Merge branch 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
25e41b3d
CH
41
42/*
43 * Prime number of hash buckets since address is used as the key.
44 */
45#define NVSYNC 37
46#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
48
49void __init
50xfs_ioend_init(void)
51{
52 int i;
53
54 for (i = 0; i < NVSYNC; i++)
55 init_waitqueue_head(&xfs_ioend_wq[i]);
56}
57
58void
59xfs_ioend_wait(
60 xfs_inode_t *ip)
61{
62 wait_queue_head_t *wq = to_ioend_wq(ip);
63
64 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
65}
66
67STATIC void
68xfs_ioend_wake(
69 xfs_inode_t *ip)
70{
71 if (atomic_dec_and_test(&ip->i_iocount))
72 wake_up(to_ioend_wq(ip));
73}
74
0b1b213f 75void
f51623b2
NS
76xfs_count_page_state(
77 struct page *page,
78 int *delalloc,
f51623b2
NS
79 int *unwritten)
80{
81 struct buffer_head *bh, *head;
82
20cb52eb 83 *delalloc = *unwritten = 0;
f51623b2
NS
84
85 bh = head = page_buffers(page);
86 do {
20cb52eb 87 if (buffer_unwritten(bh))
f51623b2
NS
88 (*unwritten) = 1;
89 else if (buffer_delay(bh))
90 (*delalloc) = 1;
91 } while ((bh = bh->b_this_page) != head);
92}
93
6214ed44
CH
94STATIC struct block_device *
95xfs_find_bdev_for_inode(
046f1685 96 struct inode *inode)
6214ed44 97{
046f1685 98 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
99 struct xfs_mount *mp = ip->i_mount;
100
71ddabb9 101 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
102 return mp->m_rtdev_targp->bt_bdev;
103 else
104 return mp->m_ddev_targp->bt_bdev;
105}
106
f6d6d4fc
CH
107/*
108 * We're now finished for good with this ioend structure.
109 * Update the page state via the associated buffer_heads,
110 * release holds on the inode and bio, and finally free
111 * up memory. Do not use the ioend after this.
112 */
0829c360
CH
113STATIC void
114xfs_destroy_ioend(
115 xfs_ioend_t *ioend)
116{
f6d6d4fc 117 struct buffer_head *bh, *next;
583fa586 118 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
119
120 for (bh = ioend->io_buffer_head; bh; bh = next) {
121 next = bh->b_private;
7d04a335 122 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 123 }
583fa586
CH
124
125 /*
126 * Volume managers supporting multiple paths can send back ENODEV
127 * when the final path disappears. In this case continuing to fill
128 * the page cache with dirty data which cannot be written out is
129 * evil, so prevent that.
130 */
131 if (unlikely(ioend->io_error == -ENODEV)) {
132 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
133 __FILE__, __LINE__);
b677c210 134 }
583fa586 135
25e41b3d 136 xfs_ioend_wake(ip);
0829c360
CH
137 mempool_free(ioend, xfs_ioend_pool);
138}
139
932640e8
DC
140/*
141 * If the end of the current ioend is beyond the current EOF,
142 * return the new EOF value, otherwise zero.
143 */
144STATIC xfs_fsize_t
145xfs_ioend_new_eof(
146 xfs_ioend_t *ioend)
147{
148 xfs_inode_t *ip = XFS_I(ioend->io_inode);
149 xfs_fsize_t isize;
150 xfs_fsize_t bsize;
151
152 bsize = ioend->io_offset + ioend->io_size;
153 isize = MAX(ip->i_size, ip->i_new_size);
154 isize = MIN(isize, bsize);
155 return isize > ip->i_d.di_size ? isize : 0;
156}
157
ba87ea69 158/*
77d7a0c2
DC
159 * Update on-disk file size now that data has been written to disk. The
160 * current in-memory file size is i_size. If a write is beyond eof i_new_size
161 * will be the intended file size until i_size is updated. If this write does
162 * not extend all the way to the valid file size then restrict this update to
163 * the end of the write.
164 *
165 * This function does not block as blocking on the inode lock in IO completion
166 * can lead to IO completion order dependency deadlocks.. If it can't get the
167 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 168 */
77d7a0c2 169STATIC int
ba87ea69
LM
170xfs_setfilesize(
171 xfs_ioend_t *ioend)
172{
b677c210 173 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 174 xfs_fsize_t isize;
ba87ea69 175
ba87ea69 176 if (unlikely(ioend->io_error))
77d7a0c2
DC
177 return 0;
178
179 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
180 return EAGAIN;
ba87ea69 181
932640e8
DC
182 isize = xfs_ioend_new_eof(ioend);
183 if (isize) {
ba87ea69 184 ip->i_d.di_size = isize;
66d834ea 185 xfs_mark_inode_dirty(ip);
ba87ea69
LM
186 }
187
188 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
189 return 0;
190}
191
192/*
209fb87a 193 * Schedule IO completion handling on the final put of an ioend.
77d7a0c2
DC
194 */
195STATIC void
196xfs_finish_ioend(
209fb87a 197 struct xfs_ioend *ioend)
77d7a0c2
DC
198{
199 if (atomic_dec_and_test(&ioend->io_remaining)) {
209fb87a
CH
200 if (ioend->io_type == IO_UNWRITTEN)
201 queue_work(xfsconvertd_workqueue, &ioend->io_work);
202 else
203 queue_work(xfsdatad_workqueue, &ioend->io_work);
77d7a0c2 204 }
ba87ea69
LM
205}
206
0829c360 207/*
5ec4fabb 208 * IO write completion.
f6d6d4fc
CH
209 */
210STATIC void
5ec4fabb 211xfs_end_io(
77d7a0c2 212 struct work_struct *work)
0829c360 213{
77d7a0c2
DC
214 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
215 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 216 int error = 0;
ba87ea69 217
5ec4fabb
CH
218 /*
219 * For unwritten extents we need to issue transactions to convert a
220 * range to normal written extens after the data I/O has finished.
221 */
34a52c6c 222 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 223 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
224
225 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 ioend->io_size);
227 if (error)
228 ioend->io_error = error;
229 }
ba87ea69 230
5ec4fabb
CH
231 /*
232 * We might have to update the on-disk file size after extending
233 * writes.
