[XFS] Resolve a namespace collision on vnode/vnodeops for FreeBSD porters.
[linux-block.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir.h"
25#include "xfs_dir2.h"
26#include "xfs_trans.h"
27#include "xfs_dmapi.h"
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4
LT
32#include "xfs_dir_sf.h"
33#include "xfs_dir2_sf.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4
LT
35#include "xfs_dinode.h"
36#include "xfs_inode.h"
a844f451
NS
37#include "xfs_alloc.h"
38#include "xfs_btree.h"
1da177e4
LT
39#include "xfs_error.h"
40#include "xfs_rw.h"
41#include "xfs_iomap.h"
42#include <linux/mpage.h>
10ce4444 43#include <linux/pagevec.h>
1da177e4
LT
44#include <linux/writeback.h>
45
f51623b2
NS
46STATIC void
47xfs_count_page_state(
48 struct page *page,
49 int *delalloc,
50 int *unmapped,
51 int *unwritten)
52{
53 struct buffer_head *bh, *head;
54
55 *delalloc = *unmapped = *unwritten = 0;
56
57 bh = head = page_buffers(page);
58 do {
59 if (buffer_uptodate(bh) && !buffer_mapped(bh))
60 (*unmapped) = 1;
61 else if (buffer_unwritten(bh) && !buffer_delay(bh))
62 clear_buffer_unwritten(bh);
63 else if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
1da177e4
LT
70#if defined(XFS_RW_TRACE)
71void
72xfs_page_trace(
73 int tag,
74 struct inode *inode,
75 struct page *page,
76 int mask)
77{
78 xfs_inode_t *ip;
67fcaa73 79 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 80 loff_t isize = i_size_read(inode);
f6d6d4fc 81 loff_t offset = page_offset(page);
1da177e4
LT
82 int delalloc = -1, unmapped = -1, unwritten = -1;
83
84 if (page_has_buffers(page))
85 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
86
75e17b3c 87 ip = xfs_vtoi(vp);
1da177e4
LT
88 if (!ip->i_rwtrace)
89 return;
90
91 ktrace_enter(ip->i_rwtrace,
92 (void *)((unsigned long)tag),
93 (void *)ip,
94 (void *)inode,
95 (void *)page,
96 (void *)((unsigned long)mask),
97 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
99 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
100 (void *)((unsigned long)(isize & 0xffffffff)),
101 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
102 (void *)((unsigned long)(offset & 0xffffffff)),
103 (void *)((unsigned long)delalloc),
104 (void *)((unsigned long)unmapped),
105 (void *)((unsigned long)unwritten),
f1fdc848 106 (void *)((unsigned long)current_pid()),
1da177e4
LT
107 (void *)NULL);
108}
109#else
110#define xfs_page_trace(tag, inode, page, mask)
111#endif
112
0829c360
CH
113/*
114 * Schedule IO completion handling on a xfsdatad if this was
115 * the final hold on this ioend.
116 */
117STATIC void
118xfs_finish_ioend(
119 xfs_ioend_t *ioend)
120{
121 if (atomic_dec_and_test(&ioend->io_remaining))
122 queue_work(xfsdatad_workqueue, &ioend->io_work);
123}
124
f6d6d4fc
CH
125/*
126 * We're now finished for good with this ioend structure.
127 * Update the page state via the associated buffer_heads,
128 * release holds on the inode and bio, and finally free
129 * up memory. Do not use the ioend after this.
130 */
0829c360
CH
131STATIC void
132xfs_destroy_ioend(
133 xfs_ioend_t *ioend)
134{
f6d6d4fc
CH
135 struct buffer_head *bh, *next;
136
137 for (bh = ioend->io_buffer_head; bh; bh = next) {
138 next = bh->b_private;
7d04a335 139 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 140 }
7d04a335
NS
141 if (unlikely(ioend->io_error))
142 vn_ioerror(ioend->io_vnode, ioend->io_error, __FILE__,__LINE__);
0829c360
CH
143 vn_iowake(ioend->io_vnode);
144 mempool_free(ioend, xfs_ioend_pool);
145}
146
147/*
f6d6d4fc
CH
148 * Buffered IO write completion for delayed allocate extents.
149 * TODO: Update ondisk isize now that we know the file data
150 * has been flushed (i.e. the notorious "NULL file" problem).
151 */
152STATIC void
153xfs_end_bio_delalloc(
154 void *data)
155{
156 xfs_ioend_t *ioend = data;
157
158 xfs_destroy_ioend(ioend);
159}
160
161/*
162 * Buffered IO write completion for regular, written extents.
163 */
164STATIC void
165xfs_end_bio_written(
166 void *data)
167{
168 xfs_ioend_t *ioend = data;
169
170 xfs_destroy_ioend(ioend);
171}
172
173/*
174 * IO write completion for unwritten extents.
175 *
0829c360 176 * Issue transactions to convert a buffer range from unwritten
f0973863 177 * to written extents.
0829c360
CH
178 */
179STATIC void
180xfs_end_bio_unwritten(
181 void *data)
182{
183 xfs_ioend_t *ioend = data;
67fcaa73 184 bhv_vnode_t *vp = ioend->io_vnode;
0829c360
CH
185 xfs_off_t offset = ioend->io_offset;
186 size_t size = ioend->io_size;
0829c360 187
7d04a335 188 if (likely(!ioend->io_error))
67fcaa73 189 bhv_vop_bmap(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL);
0829c360
CH
190 xfs_destroy_ioend(ioend);
191}
192
193/*
194 * Allocate and initialise an IO completion structure.
195 * We need to track unwritten extent write completion here initially.
196 * We'll need to extend this for updating the ondisk inode size later
197 * (vs. incore size).
