da177e4 942{
ce8e922c
NS
943 atomic_inc(&bp->b_pin_count);
944 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
1da177e4
LT
945}
946
1da177e4 947void
ce8e922c
NS
948xfs_buf_unpin(
949 xfs_buf_t *bp)
1da177e4 950{
ce8e922c
NS
951 if (atomic_dec_and_test(&bp->b_pin_count))
952 wake_up_all(&bp->b_waiters);
953 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
1da177e4
LT
954}
955
956int
ce8e922c
NS
957xfs_buf_ispin(
958 xfs_buf_t *bp)
1da177e4 959{
ce8e922c 960 return atomic_read(&bp->b_pin_count);
1da177e4
LT
961}
962
ce8e922c
NS
963STATIC void
964xfs_buf_wait_unpin(
965 xfs_buf_t *bp)
1da177e4
LT
966{
967 DECLARE_WAITQUEUE (wait, current);
968
ce8e922c 969 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
970 return;
971
ce8e922c 972 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
973 for (;;) {
974 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 975 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 976 break;
ce8e922c
NS
977 if (atomic_read(&bp->b_io_remaining))
978 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
979 schedule();
980 }
ce8e922c 981 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
982 set_current_state(TASK_RUNNING);
983}
984
985/*
986 * Buffer Utility Routines
987 */
988
1da177e4 989STATIC void
ce8e922c 990xfs_buf_iodone_work(
c4028958 991 struct work_struct *work)
1da177e4 992{
c4028958
DH
993 xfs_buf_t *bp =
994 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 995
ce8e922c
NS
996 if (bp->b_iodone)
997 (*(bp->b_iodone))(bp);
998 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
999 xfs_buf_relse(bp);
1000}
1001
1002void
ce8e922c
NS
1003xfs_buf_ioend(
1004 xfs_buf_t *bp,
1da177e4
LT
1005 int schedule)
1006{
ce8e922c
NS
1007 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1008 if (bp->b_error == 0)
1009 bp->b_flags |= XBF_DONE;
1da177e4 1010
ce8e922c 1011 XB_TRACE(bp, "iodone", bp->b_iodone);
1da177e4 1012
ce8e922c 1013 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1014 if (schedule) {
c4028958 1015 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1016 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1017 } else {
c4028958 1018 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1019 }
1020 } else {
ce8e922c 1021 up(&bp->b_iodonesema);
1da177e4
LT
1022 }
1023}
1024
1da177e4 1025void
ce8e922c
NS
1026xfs_buf_ioerror(
1027 xfs_buf_t *bp,
1028 int error)
1da177e4
LT
1029{
1030 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c
NS
1031 bp->b_error = (unsigned short)error;
1032 XB_TRACE(bp, "ioerror", (unsigned long)error);
1da177e4
LT
1033}
1034
1035/*
ce8e922c
NS
1036 * Initiate I/O on a buffer, based on the flags supplied.
1037 * The b_iodone routine in the buffer supplied will only be called
1da177e4 1038 * when all of the subsidiary I/O requests, if any, have been completed.
1da177e4
LT
1039 */
1040int
ce8e922c
NS
1041xfs_buf_iostart(
1042 xfs_buf_t *bp,
1043 xfs_buf_flags_t flags)
1da177e4
LT
1044{
1045 int status = 0;
1046
ce8e922c 1047 XB_TRACE(bp, "iostart", (unsigned long)flags);
1da177e4 1048
ce8e922c
NS
1049 if (flags & XBF_DELWRI) {
1050 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1051 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1052 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1053 return status;
1054 }
1055
ce8e922c
NS
1056 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1057 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1058 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1059 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1da177e4 1060
ce8e922c 1061 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1da177e4
LT
1062
1063 /* For writes allow an alternate strategy routine to precede
1064 * the actual I/O request (which may not be issued at all in
1065 * a shutdown situation, for example).
1066 */
ce8e922c
NS
1067 status = (flags & XBF_WRITE) ?