234 */
a206c817
CH
235 error = xfs_setfilesize(ioend);
236 ASSERT(!error || error == EAGAIN);
77d7a0c2
DC
237
238 /*
239 * If we didn't complete processing of the ioend, requeue it to the
240 * tail of the workqueue for another attempt later. Otherwise destroy
241 * it.
242 */
243 if (error == EAGAIN) {
244 atomic_inc(&ioend->io_remaining);
209fb87a 245 xfs_finish_ioend(ioend);
77d7a0c2
DC
246 /* ensure we don't spin on blocked ioends */
247 delay(1);
fb511f21
CH
248 } else {
249 if (ioend->io_iocb)
250 aio_complete(ioend->io_iocb, ioend->io_result, 0);
77d7a0c2 251 xfs_destroy_ioend(ioend);
fb511f21 252 }
c626d174
DC
253}
254
209fb87a
CH
255/*
256 * Call IO completion handling in caller context on the final put of an ioend.
257 */
258STATIC void
259xfs_finish_ioend_sync(
260 struct xfs_ioend *ioend)
261{
262 if (atomic_dec_and_test(&ioend->io_remaining))
263 xfs_end_io(&ioend->io_work);
264}
265
0829c360
CH
266/*
267 * Allocate and initialise an IO completion structure.
268 * We need to track unwritten extent write completion here initially.
269 * We'll need to extend this for updating the ondisk inode size later
270 * (vs. incore size).
271 */
272STATIC xfs_ioend_t *
273xfs_alloc_ioend(
f6d6d4fc
CH
274 struct inode *inode,
275 unsigned int type)
0829c360
CH
276{
277 xfs_ioend_t *ioend;
278
279 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
280
281 /*
282 * Set the count to 1 initially, which will prevent an I/O
283 * completion callback from happening before we have started
284 * all the I/O from calling the completion routine too early.
285 */
286 atomic_set(&ioend->io_remaining, 1);
7d04a335 287 ioend->io_error = 0;
f6d6d4fc
CH
288 ioend->io_list = NULL;
289 ioend->io_type = type;
b677c210 290 ioend->io_inode = inode;
c1a073bd 291 ioend->io_buffer_head = NULL;
f6d6d4fc 292 ioend->io_buffer_tail = NULL;
b677c210 293 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
294 ioend->io_offset = 0;
295 ioend->io_size = 0;
fb511f21
CH
296 ioend->io_iocb = NULL;
297 ioend->io_result = 0;
0829c360 298
5ec4fabb 299 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
300 return ioend;
301}
302
1da177e4
LT
303STATIC int
304xfs_map_blocks(
305 struct inode *inode,
306 loff_t offset,
207d0416 307 struct xfs_bmbt_irec *imap,
a206c817
CH
308 int type,
309 int nonblocking)
1da177e4 310{
a206c817
CH
311 struct xfs_inode *ip = XFS_I(inode);
312 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 313 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
314 xfs_fileoff_t offset_fsb, end_fsb;
315 int error = 0;
a206c817
CH
316 int bmapi_flags = XFS_BMAPI_ENTIRE;
317 int nimaps = 1;
318
319 if (XFS_FORCED_SHUTDOWN(mp))
320 return -XFS_ERROR(EIO);
321
8ff2957d 322 if (type == IO_UNWRITTEN)
a206c817 323 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
324
325 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
326 if (nonblocking)
327 return -XFS_ERROR(EAGAIN);
328 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
329 }
330
8ff2957d
CH
331 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
332 (ip->i_df.if_flags & XFS_IFEXTENTS));
a206c817 333 ASSERT(offset <= mp->m_maxioffset);
8ff2957d 334
a206c817
CH
335 if (offset + count > mp->m_maxioffset)
336 count = mp->m_maxioffset - offset;
337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
a206c817
CH
339 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
340 bmapi_flags, NULL, 0, imap, &nimaps, NULL);
8ff2957d 341 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 342
8ff2957d
CH
343 if (error)
344 return -XFS_ERROR(error);
a206c817 345
8ff2957d
CH
346 if (type == IO_DELALLOC &&
347 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
348 error = xfs_iomap_write_allocate(ip, offset, count, imap);
349 if (!error)
350 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 351 return -XFS_ERROR(error);
a206c817
CH
352 }
353
8ff2957d
CH
354#ifdef DEBUG
355 if (type == IO_UNWRITTEN) {
356 ASSERT(nimaps);
357 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
358 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
359 }
360#endif
361 if (nimaps)
362 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
363 return 0;
1da177e4
LT
364}
365
b8f82a4a 366STATIC int
558e6891 367xfs_imap_valid(
8699bb0a 368 struct inode *inode,
207d0416 369 struct xfs_bmbt_irec *imap,
558e6891 370 xfs_off_t offset)
1da177e4 371{
558e6891 372 offset >>= inode->i_blkbits;
8699bb0a 373
558e6891
CH
374 return offset >= imap->br_startoff &&
375 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
376}
377
f6d6d4fc
CH
378/*
379 * BIO completion handler for buffered IO.
380 */
782e3b3b 381STATIC void
f6d6d4fc
CH
382xfs_end_bio(
383 struct bio *bio,
f6d6d4fc
CH
384 int error)
385{
386 xfs_ioend_t *ioend = bio->bi_private;
387
f6d6d4fc 388 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 389 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
390
391 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
392 bio->bi_private = NULL;
393 bio->bi_end_io = NULL;
f6d6d4fc 394 bio_put(bio);
7d04a335 395
209fb87a 396 xfs_finish_ioend(ioend);
f6d6d4fc
CH
397}
398
399STATIC void
400xfs_submit_ioend_bio(
06342cf8
CH
401 struct writeback_control *wbc,
402 xfs_ioend_t *ioend,
403 struct bio *bio)
f6d6d4fc
CH
404{
405 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
406 bio->bi_private = ioend;
407 bio->bi_end_io = xfs_end_bio;
408
932640e8
DC
409 /*
410 * If the I/O is beyond EOF we mark the inode dirty immediately
411 * but don't update the inode size until I/O completion.