198 */
199STATIC xfs_ioend_t *
200xfs_alloc_ioend(
f6d6d4fc
CH
201 struct inode *inode,
202 unsigned int type)
0829c360
CH
203{
204 xfs_ioend_t *ioend;
205
206 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
207
208 /*
209 * Set the count to 1 initially, which will prevent an I/O
210 * completion callback from happening before we have started
211 * all the I/O from calling the completion routine too early.
212 */
213 atomic_set(&ioend->io_remaining, 1);
7d04a335 214 ioend->io_error = 0;
f6d6d4fc
CH
215 ioend->io_list = NULL;
216 ioend->io_type = type;
ec86dc02 217 ioend->io_vnode = vn_from_inode(inode);
c1a073bd 218 ioend->io_buffer_head = NULL;
f6d6d4fc 219 ioend->io_buffer_tail = NULL;
0829c360
CH
220 atomic_inc(&ioend->io_vnode->v_iocount);
221 ioend->io_offset = 0;
222 ioend->io_size = 0;
223
f6d6d4fc
CH
224 if (type == IOMAP_UNWRITTEN)
225 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend);
226 else if (type == IOMAP_DELAY)
227 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc, ioend);
228 else
229 INIT_WORK(&ioend->io_work, xfs_end_bio_written, ioend);
0829c360
CH
230
231 return ioend;
232}
233
1da177e4
LT
234STATIC int
235xfs_map_blocks(
236 struct inode *inode,
237 loff_t offset,
238 ssize_t count,
239 xfs_iomap_t *mapp,
240 int flags)
241{
67fcaa73 242 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
243 int error, nmaps = 1;
244
67fcaa73 245 error = bhv_vop_bmap(vp, offset, count, flags, mapp, &nmaps);
1da177e4
LT
246 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
247 VMODIFY(vp);
248 return -error;
249}
250
1defeac9
CH
251STATIC inline int
252xfs_iomap_valid(
1da177e4 253 xfs_iomap_t *iomapp,
1defeac9 254 loff_t offset)
1da177e4 255{
1defeac9
CH
256 return offset >= iomapp->iomap_offset &&
257 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
258}
259
f6d6d4fc
CH
260/*
261 * BIO completion handler for buffered IO.
262 */
263STATIC int
264xfs_end_bio(
265 struct bio *bio,
266 unsigned int bytes_done,
267 int error)
268{
269 xfs_ioend_t *ioend = bio->bi_private;
270
271 if (bio->bi_size)
272 return 1;
273
f6d6d4fc 274 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 275 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
276
277 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
278 bio->bi_private = NULL;
279 bio->bi_end_io = NULL;
f6d6d4fc 280 bio_put(bio);
7d04a335 281
f6d6d4fc
CH
282 xfs_finish_ioend(ioend);
283 return 0;
284}
285
286STATIC void
287xfs_submit_ioend_bio(
288 xfs_ioend_t *ioend,
289 struct bio *bio)
290{
291 atomic_inc(&ioend->io_remaining);
292
293 bio->bi_private = ioend;
294 bio->bi_end_io = xfs_end_bio;
295
296 submit_bio(WRITE, bio);
297 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
298 bio_put(bio);
299}
300
301STATIC struct bio *
302xfs_alloc_ioend_bio(
303 struct buffer_head *bh)
304{
305 struct bio *bio;
306 int nvecs = bio_get_nr_vecs(bh->b_bdev);
307
308 do {
309 bio = bio_alloc(GFP_NOIO, nvecs);
310 nvecs >>= 1;
311 } while (!bio);
312
313 ASSERT(bio->bi_private == NULL);
314 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
315 bio->bi_bdev = bh->b_bdev;
316 bio_get(bio);
317 return bio;
318}
319
320STATIC void
321xfs_start_buffer_writeback(
322 struct buffer_head *bh)
323{
324 ASSERT(buffer_mapped(bh));
325 ASSERT(buffer_locked(bh));
326 ASSERT(!buffer_delay(bh));
327 ASSERT(!buffer_unwritten(bh));
328
329 mark_buffer_async_write(bh);
330 set_buffer_uptodate(bh);
331 clear_buffer_dirty(bh);
332}
333
334STATIC void
335xfs_start_page_writeback(
336 struct page *page,
337 struct writeback_control *wbc,
338 int clear_dirty,
339 int buffers)
340{
341 ASSERT(PageLocked(page));
342 ASSERT(!PageWriteback(page));
343 set_page_writeback(page);
344 if (clear_dirty)
345 clear_page_dirty(page);
346 unlock_page(page);
347 if (!buffers) {
348 end_page_writeback(page);
349 wbc->pages_skipped++; /* We didn't write this page */
350 }
351}
352
353static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
354{
355 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
356}
357
358/*
d88992f6
DC
359 * Submit all of the bios for all of the ioends we have saved up, covering the
360 * initial writepage page and also any probed pages.
361 *
362 * Because we may have multiple ioends spanning a page, we need to start
363 * writeback on all the buffers before we submit them for I/O. If we mark the
364 * buffers as we got, then we can end up with a page that only has buffers
365 * marked async write and I/O complete on can occur before we mark the other
366 * buffers async write.
367 *
368 * The end result of this is that we trip a bug in end_page_writeback() because
369 * we call it twice for the one page as the code in end_buffer_async_write()
370 * assumes that all buffers on the page are started at the same time.
