xfs: convert pag_ici_lock to a spin lock
[linux-block.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
7f8275d0 47STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
ce8e922c 48STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
8e1f936b
RR
49static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52};
23ea4032 53
7989cb8e 54static struct workqueue_struct *xfslogd_workqueue;
0829c360 55struct workqueue_struct *xfsdatad_workqueue;
c626d174 56struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 57
ce8e922c
NS
58#ifdef XFS_BUF_LOCK_TRACKING
59# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 62#else
ce8e922c
NS
63# define XB_SET_OWNER(bp) do { } while (0)
64# define XB_CLEAR_OWNER(bp) do { } while (0)
65# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
66#endif
67
ce8e922c
NS
68#define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 71
ce8e922c
NS
72#define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 74
ce8e922c
NS
75#define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77#define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 79
73c77e2c
JB
80static inline int
81xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83{
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92}
93
94static inline int
95xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97{
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99}
100
1da177e4 101/*
ce8e922c 102 * Page Region interfaces.
1da177e4 103 *
ce8e922c
NS
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
1da177e4 107 *
ce8e922c 108 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 109 *
ce8e922c
NS
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
113 */
114#if (BITS_PER_LONG == 32)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116#elif (BITS_PER_LONG == 64)
117#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118#else
119#error BITS_PER_LONG must be 32 or 64
120#endif
121#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125STATIC unsigned long
126page_region_mask(
127 size_t offset,
128 size_t length)
129{
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145}
146
b8f82a4a 147STATIC void
1da177e4
LT
148set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152{
4c21e2f2
HD
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
1da177e4
LT
156 SetPageUptodate(page);
157}
158
b8f82a4a 159STATIC int
1da177e4
LT
160test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164{
165 unsigned long mask = page_region_mask(offset, length);
166
4c21e2f2 167 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
168}
169
1da177e4 170/*
ce8e922c 171 * Internal xfs_buf_t object manipulation
1da177e4
LT
172 */
173
174STATIC void
ce8e922c
NS
175_xfs_buf_initialize(
176 xfs_buf_t *bp,
1da177e4 177 xfs_buftarg_t *target,
204ab25f 178 xfs_off_t range_base,
1da177e4 179 size_t range_length,
ce8e922c 180 xfs_buf_flags_t flags)
1da177e4
LT
181{
182 /*
ce8e922c 183 * We don't want certain flags to appear in b_flags.
1da177e4 184 */
ce8e922c
NS
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
b4dd330b 189 init_completion(&bp->b_iowait);
ce8e922c 190 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 191 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 192 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
1da177e4
LT
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
ce8e922c
NS
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
0b1b213f
CH
208
209 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c
NS
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
1da177e4 228 } else {
ce8e922c
NS
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
1da177e4
LT
232 return -ENOMEM;
233 }
ce8e922c 234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
235 }
236 return 0;
237}
238
239/*
ce8e922c 240 * Frees b_pages if it was allocated.
1da177e4
LT
241 */
242STATIC void
ce8e922c 243_xfs_buf_free_pages(
1da177e4
LT
244 xfs_buf_t *bp)
245{
ce8e922c 246 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 247 kmem_free(bp->b_pages);
3fc98b1a 248 bp->b_pages = NULL;
1da177e4
LT
249 }
250}
251
252/*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
ce8e922c 256 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
257 * hashed and refcounted buffers
258 */
259void
ce8e922c 260xfs_buf_free(
1da177e4
LT
261 xfs_buf_t *bp)
262{
0b1b213f 263 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 264
1fa40b01 265 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
266 uint i;
267
73c77e2c 268 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
1da177e4 271
948ecdb4
NS
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
1fa40b01
CH
275 if (bp->b_flags & _XBF_PAGE_CACHE)
276 ASSERT(!PagePrivate(page));
948ecdb4
NS
277 page_cache_release(page);
278 }
1da177e4 279 }
3fc98b1a 280 _xfs_buf_free_pages(bp);
ce8e922c 281 xfs_buf_deallocate(bp);
1da177e4
LT
282}
283
284/*
285 * Finds all pages for buffer in question and builds it's page list.
286 */
287STATIC int
ce8e922c 288_xfs_buf_lookup_pages(
1da177e4
LT
289 xfs_buf_t *bp,
290 uint flags)
291{
ce8e922c
NS
292 struct address_space *mapping = bp->b_target->bt_mapping;
293 size_t blocksize = bp->b_target->bt_bsize;
294 size_t size = bp->b_count_desired;
1da177e4 295 size_t nbytes, offset;
ce8e922c 296 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
297 unsigned short page_count, i;
298 pgoff_t first;
204ab25f 299 xfs_off_t end;
1da177e4
LT
300 int error;
301
ce8e922c
NS
302 end = bp->b_file_offset + bp->b_buffer_length;
303 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 304
ce8e922c 305 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
306 if (unlikely(error))
307 return error;
ce8e922c 308 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 309
ce8e922c
NS
310 offset = bp->b_offset;
311 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 312
ce8e922c 313 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
314 struct page *page;
315 uint retries = 0;
316
317 retry:
318 page = find_or_create_page(mapping, first + i, gfp_mask);
319 if (unlikely(page == NULL)) {
ce8e922c
NS
320 if (flags & XBF_READ_AHEAD) {
321 bp->b_page_count = i;
6ab455ee
CH
322 for (i = 0; i < bp->b_page_count; i++)
323 unlock_page(bp->b_pages[i]);
1da177e4
LT
324 return -ENOMEM;
325 }
326
327 /*
328 * This could deadlock.
329 *
330 * But until all the XFS lowlevel code is revamped to
331 * handle buffer allocation failures we can't do much.
332 */
333 if (!(++retries % 100))
334 printk(KERN_ERR
335 "XFS: possible memory allocation "
336 "deadlock in %s (mode:0x%x)\n",
34a622b2 337 __func__, gfp_mask);
1da177e4 338
ce8e922c 339 XFS_STATS_INC(xb_page_retries);
7f8275d0 340 xfsbufd_wakeup(NULL, 0, gfp_mask);
8aa7e847 341 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
342 goto retry;
343 }
344
ce8e922c 345 XFS_STATS_INC(xb_page_found);
1da177e4
LT
346
347 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
348 size -= nbytes;
349
948ecdb4 350 ASSERT(!PagePrivate(page));
1da177e4
LT
351 if (!PageUptodate(page)) {
352 page_count--;
6ab455ee
CH
353 if (blocksize >= PAGE_CACHE_SIZE) {
354 if (flags & XBF_READ)
355 bp->b_flags |= _XBF_PAGE_LOCKED;
356 } else if (!PagePrivate(page)) {
1da177e4
LT
357 if (test_page_region(page, offset, nbytes))
358 page_count++;
359 }
360 }
361
ce8e922c 362 bp->b_pages[i] = page;
1da177e4
LT
363 offset = 0;
364 }
365
6ab455ee
CH
366 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
367 for (i = 0; i < bp->b_page_count; i++)
368 unlock_page(bp->b_pages[i]);
369 }
370
ce8e922c
NS
371 if (page_count == bp->b_page_count)
372 bp->b_flags |= XBF_DONE;
1da177e4 373
1da177e4
LT
374 return error;
375}
376
377/*
378 * Map buffer into kernel address-space if nessecary.