412 */
413 if (xfs_ioend_new_eof(ioend))
66d834ea 414 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 415
721a9602 416 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
417}
418
419STATIC struct bio *
420xfs_alloc_ioend_bio(
421 struct buffer_head *bh)
422{
f6d6d4fc 423 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 424 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
425
426 ASSERT(bio->bi_private == NULL);
427 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
428 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
429 return bio;
430}
431
432STATIC void
433xfs_start_buffer_writeback(
434 struct buffer_head *bh)
435{
436 ASSERT(buffer_mapped(bh));
437 ASSERT(buffer_locked(bh));
438 ASSERT(!buffer_delay(bh));
439 ASSERT(!buffer_unwritten(bh));
440
441 mark_buffer_async_write(bh);
442 set_buffer_uptodate(bh);
443 clear_buffer_dirty(bh);
444}
445
446STATIC void
447xfs_start_page_writeback(
448 struct page *page,
f6d6d4fc
CH
449 int clear_dirty,
450 int buffers)
451{
452 ASSERT(PageLocked(page));
453 ASSERT(!PageWriteback(page));
f6d6d4fc 454 if (clear_dirty)
92132021
DC
455 clear_page_dirty_for_io(page);
456 set_page_writeback(page);
f6d6d4fc 457 unlock_page(page);
1f7decf6
FW
458 /* If no buffers on the page are to be written, finish it here */
459 if (!buffers)
f6d6d4fc 460 end_page_writeback(page);
f6d6d4fc
CH
461}
462
463static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464{
465 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466}
467
468/*
d88992f6
DC
469 * Submit all of the bios for all of the ioends we have saved up, covering the
470 * initial writepage page and also any probed pages.
471 *
472 * Because we may have multiple ioends spanning a page, we need to start
473 * writeback on all the buffers before we submit them for I/O. If we mark the
474 * buffers as we got, then we can end up with a page that only has buffers
475 * marked async write and I/O complete on can occur before we mark the other
476 * buffers async write.
477 *
478 * The end result of this is that we trip a bug in end_page_writeback() because
479 * we call it twice for the one page as the code in end_buffer_async_write()
480 * assumes that all buffers on the page are started at the same time.
481 *
482 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 483 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
484 */
485STATIC void
486xfs_submit_ioend(
06342cf8 487 struct writeback_control *wbc,
f6d6d4fc
CH
488 xfs_ioend_t *ioend)
489{
d88992f6 490 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
491 xfs_ioend_t *next;
492 struct buffer_head *bh;
493 struct bio *bio;
494 sector_t lastblock = 0;
495
d88992f6
DC
496 /* Pass 1 - start writeback */
497 do {
498 next = ioend->io_list;
221cb251 499 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 500 xfs_start_buffer_writeback(bh);
d88992f6
DC
501 } while ((ioend = next) != NULL);
502
503 /* Pass 2 - submit I/O */
504 ioend = head;
f6d6d4fc
CH
505 do {
506 next = ioend->io_list;
507 bio = NULL;
508
509 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
510
511 if (!bio) {
512 retry:
513 bio = xfs_alloc_ioend_bio(bh);
514 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 515 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
516 goto retry;
517 }
518
519 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 520 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
521 goto retry;
522 }
523
524 lastblock = bh->b_blocknr;
525 }
526 if (bio)
06342cf8 527 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 528 xfs_finish_ioend(ioend);
f6d6d4fc
CH
529 } while ((ioend = next) != NULL);
530}
531
532/*
533 * Cancel submission of all buffer_heads so far in this endio.
534 * Toss the endio too. Only ever called for the initial page
535 * in a writepage request, so only ever one page.
536 */
537STATIC void
538xfs_cancel_ioend(
539 xfs_ioend_t *ioend)
540{
541 xfs_ioend_t *next;
542 struct buffer_head *bh, *next_bh;
543
544 do {
545 next = ioend->io_list;
546 bh = ioend->io_buffer_head;
547 do {
548 next_bh = bh->b_private;
549 clear_buffer_async_write(bh);
550 unlock_buffer(bh);
551 } while ((bh = next_bh) != NULL);
552
25e41b3d 553 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
554 mempool_free(ioend, xfs_ioend_pool);
555 } while ((ioend = next) != NULL);
556}
557
558/*
559 * Test to see if we've been building up a completion structure for
560 * earlier buffers -- if so, we try to append to this ioend if we
561 * can, otherwise we finish off any current ioend and start another.
562 * Return true if we've finished the given ioend.
563 */
564STATIC void
565xfs_add_to_ioend(
566 struct inode *inode,
567 struct buffer_head *bh,
7336cea8 568 xfs_off_t offset,
f6d6d4fc
CH
569 unsigned int type,
570 xfs_ioend_t **result,
571 int need_ioend)
572{
573 xfs_ioend_t *ioend = *result;
574
575 if (!ioend || need_ioend || type != ioend->io_type) {
576 xfs_ioend_t *previous = *result;
f6d6d4fc 577
f6d6d4fc
CH
578 ioend = xfs_alloc_ioend(inode, type);
579 ioend->io_offset = offset;
580 ioend->io_buffer_head = bh;
581 ioend->io_buffer_tail = bh;
582 if (previous)
583 previous->io_list = ioend;
584 *result = ioend;
585 } else {
586 ioend->io_buffer_tail->b_private = bh;
587 ioend->io_buffer_tail = bh;
588 }
589
590 bh->b_private = NULL;
591 ioend->io_size += bh->b_size;
592}
593
87cbc49c
NS
594STATIC void
595xfs_map_buffer(
046f1685 596 struct inode *inode,
87cbc49c 597 struct buffer_head *bh,
207d0416 598 struct xfs_bmbt_irec *imap,
046f1685 599 xfs_off_t offset)
87cbc49c
NS
600{
601 sector_t bn;
8699bb0a 602 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
603 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
604 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 605
207d0416
CH
606 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
607 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 608
e513182d 609 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 610 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 611
046f1685 612 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
613
614 bh->b_blocknr = bn;
615 set_buffer_mapped(bh);
616}
617
1da177e4
LT
618STATIC void
619xfs_map_at_offset(
046f1685 620 struct inode *inode,
1da177e4 621 struct buffer_head *bh,
207d0416 622 struct xfs_bmbt_irec *imap,
046f1685 623 xfs_off_t offset)
1da177e4 624{
207d0416
CH
625 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 627
207d0416 628 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
629 set_buffer_mapped(bh);
630 clear_buffer_delay(bh);
f6d6d4fc 631 clear_buffer_unwritten(bh);
1da177e4
LT
632}
633
1da177e4 634/*
10ce4444
CH
635 * Test if a given page is suitable for writing as part of an unwritten
636 * or delayed allocate extent.