371 *
372 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 373 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
374 */
375STATIC void
376xfs_submit_ioend(
377 xfs_ioend_t *ioend)
378{
d88992f6 379 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
380 xfs_ioend_t *next;
381 struct buffer_head *bh;
382 struct bio *bio;
383 sector_t lastblock = 0;
384
d88992f6
DC
385 /* Pass 1 - start writeback */
386 do {
387 next = ioend->io_list;
388 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
389 xfs_start_buffer_writeback(bh);
390 }
391 } while ((ioend = next) != NULL);
392
393 /* Pass 2 - submit I/O */
394 ioend = head;
f6d6d4fc
CH
395 do {
396 next = ioend->io_list;
397 bio = NULL;
398
399 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
400
401 if (!bio) {
402 retry:
403 bio = xfs_alloc_ioend_bio(bh);
404 } else if (bh->b_blocknr != lastblock + 1) {
405 xfs_submit_ioend_bio(ioend, bio);
406 goto retry;
407 }
408
409 if (bio_add_buffer(bio, bh) != bh->b_size) {
410 xfs_submit_ioend_bio(ioend, bio);
411 goto retry;
412 }
413
414 lastblock = bh->b_blocknr;
415 }
416 if (bio)
417 xfs_submit_ioend_bio(ioend, bio);
418 xfs_finish_ioend(ioend);
419 } while ((ioend = next) != NULL);
420}
421
422/*
423 * Cancel submission of all buffer_heads so far in this endio.
424 * Toss the endio too. Only ever called for the initial page
425 * in a writepage request, so only ever one page.
426 */
427STATIC void
428xfs_cancel_ioend(
429 xfs_ioend_t *ioend)
430{
431 xfs_ioend_t *next;
432 struct buffer_head *bh, *next_bh;
433
434 do {
435 next = ioend->io_list;
436 bh = ioend->io_buffer_head;
437 do {
438 next_bh = bh->b_private;
439 clear_buffer_async_write(bh);
440 unlock_buffer(bh);
441 } while ((bh = next_bh) != NULL);
442
443 vn_iowake(ioend->io_vnode);
444 mempool_free(ioend, xfs_ioend_pool);
445 } while ((ioend = next) != NULL);
446}
447
448/*
449 * Test to see if we've been building up a completion structure for
450 * earlier buffers -- if so, we try to append to this ioend if we
451 * can, otherwise we finish off any current ioend and start another.
452 * Return true if we've finished the given ioend.
453 */
454STATIC void
455xfs_add_to_ioend(
456 struct inode *inode,
457 struct buffer_head *bh,
7336cea8 458 xfs_off_t offset,
f6d6d4fc
CH
459 unsigned int type,
460 xfs_ioend_t **result,
461 int need_ioend)
462{
463 xfs_ioend_t *ioend = *result;
464
465 if (!ioend || need_ioend || type != ioend->io_type) {
466 xfs_ioend_t *previous = *result;
f6d6d4fc 467
f6d6d4fc
CH
468 ioend = xfs_alloc_ioend(inode, type);
469 ioend->io_offset = offset;
470 ioend->io_buffer_head = bh;
471 ioend->io_buffer_tail = bh;
472 if (previous)
473 previous->io_list = ioend;
474 *result = ioend;
475 } else {
476 ioend->io_buffer_tail->b_private = bh;
477 ioend->io_buffer_tail = bh;
478 }
479
480 bh->b_private = NULL;
481 ioend->io_size += bh->b_size;
482}
483
87cbc49c
NS
484STATIC void
485xfs_map_buffer(
486 struct buffer_head *bh,
487 xfs_iomap_t *mp,
488 xfs_off_t offset,
489 uint block_bits)
490{
491 sector_t bn;
492
493 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
494
495 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
496 ((offset - mp->iomap_offset) >> block_bits);
497
498 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
499
500 bh->b_blocknr = bn;
501 set_buffer_mapped(bh);
502}
503
1da177e4
LT
504STATIC void
505xfs_map_at_offset(
1da177e4 506 struct buffer_head *bh,
1defeac9 507 loff_t offset,
1da177e4 508 int block_bits,
1defeac9 509 xfs_iomap_t *iomapp)
1da177e4 510{
1da177e4
LT
511 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
512 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
513
514 lock_buffer(bh);
87cbc49c 515 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 516 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
517 set_buffer_mapped(bh);
518 clear_buffer_delay(bh);
f6d6d4fc 519 clear_buffer_unwritten(bh);
1da177e4
LT
520}
521
522/*
6c4fe19f 523 * Look for a page at index that is suitable for clustering.
1da177e4
LT
524 */
525STATIC unsigned int
6c4fe19f 526xfs_probe_page(
10ce4444 527 struct page *page,
6c4fe19f
CH
528 unsigned int pg_offset,
529 int mapped)
1da177e4 530{
1da177e4
LT
531 int ret = 0;
532
1da177e4 533 if (PageWriteback(page))
10ce4444 534 return 0;
1da177e4
LT
535
536 if (page->mapping && PageDirty(page)) {
537 if (page_has_buffers(page)) {
538 struct buffer_head *bh, *head;
539
540 bh = head = page_buffers(page);
541 do {
6c4fe19f
CH
542 if (!buffer_uptodate(bh))
543 break;
544 if (mapped != buffer_mapped(bh))
1da177e4
LT
545 break;
546 ret += bh->b_size;
547 if (ret >= pg_offset)
548 break;
549 } while ((bh = bh->b_this_page) != head);
550 } else
6c4fe19f 551 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
552 }
553
1da177e4
LT
554 return ret;
555}
556
f6d6d4fc 557STATIC size_t
6c4fe19f 558xfs_probe_cluster(
1da177e4
LT
559 struct inode *inode,
560 struct page *startpage,
561 struct buffer_head *bh,
6c4fe19f
CH
562 struct buffer_head *head,
563 int mapped)
1da177e4 564{
10ce4444 565 struct pagevec pvec;
1da177e4 566 pgoff_t tindex, tlast, tloff;
10ce4444
CH
567 size_t total = 0;
568 int done = 0, i;
1da177e4
LT
569
570 /* First sum forwards in this page */
571 do {
2353e8e9 572 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 573 return total;
1da177e4
LT
574 total += bh->b_size;
575 } while ((bh = bh->b_this_page) != head);
576
10ce4444
CH
577 /* if we reached the end of the page, sum forwards in following pages */
578 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
579 tindex = startpage->index + 1;
580
581 /* Prune this back to avoid pathological behavior */
582 tloff = min(tlast, startpage->index + 64);
583
584 pagevec_init(&pvec, 0);
585 while (!done && tindex <= tloff) {
586 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
587
588 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
589 break;
590
591 for (i = 0; i < pagevec_count(&pvec); i++) {
592 struct page *page = pvec.pages[i];
593 size_t pg_offset, len = 0;
594
595 if (tindex == tlast) {
596 pg_offset =
597 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
598 if (!pg_offset) {
599 done = 1;
10ce4444 600 break;
1defeac9 601 }
10ce4444
CH
602 } else
603 pg_offset = PAGE_CACHE_SIZE;
604
605 if (page->index == tindex && !TestSetPageLocked(page)) {
6c4fe19f 606 len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
607 unlock_page(page);
608 }
609
610 if (!len) {
611 done = 1;
612 break;
613 }
614
1da177e4 615 total += len;
1defeac9 616 tindex++;
1da177e4 617 }
10ce4444
CH
618
619 pagevec_release(&pvec);
620 cond_resched();
1da177e4 621 }
10ce4444 622
1da177e4
LT
623 return total;
624}
625
626/*
10ce4444
CH
627 * Test if a given page is suitable for writing as part of an unwritten
628 * or delayed allocate extent.