379 */
380STATIC int
ce8e922c 381_xfs_buf_map_pages(
1da177e4
LT
382 xfs_buf_t *bp,
383 uint flags)
384{
385 /* A single page buffer is always mappable */
ce8e922c
NS
386 if (bp->b_page_count == 1) {
387 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
388 bp->b_flags |= XBF_MAPPED;
389 } else if (flags & XBF_MAPPED) {
8a262e57
AE
390 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
391 -1, PAGE_KERNEL);
ce8e922c 392 if (unlikely(bp->b_addr == NULL))
1da177e4 393 return -ENOMEM;
ce8e922c
NS
394 bp->b_addr += bp->b_offset;
395 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
396 }
397
398 return 0;
399}
400
401/*
402 * Finding and Reading Buffers
403 */
404
405/*
ce8e922c 406 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
407 * a given range of an inode. The buffer is returned
408 * locked. If other overlapping buffers exist, they are
409 * released before the new buffer is created and locked,
410 * which may imply that this call will block until those buffers
411 * are unlocked. No I/O is implied by this call.
412 */
413xfs_buf_t *
ce8e922c 414_xfs_buf_find(
1da177e4 415 xfs_buftarg_t *btp, /* block device target */
204ab25f 416 xfs_off_t ioff, /* starting offset of range */
1da177e4 417 size_t isize, /* length of range */
ce8e922c
NS
418 xfs_buf_flags_t flags,
419 xfs_buf_t *new_bp)
1da177e4 420{
204ab25f 421 xfs_off_t range_base;
1da177e4 422 size_t range_length;
74f75a0c
DC
423 struct xfs_perag *pag;
424 struct rb_node **rbp;
425 struct rb_node *parent;
426 xfs_buf_t *bp;
1da177e4
LT
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 434
74f75a0c
DC
435 /* get tree root */
436 pag = xfs_perag_get(btp->bt_mount,
437 xfs_daddr_to_agno(btp->bt_mount, ioff));
438
439 /* walk tree */
440 spin_lock(&pag->pag_buf_lock);
441 rbp = &pag->pag_buf_tree.rb_node;
442 parent = NULL;
443 bp = NULL;
444 while (*rbp) {
445 parent = *rbp;
446 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
447
448 if (range_base < bp->b_file_offset)
449 rbp = &(*rbp)->rb_left;
450 else if (range_base > bp->b_file_offset)
451 rbp = &(*rbp)->rb_right;
452 else {
453 /*
454 * found a block offset match. If the range doesn't
455 * match, the only way this is allowed is if the buffer
456 * in the cache is stale and the transaction that made
457 * it stale has not yet committed. i.e. we are
458 * reallocating a busy extent. Skip this buffer and
459 * continue searching to the right for an exact match.
460 */
461 if (bp->b_buffer_length != range_length) {
462 ASSERT(bp->b_flags & XBF_STALE);
463 rbp = &(*rbp)->rb_right;
464 continue;
465 }
ce8e922c 466 atomic_inc(&bp->b_hold);
1da177e4
LT
467 goto found;
468 }
469 }
470
471 /* No match found */
ce8e922c
NS
472 if (new_bp) {
473 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 474 range_length, flags);
74f75a0c
DC
475 rb_link_node(&new_bp->b_rbnode, parent, rbp);
476 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
477 /* the buffer keeps the perag reference until it is freed */
478 new_bp->b_pag = pag;
479 spin_unlock(&pag->pag_buf_lock);
1da177e4 480 } else {
ce8e922c 481 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
482 spin_unlock(&pag->pag_buf_lock);
483 xfs_perag_put(pag);
1da177e4 484 }
ce8e922c 485 return new_bp;
1da177e4
LT
486
487found:
74f75a0c
DC
488 spin_unlock(&pag->pag_buf_lock);
489 xfs_perag_put(pag);
1da177e4 490
90810b9e
DC
491 if (xfs_buf_cond_lock(bp)) {
492 /* failed, so wait for the lock if requested. */
ce8e922c 493 if (!(flags & XBF_TRYLOCK)) {
ce8e922c
NS
494 xfs_buf_lock(bp);
495 XFS_STATS_INC(xb_get_locked_waited);
1da177e4 496 } else {
ce8e922c
NS
497 xfs_buf_rele(bp);
498 XFS_STATS_INC(xb_busy_locked);
499 return NULL;
1da177e4 500 }
1da177e4
LT
501 }
502
ce8e922c
NS
503 if (bp->b_flags & XBF_STALE) {
504 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
505 bp->b_flags &= XBF_MAPPED;
2f926587 506 }
0b1b213f
CH
507
508 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
509 XFS_STATS_INC(xb_get_locked);
510 return bp;
1da177e4
LT
511}
512
513/*
ce8e922c 514 * Assembles a buffer covering the specified range.
1da177e4
LT
515 * Storage in memory for all portions of the buffer will be allocated,
516 * although backing storage may not be.
517 */
518xfs_buf_t *
6ad112bf 519xfs_buf_get(
1da177e4 520 xfs_buftarg_t *target,/* target for buffer */
204ab25f 521 xfs_off_t ioff, /* starting offset of range */
1da177e4 522 size_t isize, /* length of range */
ce8e922c 523 xfs_buf_flags_t flags)
1da177e4 524{
ce8e922c 525 xfs_buf_t *bp, *new_bp;
1da177e4
LT
526 int error = 0, i;
527
ce8e922c
NS
528 new_bp = xfs_buf_allocate(flags);
529 if (unlikely(!new_bp))
1da177e4
LT
530 return NULL;
531
ce8e922c
NS
532 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
533 if (bp == new_bp) {
534 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
535 if (error)
536 goto no_buffer;
537 } else {
ce8e922c
NS
538 xfs_buf_deallocate(new_bp);
539 if (unlikely(bp == NULL))
1da177e4
LT
540 return NULL;
541 }
542
ce8e922c
NS
543 for (i = 0; i < bp->b_page_count; i++)
544 mark_page_accessed(bp->b_pages[i]);
1da177e4 545
ce8e922c
NS
546 if (!(bp->b_flags & XBF_MAPPED)) {
547 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
548 if (unlikely(error)) {
549 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 550 __func__);
1da177e4
LT
551 goto no_buffer;
552 }
553 }
554
ce8e922c 555 XFS_STATS_INC(xb_get);
1da177e4
LT
556
557 /*
558 * Always fill in the block number now, the mapped cases can do
559 * their own overlay of this later.
560 */
ce8e922c
NS
561 bp->b_bn = ioff;
562 bp->b_count_desired = bp->b_buffer_length;
1da177e4 563
0b1b213f 564 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 565 return bp;
1da177e4
LT
566
567 no_buffer:
ce8e922c
NS
568 if (flags & (XBF_LOCK | XBF_TRYLOCK))
569 xfs_buf_unlock(bp);
570 xfs_buf_rele(bp);
1da177e4
LT
571 return NULL;
572}
573
5d765b97
CH
574STATIC int
575_xfs_buf_read(
576 xfs_buf_t *bp,
577 xfs_buf_flags_t flags)
578{
579 int status;
580
5d765b97
CH
581 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
582 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
583
584 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
585 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
586 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
587 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
588
589 status = xfs_buf_iorequest(bp);
ec53d1db
DC
590 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
591 return status;
592 return xfs_buf_iowait(bp);
5d765b97
CH
593}
594
1da177e4 595xfs_buf_t *
6ad112bf 596xfs_buf_read(
1da177e4 597 xfs_buftarg_t *target,
204ab25f 598 xfs_off_t ioff,
1da177e4 599 size_t isize,
ce8e922c 600 xfs_buf_flags_t flags)
1da177e4 601{
ce8e922c
NS
602 xfs_buf_t *bp;
603
604 flags |= XBF_READ;
605
6ad112bf 606 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 607 if (bp) {
0b1b213f
CH
608 trace_xfs_buf_read(bp, flags, _RET_IP_);
609
ce8e922c 610 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 611 XFS_STATS_INC(xb_get_read);
5d765b97 612 _xfs_buf_read(bp, flags);
ce8e922c 613 } else if (flags & XBF_ASYNC) {
1da177e4
LT
614 /*
615 * Read ahead call which is already satisfied,
616 * drop the buffer
617 */
618 goto no_buffer;
619 } else {
1da177e4 620 /* We do not want read in the flags */
ce8e922c 621 bp->b_flags &= ~XBF_READ;
1da177e4
LT
622 }
623 }
624
ce8e922c 625 return bp;
1da177e4
LT
626
627 no_buffer:
ce8e922c
NS
628 if (flags & (XBF_LOCK | XBF_TRYLOCK))
629 xfs_buf_unlock(bp);
630 xfs_buf_rele(bp);
1da177e4
LT
631 return NULL;
632}
633
1da177e4 634/*
ce8e922c
NS
635 * If we are not low on memory then do the readahead in a deadlock
636 * safe manner.