1da177e4 637 */
10ce4444
CH
638STATIC int
639xfs_is_delayed_page(
640 struct page *page,
f6d6d4fc 641 unsigned int type)
1da177e4 642{
1da177e4 643 if (PageWriteback(page))
10ce4444 644 return 0;
1da177e4
LT
645
646 if (page->mapping && page_has_buffers(page)) {
647 struct buffer_head *bh, *head;
648 int acceptable = 0;
649
650 bh = head = page_buffers(page);
651 do {
f6d6d4fc 652 if (buffer_unwritten(bh))
34a52c6c 653 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 654 else if (buffer_delay(bh))
a206c817 655 acceptable = (type == IO_DELALLOC);
2ddee844 656 else if (buffer_dirty(bh) && buffer_mapped(bh))
a206c817 657 acceptable = (type == IO_OVERWRITE);
f6d6d4fc 658 else
1da177e4 659 break;
1da177e4
LT
660 } while ((bh = bh->b_this_page) != head);
661
662 if (acceptable)
10ce4444 663 return 1;
1da177e4
LT
664 }
665
10ce4444 666 return 0;
1da177e4
LT
667}
668
1da177e4
LT
669/*
670 * Allocate & map buffers for page given the extent map. Write it out.
671 * except for the original page of a writepage, this is called on
672 * delalloc/unwritten pages only, for the original page it is possible
673 * that the page has no mapping at all.
674 */
f6d6d4fc 675STATIC int
1da177e4
LT
676xfs_convert_page(
677 struct inode *inode,
678 struct page *page,
10ce4444 679 loff_t tindex,
207d0416 680 struct xfs_bmbt_irec *imap,
f6d6d4fc 681 xfs_ioend_t **ioendp,
2fa24f92 682 struct writeback_control *wbc)
1da177e4 683{
f6d6d4fc 684 struct buffer_head *bh, *head;
9260dc6b
CH
685 xfs_off_t end_offset;
686 unsigned long p_offset;
f6d6d4fc 687 unsigned int type;
24e17b5f 688 int len, page_dirty;
f6d6d4fc 689 int count = 0, done = 0, uptodate = 1;
9260dc6b 690 xfs_off_t offset = page_offset(page);
1da177e4 691
10ce4444
CH
692 if (page->index != tindex)
693 goto fail;
529ae9aa 694 if (!trylock_page(page))
10ce4444
CH
695 goto fail;
696 if (PageWriteback(page))
697 goto fail_unlock_page;
698 if (page->mapping != inode->i_mapping)
699 goto fail_unlock_page;
700 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
701 goto fail_unlock_page;
702
24e17b5f
NS
703 /*
704 * page_dirty is initially a count of buffers on the page before
c41564b5 705 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
706 *
707 * Derivation:
708 *
709 * End offset is the highest offset that this page should represent.
710 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
711 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
712 * hence give us the correct page_dirty count. On any other page,
713 * it will be zero and in that case we need page_dirty to be the
714 * count of buffers on the page.
24e17b5f 715 */
9260dc6b
CH
716 end_offset = min_t(unsigned long long,
717 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
718 i_size_read(inode));
719
24e17b5f 720 len = 1 << inode->i_blkbits;
9260dc6b
CH
721 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
722 PAGE_CACHE_SIZE);
723 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
724 page_dirty = p_offset / len;
24e17b5f 725
1da177e4
LT
726 bh = head = page_buffers(page);
727 do {
9260dc6b 728 if (offset >= end_offset)
1da177e4 729 break;
f6d6d4fc
CH
730 if (!buffer_uptodate(bh))
731 uptodate = 0;
732 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
733 done = 1;
1da177e4 734 continue;
f6d6d4fc
CH
735 }
736
2fa24f92
CH
737 if (buffer_unwritten(bh) || buffer_delay(bh) ||
738 buffer_mapped(bh)) {
9260dc6b 739 if (buffer_unwritten(bh))
34a52c6c 740 type = IO_UNWRITTEN;
2fa24f92 741 else if (buffer_delay(bh))
a206c817 742 type = IO_DELALLOC;
2fa24f92
CH
743 else
744 type = IO_OVERWRITE;
9260dc6b 745
558e6891 746 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 747 done = 1;
9260dc6b
CH
748 continue;
749 }
750
ecff71e6
CH
751 lock_buffer(bh);
752 if (type != IO_OVERWRITE)
2fa24f92 753 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
754 xfs_add_to_ioend(inode, bh, offset, type,
755 ioendp, done);
756
9260dc6b
CH
757 page_dirty--;
758 count++;
759 } else {
2fa24f92 760 done = 1;
1da177e4 761 }
7336cea8 762 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 763
f6d6d4fc
CH
764 if (uptodate && bh == head)
765 SetPageUptodate(page);
766
89f3b363 767 if (count) {
efceab1d
DC
768 if (--wbc->nr_to_write <= 0 &&
769 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 770 done = 1;
1da177e4 771 }
89f3b363 772 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
773
774 return done;
10ce4444
CH
775 fail_unlock_page:
776 unlock_page(page);
777 fail:
778 return 1;
1da177e4
LT
779}
780
781/*
782 * Convert & write out a cluster of pages in the same extent as defined
783 * by mp and following the start page.