1da177e4 629 */
10ce4444
CH
630STATIC int
631xfs_is_delayed_page(
632 struct page *page,
f6d6d4fc 633 unsigned int type)
1da177e4 634{
1da177e4 635 if (PageWriteback(page))
10ce4444 636 return 0;
1da177e4
LT
637
638 if (page->mapping && page_has_buffers(page)) {
639 struct buffer_head *bh, *head;
640 int acceptable = 0;
641
642 bh = head = page_buffers(page);
643 do {
f6d6d4fc
CH
644 if (buffer_unwritten(bh))
645 acceptable = (type == IOMAP_UNWRITTEN);
646 else if (buffer_delay(bh))
647 acceptable = (type == IOMAP_DELAY);
2ddee844 648 else if (buffer_dirty(bh) && buffer_mapped(bh))
6c4fe19f 649 acceptable = (type == 0);
f6d6d4fc 650 else
1da177e4 651 break;
1da177e4
LT
652 } while ((bh = bh->b_this_page) != head);
653
654 if (acceptable)
10ce4444 655 return 1;
1da177e4
LT
656 }
657
10ce4444 658 return 0;
1da177e4
LT
659}
660
1da177e4
LT
661/*
662 * Allocate & map buffers for page given the extent map. Write it out.
663 * except for the original page of a writepage, this is called on
664 * delalloc/unwritten pages only, for the original page it is possible
665 * that the page has no mapping at all.
666 */
f6d6d4fc 667STATIC int
1da177e4
LT
668xfs_convert_page(
669 struct inode *inode,
670 struct page *page,
10ce4444 671 loff_t tindex,
1defeac9 672 xfs_iomap_t *mp,
f6d6d4fc 673 xfs_ioend_t **ioendp,
1da177e4 674 struct writeback_control *wbc,
1da177e4
LT
675 int startio,
676 int all_bh)
677{
f6d6d4fc 678 struct buffer_head *bh, *head;
9260dc6b
CH
679 xfs_off_t end_offset;
680 unsigned long p_offset;
f6d6d4fc 681 unsigned int type;
1da177e4 682 int bbits = inode->i_blkbits;
24e17b5f 683 int len, page_dirty;
f6d6d4fc 684 int count = 0, done = 0, uptodate = 1;
9260dc6b 685 xfs_off_t offset = page_offset(page);
1da177e4 686
10ce4444
CH
687 if (page->index != tindex)
688 goto fail;
689 if (TestSetPageLocked(page))
690 goto fail;
691 if (PageWriteback(page))
692 goto fail_unlock_page;
693 if (page->mapping != inode->i_mapping)
694 goto fail_unlock_page;
695 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
696 goto fail_unlock_page;
697
24e17b5f
NS
698 /*
699 * page_dirty is initially a count of buffers on the page before
c41564b5 700 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
701 *
702 * Derivation:
703 *
704 * End offset is the highest offset that this page should represent.
705 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
706 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
707 * hence give us the correct page_dirty count. On any other page,
708 * it will be zero and in that case we need page_dirty to be the
709 * count of buffers on the page.
24e17b5f 710 */
9260dc6b
CH
711 end_offset = min_t(unsigned long long,
712 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
713 i_size_read(inode));
714
24e17b5f 715 len = 1 << inode->i_blkbits;
9260dc6b
CH
716 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
717 PAGE_CACHE_SIZE);
718 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
719 page_dirty = p_offset / len;
24e17b5f 720
1da177e4
LT
721 bh = head = page_buffers(page);
722 do {
9260dc6b 723 if (offset >= end_offset)
1da177e4 724 break;
f6d6d4fc
CH
725 if (!buffer_uptodate(bh))
726 uptodate = 0;
727 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
728 done = 1;
1da177e4 729 continue;
f6d6d4fc
CH
730 }
731
9260dc6b
CH
732 if (buffer_unwritten(bh) || buffer_delay(bh)) {
733 if (buffer_unwritten(bh))
734 type = IOMAP_UNWRITTEN;
735 else
736 type = IOMAP_DELAY;
737
738 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 739 done = 1;
9260dc6b
CH
740 continue;
741 }
742
743 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
744 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
745
746 xfs_map_at_offset(bh, offset, bbits, mp);
747 if (startio) {
7336cea8 748 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
749 type, ioendp, done);
750 } else {
751 set_buffer_dirty(bh);
752 unlock_buffer(bh);
753 mark_buffer_dirty(bh);
754 }
755 page_dirty--;
756 count++;
757 } else {
758 type = 0;
759 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 760 lock_buffer(bh);
7336cea8 761 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
762 type, ioendp, done);
763 count++;
24e17b5f 764 page_dirty--;
9260dc6b
CH
765 } else {
766 done = 1;
1da177e4 767 }
1da177e4 768 }
7336cea8 769 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 770
f6d6d4fc
CH
771 if (uptodate && bh == head)
772 SetPageUptodate(page);
773
774 if (startio) {
f5e596bb
CH
775 if (count) {
776 struct backing_dev_info *bdi;
777
778 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 779 wbc->nr_to_write--;
f5e596bb
CH
780 if (bdi_write_congested(bdi)) {
781 wbc->encountered_congestion = 1;
782 done = 1;
9fddaca2 783 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
784 done = 1;
785 }
786 }
f6d6d4fc 787 xfs_start_page_writeback(page, wbc, !page_dirty, count);
1da177e4 788 }
f6d6d4fc
CH
789
790 return done;
10ce4444
CH
791 fail_unlock_page:
792 unlock_page(page);
793 fail:
794 return 1;
1da177e4
LT
795}
796
797/*
798 * Convert & write out a cluster of pages in the same extent as defined
799 * by mp and following the start page.