1068 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1da177e4
LT
1069
1070 /* Wait for I/O if we are not an async request.
1071 * Note: async I/O request completion will release the buffer,
1072 * and that can already be done by this point. So using the
1073 * buffer pointer from here on, after async I/O, is invalid.
1074 */
ce8e922c
NS
1075 if (!status && !(flags & XBF_ASYNC))
1076 status = xfs_buf_iowait(bp);
1da177e4
LT
1077
1078 return status;
1079}
1080
7989cb8e 1081STATIC_INLINE int
ce8e922c
NS
1082_xfs_buf_iolocked(
1083 xfs_buf_t *bp)
1da177e4 1084{
ce8e922c
NS
1085 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1086 if (bp->b_flags & XBF_READ)
1087 return bp->b_locked;
1da177e4
LT
1088 return 0;
1089}
1090
7989cb8e 1091STATIC_INLINE void
ce8e922c
NS
1092_xfs_buf_ioend(
1093 xfs_buf_t *bp,
1da177e4
LT
1094 int schedule)
1095{
ce8e922c
NS
1096 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1097 bp->b_locked = 0;
1098 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1099 }
1100}
1101
1102STATIC int
ce8e922c 1103xfs_buf_bio_end_io(
1da177e4
LT
1104 struct bio *bio,
1105 unsigned int bytes_done,
1106 int error)
1107{
ce8e922c
NS
1108 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1109 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1110 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4
LT
1111
1112 if (bio->bi_size)
1113 return 1;
1114
1115 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
ce8e922c 1116 bp->b_error = EIO;
1da177e4 1117
eedb5530 1118 do {
1da177e4
LT
1119 struct page *page = bvec->bv_page;
1120
948ecdb4 1121 ASSERT(!PagePrivate(page));
ce8e922c
NS
1122 if (unlikely(bp->b_error)) {
1123 if (bp->b_flags & XBF_READ)
eedb5530 1124 ClearPageUptodate(page);
ce8e922c 1125 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1126 SetPageUptodate(page);
1127 } else if (!PagePrivate(page) &&
ce8e922c 1128 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1129 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1130 }
1131
eedb5530
NS
1132 if (--bvec >= bio->bi_io_vec)
1133 prefetchw(&bvec->bv_page->flags);
1134
ce8e922c 1135 if (_xfs_buf_iolocked(bp)) {
1da177e4
LT
1136 unlock_page(page);
1137 }
eedb5530 1138 } while (bvec >= bio->bi_io_vec);
1da177e4 1139
ce8e922c 1140 _xfs_buf_ioend(bp, 1);
1da177e4
LT
1141 bio_put(bio);
1142 return 0;
1143}
1144
1145STATIC void
ce8e922c
NS
1146_xfs_buf_ioapply(
1147 xfs_buf_t *bp)
1da177e4
LT
1148{
1149 int i, rw, map_i, total_nr_pages, nr_pages;
1150 struct bio *bio;
ce8e922c
NS
1151 int offset = bp->b_offset;
1152 int size = bp->b_count_desired;
1153 sector_t sector = bp->b_bn;
1154 unsigned int blocksize = bp->b_target->bt_bsize;
1155 int locking = _xfs_buf_iolocked(bp);
1da177e4 1156
ce8e922c 1157 total_nr_pages = bp->b_page_count;
1da177e4
LT
1158 map_i = 0;
1159
ce8e922c
NS
1160 if (bp->b_flags & XBF_ORDERED) {
1161 ASSERT(!(bp->b_flags & XBF_READ));
f538d4da 1162 rw = WRITE_BARRIER;
51bdd706
NS
1163 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1164 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1165 bp->b_flags &= ~_XBF_RUN_QUEUES;
1166 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1167 } else {
1168 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1169 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1170 }
1171
ce8e922c 1172 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1173 * we populate up the whole page, and hence the other metadata
1174 * in the same page. This optimization is only valid when the
ce8e922c 1175 * filesystem block size is not smaller than the page size.