784 */
785STATIC void
786xfs_cluster_write(
787 struct inode *inode,
788 pgoff_t tindex,
207d0416 789 struct xfs_bmbt_irec *imap,
f6d6d4fc 790 xfs_ioend_t **ioendp,
1da177e4 791 struct writeback_control *wbc,
1da177e4
LT
792 pgoff_t tlast)
793{
10ce4444
CH
794 struct pagevec pvec;
795 int done = 0, i;
1da177e4 796
10ce4444
CH
797 pagevec_init(&pvec, 0);
798 while (!done && tindex <= tlast) {
799 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
800
801 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 802 break;
10ce4444
CH
803
804 for (i = 0; i < pagevec_count(&pvec); i++) {
805 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 806 imap, ioendp, wbc);
10ce4444
CH
807 if (done)
808 break;
809 }
810
811 pagevec_release(&pvec);
812 cond_resched();
1da177e4
LT
813 }
814}
815
3ed3a434
DC
816STATIC void
817xfs_vm_invalidatepage(
818 struct page *page,
819 unsigned long offset)
820{
821 trace_xfs_invalidatepage(page->mapping->host, page, offset);
822 block_invalidatepage(page, offset);
823}
824
825/*
826 * If the page has delalloc buffers on it, we need to punch them out before we
827 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
828 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
829 * is done on that same region - the delalloc extent is returned when none is
830 * supposed to be there.
831 *
832 * We prevent this by truncating away the delalloc regions on the page before
833 * invalidating it. Because they are delalloc, we can do this without needing a
834 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
835 * truncation without a transaction as there is no space left for block
836 * reservation (typically why we see a ENOSPC in writeback).
837 *
838 * This is not a performance critical path, so for now just do the punching a
839 * buffer head at a time.
840 */
841STATIC void
842xfs_aops_discard_page(
843 struct page *page)
844{
845 struct inode *inode = page->mapping->host;
846 struct xfs_inode *ip = XFS_I(inode);
847 struct buffer_head *bh, *head;
848 loff_t offset = page_offset(page);
3ed3a434 849
a206c817 850 if (!xfs_is_delayed_page(page, IO_DELALLOC))
3ed3a434
DC
851 goto out_invalidate;
852
e8c3753c
DC
853 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
854 goto out_invalidate;
855
4f10700a 856 xfs_alert(ip->i_mount,
3ed3a434
DC
857 "page discard on page %p, inode 0x%llx, offset %llu.",
858 page, ip->i_ino, offset);
859
860 xfs_ilock(ip, XFS_ILOCK_EXCL);
861 bh = head = page_buffers(page);
862 do {
3ed3a434 863 int error;
c726de44 864 xfs_fileoff_t start_fsb;
3ed3a434
DC
865
866 if (!buffer_delay(bh))
867 goto next_buffer;
868
c726de44
DC
869 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
870 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
871 if (error) {
872 /* something screwed, just bail */
e8c3753c 873 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 874 xfs_alert(ip->i_mount,
3ed3a434 875 "page discard unable to remove delalloc mapping.");
e8c3753c 876 }
3ed3a434
DC
877 break;
878 }
879next_buffer:
c726de44 880 offset += 1 << inode->i_blkbits;
3ed3a434
DC
881
882 } while ((bh = bh->b_this_page) != head);
883
884 xfs_iunlock(ip, XFS_ILOCK_EXCL);
885out_invalidate:
886 xfs_vm_invalidatepage(page, 0);
887 return;
888}
889
1da177e4 890/*
89f3b363
CH
891 * Write out a dirty page.
892 *
893 * For delalloc space on the page we need to allocate space and flush it.
894 * For unwritten space on the page we need to start the conversion to
895 * regular allocated space.
89f3b363 896 * For any other dirty buffer heads on the page we should flush them.
1da177e4 897 *
89f3b363
CH
898 * If we detect that a transaction would be required to flush the page, we
899 * have to check the process flags first, if we are already in a transaction
900 * or disk I/O during allocations is off, we need to fail the writepage and
901 * redirty the page.
1da177e4 902 */
1da177e4 903STATIC int
89f3b363
CH
904xfs_vm_writepage(
905 struct page *page,
906 struct writeback_control *wbc)
1da177e4 907{
89f3b363 908 struct inode *inode = page->mapping->host;
20cb52eb 909 int delalloc, unwritten;
f6d6d4fc 910 struct buffer_head *bh, *head;
207d0416 911 struct xfs_bmbt_irec imap;
f6d6d4fc 912 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 913 loff_t offset;
f6d6d4fc 914 unsigned int type;
1da177e4 915 __uint64_t end_offset;
bd1556a1 916 pgoff_t end_index, last_index;
ed1e7b7e 917 ssize_t len;
a206c817 918 int err, imap_valid = 0, uptodate = 1;
89f3b363 919 int count = 0;
a206c817 920 int nonblocking = 0;
89f3b363
CH
921
922 trace_xfs_writepage(inode, page, 0);
923
20cb52eb
CH
924 ASSERT(page_has_buffers(page));
925
89f3b363
CH
926 /*
927 * Refuse to write the page out if we are called from reclaim context.
928 *
d4f7a5cb
CH
929 * This avoids stack overflows when called from deeply used stacks in
930 * random callers for direct reclaim or memcg reclaim. We explicitly
931 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363
CH
932 *
933 * This should really be done by the core VM, but until that happens
934 * filesystems like XFS, btrfs and ext4 have to take care of this
935 * by themselves.
936 */
d4f7a5cb 937 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
b5420f23 938 goto redirty;
1da177e4 939
89f3b363 940 /*
20cb52eb
CH
941 * We need a transaction if there are delalloc or unwritten buffers
942 * on the page.
943 *
944 * If we need a transaction and the process flags say we are already
945 * in a transaction, or no IO is allowed then mark the page dirty
946 * again and leave the page as is.
89f3b363 947 */
20cb52eb
CH
948 xfs_count_page_state(page, &delalloc, &unwritten);
949 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
b5420f23 950 goto redirty;
89f3b363 951
1da177e4
LT
952 /* Is this page beyond the end of the file? */
953 offset = i_size_read(inode);
954 end_index = offset >> PAGE_CACHE_SHIFT;
955 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
956 if (page->index >= end_index) {
957 if ((page->index >= end_index + 1) ||
958 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 959 unlock_page(page);
19d5bcf3 960 return 0;
1da177e4
LT
961 }
962 }
963
f6d6d4fc 964 end_offset = min_t(unsigned long long,
20cb52eb
CH
965 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
966 offset);
24e17b5f 967 len = 1 << inode->i_blkbits;
24e17b5f 968
24e17b5f 969 bh = head = page_buffers(page);
f6d6d4fc 970 offset = page_offset(page);
a206c817
CH
971 type = IO_OVERWRITE;
972
973 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
974 nonblocking = 1;
f6d6d4fc 975
1da177e4 976 do {
6ac7248e
CH
977 int new_ioend = 0;
978
1da177e4
LT
979 if (offset >= end_offset)
980 break;
981 if (!buffer_uptodate(bh))
982 uptodate = 0;
1da177e4 983
3d9b02e3 984 /*
ece413f5
CH
985 * set_page_dirty dirties all buffers in a page, independent
986 * of their state. The dirty state however is entirely
987 * meaningless for holes (!mapped && uptodate), so skip
988 * buffers covering holes here.