800 */
801STATIC void
802xfs_cluster_write(
803 struct inode *inode,
804 pgoff_t tindex,
805 xfs_iomap_t *iomapp,
f6d6d4fc 806 xfs_ioend_t **ioendp,
1da177e4
LT
807 struct writeback_control *wbc,
808 int startio,
809 int all_bh,
810 pgoff_t tlast)
811{
10ce4444
CH
812 struct pagevec pvec;
813 int done = 0, i;
1da177e4 814
10ce4444
CH
815 pagevec_init(&pvec, 0);
816 while (!done && tindex <= tlast) {
817 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
818
819 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 820 break;
10ce4444
CH
821
822 for (i = 0; i < pagevec_count(&pvec); i++) {
823 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
824 iomapp, ioendp, wbc, startio, all_bh);
825 if (done)
826 break;
827 }
828
829 pagevec_release(&pvec);
830 cond_resched();
1da177e4
LT
831 }
832}
833
834/*
835 * Calling this without startio set means we are being asked to make a dirty
836 * page ready for freeing it's buffers. When called with startio set then
837 * we are coming from writepage.
838 *
839 * When called with startio set it is important that we write the WHOLE
840 * page if possible.
841 * The bh->b_state's cannot know if any of the blocks or which block for
842 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 843 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
844 * may clear the page dirty flag prior to calling write page, under the
845 * assumption the entire page will be written out; by not writing out the
846 * whole page the page can be reused before all valid dirty data is
847 * written out. Note: in the case of a page that has been dirty'd by
848 * mapwrite and but partially setup by block_prepare_write the
849 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
850 * valid state, thus the whole page must be written out thing.
851 */
852
853STATIC int
854xfs_page_state_convert(
855 struct inode *inode,
856 struct page *page,
857 struct writeback_control *wbc,
858 int startio,
859 int unmapped) /* also implies page uptodate */
860{
f6d6d4fc 861 struct buffer_head *bh, *head;
1defeac9 862 xfs_iomap_t iomap;
f6d6d4fc 863 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
864 loff_t offset;
865 unsigned long p_offset = 0;
f6d6d4fc 866 unsigned int type;
1da177e4
LT
867 __uint64_t end_offset;
868 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
869 ssize_t size, len;
870 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
871 int page_dirty, count = 0;
872 int trylock = 0;
6c4fe19f 873 int all_bh = unmapped;
1da177e4 874
8272145c
NS
875 if (startio) {
876 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
877 trylock |= BMAPI_TRYLOCK;
878 }
3ba0815a 879
1da177e4
LT
880 /* Is this page beyond the end of the file? */
881 offset = i_size_read(inode);
882 end_index = offset >> PAGE_CACHE_SHIFT;
883 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
884 if (page->index >= end_index) {
885 if ((page->index >= end_index + 1) ||
886 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
887 if (startio)
888 unlock_page(page);
889 return 0;
1da177e4
LT
890 }
891 }
892
1da177e4 893 /*
24e17b5f 894 * page_dirty is initially a count of buffers on the page before
c41564b5 895 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
896 *
897 * Derivation:
898 *
899 * End offset is the highest offset that this page should represent.
900 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
901 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
902 * hence give us the correct page_dirty count. On any other page,
903 * it will be zero and in that case we need page_dirty to be the
904 * count of buffers on the page.
905 */
906 end_offset = min_t(unsigned long long,
907 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 908 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
909 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
910 PAGE_CACHE_SIZE);
911 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
912 page_dirty = p_offset / len;
913
24e17b5f 914 bh = head = page_buffers(page);
f6d6d4fc 915 offset = page_offset(page);
6c4fe19f
CH
916 flags = -1;
917 type = 0;
f6d6d4fc 918
f6d6d4fc 919 /* TODO: cleanup count and page_dirty */
1da177e4
LT
920
921 do {
922 if (offset >= end_offset)
923 break;
924 if (!buffer_uptodate(bh))
925 uptodate = 0;
f6d6d4fc 926 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
927 /*
928 * the iomap is actually still valid, but the ioend
929 * isn't. shouldn't happen too often.
930 */
931 iomap_valid = 0;
1da177e4 932 continue;
f6d6d4fc 933 }
1da177e4 934
1defeac9
CH
935 if (iomap_valid)
936 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
937
938 /*
939 * First case, map an unwritten extent and prepare for
940 * extent state conversion transaction on completion.
f6d6d4fc 941 *
1da177e4
LT
942 * Second case, allocate space for a delalloc buffer.
943 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
944 *
945 * Third case, an unmapped buffer was found, and we are
946 * in a path where we need to write the whole page out.