1da177e4
LT
637 */
638void
ce8e922c 639xfs_buf_readahead(
1da177e4 640 xfs_buftarg_t *target,
204ab25f 641 xfs_off_t ioff,
1a1a3e97 642 size_t isize)
1da177e4
LT
643{
644 struct backing_dev_info *bdi;
645
ce8e922c 646 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
647 if (bdi_read_congested(bdi))
648 return;
649
1a1a3e97
CH
650 xfs_buf_read(target, ioff, isize,
651 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
652}
653
5adc94c2
DC
654/*
655 * Read an uncached buffer from disk. Allocates and returns a locked
656 * buffer containing the disk contents or nothing.
657 */
658struct xfs_buf *
659xfs_buf_read_uncached(
660 struct xfs_mount *mp,
661 struct xfs_buftarg *target,
662 xfs_daddr_t daddr,
663 size_t length,
664 int flags)
665{
666 xfs_buf_t *bp;
667 int error;
668
669 bp = xfs_buf_get_uncached(target, length, flags);
670 if (!bp)
671 return NULL;
672
673 /* set up the buffer for a read IO */
674 xfs_buf_lock(bp);
675 XFS_BUF_SET_ADDR(bp, daddr);
676 XFS_BUF_READ(bp);
677 XFS_BUF_BUSY(bp);
678
679 xfsbdstrat(mp, bp);
1a1a3e97 680 error = xfs_buf_iowait(bp);
5adc94c2
DC
681 if (error || bp->b_error) {
682 xfs_buf_relse(bp);
683 return NULL;
684 }
685 return bp;
1da177e4
LT
686}
687
688xfs_buf_t *
ce8e922c 689xfs_buf_get_empty(
1da177e4
LT
690 size_t len,
691 xfs_buftarg_t *target)
692{
ce8e922c 693 xfs_buf_t *bp;
1da177e4 694
ce8e922c
NS
695 bp = xfs_buf_allocate(0);
696 if (bp)
697 _xfs_buf_initialize(bp, target, 0, len, 0);
698 return bp;
1da177e4
LT
699}
700
701static inline struct page *
702mem_to_page(
703 void *addr)
704{
9e2779fa 705 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
706 return virt_to_page(addr);
707 } else {
708 return vmalloc_to_page(addr);
709 }
710}
711
712int
ce8e922c
NS
713xfs_buf_associate_memory(
714 xfs_buf_t *bp,
1da177e4
LT
715 void *mem,
716 size_t len)
717{
718 int rval;
719 int i = 0;
d1afb678
LM
720 unsigned long pageaddr;
721 unsigned long offset;
722 size_t buflen;
1da177e4
LT
723 int page_count;
724
d1afb678
LM
725 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
726 offset = (unsigned long)mem - pageaddr;
727 buflen = PAGE_CACHE_ALIGN(len + offset);
728 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
729
730 /* Free any previous set of page pointers */
ce8e922c
NS
731 if (bp->b_pages)
732 _xfs_buf_free_pages(bp);
1da177e4 733
ce8e922c
NS
734 bp->b_pages = NULL;
735 bp->b_addr = mem;
1da177e4 736
36fae17a 737 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
738 if (rval)
739 return rval;
740
ce8e922c 741 bp->b_offset = offset;
d1afb678
LM
742
743 for (i = 0; i < bp->b_page_count; i++) {
744 bp->b_pages[i] = mem_to_page((void *)pageaddr);
745 pageaddr += PAGE_CACHE_SIZE;
1da177e4 746 }
1da177e4 747
d1afb678
LM
748 bp->b_count_desired = len;
749 bp->b_buffer_length = buflen;
ce8e922c 750 bp->b_flags |= XBF_MAPPED;
6ab455ee 751 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
752
753 return 0;
754}
755
756xfs_buf_t *
686865f7
DC
757xfs_buf_get_uncached(
758 struct xfs_buftarg *target,
1da177e4 759 size_t len,
686865f7 760 int flags)
1da177e4 761{
1fa40b01
CH
762 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
763 int error, i;
1da177e4 764 xfs_buf_t *bp;
1da177e4 765
ce8e922c 766 bp = xfs_buf_allocate(0);
1da177e4
LT
767 if (unlikely(bp == NULL))
768 goto fail;
ce8e922c 769 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 770
1fa40b01
CH
771 error = _xfs_buf_get_pages(bp, page_count, 0);
772 if (error)
1da177e4
LT
773 goto fail_free_buf;
774
1fa40b01 775 for (i = 0; i < page_count; i++) {
686865f7 776 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
777 if (!bp->b_pages[i])
778 goto fail_free_mem;
1da177e4 779 }
1fa40b01 780 bp->b_flags |= _XBF_PAGES;
1da177e4 781
1fa40b01
CH
782 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
783 if (unlikely(error)) {
784 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 785 __func__);
1da177e4 786 goto fail_free_mem;
1fa40b01 787 }
1da177e4 788
ce8e922c 789 xfs_buf_unlock(bp);
1da177e4 790
686865f7 791 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 792 return bp;
1fa40b01 793
1da177e4 794 fail_free_mem:
1fa40b01
CH
795 while (--i >= 0)
796 __free_page(bp->b_pages[i]);
ca165b88 797 _xfs_buf_free_pages(bp);
1da177e4 798 fail_free_buf:
ca165b88 799 xfs_buf_deallocate(bp);
1da177e4
LT
800 fail:
801 return NULL;
802}
803
804/*
1da177e4
LT
805 * Increment reference count on buffer, to hold the buffer concurrently
806 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
807 * Must hold the buffer already to call this function.
808 */
809void
ce8e922c
NS
810xfs_buf_hold(
811 xfs_buf_t *bp)
1da177e4 812{
0b1b213f 813 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 814 atomic_inc(&bp->b_hold);
1da177e4
LT
815}
816
817/*
ce8e922c
NS
818 * Releases a hold on the specified buffer. If the
819 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
820 */
821void
ce8e922c
NS
822xfs_buf_rele(
823 xfs_buf_t *bp)
1da177e4 824{
74f75a0c 825 struct xfs_perag *pag = bp->b_pag;
1da177e4 826
0b1b213f 827 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 828
74f75a0c 829 if (!pag) {
fad3aa1e 830 ASSERT(!bp->b_relse);
74f75a0c 831 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
832 if (atomic_dec_and_test(&bp->b_hold))
833 xfs_buf_free(bp);
834 return;
835 }
836
74f75a0c 837 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
3790689f 838 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 839 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
ce8e922c
NS
840 if (bp->b_relse) {
841 atomic_inc(&bp->b_hold);
74f75a0c
DC
842 spin_unlock(&pag->pag_buf_lock);
843 bp->b_relse(bp);
1da177e4 844 } else {
ce8e922c 845 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
846 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
847 spin_unlock(&pag->pag_buf_lock);
848 xfs_perag_put(pag);
ce8e922c 849 xfs_buf_free(bp);
1da177e4
LT
850 }
851 }
852}
853
854
855/*
856 * Mutual exclusion on buffers. Locking model:
857 *
858 * Buffers associated with inodes for which buffer locking
859 * is not enabled are not protected by semaphores, and are
860 * assumed to be exclusively owned by the caller. There is a
861 * spinlock in the buffer, used by the caller when concurrent
862 * access is possible.