3d9b02e3
ES
989 */
990 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
991 imap_valid = 0;
992 continue;
993 }
994
aeea1b1f
CH
995 if (buffer_unwritten(bh)) {
996 if (type != IO_UNWRITTEN) {
997 type = IO_UNWRITTEN;
998 imap_valid = 0;
1da177e4 999 }
aeea1b1f
CH
1000 } else if (buffer_delay(bh)) {
1001 if (type != IO_DELALLOC) {
1002 type = IO_DELALLOC;
1003 imap_valid = 0;
1da177e4 1004 }
89f3b363 1005 } else if (buffer_uptodate(bh)) {
a206c817
CH
1006 if (type != IO_OVERWRITE) {
1007 type = IO_OVERWRITE;
85da94c6
CH
1008 imap_valid = 0;
1009 }
aeea1b1f
CH
1010 } else {
1011 if (PageUptodate(page)) {
1012 ASSERT(buffer_mapped(bh));
1013 imap_valid = 0;
6c4fe19f 1014 }
aeea1b1f
CH
1015 continue;
1016 }
d5cb48aa 1017
aeea1b1f
CH
1018 if (imap_valid)
1019 imap_valid = xfs_imap_valid(inode, &imap, offset);
1020 if (!imap_valid) {
1021 /*
1022 * If we didn't have a valid mapping then we need to
1023 * put the new mapping into a separate ioend structure.
1024 * This ensures non-contiguous extents always have
1025 * separate ioends, which is particularly important
1026 * for unwritten extent conversion at I/O completion
1027 * time.
1028 */
1029 new_ioend = 1;
1030 err = xfs_map_blocks(inode, offset, &imap, type,
1031 nonblocking);
1032 if (err)
1033 goto error;
1034 imap_valid = xfs_imap_valid(inode, &imap, offset);
1035 }
1036 if (imap_valid) {
ecff71e6
CH
1037 lock_buffer(bh);
1038 if (type != IO_OVERWRITE)
aeea1b1f
CH
1039 xfs_map_at_offset(inode, bh, &imap, offset);
1040 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1041 new_ioend);
1042 count++;
1da177e4 1043 }
f6d6d4fc
CH
1044
1045 if (!iohead)
1046 iohead = ioend;
1047
1048 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1049
1050 if (uptodate && bh == head)
1051 SetPageUptodate(page);
1052
89f3b363 1053 xfs_start_page_writeback(page, 1, count);
1da177e4 1054
558e6891 1055 if (ioend && imap_valid) {
bd1556a1
CH
1056 xfs_off_t end_index;
1057
1058 end_index = imap.br_startoff + imap.br_blockcount;
1059
1060 /* to bytes */
1061 end_index <<= inode->i_blkbits;
1062
1063 /* to pages */
1064 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1065
1066 /* check against file size */
1067 if (end_index > last_index)
1068 end_index = last_index;
8699bb0a 1069
207d0416 1070 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1071 wbc, end_index);
1da177e4
LT
1072 }
1073
f6d6d4fc 1074 if (iohead)
06342cf8 1075 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1076
89f3b363 1077 return 0;
1da177e4
LT
1078
1079error:
f6d6d4fc
CH
1080 if (iohead)
1081 xfs_cancel_ioend(iohead);
1da177e4 1082
b5420f23
CH
1083 if (err == -EAGAIN)
1084 goto redirty;
1085
20cb52eb 1086 xfs_aops_discard_page(page);
89f3b363
CH
1087 ClearPageUptodate(page);
1088 unlock_page(page);
1da177e4 1089 return err;
f51623b2 1090
b5420f23 1091redirty:
f51623b2
NS
1092 redirty_page_for_writepage(wbc, page);
1093 unlock_page(page);
1094 return 0;
f51623b2
NS
1095}
1096
7d4fb40a
NS
1097STATIC int
1098xfs_vm_writepages(
1099 struct address_space *mapping,
1100 struct writeback_control *wbc)
1101{
b3aea4ed 1102 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1103 return generic_writepages(mapping, wbc);
1104}
1105
f51623b2
NS
1106/*
1107 * Called to move a page into cleanable state - and from there
89f3b363 1108 * to be released. The page should already be clean. We always
f51623b2
NS
1109 * have buffer heads in this call.