1da177e4 1176 */
ce8e922c
NS
1177 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1178 (bp->b_flags & XBF_READ) && locking &&
1179 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1180 bio = bio_alloc(GFP_NOIO, 1);
1181
ce8e922c 1182 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1183 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1184 bio->bi_end_io = xfs_buf_bio_end_io;
1185 bio->bi_private = bp;
1da177e4 1186
ce8e922c 1187 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1188 size = 0;
1189
ce8e922c 1190 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1191
1192 goto submit_io;
1193 }
1194
1195 /* Lock down the pages which we need to for the request */
ce8e922c 1196 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1da177e4
LT
1197 for (i = 0; size; i++) {
1198 int nbytes = PAGE_CACHE_SIZE - offset;
ce8e922c 1199 struct page *page = bp->b_pages[i];
1da177e4
LT
1200
1201 if (nbytes > size)
1202 nbytes = size;
1203
1204 lock_page(page);
1205
1206 size -= nbytes;
1207 offset = 0;
1208 }
ce8e922c
NS
1209 offset = bp->b_offset;
1210 size = bp->b_count_desired;
1da177e4
LT
1211 }
1212
1213next_chunk:
ce8e922c 1214 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1215 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1216 if (nr_pages > total_nr_pages)
1217 nr_pages = total_nr_pages;
1218
1219 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1220 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1221 bio->bi_sector = sector;
ce8e922c
NS
1222 bio->bi_end_io = xfs_buf_bio_end_io;
1223 bio->bi_private = bp;
1da177e4
LT
1224
1225 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1226 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1227
1228 if (nbytes > size)
1229 nbytes = size;
1230
ce8e922c
NS
1231 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1232 if (rbytes < nbytes)
1da177e4
LT
1233 break;
1234
1235 offset = 0;
1236 sector += nbytes >> BBSHIFT;
1237 size -= nbytes;
1238 total_nr_pages--;
1239 }
1240
1241submit_io:
1242 if (likely(bio->bi_size)) {
1243 submit_bio(rw, bio);
1244 if (size)
1245 goto next_chunk;
1246 } else {
1247 bio_put(bio);
ce8e922c 1248 xfs_buf_ioerror(bp, EIO);
1da177e4
LT
1249 }
1250}
1251
1da177e4 1252int
ce8e922c
NS
1253xfs_buf_iorequest(
1254 xfs_buf_t *bp)
1da177e4 1255{
ce8e922c 1256 XB_TRACE(bp, "iorequest", 0);
1da177e4 1257
ce8e922c
NS
1258 if (bp->b_flags & XBF_DELWRI) {
1259 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1260 return 0;
1261 }
1262
ce8e922c
NS
1263 if (bp->b_flags & XBF_WRITE) {
1264 xfs_buf_wait_unpin(bp);
1da177e4
LT
1265 }
1266
ce8e922c 1267 xfs_buf_hold(bp);
1da177e4
LT
1268
1269 /* Set the count to 1 initially, this will stop an I/O
1270 * completion callout which happens before we have started
ce8e922c 1271 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1272 */
ce8e922c
NS
1273 atomic_set(&bp->b_io_remaining, 1);
1274 _xfs_buf_ioapply(bp);
1275 _xfs_buf_ioend(bp, 0);
1da177e4 1276
ce8e922c 1277 xfs_buf_rele(bp);
1da177e4
LT
1278 return 0;
1279}
1280
1281/*
ce8e922c
NS
1282 * Waits for I/O to complete on the buffer supplied.
1283 * It returns immediately if no I/O is pending.