863 */
864
865/*
90810b9e
DC
866 * Locks a buffer object, if it is not already locked. Note that this in
867 * no way locks the underlying pages, so it is only useful for
868 * synchronizing concurrent use of buffer objects, not for synchronizing
869 * independent access to the underlying pages.
870 *
871 * If we come across a stale, pinned, locked buffer, we know that we are
872 * being asked to lock a buffer that has been reallocated. Because it is
873 * pinned, we know that the log has not been pushed to disk and hence it
874 * will still be locked. Rather than continuing to have trylock attempts
875 * fail until someone else pushes the log, push it ourselves before
876 * returning. This means that the xfsaild will not get stuck trying
877 * to push on stale inode buffers.
1da177e4
LT
878 */
879int
ce8e922c
NS
880xfs_buf_cond_lock(
881 xfs_buf_t *bp)
1da177e4
LT
882{
883 int locked;
884
ce8e922c 885 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 886 if (locked)
ce8e922c 887 XB_SET_OWNER(bp);
90810b9e
DC
888 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
889 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f
CH
890
891 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 892 return locked ? 0 : -EBUSY;
1da177e4
LT
893}
894
1da177e4 895int
ce8e922c
NS
896xfs_buf_lock_value(
897 xfs_buf_t *bp)
1da177e4 898{
adaa693b 899 return bp->b_sema.count;
1da177e4 900}
1da177e4
LT
901
902/*
ce8e922c
NS
903 * Locks a buffer object.
904 * Note that this in no way locks the underlying pages, so it is only
905 * useful for synchronizing concurrent use of buffer objects, not for
906 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
907 *
908 * If we come across a stale, pinned, locked buffer, we know that we
909 * are being asked to lock a buffer that has been reallocated. Because
910 * it is pinned, we know that the log has not been pushed to disk and
911 * hence it will still be locked. Rather than sleeping until someone
912 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 913 */
ce8e922c
NS
914void
915xfs_buf_lock(
916 xfs_buf_t *bp)
1da177e4 917{
0b1b213f
CH
918 trace_xfs_buf_lock(bp, _RET_IP_);
919
ed3b4d6c 920 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 921 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
922 if (atomic_read(&bp->b_io_remaining))
923 blk_run_address_space(bp->b_target->bt_mapping);
924 down(&bp->b_sema);
925 XB_SET_OWNER(bp);
0b1b213f
CH
926
927 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
928}
929
930/*
ce8e922c 931 * Releases the lock on the buffer object.
2f926587 932 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 933 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
934 * take a reference for the delwri queue because the unlocker is going to
935 * drop their's and they don't know we just queued it.
1da177e4
LT
936 */
937void
ce8e922c
NS
938xfs_buf_unlock(
939 xfs_buf_t *bp)
1da177e4 940{
ce8e922c
NS
941 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
942 atomic_inc(&bp->b_hold);
943 bp->b_flags |= XBF_ASYNC;
944 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
945 }
946
ce8e922c
NS
947 XB_CLEAR_OWNER(bp);
948 up(&bp->b_sema);
0b1b213f
CH
949
950 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
951}
952
ce8e922c
NS
953STATIC void
954xfs_buf_wait_unpin(
955 xfs_buf_t *bp)
1da177e4
LT
956{
957 DECLARE_WAITQUEUE (wait, current);
958
ce8e922c 959 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
960 return;
961
ce8e922c 962 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
963 for (;;) {
964 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 965 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 966 break;
ce8e922c
NS
967 if (atomic_read(&bp->b_io_remaining))
968 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
969 schedule();
970 }
ce8e922c 971 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
972 set_current_state(TASK_RUNNING);
973}
974
975/*
976 * Buffer Utility Routines
977 */
978
1da177e4 979STATIC void
ce8e922c 980xfs_buf_iodone_work(
c4028958 981 struct work_struct *work)
1da177e4 982{
c4028958
DH
983 xfs_buf_t *bp =
984 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 985
80f6c29d 986 if (bp->b_iodone)
ce8e922c
NS
987 (*(bp->b_iodone))(bp);
988 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
989 xfs_buf_relse(bp);
990}
991
992void
ce8e922c
NS
993xfs_buf_ioend(
994 xfs_buf_t *bp,
1da177e4
LT
995 int schedule)
996{
0b1b213f
CH
997 trace_xfs_buf_iodone(bp, _RET_IP_);
998
77be55a5 999 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1000 if (bp->b_error == 0)
1001 bp->b_flags |= XBF_DONE;
1da177e4 1002
ce8e922c 1003 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1004 if (schedule) {
c4028958 1005 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1006 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1007 } else {
c4028958 1008 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1009 }
1010 } else {
b4dd330b 1011 complete(&bp->b_iowait);
1da177e4
LT
1012 }
1013}
1014
1da177e4 1015void
ce8e922c
NS
1016xfs_buf_ioerror(
1017 xfs_buf_t *bp,
1018 int error)
1da177e4
LT
1019{
1020 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1021 bp->b_error = (unsigned short)error;
0b1b213f 1022 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1023}
1024
1da177e4 1025int
64e0bc7d
CH
1026xfs_bwrite(
1027 struct xfs_mount *mp,
5d765b97 1028 struct xfs_buf *bp)
1da177e4 1029{
8c38366f 1030 int error;
1da177e4 1031
64e0bc7d 1032 bp->b_flags |= XBF_WRITE;
8c38366f 1033 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1034
5d765b97 1035 xfs_buf_delwri_dequeue(bp);
939d723b 1036 xfs_bdstrat_cb(bp);
1da177e4 1037
8c38366f
CH
1038 error = xfs_buf_iowait(bp);
1039 if (error)
1040 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1041 xfs_buf_relse(bp);
64e0bc7d 1042 return error;
5d765b97 1043}
1da177e4 1044
5d765b97
CH
1045void
1046xfs_bdwrite(
1047 void *mp,
1048 struct xfs_buf *bp)
1049{
0b1b213f 1050 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1051
5d765b97
CH
1052 bp->b_flags &= ~XBF_READ;
1053 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1054
1055 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1056}
1057
4e23471a
CH
1058/*
1059 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1060 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1061 * so that the proper iodone callbacks get called.
1062 */
1063STATIC int
1064xfs_bioerror(
1065 xfs_buf_t *bp)
1066{
1067#ifdef XFSERRORDEBUG
1068 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1069#endif
1070
1071 /*
1072 * No need to wait until the buffer is unpinned, we aren't flushing it.