1110 *
89f3b363 1111 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1112 */
1113STATIC int
238f4c54 1114xfs_vm_releasepage(
f51623b2
NS
1115 struct page *page,
1116 gfp_t gfp_mask)
1117{
20cb52eb 1118 int delalloc, unwritten;
f51623b2 1119
89f3b363 1120 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1121
20cb52eb 1122 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1123
89f3b363 1124 if (WARN_ON(delalloc))
f51623b2 1125 return 0;
89f3b363 1126 if (WARN_ON(unwritten))
f51623b2
NS
1127 return 0;
1128
f51623b2
NS
1129 return try_to_free_buffers(page);
1130}
1131
1da177e4 1132STATIC int
c2536668 1133__xfs_get_blocks(
1da177e4
LT
1134 struct inode *inode,
1135 sector_t iblock,
1da177e4
LT
1136 struct buffer_head *bh_result,
1137 int create,
f2bde9b8 1138 int direct)
1da177e4 1139{
a206c817
CH
1140 struct xfs_inode *ip = XFS_I(inode);
1141 struct xfs_mount *mp = ip->i_mount;
1142 xfs_fileoff_t offset_fsb, end_fsb;
1143 int error = 0;
1144 int lockmode = 0;
207d0416 1145 struct xfs_bmbt_irec imap;
a206c817 1146 int nimaps = 1;
fdc7ed75
NS
1147 xfs_off_t offset;
1148 ssize_t size;
207d0416 1149 int new = 0;
a206c817
CH
1150
1151 if (XFS_FORCED_SHUTDOWN(mp))
1152 return -XFS_ERROR(EIO);
1da177e4 1153
fdc7ed75 1154 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1155 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1156 size = bh_result->b_size;
364f358a
LM
1157
1158 if (!create && direct && offset >= i_size_read(inode))
1159 return 0;
1160
a206c817
CH
1161 if (create) {
1162 lockmode = XFS_ILOCK_EXCL;
1163 xfs_ilock(ip, lockmode);
1164 } else {
1165 lockmode = xfs_ilock_map_shared(ip);
1166 }
f2bde9b8 1167
a206c817
CH
1168 ASSERT(offset <= mp->m_maxioffset);
1169 if (offset + size > mp->m_maxioffset)
1170 size = mp->m_maxioffset - offset;
1171 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1172 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1173
1174 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1175 XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL);
1da177e4 1176 if (error)
a206c817
CH
1177 goto out_unlock;
1178
1179 if (create &&
1180 (!nimaps ||
1181 (imap.br_startblock == HOLESTARTBLOCK ||
1182 imap.br_startblock == DELAYSTARTBLOCK))) {
1183 if (direct) {
1184 error = xfs_iomap_write_direct(ip, offset, size,
1185 &imap, nimaps);
1186 } else {
1187 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1188 }
1189 if (error)
1190 goto out_unlock;
1191
1192 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1193 } else if (nimaps) {
1194 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1195 } else {
1196 trace_xfs_get_blocks_notfound(ip, offset, size);
1197 goto out_unlock;
1198 }
1199 xfs_iunlock(ip, lockmode);
1da177e4 1200
207d0416
CH
1201 if (imap.br_startblock != HOLESTARTBLOCK &&
1202 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1203 /*
1204 * For unwritten extents do not report a disk address on
1da177e4
LT
1205 * the read case (treat as if we're reading into a hole).
1206 */
207d0416
CH
1207 if (create || !ISUNWRITTEN(&imap))
1208 xfs_map_buffer(inode, bh_result, &imap, offset);
1209 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1210 if (direct)
1211 bh_result->b_private = inode;
1212 set_buffer_unwritten(bh_result);
1da177e4
LT
1213 }
1214 }
1215
c2536668
NS
1216 /*
1217 * If this is a realtime file, data may be on a different device.
1218 * to that pointed to from the buffer_head b_bdev currently.
1219 */
046f1685 1220 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1221
c2536668 1222 /*
549054af
DC
1223 * If we previously allocated a block out beyond eof and we are now
1224 * coming back to use it then we will need to flag it as new even if it
1225 * has a disk address.
1226 *
1227 * With sub-block writes into unwritten extents we also need to mark
1228 * the buffer as new so that the unwritten parts of the buffer gets
1229 * correctly zeroed.
1da177e4
LT
1230 */
1231 if (create &&
1232 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1233 (offset >= i_size_read(inode)) ||
207d0416 1234 (new || ISUNWRITTEN(&imap))))
1da177e4 1235 set_buffer_new(bh_result);
1da177e4 1236
207d0416 1237 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1238 BUG_ON(direct);
1239 if (create) {
1240 set_buffer_uptodate(bh_result);
1241 set_buffer_mapped(bh_result);
1242 set_buffer_delay(bh_result);
1243 }
1244 }
1245
2b8f12b7
CH
1246 /*
1247 * If this is O_DIRECT or the mpage code calling tell them how large
1248 * the mapping is, so that we can avoid repeated get_blocks calls.
1249 */
c2536668 1250 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1251 xfs_off_t mapping_size;
1252
1253 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1254 mapping_size <<= inode->i_blkbits;
1255
1256 ASSERT(mapping_size > 0);
1257 if (mapping_size > size)
1258 mapping_size = size;
1259 if (mapping_size > LONG_MAX)
1260 mapping_size = LONG_MAX;
1261
1262 bh_result->b_size = mapping_size;
1da177e4
LT
1263 }
1264
1265 return 0;
a206c817
CH
1266
1267out_unlock:
1268 xfs_iunlock(ip, lockmode);
1269 return -error;
1da177e4
LT
1270}
1271
1272int
c2536668 1273xfs_get_blocks(
1da177e4
LT
1274 struct inode *inode,
1275 sector_t iblock,
1276 struct buffer_head *bh_result,
1277 int create)
1278{
f2bde9b8 1279 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1280}
1281
1282STATIC int
e4c573bb 1283xfs_get_blocks_direct(
1da177e4
LT
1284 struct inode *inode,
1285 sector_t iblock,
1da177e4
LT
1286 struct buffer_head *bh_result,
1287 int create)
1288{
f2bde9b8 1289 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1290}
1291
209fb87a
CH
1292/*
1293 * Complete a direct I/O write request.
1294 *
1295 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1296 * need to issue a transaction to convert the range from unwritten to written
1297 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1298 * to do this and we are done. But in case this was a successfull AIO
1299 * request this handler is called from interrupt context, from which we
1300 * can't start transactions. In that case offload the I/O completion to
1301 * the workqueues we also use for buffered I/O completion.
1302 */
f0973863 1303STATIC void
209fb87a
CH
1304xfs_end_io_direct_write(
1305 struct kiocb *iocb,
1306 loff_t offset,
1307 ssize_t size,
1308 void *private,
1309 int ret,
1310 bool is_async)
f0973863 1311{
209fb87a 1312 struct xfs_ioend *ioend = iocb->private;
f0973863
CH
1313
1314 /*
209fb87a
CH
1315 * blockdev_direct_IO can return an error even after the I/O
1316 * completion handler was called. Thus we need to protect
1317 * against double-freeing.
f0973863 1318 */
209fb87a
CH
1319 iocb->private = NULL;
1320
ba87ea69
LM
1321 ioend->io_offset = offset;
1322 ioend->io_size = size;
209fb87a
CH
1323 if (private && size > 0)
1324 ioend->io_type = IO_UNWRITTEN;
1325
1326 if (is_async) {
1327 /*
1328 * If we are converting an unwritten extent we need to delay
1329 * the AIO completion until after the unwrittent extent
1330 * conversion has completed, otherwise do it ASAP.