1284 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1285 */
1286int
ce8e922c
NS
1287xfs_buf_iowait(
1288 xfs_buf_t *bp)
1da177e4 1289{
ce8e922c
NS
1290 XB_TRACE(bp, "iowait", 0);
1291 if (atomic_read(&bp->b_io_remaining))
1292 blk_run_address_space(bp->b_target->bt_mapping);
1293 down(&bp->b_iodonesema);
1294 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1295 return bp->b_error;
1da177e4
LT
1296}
1297
ce8e922c
NS
1298xfs_caddr_t
1299xfs_buf_offset(
1300 xfs_buf_t *bp,
1da177e4
LT
1301 size_t offset)
1302{
1303 struct page *page;
1304
ce8e922c
NS
1305 if (bp->b_flags & XBF_MAPPED)
1306 return XFS_BUF_PTR(bp) + offset;
1da177e4 1307
ce8e922c
NS
1308 offset += bp->b_offset;
1309 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1310 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1311}
1312
1313/*
1da177e4
LT
1314 * Move data into or out of a buffer.
1315 */
1316void
ce8e922c
NS
1317xfs_buf_iomove(
1318 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1319 size_t boff, /* starting buffer offset */
1320 size_t bsize, /* length to copy */
1321 caddr_t data, /* data address */
ce8e922c 1322 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1323{
1324 size_t bend, cpoff, csize;
1325 struct page *page;
1326
1327 bend = boff + bsize;
1328 while (boff < bend) {
ce8e922c
NS
1329 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1330 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1331 csize = min_t(size_t,
ce8e922c 1332 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1333
1334 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1335
1336 switch (mode) {
ce8e922c 1337 case XBRW_ZERO:
1da177e4
LT
1338 memset(page_address(page) + cpoff, 0, csize);
1339 break;
ce8e922c 1340 case XBRW_READ:
1da177e4
LT
1341 memcpy(data, page_address(page) + cpoff, csize);
1342 break;
ce8e922c 1343 case XBRW_WRITE:
1da177e4
LT
1344 memcpy(page_address(page) + cpoff, data, csize);
1345 }
1346
1347 boff += csize;
1348 data += csize;
1349 }
1350}
1351
1352/*
ce8e922c 1353 * Handling of buffer targets (buftargs).
1da177e4
LT
1354 */
1355
1356/*
ce8e922c
NS
1357 * Wait for any bufs with callbacks that have been submitted but
1358 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1359 */
1360void
1361xfs_wait_buftarg(
1362 xfs_buftarg_t *btp)
1363{
1364 xfs_buf_t *bp, *n;
1365 xfs_bufhash_t *hash;
1366 uint i;
1367
1368 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1369 hash = &btp->bt_hash[i];
1370again:
1371 spin_lock(&hash->bh_lock);
ce8e922c
NS
1372 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1373 ASSERT(btp == bp->b_target);
1374 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1da177e4 1375 spin_unlock(&hash->bh_lock);
2f926587
DC
1376 /*
1377 * Catch superblock reference count leaks
1378 * immediately
1379 */
ce8e922c 1380 BUG_ON(bp->b_bn == 0);
1da177e4
LT
1381 delay(100);
1382 goto again;
1383 }
1384 }
1385 spin_unlock(&hash->bh_lock);
1386 }
1387}
1388
1389/*
ce8e922c
NS
1390 * Allocate buffer hash table for a given target.
1391 * For devices containing metadata (i.e. not the log/realtime devices)
1392 * we need to allocate a much larger hash table.