947 */
948 if (buffer_unwritten(bh) || buffer_delay(bh) ||
949 ((buffer_uptodate(bh) || PageUptodate(page)) &&
950 !buffer_mapped(bh) && (unmapped || startio))) {
6c4fe19f
CH
951 /*
952 * Make sure we don't use a read-only iomap
953 */
954 if (flags == BMAPI_READ)
955 iomap_valid = 0;
956
f6d6d4fc
CH
957 if (buffer_unwritten(bh)) {
958 type = IOMAP_UNWRITTEN;
8272145c 959 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 960 } else if (buffer_delay(bh)) {
f6d6d4fc 961 type = IOMAP_DELAY;
8272145c 962 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 963 } else {
6c4fe19f 964 type = IOMAP_NEW;
8272145c 965 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
966 }
967
1defeac9 968 if (!iomap_valid) {
6c4fe19f
CH
969 if (type == IOMAP_NEW) {
970 size = xfs_probe_cluster(inode,
971 page, bh, head, 0);
d5cb48aa
CH
972 } else {
973 size = len;
974 }
975
976 err = xfs_map_blocks(inode, offset, size,
977 &iomap, flags);
f6d6d4fc 978 if (err)
1da177e4 979 goto error;
1defeac9 980 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 981 }
1defeac9
CH
982 if (iomap_valid) {
983 xfs_map_at_offset(bh, offset,
984 inode->i_blkbits, &iomap);
1da177e4 985 if (startio) {
7336cea8 986 xfs_add_to_ioend(inode, bh, offset,
1defeac9
CH
987 type, &ioend,
988 !iomap_valid);
1da177e4
LT
989 } else {
990 set_buffer_dirty(bh);
991 unlock_buffer(bh);
992 mark_buffer_dirty(bh);
993 }
994 page_dirty--;
f6d6d4fc 995 count++;
1da177e4 996 }
d5cb48aa 997 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
998 /*
999 * we got here because the buffer is already mapped.
1000 * That means it must already have extents allocated
1001 * underneath it. Map the extent by reading it.
1002 */
1003 if (!iomap_valid || type != 0) {
1004 flags = BMAPI_READ;
1005 size = xfs_probe_cluster(inode, page, bh,
1006 head, 1);
1007 err = xfs_map_blocks(inode, offset, size,
1008 &iomap, flags);
1009 if (err)
1010 goto error;
1011 iomap_valid = xfs_iomap_valid(&iomap, offset);
1012 }
d5cb48aa 1013
6c4fe19f 1014 type = 0;
d5cb48aa
CH
1015 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1016 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1017 if (iomap_valid)
1018 all_bh = 1;
7336cea8 1019 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1020 &ioend, !iomap_valid);
1021 page_dirty--;
1022 count++;
f6d6d4fc 1023 } else {
1defeac9 1024 iomap_valid = 0;
1da177e4 1025 }
d5cb48aa
CH
1026 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1027 (unmapped || startio)) {
1028 iomap_valid = 0;
1da177e4 1029 }
f6d6d4fc
CH
1030
1031 if (!iohead)
1032 iohead = ioend;
1033
1034 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1035
1036 if (uptodate && bh == head)
1037 SetPageUptodate(page);
1038
f6d6d4fc
CH
1039 if (startio)
1040 xfs_start_page_writeback(page, wbc, 1, count);
1da177e4 1041
1defeac9
CH
1042 if (ioend && iomap_valid) {
1043 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1044 PAGE_CACHE_SHIFT;
775bf6c9 1045 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1046 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1047 wbc, startio, all_bh, tlast);
1da177e4
LT
1048 }
1049
f6d6d4fc
CH
1050 if (iohead)
1051 xfs_submit_ioend(iohead);
1052
1da177e4
LT
1053 return page_dirty;
1054
1055error:
f6d6d4fc
CH
1056 if (iohead)
1057 xfs_cancel_ioend(iohead);
1da177e4
LT
1058
1059 /*
1060 * If it's delalloc and we have nowhere to put it,
1061 * throw it away, unless the lower layers told
1062 * us to try again.
1063 */
1064 if (err != -EAGAIN) {
f6d6d4fc 1065 if (!unmapped)
1da177e4 1066 block_invalidatepage(page, 0);
1da177e4
LT
1067 ClearPageUptodate(page);
1068 }
1069 return err;
1070}
1071
f51623b2
NS
1072/*
1073 * writepage: Called from one of two places:
1074 *
1075 * 1. we are flushing a delalloc buffer head.
1076 *
1077 * 2. we are writing out a dirty page. Typically the page dirty
1078 * state is cleared before we get here. In this case is it
1079 * conceivable we have no buffer heads.
1080 *
1081 * For delalloc space on the page we need to allocate space and
1082 * flush it. For unmapped buffer heads on the page we should
1083 * allocate space if the page is uptodate. For any other dirty
1084 * buffer heads on the page we should flush them.
1085 *
1086 * If we detect that a transaction would be required to flush
1087 * the page, we have to check the process flags first, if we
1088 * are already in a transaction or disk I/O during allocations
1089 * is off, we need to fail the writepage and redirty the page.
1090 */
1091
1092STATIC int
e4c573bb 1093xfs_vm_writepage(
f51623b2
NS
1094 struct page *page,
1095 struct writeback_control *wbc)
1096{
1097 int error;
1098 int need_trans;
1099 int delalloc, unmapped, unwritten;
1100 struct inode *inode = page->mapping->host;
1101
1102 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1103
1104 /*
1105 * We need a transaction if:
1106 * 1. There are delalloc buffers on the page
1107 * 2. The page is uptodate and we have unmapped buffers
1108 * 3. The page is uptodate and we have no buffers
1109 * 4. There are unwritten buffers on the page
1110 */
1111
1112 if (!page_has_buffers(page)) {
1113 unmapped = 1;
1114 need_trans = 1;
1115 } else {
1116 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1117 if (!PageUptodate(page))
1118 unmapped = 0;
1119 need_trans = delalloc + unmapped + unwritten;
1120 }
1121
1122 /*
1123 * If we need a transaction and the process flags say
1124 * we are already in a transaction, or no IO is allowed
1125 * then mark the page dirty again and leave the page
1126 * as is.