1073 */
1074 XFS_BUF_ERROR(bp, EIO);
1075
1076 /*
1a1a3e97 1077 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1078 */
1079 XFS_BUF_UNREAD(bp);
1080 XFS_BUF_UNDELAYWRITE(bp);
1081 XFS_BUF_UNDONE(bp);
1082 XFS_BUF_STALE(bp);
1083
1a1a3e97 1084 xfs_buf_ioend(bp, 0);
4e23471a
CH
1085
1086 return EIO;
1087}
1088
1089/*
1090 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1091 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1092 * This is meant for userdata errors; metadata bufs come with
1093 * iodone functions attached, so that we can track down errors.
1094 */
1095STATIC int
1096xfs_bioerror_relse(
1097 struct xfs_buf *bp)
1098{
1099 int64_t fl = XFS_BUF_BFLAGS(bp);
1100 /*
1101 * No need to wait until the buffer is unpinned.
1102 * We aren't flushing it.
1103 *
1104 * chunkhold expects B_DONE to be set, whether
1105 * we actually finish the I/O or not. We don't want to
1106 * change that interface.
1107 */
1108 XFS_BUF_UNREAD(bp);
1109 XFS_BUF_UNDELAYWRITE(bp);
1110 XFS_BUF_DONE(bp);
1111 XFS_BUF_STALE(bp);
1112 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1113 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1114 /*
1115 * Mark b_error and B_ERROR _both_.
1116 * Lot's of chunkcache code assumes that.
1117 * There's no reason to mark error for
1118 * ASYNC buffers.
1119 */
1120 XFS_BUF_ERROR(bp, EIO);
1121 XFS_BUF_FINISH_IOWAIT(bp);
1122 } else {
1123 xfs_buf_relse(bp);
1124 }
1125
1126 return EIO;
1127}
1128
1129
1130/*
1131 * All xfs metadata buffers except log state machine buffers
1132 * get this attached as their b_bdstrat callback function.
1133 * This is so that we can catch a buffer
1134 * after prematurely unpinning it to forcibly shutdown the filesystem.
1135 */
1136int
1137xfs_bdstrat_cb(
1138 struct xfs_buf *bp)
1139{
ebad861b 1140 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1141 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1142 /*
1143 * Metadata write that didn't get logged but
1144 * written delayed anyway. These aren't associated
1145 * with a transaction, and can be ignored.
1146 */
1147 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1148 return xfs_bioerror_relse(bp);
1149 else
1150 return xfs_bioerror(bp);
1151 }
1152
1153 xfs_buf_iorequest(bp);
1154 return 0;
1155}
1156
1157/*
1158 * Wrapper around bdstrat so that we can stop data from going to disk in case
1159 * we are shutting down the filesystem. Typically user data goes thru this
1160 * path; one of the exceptions is the superblock.
1161 */
1162void
1163xfsbdstrat(
1164 struct xfs_mount *mp,
1165 struct xfs_buf *bp)
1166{
1167 if (XFS_FORCED_SHUTDOWN(mp)) {
1168 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1169 xfs_bioerror_relse(bp);
1170 return;
1171 }
1172
1173 xfs_buf_iorequest(bp);
1174}
1175
b8f82a4a 1176STATIC void
ce8e922c
NS
1177_xfs_buf_ioend(
1178 xfs_buf_t *bp,
1da177e4
LT
1179 int schedule)
1180{
6ab455ee
CH
1181 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1182 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1183 xfs_buf_ioend(bp, schedule);
6ab455ee 1184 }
1da177e4
LT
1185}
1186
782e3b3b 1187STATIC void
ce8e922c 1188xfs_buf_bio_end_io(
1da177e4 1189 struct bio *bio,
1da177e4
LT
1190 int error)
1191{
ce8e922c
NS
1192 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1193 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1194 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1195
cfbe5267 1196 xfs_buf_ioerror(bp, -error);
1da177e4 1197
73c77e2c
JB
1198 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1199 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1200
eedb5530 1201 do {
1da177e4
LT
1202 struct page *page = bvec->bv_page;
1203
948ecdb4 1204 ASSERT(!PagePrivate(page));
ce8e922c
NS
1205 if (unlikely(bp->b_error)) {
1206 if (bp->b_flags & XBF_READ)
eedb5530 1207 ClearPageUptodate(page);
ce8e922c 1208 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1209 SetPageUptodate(page);
1210 } else if (!PagePrivate(page) &&
ce8e922c 1211 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1212 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1213 }
1214
eedb5530
NS
1215 if (--bvec >= bio->bi_io_vec)
1216 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1217
1218 if (bp->b_flags & _XBF_PAGE_LOCKED)
1219 unlock_page(page);
eedb5530 1220 } while (bvec >= bio->bi_io_vec);
1da177e4 1221
ce8e922c 1222 _xfs_buf_ioend(bp, 1);
1da177e4 1223 bio_put(bio);
1da177e4
LT
1224}
1225
1226STATIC void
ce8e922c
NS
1227_xfs_buf_ioapply(
1228 xfs_buf_t *bp)
1da177e4 1229{
a9759f2d 1230 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1231 struct bio *bio;
ce8e922c
NS
1232 int offset = bp->b_offset;
1233 int size = bp->b_count_desired;
1234 sector_t sector = bp->b_bn;
1235 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1236
ce8e922c 1237 total_nr_pages = bp->b_page_count;
1da177e4
LT
1238 map_i = 0;
1239
ce8e922c
NS
1240 if (bp->b_flags & XBF_ORDERED) {
1241 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1242 rw = WRITE_FLUSH_FUA;
2ee1abad 1243 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1244 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1245 bp->b_flags &= ~_XBF_RUN_QUEUES;
1246 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1247 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1248 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1249 bp->b_flags &= ~_XBF_RUN_QUEUES;
1250 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1251 } else {
1252 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1253 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1254 }
1255
ce8e922c 1256 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1257 * we populate up the whole page, and hence the other metadata
1258 * in the same page. This optimization is only valid when the
ce8e922c 1259 * filesystem block size is not smaller than the page size.
1da177e4 1260 */
ce8e922c 1261 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1262 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1263 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1264 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1265 bio = bio_alloc(GFP_NOIO, 1);
1266
ce8e922c 1267 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1268 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1269 bio->bi_end_io = xfs_buf_bio_end_io;
1270 bio->bi_private = bp;
1da177e4 1271
ce8e922c 1272 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1273 size = 0;
1274
ce8e922c 1275 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1276
1277 goto submit_io;
1278 }
1279
1da177e4 1280next_chunk:
ce8e922c 1281 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1282 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1283 if (nr_pages > total_nr_pages)
1284 nr_pages = total_nr_pages;
1285
1286 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1287 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1288 bio->bi_sector = sector;
ce8e922c
NS
1289 bio->bi_end_io = xfs_buf_bio_end_io;
1290 bio->bi_private = bp;
1da177e4
LT
1291
1292 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1293 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1294
1295 if (nbytes > size)
1296 nbytes = size;
1297
ce8e922c
NS
1298 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1299 if (rbytes < nbytes)
1da177e4
LT
1300 break;
1301
1302 offset = 0;
1303 sector += nbytes >> BBSHIFT;
1304 size -= nbytes;
1305 total_nr_pages--;
1306 }
1307
1308submit_io:
1309 if (likely(bio->bi_size)) {
73c77e2c
JB
1310 if (xfs_buf_is_vmapped(bp)) {
1311 flush_kernel_vmap_range(bp->b_addr,
1312 xfs_buf_vmap_len(bp));
1313 }
1da177e4
LT
1314 submit_bio(rw, bio);
1315 if (size)
1316 goto next_chunk;
1317 } else {
ec53d1db
DC
1318 /*
1319 * if we get here, no pages were added to the bio. However,
1320 * we can't just error out here - if the pages are locked then
1321 * we have to unlock them otherwise we can hang on a later
1322 * access to the page.