1da177e4
LT
1393 */
1394STATIC void
1395xfs_alloc_bufhash(
1396 xfs_buftarg_t *btp,
1397 int external)
1398{
1399 unsigned int i;
1400
1401 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1402 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1403 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
93c189c1 1404 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1da177e4
LT
1405 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1406 spin_lock_init(&btp->bt_hash[i].bh_lock);
1407 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1408 }
1409}
1410
1411STATIC void
1412xfs_free_bufhash(
1413 xfs_buftarg_t *btp)
1414{
ce8e922c 1415 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1da177e4
LT
1416 btp->bt_hash = NULL;
1417}
1418
a6867a68 1419/*
ce8e922c 1420 * buftarg list for delwrite queue processing
a6867a68 1421 */
e6a0e9cd 1422static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1423static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1424
1425STATIC void
1426xfs_register_buftarg(
1427 xfs_buftarg_t *btp)
1428{
1429 spin_lock(&xfs_buftarg_lock);
1430 list_add(&btp->bt_list, &xfs_buftarg_list);
1431 spin_unlock(&xfs_buftarg_lock);
1432}
1433
1434STATIC void
1435xfs_unregister_buftarg(
1436 xfs_buftarg_t *btp)
1437{
1438 spin_lock(&xfs_buftarg_lock);
1439 list_del(&btp->bt_list);
1440 spin_unlock(&xfs_buftarg_lock);
1441}
1442
1da177e4
LT
1443void
1444xfs_free_buftarg(
1445 xfs_buftarg_t *btp,
1446 int external)
1447{
1448 xfs_flush_buftarg(btp, 1);
1449 if (external)
ce8e922c 1450 xfs_blkdev_put(btp->bt_bdev);
1da177e4 1451 xfs_free_bufhash(btp);
ce8e922c 1452 iput(btp->bt_mapping->host);
a6867a68 1453
ce8e922c
NS
1454 /* Unregister the buftarg first so that we don't get a
1455 * wakeup finding a non-existent task
1456 */
a6867a68
DC
1457 xfs_unregister_buftarg(btp);
1458 kthread_stop(btp->bt_task);
1459
1da177e4
LT
1460 kmem_free(btp, sizeof(*btp));
1461}
1462
1da177e4
LT
1463STATIC int
1464xfs_setsize_buftarg_flags(
1465 xfs_buftarg_t *btp,
1466 unsigned int blocksize,
1467 unsigned int sectorsize,
1468 int verbose)
1469{
ce8e922c
NS
1470 btp->bt_bsize = blocksize;
1471 btp->bt_sshift = ffs(sectorsize) - 1;
1472 btp->bt_smask = sectorsize - 1;
1da177e4 1473
ce8e922c 1474 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1475 printk(KERN_WARNING
1476 "XFS: Cannot set_blocksize to %u on device %s\n",
1477 sectorsize, XFS_BUFTARG_NAME(btp));
1478 return EINVAL;
1479 }
1480
1481 if (verbose &&
1482 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1483 printk(KERN_WARNING
1484 "XFS: %u byte sectors in use on device %s. "
1485 "This is suboptimal; %u or greater is ideal.\n",
1486 sectorsize, XFS_BUFTARG_NAME(btp),
1487 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1488 }
1489
1490 return 0;
1491}
1492
1493/*
ce8e922c
NS
1494 * When allocating the initial buffer target we have not yet
1495 * read in the superblock, so don't know what sized sectors
1496 * are being used is at this early stage. Play safe.
1497 */
1da177e4
LT
1498STATIC int
1499xfs_setsize_buftarg_early(
1500 xfs_buftarg_t *btp,
1501 struct block_device *bdev)
1502{
1503 return xfs_setsize_buftarg_flags(btp,
1504 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1505}
1506
1507int
1508xfs_setsize_buftarg(
1509 xfs_buftarg_t *btp,
1510 unsigned int blocksize,
1511 unsigned int sectorsize)
1512{
1513 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1514}
1515
1516STATIC int
1517xfs_mapping_buftarg(
1518 xfs_buftarg_t *btp,
1519 struct block_device *bdev)
1520{
1521 struct backing_dev_info *bdi;
1522 struct inode *inode;
1523 struct address_space *mapping;
f5e54d6e 1524 static const struct address_space_operations mapping_aops = {
1da177e4 1525 .sync_page = block_sync_page,
e965f963 1526 .migratepage = fail_migrate_page,
1da177e4
LT
1527 };
1528
1529 inode = new_inode(bdev->bd_inode->i_sb);
1530 if (!inode) {
1531 printk(KERN_WARNING
1532 "XFS: Cannot allocate mapping inode for device %s\n",
1533 XFS_BUFTARG_NAME(btp));
1534 return ENOMEM;
1535 }