1331 */
1332 if (ioend->io_type == IO_UNWRITTEN) {
fb511f21
CH
1333 ioend->io_iocb = iocb;
1334 ioend->io_result = ret;
fb511f21 1335 } else {
209fb87a 1336 aio_complete(iocb, ret, 0);
fb511f21 1337 }
209fb87a 1338 xfs_finish_ioend(ioend);
f0973863 1339 } else {
209fb87a 1340 xfs_finish_ioend_sync(ioend);
f0973863 1341 }
f0973863
CH
1342}
1343
1da177e4 1344STATIC ssize_t
e4c573bb 1345xfs_vm_direct_IO(
1da177e4
LT
1346 int rw,
1347 struct kiocb *iocb,
1348 const struct iovec *iov,
1349 loff_t offset,
1350 unsigned long nr_segs)
1351{
209fb87a
CH
1352 struct inode *inode = iocb->ki_filp->f_mapping->host;
1353 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1354 ssize_t ret;
1355
1356 if (rw & WRITE) {
a206c817 1357 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
209fb87a 1358
eafdc7d1
CH
1359 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1360 offset, nr_segs,
1361 xfs_get_blocks_direct,
1362 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1363 if (ret != -EIOCBQUEUED && iocb->private)
1364 xfs_destroy_ioend(iocb->private);
1365 } else {
eafdc7d1
CH
1366 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1367 offset, nr_segs,
1368 xfs_get_blocks_direct,
1369 NULL, NULL, 0);
209fb87a 1370 }
f0973863 1371
f0973863 1372 return ret;
1da177e4
LT
1373}
1374
fa9b227e
CH
1375STATIC void
1376xfs_vm_write_failed(
1377 struct address_space *mapping,
1378 loff_t to)
1379{
1380 struct inode *inode = mapping->host;
1381
1382 if (to > inode->i_size) {
c726de44
DC
1383 /*
1384 * punch out the delalloc blocks we have already allocated. We
1385 * don't call xfs_setattr() to do this as we may be in the
1386 * middle of a multi-iovec write and so the vfs inode->i_size
1387 * will not match the xfs ip->i_size and so it will zero too
1388 * much. Hence we jus truncate the page cache to zero what is
1389 * necessary and punch the delalloc blocks directly.
1390 */
1391 struct xfs_inode *ip = XFS_I(inode);
1392 xfs_fileoff_t start_fsb;
1393 xfs_fileoff_t end_fsb;
1394 int error;
1395
1396 truncate_pagecache(inode, to, inode->i_size);
1397
1398 /*
1399 * Check if there are any blocks that are outside of i_size
1400 * that need to be trimmed back.
1401 */
1402 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1403 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1404 if (end_fsb <= start_fsb)
1405 return;
1406
1407 xfs_ilock(ip, XFS_ILOCK_EXCL);
1408 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1409 end_fsb - start_fsb);
1410 if (error) {
1411 /* something screwed, just bail */
1412 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 1413 xfs_alert(ip->i_mount,
c726de44
DC
1414 "xfs_vm_write_failed: unable to clean up ino %lld",
1415 ip->i_ino);
1416 }
1417 }
1418 xfs_iunlock(ip, XFS_ILOCK_EXCL);
fa9b227e
CH
1419 }
1420}
1421
f51623b2 1422STATIC int
d79689c7 1423xfs_vm_write_begin(
f51623b2 1424 struct file *file,
d79689c7
NP
1425 struct address_space *mapping,
1426 loff_t pos,
1427 unsigned len,
1428 unsigned flags,
1429 struct page **pagep,
1430 void **fsdata)
f51623b2 1431{
155130a4
CH
1432 int ret;
1433
1434 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1435 pagep, xfs_get_blocks);
fa9b227e
CH
1436 if (unlikely(ret))
1437 xfs_vm_write_failed(mapping, pos + len);
1438 return ret;
1439}
1440
1441STATIC int
1442xfs_vm_write_end(
1443 struct file *file,
1444 struct address_space *mapping,
1445 loff_t pos,
1446 unsigned len,
1447 unsigned copied,
1448 struct page *page,
1449 void *fsdata)
1450{
1451 int ret;
155130a4 1452
fa9b227e
CH
1453 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1454 if (unlikely(ret < len))
1455 xfs_vm_write_failed(mapping, pos + len);
155130a4 1456 return ret;
f51623b2 1457}
1da177e4
LT
1458
1459STATIC sector_t
e4c573bb 1460xfs_vm_bmap(
1da177e4
LT
1461 struct address_space *mapping,
1462 sector_t block)
1463{
1464 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1465 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1466
cca28fb8 1467 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1468 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1469 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1470 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1471 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1472}
1473
1474STATIC int
e4c573bb 1475xfs_vm_readpage(
1da177e4
LT
1476 struct file *unused,
1477 struct page *page)
1478{
c2536668 1479 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1480}
1481
1482STATIC int
e4c573bb 1483xfs_vm_readpages(
1da177e4
LT
1484 struct file *unused,
1485 struct address_space *mapping,
1486 struct list_head *pages,
1487 unsigned nr_pages)
1488{
c2536668 1489 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1490}
1491
f5e54d6e 1492const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1493 .readpage = xfs_vm_readpage,
1494 .readpages = xfs_vm_readpages,
1495 .writepage = xfs_vm_writepage,
7d4fb40a 1496 .writepages = xfs_vm_writepages,
238f4c54
NS
1497 .releasepage = xfs_vm_releasepage,
1498 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1499 .write_begin = xfs_vm_write_begin,
fa9b227e 1500 .write_end = xfs_vm_write_end,
e4c573bb
NS
1501 .bmap = xfs_vm_bmap,
1502 .direct_IO = xfs_vm_direct_IO,
e965f963 1503 .migratepage = buffer_migrate_page,
bddaafa1 1504 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1505 .error_remove_page = generic_error_remove_page,
1da177e4 1506};