1323 */
ce8e922c 1324 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1325 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1326 int i;
1327 for (i = 0; i < bp->b_page_count; i++)
1328 unlock_page(bp->b_pages[i]);
1329 }
1330 bio_put(bio);
1da177e4
LT
1331 }
1332}
1333
1da177e4 1334int
ce8e922c
NS
1335xfs_buf_iorequest(
1336 xfs_buf_t *bp)
1da177e4 1337{
0b1b213f 1338 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1339
ce8e922c
NS
1340 if (bp->b_flags & XBF_DELWRI) {
1341 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1342 return 0;
1343 }
1344
ce8e922c
NS
1345 if (bp->b_flags & XBF_WRITE) {
1346 xfs_buf_wait_unpin(bp);
1da177e4
LT
1347 }
1348
ce8e922c 1349 xfs_buf_hold(bp);
1da177e4
LT
1350
1351 /* Set the count to 1 initially, this will stop an I/O
1352 * completion callout which happens before we have started
ce8e922c 1353 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1354 */
ce8e922c
NS
1355 atomic_set(&bp->b_io_remaining, 1);
1356 _xfs_buf_ioapply(bp);
1357 _xfs_buf_ioend(bp, 0);
1da177e4 1358
ce8e922c 1359 xfs_buf_rele(bp);
1da177e4
LT
1360 return 0;
1361}
1362
1363/*
ce8e922c
NS
1364 * Waits for I/O to complete on the buffer supplied.
1365 * It returns immediately if no I/O is pending.
1366 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1367 */
1368int
ce8e922c
NS
1369xfs_buf_iowait(
1370 xfs_buf_t *bp)
1da177e4 1371{
0b1b213f
CH
1372 trace_xfs_buf_iowait(bp, _RET_IP_);
1373
ce8e922c
NS
1374 if (atomic_read(&bp->b_io_remaining))
1375 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1376 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1377
1378 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1379 return bp->b_error;
1da177e4
LT
1380}
1381
ce8e922c
NS
1382xfs_caddr_t
1383xfs_buf_offset(
1384 xfs_buf_t *bp,
1da177e4
LT
1385 size_t offset)
1386{
1387 struct page *page;
1388
ce8e922c
NS
1389 if (bp->b_flags & XBF_MAPPED)
1390 return XFS_BUF_PTR(bp) + offset;
1da177e4 1391
ce8e922c
NS
1392 offset += bp->b_offset;
1393 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1394 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1395}
1396
1397/*
1da177e4
LT
1398 * Move data into or out of a buffer.
1399 */
1400void
ce8e922c
NS
1401xfs_buf_iomove(
1402 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1403 size_t boff, /* starting buffer offset */
1404 size_t bsize, /* length to copy */
b9c48649 1405 void *data, /* data address */
ce8e922c 1406 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1407{
1408 size_t bend, cpoff, csize;
1409 struct page *page;
1410
1411 bend = boff + bsize;
1412 while (boff < bend) {
ce8e922c
NS
1413 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1414 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1415 csize = min_t(size_t,
ce8e922c 1416 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1417
1418 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1419
1420 switch (mode) {
ce8e922c 1421 case XBRW_ZERO:
1da177e4
LT
1422 memset(page_address(page) + cpoff, 0, csize);
1423 break;
ce8e922c 1424 case XBRW_READ:
1da177e4
LT
1425 memcpy(data, page_address(page) + cpoff, csize);
1426 break;
ce8e922c 1427 case XBRW_WRITE:
1da177e4
LT
1428 memcpy(page_address(page) + cpoff, data, csize);
1429 }
1430
1431 boff += csize;
1432 data += csize;
1433 }
1434}
1435
1436/*
ce8e922c 1437 * Handling of buffer targets (buftargs).
1da177e4
LT
1438 */
1439
1440/*
ce8e922c
NS
1441 * Wait for any bufs with callbacks that have been submitted but
1442 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1443 */
1444void
1445xfs_wait_buftarg(
74f75a0c 1446 struct xfs_buftarg *btp)
1da177e4 1447{
74f75a0c
DC
1448 struct xfs_perag *pag;
1449 uint i;
1da177e4 1450
74f75a0c
DC
1451 for (i = 0; i < btp->bt_mount->m_sb.sb_agcount; i++) {
1452 pag = xfs_perag_get(btp->bt_mount, i);
1453 spin_lock(&pag->pag_buf_lock);
1454 while (rb_first(&pag->pag_buf_tree)) {
1455 spin_unlock(&pag->pag_buf_lock);
26af6552 1456 delay(100);
74f75a0c 1457 spin_lock(&pag->pag_buf_lock);
1da177e4 1458 }
74f75a0c
DC
1459 spin_unlock(&pag->pag_buf_lock);
1460 xfs_perag_put(pag);
1da177e4
LT
1461 }
1462}
1463
a6867a68 1464/*
ce8e922c 1465 * buftarg list for delwrite queue processing
a6867a68 1466 */
e6a0e9cd 1467static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1468static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1469
1470STATIC void
1471xfs_register_buftarg(
1472 xfs_buftarg_t *btp)
1473{
1474 spin_lock(&xfs_buftarg_lock);
1475 list_add(&btp->bt_list, &xfs_buftarg_list);
1476 spin_unlock(&xfs_buftarg_lock);
1477}
1478
1479STATIC void
1480xfs_unregister_buftarg(
1481 xfs_buftarg_t *btp)
1482{
1483 spin_lock(&xfs_buftarg_lock);
1484 list_del(&btp->bt_list);
1485 spin_unlock(&xfs_buftarg_lock);
1486}
1487
1da177e4
LT
1488void
1489xfs_free_buftarg(
b7963133
CH
1490 struct xfs_mount *mp,
1491 struct xfs_buftarg *btp)
1da177e4
LT
1492{
1493 xfs_flush_buftarg(btp, 1);
b7963133
CH
1494 if (mp->m_flags & XFS_MOUNT_BARRIER)
1495 xfs_blkdev_issue_flush(btp);
ce8e922c 1496 iput(btp->bt_mapping->host);
a6867a68 1497
ce8e922c
NS
1498 /* Unregister the buftarg first so that we don't get a
1499 * wakeup finding a non-existent task
1500 */
a6867a68
DC
1501 xfs_unregister_buftarg(btp);
1502 kthread_stop(btp->bt_task);
1503
f0e2d93c 1504 kmem_free(btp);
1da177e4
LT
1505}
1506
1da177e4
LT
1507STATIC int
1508xfs_setsize_buftarg_flags(
1509 xfs_buftarg_t *btp,
1510 unsigned int blocksize,
1511 unsigned int sectorsize,
1512 int verbose)
1513{
ce8e922c
NS
1514 btp->bt_bsize = blocksize;
1515 btp->bt_sshift = ffs(sectorsize) - 1;
1516 btp->bt_smask = sectorsize - 1;
1da177e4 1517
ce8e922c 1518 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1519 printk(KERN_WARNING
1520 "XFS: Cannot set_blocksize to %u on device %s\n",
1521 sectorsize, XFS_BUFTARG_NAME(btp));
1522 return EINVAL;
1523 }
1524
1525 if (verbose &&
1526 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1527 printk(KERN_WARNING
1528 "XFS: %u byte sectors in use on device %s. "
1529 "This is suboptimal; %u or greater is ideal.\n",
1530 sectorsize, XFS_BUFTARG_NAME(btp),
1531 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1532 }
1533
1534 return 0;
1535}
1536
1537/*
ce8e922c
NS
1538 * When allocating the initial buffer target we have not yet
1539 * read in the superblock, so don't know what sized sectors
1540 * are being used is at this early stage. Play safe.