1536 inode->i_mode = S_IFBLK;
1537 inode->i_bdev = bdev;
1538 inode->i_rdev = bdev->bd_dev;
1539 bdi = blk_get_backing_dev_info(bdev);
1540 if (!bdi)
1541 bdi = &default_backing_dev_info;
1542 mapping = &inode->i_data;
1543 mapping->a_ops = &mapping_aops;
1544 mapping->backing_dev_info = bdi;
1545 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1546 btp->bt_mapping = mapping;
1da177e4
LT
1547 return 0;
1548}
1549
a6867a68
DC
1550STATIC int
1551xfs_alloc_delwrite_queue(
1552 xfs_buftarg_t *btp)
1553{
1554 int error = 0;
1555
1556 INIT_LIST_HEAD(&btp->bt_list);
1557 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1558 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1559 btp->bt_flags = 0;
1560 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1561 if (IS_ERR(btp->bt_task)) {
1562 error = PTR_ERR(btp->bt_task);
1563 goto out_error;
1564 }
1565 xfs_register_buftarg(btp);
1566out_error:
1567 return error;
1568}
1569
1da177e4
LT
1570xfs_buftarg_t *
1571xfs_alloc_buftarg(
1572 struct block_device *bdev,
1573 int external)
1574{
1575 xfs_buftarg_t *btp;
1576
1577 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1578
ce8e922c
NS
1579 btp->bt_dev = bdev->bd_dev;
1580 btp->bt_bdev = bdev;
1da177e4
LT
1581 if (xfs_setsize_buftarg_early(btp, bdev))
1582 goto error;
1583 if (xfs_mapping_buftarg(btp, bdev))
1584 goto error;
a6867a68
DC
1585 if (xfs_alloc_delwrite_queue(btp))
1586 goto error;
1da177e4
LT
1587 xfs_alloc_bufhash(btp, external);
1588 return btp;
1589
1590error:
1591 kmem_free(btp, sizeof(*btp));
1592 return NULL;
1593}
1594
1595
1596/*
ce8e922c 1597 * Delayed write buffer handling
1da177e4 1598 */
1da177e4 1599STATIC void
ce8e922c
NS
1600xfs_buf_delwri_queue(
1601 xfs_buf_t *bp,
1da177e4
LT
1602 int unlock)
1603{
ce8e922c
NS
1604 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1605 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1606
ce8e922c
NS
1607 XB_TRACE(bp, "delwri_q", (long)unlock);
1608 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1609
a6867a68 1610 spin_lock(dwlk);
1da177e4 1611 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1612 if (!list_empty(&bp->b_list)) {
1613 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1614 if (unlock)
1615 atomic_dec(&bp->b_hold);
1616 list_del(&bp->b_list);
1da177e4
LT
1617 }
1618
ce8e922c
NS
1619 bp->b_flags |= _XBF_DELWRI_Q;
1620 list_add_tail(&bp->b_list, dwq);
1621 bp->b_queuetime = jiffies;
a6867a68 1622 spin_unlock(dwlk);
1da177e4
LT
1623
1624 if (unlock)
ce8e922c 1625 xfs_buf_unlock(bp);
1da177e4
LT
1626}
1627
1628void
ce8e922c
NS
1629xfs_buf_delwri_dequeue(
1630 xfs_buf_t *bp)
1da177e4 1631{
ce8e922c 1632 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1633 int dequeued = 0;
1634
a6867a68 1635 spin_lock(dwlk);
ce8e922c
NS
1636 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1637 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1638 list_del_init(&bp->b_list);
1da177e4
LT
1639 dequeued = 1;
1640 }
ce8e922c 1641 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1642 spin_unlock(dwlk);
1da177e4
LT
1643
1644 if (dequeued)
ce8e922c 1645 xfs_buf_rele(bp);
1da177e4 1646
ce8e922c 1647 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1da177e4
LT
1648}
1649
1650STATIC void
ce8e922c 1651xfs_buf_runall_queues(
1da177e4
LT
1652 struct workqueue_struct *queue)
1653{
1654 flush_workqueue(queue);
1655}
1656
1da177e4 1657STATIC int
23ea4032 1658xfsbufd_wakeup(
15c84a47
NS
1659 int priority,
1660 gfp_t mask)
1da177e4 1661{
da7f93e9 1662 xfs_buftarg_t *btp;
a6867a68
DC
1663
1664 spin_lock(&xfs_buftarg_lock);
da7f93e9 1665 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1666 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1667 continue;
ce8e922c 1668 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1669 wake_up_process(btp->bt_task);
1670 }
1671 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1672 return 0;
1673}
1674
585e6d88
DC
1675/*
1676 * Move as many buffers as specified to the supplied list
1677 * idicating if we skipped any buffers to prevent deadlocks.