1127 */
59c1b082 1128 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1129 goto out_fail;
1130
1131 /*
1132 * Delay hooking up buffer heads until we have
1133 * made our go/no-go decision.
1134 */
1135 if (!page_has_buffers(page))
1136 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1137
1138 /*
1139 * Convert delayed allocate, unwritten or unmapped space
1140 * to real space and flush out to disk.
1141 */
1142 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1143 if (error == -EAGAIN)
1144 goto out_fail;
1145 if (unlikely(error < 0))
1146 goto out_unlock;
1147
1148 return 0;
1149
1150out_fail:
1151 redirty_page_for_writepage(wbc, page);
1152 unlock_page(page);
1153 return 0;
1154out_unlock:
1155 unlock_page(page);
1156 return error;
1157}
1158
7d4fb40a
NS
1159STATIC int
1160xfs_vm_writepages(
1161 struct address_space *mapping,
1162 struct writeback_control *wbc)
1163{
67fcaa73 1164 struct bhv_vnode *vp = vn_from_inode(mapping->host);
7d4fb40a
NS
1165
1166 if (VN_TRUNC(vp))
1167 VUNTRUNCATE(vp);
1168 return generic_writepages(mapping, wbc);
1169}
1170
f51623b2
NS
1171/*
1172 * Called to move a page into cleanable state - and from there
1173 * to be released. Possibly the page is already clean. We always
1174 * have buffer heads in this call.
1175 *
1176 * Returns 0 if the page is ok to release, 1 otherwise.
1177 *
1178 * Possible scenarios are:
1179 *
1180 * 1. We are being called to release a page which has been written
1181 * to via regular I/O. buffer heads will be dirty and possibly
1182 * delalloc. If no delalloc buffer heads in this case then we
1183 * can just return zero.
1184 *
1185 * 2. We are called to release a page which has been written via
1186 * mmap, all we need to do is ensure there is no delalloc
1187 * state in the buffer heads, if not we can let the caller
1188 * free them and we should come back later via writepage.
1189 */
1190STATIC int
238f4c54 1191xfs_vm_releasepage(
f51623b2
NS
1192 struct page *page,
1193 gfp_t gfp_mask)
1194{
1195 struct inode *inode = page->mapping->host;
1196 int dirty, delalloc, unmapped, unwritten;
1197 struct writeback_control wbc = {
1198 .sync_mode = WB_SYNC_ALL,
1199 .nr_to_write = 1,
1200 };
1201
1202 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1203
238f4c54
NS
1204 if (!page_has_buffers(page))
1205 return 0;
1206
f51623b2
NS
1207 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1208 if (!delalloc && !unwritten)
1209 goto free_buffers;
1210
1211 if (!(gfp_mask & __GFP_FS))
1212 return 0;
1213
1214 /* If we are already inside a transaction or the thread cannot
1215 * do I/O, we cannot release this page.
1216 */
59c1b082 1217 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1218 return 0;
1219
1220 /*
1221 * Convert delalloc space to real space, do not flush the
1222 * data out to disk, that will be done by the caller.
1223 * Never need to allocate space here - we will always
1224 * come back to writepage in that case.
1225 */
1226 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1227 if (dirty == 0 && !unwritten)
1228 goto free_buffers;
1229 return 0;
1230
1231free_buffers:
1232 return try_to_free_buffers(page);
1233}
1234
1da177e4 1235STATIC int
c2536668 1236__xfs_get_blocks(
1da177e4
LT
1237 struct inode *inode,
1238 sector_t iblock,
1da177e4
LT
1239 struct buffer_head *bh_result,
1240 int create,
1241 int direct,
1242 bmapi_flags_t flags)
1243{
67fcaa73 1244 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 1245 xfs_iomap_t iomap;
fdc7ed75
NS
1246 xfs_off_t offset;
1247 ssize_t size;
c2536668 1248 int niomap = 1;
1da177e4 1249 int error;
1da177e4 1250
fdc7ed75 1251 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1252 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1253 size = bh_result->b_size;
67fcaa73
NS
1254 error = bhv_vop_bmap(vp, offset, size,
1255 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1256 if (error)
1257 return -error;
c2536668 1258 if (niomap == 0)
1da177e4
LT
1259 return 0;
1260
1261 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1262 /*
1263 * For unwritten extents do not report a disk address on
1da177e4
LT
1264 * the read case (treat as if we're reading into a hole).
1265 */
1266 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1267 xfs_map_buffer(bh_result, &iomap, offset,
1268 inode->i_blkbits);
1da177e4
LT
1269 }
1270 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1271 if (direct)
1272 bh_result->b_private = inode;
1273 set_buffer_unwritten(bh_result);
1274 set_buffer_delay(bh_result);
1275 }
1276 }
1277
c2536668
NS
1278 /*
1279 * If this is a realtime file, data may be on a different device.
1280 * to that pointed to from the buffer_head b_bdev currently.
1281 */
ce8e922c 1282 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1283
c2536668
NS
1284 /*
1285 * If we previously allocated a block out beyond eof and we are
1286 * now coming back to use it then we will need to flag it as new
1287 * even if it has a disk address.