1541 */
1da177e4
LT
1542STATIC int
1543xfs_setsize_buftarg_early(
1544 xfs_buftarg_t *btp,
1545 struct block_device *bdev)
1546{
1547 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1548 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1549}
1550
1551int
1552xfs_setsize_buftarg(
1553 xfs_buftarg_t *btp,
1554 unsigned int blocksize,
1555 unsigned int sectorsize)
1556{
1557 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1558}
1559
1560STATIC int
1561xfs_mapping_buftarg(
1562 xfs_buftarg_t *btp,
1563 struct block_device *bdev)
1564{
1565 struct backing_dev_info *bdi;
1566 struct inode *inode;
1567 struct address_space *mapping;
f5e54d6e 1568 static const struct address_space_operations mapping_aops = {
1da177e4 1569 .sync_page = block_sync_page,
e965f963 1570 .migratepage = fail_migrate_page,
1da177e4
LT
1571 };
1572
1573 inode = new_inode(bdev->bd_inode->i_sb);
1574 if (!inode) {
1575 printk(KERN_WARNING
1576 "XFS: Cannot allocate mapping inode for device %s\n",
1577 XFS_BUFTARG_NAME(btp));
1578 return ENOMEM;
1579 }
85fe4025 1580 inode->i_ino = get_next_ino();
1da177e4
LT
1581 inode->i_mode = S_IFBLK;
1582 inode->i_bdev = bdev;
1583 inode->i_rdev = bdev->bd_dev;
1584 bdi = blk_get_backing_dev_info(bdev);
1585 if (!bdi)
1586 bdi = &default_backing_dev_info;
1587 mapping = &inode->i_data;
1588 mapping->a_ops = &mapping_aops;
1589 mapping->backing_dev_info = bdi;
1590 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1591 btp->bt_mapping = mapping;
1da177e4
LT
1592 return 0;
1593}
1594
a6867a68
DC
1595STATIC int
1596xfs_alloc_delwrite_queue(
e2a07812
JE
1597 xfs_buftarg_t *btp,
1598 const char *fsname)
a6867a68
DC
1599{
1600 int error = 0;
1601
1602 INIT_LIST_HEAD(&btp->bt_list);
1603 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1604 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1605 btp->bt_flags = 0;
e2a07812 1606 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
a6867a68
DC
1607 if (IS_ERR(btp->bt_task)) {
1608 error = PTR_ERR(btp->bt_task);
1609 goto out_error;
1610 }
1611 xfs_register_buftarg(btp);
1612out_error:
1613 return error;
1614}
1615
1da177e4
LT
1616xfs_buftarg_t *
1617xfs_alloc_buftarg(
ebad861b 1618 struct xfs_mount *mp,
1da177e4 1619 struct block_device *bdev,
e2a07812
JE
1620 int external,
1621 const char *fsname)
1da177e4
LT
1622{
1623 xfs_buftarg_t *btp;
1624
1625 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1626
ebad861b 1627 btp->bt_mount = mp;
ce8e922c
NS
1628 btp->bt_dev = bdev->bd_dev;
1629 btp->bt_bdev = bdev;
1da177e4
LT
1630 if (xfs_setsize_buftarg_early(btp, bdev))
1631 goto error;
1632 if (xfs_mapping_buftarg(btp, bdev))
1633 goto error;
e2a07812 1634 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1635 goto error;
1da177e4
LT
1636 return btp;
1637
1638error:
f0e2d93c 1639 kmem_free(btp);
1da177e4
LT
1640 return NULL;
1641}
1642
1643
1644/*
ce8e922c 1645 * Delayed write buffer handling
1da177e4 1646 */
1da177e4 1647STATIC void
ce8e922c
NS
1648xfs_buf_delwri_queue(
1649 xfs_buf_t *bp,
1da177e4
LT
1650 int unlock)
1651{
ce8e922c
NS
1652 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1653 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1654
0b1b213f
CH
1655 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1656
ce8e922c 1657 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1658
a6867a68 1659 spin_lock(dwlk);
1da177e4 1660 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1661 if (!list_empty(&bp->b_list)) {
1662 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1663 if (unlock)
1664 atomic_dec(&bp->b_hold);
1665 list_del(&bp->b_list);
1da177e4
LT
1666 }
1667
c9c12971
DC
1668 if (list_empty(dwq)) {
1669 /* start xfsbufd as it is about to have something to do */
1670 wake_up_process(bp->b_target->bt_task);
1671 }
1672
ce8e922c
NS
1673 bp->b_flags |= _XBF_DELWRI_Q;
1674 list_add_tail(&bp->b_list, dwq);
1675 bp->b_queuetime = jiffies;
a6867a68 1676 spin_unlock(dwlk);
1da177e4
LT
1677
1678 if (unlock)
ce8e922c 1679 xfs_buf_unlock(bp);
1da177e4
LT
1680}
1681
1682void
ce8e922c
NS
1683xfs_buf_delwri_dequeue(
1684 xfs_buf_t *bp)
1da177e4 1685{
ce8e922c 1686 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1687 int dequeued = 0;
1688
a6867a68 1689 spin_lock(dwlk);
ce8e922c
NS
1690 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1691 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1692 list_del_init(&bp->b_list);
1da177e4
LT
1693 dequeued = 1;
1694 }
ce8e922c 1695 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1696 spin_unlock(dwlk);
1da177e4
LT
1697
1698 if (dequeued)
ce8e922c 1699 xfs_buf_rele(bp);
1da177e4 1700
0b1b213f 1701 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1702}
1703
d808f617
DC
1704/*
1705 * If a delwri buffer needs to be pushed before it has aged out, then promote
1706 * it to the head of the delwri queue so that it will be flushed on the next
1707 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1708 * than the age currently needed to flush the buffer. Hence the next time the
1709 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1710 */
1711void
1712xfs_buf_delwri_promote(
1713 struct xfs_buf *bp)
1714{
1715 struct xfs_buftarg *btp = bp->b_target;
1716 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1717
1718 ASSERT(bp->b_flags & XBF_DELWRI);
1719 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1720
1721 /*
1722 * Check the buffer age before locking the delayed write queue as we
1723 * don't need to promote buffers that are already past the flush age.
1724 */
1725 if (bp->b_queuetime < jiffies - age)
1726 return;
1727 bp->b_queuetime = jiffies - age;
1728 spin_lock(&btp->bt_delwrite_lock);
1729 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1730 spin_unlock(&btp->bt_delwrite_lock);
1731}
1732
1da177e4 1733STATIC void
ce8e922c 1734xfs_buf_runall_queues(
1da177e4
LT
1735 struct workqueue_struct *queue)
1736{
1737 flush_workqueue(queue);
1738}
1739
1da177e4 1740STATIC int
23ea4032 1741xfsbufd_wakeup(
7f8275d0 1742 struct shrinker *shrink,
15c84a47
NS
1743 int priority,
1744 gfp_t mask)
1da177e4 1745{
da7f93e9 1746 xfs_buftarg_t *btp;
a6867a68
DC
1747
1748 spin_lock(&xfs_buftarg_lock);
da7f93e9 1749 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1750 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1751 continue;
c9c12971
DC
1752 if (list_empty(&btp->bt_delwrite_queue))
1753 continue;
ce8e922c 1754 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1755 wake_up_process(btp->bt_task);
1756 }
1757 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1758 return 0;
1759}
1760
585e6d88
DC
1761/*
1762 * Move as many buffers as specified to the supplied list
1763 * idicating if we skipped any buffers to prevent deadlocks.