1678 */
1679STATIC int
1680xfs_buf_delwri_split(
1681 xfs_buftarg_t *target,
1682 struct list_head *list,
5e6a07df 1683 unsigned long age)
585e6d88
DC
1684{
1685 xfs_buf_t *bp, *n;
1686 struct list_head *dwq = &target->bt_delwrite_queue;
1687 spinlock_t *dwlk = &target->bt_delwrite_lock;
1688 int skipped = 0;
5e6a07df 1689 int force;
585e6d88 1690
5e6a07df 1691 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1692 INIT_LIST_HEAD(list);
1693 spin_lock(dwlk);
1694 list_for_each_entry_safe(bp, n, dwq, b_list) {
1695 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1696 ASSERT(bp->b_flags & XBF_DELWRI);
1697
1698 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1699 if (!force &&
585e6d88
DC
1700 time_before(jiffies, bp->b_queuetime + age)) {
1701 xfs_buf_unlock(bp);
1702 break;
1703 }
1704
1705 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1706 _XBF_RUN_QUEUES);
1707 bp->b_flags |= XBF_WRITE;
1708 list_move_tail(&bp->b_list, list);
1709 } else
1710 skipped++;
1711 }
1712 spin_unlock(dwlk);
1713
1714 return skipped;
1715
1716}
1717
1da177e4 1718STATIC int
23ea4032 1719xfsbufd(
585e6d88 1720 void *data)
1da177e4 1721{
585e6d88
DC
1722 struct list_head tmp;
1723 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1724 int count;
1725 xfs_buf_t *bp;
1da177e4 1726
1da177e4
LT
1727 current->flags |= PF_MEMALLOC;
1728
1da177e4 1729 do {
3e1d1d28 1730 if (unlikely(freezing(current))) {
ce8e922c 1731 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1732 refrigerator();
abd0cf7a 1733 } else {
ce8e922c 1734 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1735 }
1da177e4 1736
15c84a47
NS
1737 schedule_timeout_interruptible(
1738 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1da177e4 1739
585e6d88 1740 xfs_buf_delwri_split(target, &tmp,
5e6a07df 1741 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1da177e4 1742
585e6d88 1743 count = 0;
1da177e4 1744 while (!list_empty(&tmp)) {
ce8e922c
NS
1745 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1746 ASSERT(target == bp->b_target);
1da177e4 1747
ce8e922c
NS
1748 list_del_init(&bp->b_list);
1749 xfs_buf_iostrategy(bp);
585e6d88 1750 count++;
1da177e4
LT
1751 }
1752
1753 if (as_list_len > 0)
1754 purge_addresses();
f07c2250
NS
1755 if (count)
1756 blk_run_address_space(target->bt_mapping);
1da177e4 1757
4df08c52 1758 } while (!kthread_should_stop());
1da177e4 1759
4df08c52 1760 return 0;
1da177e4
LT
1761}
1762
1763/*
ce8e922c
NS
1764 * Go through all incore buffers, and release buffers if they belong to
1765 * the given device. This is used in filesystem error handling to
1766 * preserve the consistency of its metadata.