1da177e4
LT
1288 */
1289 if (create &&
1290 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
fdc7ed75 1291 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW)))
1da177e4 1292 set_buffer_new(bh_result);
1da177e4
LT
1293
1294 if (iomap.iomap_flags & IOMAP_DELAY) {
1295 BUG_ON(direct);
1296 if (create) {
1297 set_buffer_uptodate(bh_result);
1298 set_buffer_mapped(bh_result);
1299 set_buffer_delay(bh_result);
1300 }
1301 }
1302
c2536668 1303 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1304 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1305 offset = min_t(xfs_off_t,
c2536668
NS
1306 iomap.iomap_bsize - iomap.iomap_delta, size);
1307 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1308 }
1309
1310 return 0;
1311}
1312
1313int
c2536668 1314xfs_get_blocks(
1da177e4
LT
1315 struct inode *inode,
1316 sector_t iblock,
1317 struct buffer_head *bh_result,
1318 int create)
1319{
c2536668 1320 return __xfs_get_blocks(inode, iblock,
fa30bd05 1321 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1322}
1323
1324STATIC int
e4c573bb 1325xfs_get_blocks_direct(
1da177e4
LT
1326 struct inode *inode,
1327 sector_t iblock,
1da177e4
LT
1328 struct buffer_head *bh_result,
1329 int create)
1330{
c2536668 1331 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1332 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1333}
1334
f0973863 1335STATIC void
e4c573bb 1336xfs_end_io_direct(
f0973863
CH
1337 struct kiocb *iocb,
1338 loff_t offset,
1339 ssize_t size,
1340 void *private)
1341{
1342 xfs_ioend_t *ioend = iocb->private;
1343
1344 /*
1345 * Non-NULL private data means we need to issue a transaction to
1346 * convert a range from unwritten to written extents. This needs
c41564b5 1347 * to happen from process context but aio+dio I/O completion
f0973863 1348 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1349 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1350 * it anyway to keep the code uniform and simpler.
1351 *
1352 * The core direct I/O code might be changed to always call the
1353 * completion handler in the future, in which case all this can
1354 * go away.
1355 */
1356 if (private && size > 0) {
1357 ioend->io_offset = offset;
1358 ioend->io_size = size;
1359 xfs_finish_ioend(ioend);
1360 } else {
1361 ASSERT(size >= 0);
1362 xfs_destroy_ioend(ioend);
1363 }
1364
1365 /*
c41564b5 1366 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1367 * completion handler was called. Thus we need to protect
1368 * against double-freeing.
1369 */
1370 iocb->private = NULL;
1371}
1372
1da177e4 1373STATIC ssize_t
e4c573bb 1374xfs_vm_direct_IO(
1da177e4
LT
1375 int rw,
1376 struct kiocb *iocb,
1377 const struct iovec *iov,
1378 loff_t offset,
1379 unsigned long nr_segs)
1380{
1381 struct file *file = iocb->ki_filp;
1382 struct inode *inode = file->f_mapping->host;
67fcaa73 1383 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
1384 xfs_iomap_t iomap;
1385 int maps = 1;
1386 int error;
f0973863 1387 ssize_t ret;
1da177e4 1388
67fcaa73 1389 error = bhv_vop_bmap(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps);
1da177e4
LT
1390 if (error)
1391 return -error;
1392
f6d6d4fc 1393 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
f0973863
CH
1394
1395 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
ce8e922c 1396 iomap.iomap_target->bt_bdev,
1da177e4 1397 iov, offset, nr_segs,
e4c573bb
NS
1398 xfs_get_blocks_direct,
1399 xfs_end_io_direct);
f0973863
CH
1400
1401 if (unlikely(ret <= 0 && iocb->private))
1402 xfs_destroy_ioend(iocb->private);
1403 return ret;
1da177e4
LT
1404}
1405
f51623b2 1406STATIC int
e4c573bb 1407xfs_vm_prepare_write(
f51623b2
NS
1408 struct file *file,
1409 struct page *page,
1410 unsigned int from,
1411 unsigned int to)
1412{
c2536668 1413 return block_prepare_write(page, from, to, xfs_get_blocks);
f51623b2 1414}
1da177e4
LT
1415
1416STATIC sector_t
e4c573bb 1417xfs_vm_bmap(
1da177e4
LT
1418 struct address_space *mapping,
1419 sector_t block)
1420{
1421 struct inode *inode = (struct inode *)mapping->host;
67fcaa73 1422 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 1423
e4c573bb 1424 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
67fcaa73
NS
1425 bhv_vop_rwlock(vp, VRWLOCK_READ);
1426 bhv_vop_flush_pages(vp, (xfs_off_t)0, -1, 0, FI_REMAPF);
1427 bhv_vop_rwunlock(vp, VRWLOCK_READ);
c2536668 1428 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1429}
1430
1431STATIC int
e4c573bb 1432xfs_vm_readpage(
1da177e4
LT
1433 struct file *unused,
1434 struct page *page)
1435{
c2536668 1436 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1437}
1438
1439STATIC int
e4c573bb 1440xfs_vm_readpages(
1da177e4
LT
1441 struct file *unused,
1442 struct address_space *mapping,
1443 struct list_head *pages,
1444 unsigned nr_pages)
1445{
c2536668 1446 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1447}
1448
2ff28e22 1449STATIC void
238f4c54 1450xfs_vm_invalidatepage(
bcec2b7f
NS
1451 struct page *page,
1452 unsigned long offset)
1453{
1454 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1455 page->mapping->host, page, offset);
2ff28e22 1456 block_invalidatepage(page, offset);
bcec2b7f
NS
1457}
1458
e4c573bb
NS
1459struct address_space_operations xfs_address_space_operations = {
1460 .readpage = xfs_vm_readpage,
1461 .readpages = xfs_vm_readpages,
1462 .writepage = xfs_vm_writepage,
7d4fb40a 1463 .writepages = xfs_vm_writepages,
1da177e4 1464 .sync_page = block_sync_page,
238f4c54
NS
1465 .releasepage = xfs_vm_releasepage,
1466 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb 1467 .prepare_write = xfs_vm_prepare_write,
1da177e4 1468 .commit_write = generic_commit_write,
e4c573bb
NS
1469 .bmap = xfs_vm_bmap,
1470 .direct_IO = xfs_vm_direct_IO,
e965f963 1471 .migratepage = buffer_migrate_page,
1da177e4 1472};