1764 */
1765STATIC int
1766xfs_buf_delwri_split(
1767 xfs_buftarg_t *target,
1768 struct list_head *list,
5e6a07df 1769 unsigned long age)
585e6d88
DC
1770{
1771 xfs_buf_t *bp, *n;
1772 struct list_head *dwq = &target->bt_delwrite_queue;
1773 spinlock_t *dwlk = &target->bt_delwrite_lock;
1774 int skipped = 0;
5e6a07df 1775 int force;
585e6d88 1776
5e6a07df 1777 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1778 INIT_LIST_HEAD(list);
1779 spin_lock(dwlk);
1780 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1781 ASSERT(bp->b_flags & XBF_DELWRI);
1782
4d16e924 1783 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1784 if (!force &&
585e6d88
DC
1785 time_before(jiffies, bp->b_queuetime + age)) {
1786 xfs_buf_unlock(bp);
1787 break;
1788 }
1789
1790 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1791 _XBF_RUN_QUEUES);
1792 bp->b_flags |= XBF_WRITE;
1793 list_move_tail(&bp->b_list, list);
bfe27419 1794 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1795 } else
1796 skipped++;
1797 }
1798 spin_unlock(dwlk);
1799
1800 return skipped;
1801
1802}
1803
089716aa
DC
1804/*
1805 * Compare function is more complex than it needs to be because
1806 * the return value is only 32 bits and we are doing comparisons
1807 * on 64 bit values
1808 */
1809static int
1810xfs_buf_cmp(
1811 void *priv,
1812 struct list_head *a,
1813 struct list_head *b)
1814{
1815 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1816 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1817 xfs_daddr_t diff;
1818
1819 diff = ap->b_bn - bp->b_bn;
1820 if (diff < 0)
1821 return -1;
1822 if (diff > 0)
1823 return 1;
1824 return 0;
1825}
1826
1827void
1828xfs_buf_delwri_sort(
1829 xfs_buftarg_t *target,
1830 struct list_head *list)
1831{
1832 list_sort(NULL, list, xfs_buf_cmp);
1833}
1834
1da177e4 1835STATIC int
23ea4032 1836xfsbufd(
585e6d88 1837 void *data)
1da177e4 1838{
089716aa 1839 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1840
1da177e4
LT
1841 current->flags |= PF_MEMALLOC;
1842
978c7b2f
RW
1843 set_freezable();
1844
1da177e4 1845 do {
c9c12971
DC
1846 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1847 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1848 int count = 0;
1849 struct list_head tmp;
c9c12971 1850
3e1d1d28 1851 if (unlikely(freezing(current))) {
ce8e922c 1852 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1853 refrigerator();
abd0cf7a 1854 } else {
ce8e922c 1855 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1856 }
1da177e4 1857
c9c12971
DC
1858 /* sleep for a long time if there is nothing to do. */
1859 if (list_empty(&target->bt_delwrite_queue))
1860 tout = MAX_SCHEDULE_TIMEOUT;
1861 schedule_timeout_interruptible(tout);
1da177e4 1862
c9c12971 1863 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1864 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1865 while (!list_empty(&tmp)) {
089716aa
DC
1866 struct xfs_buf *bp;
1867 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1868 list_del_init(&bp->b_list);
939d723b 1869 xfs_bdstrat_cb(bp);
585e6d88 1870 count++;
1da177e4 1871 }
f07c2250
NS
1872 if (count)
1873 blk_run_address_space(target->bt_mapping);
1da177e4 1874
4df08c52 1875 } while (!kthread_should_stop());
1da177e4 1876
4df08c52 1877 return 0;
1da177e4
LT
1878}
1879
1880/*
ce8e922c
NS
1881 * Go through all incore buffers, and release buffers if they belong to
1882 * the given device. This is used in filesystem error handling to
1883 * preserve the consistency of its metadata.
1da177e4
LT
1884 */
1885int
1886xfs_flush_buftarg(
585e6d88
DC
1887 xfs_buftarg_t *target,
1888 int wait)
1da177e4 1889{
089716aa 1890 xfs_buf_t *bp;
585e6d88 1891 int pincount = 0;
089716aa
DC
1892 LIST_HEAD(tmp_list);
1893 LIST_HEAD(wait_list);
1da177e4 1894
c626d174 1895 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1896 xfs_buf_runall_queues(xfsdatad_workqueue);
1897 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1898
5e6a07df 1899 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1900 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1901
1902 /*
089716aa
DC
1903 * Dropped the delayed write list lock, now walk the temporary list.
1904 * All I/O is issued async and then if we need to wait for completion
1905 * we do that after issuing all the IO.
1da177e4 1906 */
089716aa
DC
1907 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1908 while (!list_empty(&tmp_list)) {
1909 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1910 ASSERT(target == bp->b_target);
089716aa
DC
1911 list_del_init(&bp->b_list);
1912 if (wait) {
ce8e922c 1913 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1914 list_add(&bp->b_list, &wait_list);
1915 }
939d723b 1916 xfs_bdstrat_cb(bp);
1da177e4
LT
1917 }
1918
089716aa
DC
1919 if (wait) {
1920 /* Expedite and wait for IO to complete. */
f07c2250 1921 blk_run_address_space(target->bt_mapping);
089716aa
DC
1922 while (!list_empty(&wait_list)) {
1923 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1924
089716aa 1925 list_del_init(&bp->b_list);
1a1a3e97 1926 xfs_buf_iowait(bp);
089716aa
DC
1927 xfs_buf_relse(bp);
1928 }
1da177e4
LT
1929 }
1930
1da177e4
LT
1931 return pincount;
1932}
1933
04d8b284 1934int __init
ce8e922c 1935xfs_buf_init(void)
1da177e4 1936{
8758280f
NS
1937 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1938 KM_ZONE_HWALIGN, NULL);
ce8e922c 1939 if (!xfs_buf_zone)
0b1b213f 1940 goto out;
04d8b284 1941
51749e47 1942 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1943 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1944 if (!xfslogd_workqueue)
04d8b284 1945 goto out_free_buf_zone;
1da177e4 1946
b4337692 1947 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1948 if (!xfsdatad_workqueue)
1949 goto out_destroy_xfslogd_workqueue;
1da177e4 1950
c626d174
DC
1951 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1952 if (!xfsconvertd_workqueue)
1953 goto out_destroy_xfsdatad_workqueue;
1954
8e1f936b 1955 register_shrinker(&xfs_buf_shake);
23ea4032 1956 return 0;
1da177e4 1957
c626d174
DC
1958 out_destroy_xfsdatad_workqueue:
1959 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1960 out_destroy_xfslogd_workqueue:
1961 destroy_workqueue(xfslogd_workqueue);
23ea4032 1962 out_free_buf_zone:
ce8e922c 1963 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1964 out:
8758280f 1965 return -ENOMEM;
1da177e4
LT
1966}
1967
1da177e4 1968void
ce8e922c 1969xfs_buf_terminate(void)
1da177e4 1970{
8e1f936b 1971 unregister_shrinker(&xfs_buf_shake);
c626d174 1972 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1973 destroy_workqueue(xfsdatad_workqueue);
1974 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1975 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1976}
e6a0e9cd
TS
1977
1978#ifdef CONFIG_KDB_MODULES
1979struct list_head *
1980xfs_get_buftarg_list(void)
1981{
1982 return &xfs_buftarg_list;
1983}
1984#endif