1da177e4
LT
1767 */
1768int
1769xfs_flush_buftarg(
585e6d88
DC
1770 xfs_buftarg_t *target,
1771 int wait)
1da177e4 1772{
585e6d88
DC
1773 struct list_head tmp;
1774 xfs_buf_t *bp, *n;
1775 int pincount = 0;
1da177e4 1776
ce8e922c
NS
1777 xfs_buf_runall_queues(xfsdatad_workqueue);
1778 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1779
5e6a07df
DC
1780 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1781 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1da177e4
LT
1782
1783 /*
1784 * Dropped the delayed write list lock, now walk the temporary list
1785 */
ce8e922c 1786 list_for_each_entry_safe(bp, n, &tmp, b_list) {
585e6d88 1787 ASSERT(target == bp->b_target);
1da177e4 1788 if (wait)
ce8e922c 1789 bp->b_flags &= ~XBF_ASYNC;
1da177e4 1790 else
ce8e922c 1791 list_del_init(&bp->b_list);
1da177e4 1792
ce8e922c 1793 xfs_buf_iostrategy(bp);
1da177e4
LT
1794 }
1795
f07c2250
NS
1796 if (wait)
1797 blk_run_address_space(target->bt_mapping);
1798
1da177e4
LT
1799 /*
1800 * Remaining list items must be flushed before returning
1801 */
1802 while (!list_empty(&tmp)) {
ce8e922c 1803 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1da177e4 1804
ce8e922c
NS
1805 list_del_init(&bp->b_list);
1806 xfs_iowait(bp);
1807 xfs_buf_relse(bp);
1da177e4
LT
1808 }
1809
1da177e4
LT
1810 return pincount;
1811}
1812
04d8b284 1813int __init
ce8e922c 1814xfs_buf_init(void)
1da177e4 1815{
ce8e922c
NS
1816#ifdef XFS_BUF_TRACE
1817 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
04d8b284
CH
1818#endif
1819
8758280f
NS
1820 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1821 KM_ZONE_HWALIGN, NULL);
ce8e922c 1822 if (!xfs_buf_zone)
04d8b284
CH
1823 goto out_free_trace_buf;
1824
b4337692 1825 xfslogd_workqueue = create_workqueue("xfslogd");
23ea4032 1826 if (!xfslogd_workqueue)
04d8b284 1827 goto out_free_buf_zone;
1da177e4 1828
b4337692 1829 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1830 if (!xfsdatad_workqueue)
1831 goto out_destroy_xfslogd_workqueue;
1da177e4 1832
ce8e922c
NS
1833 xfs_buf_shake = kmem_shake_register(xfsbufd_wakeup);
1834 if (!xfs_buf_shake)
a6867a68 1835 goto out_destroy_xfsdatad_workqueue;
04d8b284 1836
23ea4032 1837 return 0;
1da177e4 1838
23ea4032
CH
1839 out_destroy_xfsdatad_workqueue:
1840 destroy_workqueue(xfsdatad_workqueue);
1841 out_destroy_xfslogd_workqueue:
1842 destroy_workqueue(xfslogd_workqueue);
23ea4032 1843 out_free_buf_zone:
ce8e922c 1844 kmem_zone_destroy(xfs_buf_zone);
04d8b284 1845 out_free_trace_buf:
ce8e922c
NS
1846#ifdef XFS_BUF_TRACE
1847 ktrace_free(xfs_buf_trace_buf);
23ea4032 1848#endif
8758280f 1849 return -ENOMEM;
1da177e4
LT
1850}
1851
1da177e4 1852void
ce8e922c 1853xfs_buf_terminate(void)
1da177e4 1854{
ce8e922c 1855 kmem_shake_deregister(xfs_buf_shake);
04d8b284
CH
1856 destroy_workqueue(xfsdatad_workqueue);
1857 destroy_workqueue(xfslogd_workqueue);
ce8e922c
NS
1858 kmem_zone_destroy(xfs_buf_zone);
1859#ifdef XFS_BUF_TRACE
1860 ktrace_free(xfs_buf_trace_buf);
1da177e4 1861#endif
1da177e4 1862}
e6a0e9cd
TS
1863
1864#ifdef CONFIG_KDB_MODULES
1865struct list_head *
1866xfs_get_buftarg_list(void)
1867{
1868 return &xfs_buftarg_list;
1869}
1870#endif