xfs: allocate sparse inode chunks on full chunk allocation failure
[linux-2.6-block.git] / fs / xfs / libxfs / xfs_ialloc.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
1da177e4 27#include "xfs_inode.h"
a844f451
NS
28#include "xfs_btree.h"
29#include "xfs_ialloc.h"
a4fbe6ab 30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_alloc.h"
1da177e4
LT
32#include "xfs_rtalloc.h"
33#include "xfs_error.h"
34#include "xfs_bmap.h"
983d09ff 35#include "xfs_cksum.h"
239880ef 36#include "xfs_trans.h"
983d09ff 37#include "xfs_buf_item.h"
ddf6ad01 38#include "xfs_icreate_item.h"
7bb85ef3 39#include "xfs_icache.h"
d123031a 40#include "xfs_trace.h"
1da177e4 41
1da177e4
LT
42
43/*
44 * Allocation group level functions.
45 */
75de2a91
DC
46static inline int
47xfs_ialloc_cluster_alignment(
7a1df156 48 struct xfs_mount *mp)
75de2a91 49{
7a1df156
DC
50 if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 mp->m_sb.sb_inoalignmt >=
52 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 return mp->m_sb.sb_inoalignmt;
75de2a91
DC
54 return 1;
55}
1da177e4 56
fe033cc8 57/*
21875505 58 * Lookup a record by ino in the btree given by cur.
fe033cc8 59 */
81e25176 60int /* error */
21875505 61xfs_inobt_lookup(
fe033cc8
CH
62 struct xfs_btree_cur *cur, /* btree cursor */
63 xfs_agino_t ino, /* starting inode of chunk */
21875505 64 xfs_lookup_t dir, /* <=, >=, == */
fe033cc8
CH
65 int *stat) /* success/failure */
66{
67 cur->bc_rec.i.ir_startino = ino;
5419040f
BF
68 cur->bc_rec.i.ir_holemask = 0;
69 cur->bc_rec.i.ir_count = 0;
21875505
CH
70 cur->bc_rec.i.ir_freecount = 0;
71 cur->bc_rec.i.ir_free = 0;
72 return xfs_btree_lookup(cur, dir, stat);
fe033cc8
CH
73}
74
278d0ca1 75/*
afabc24a 76 * Update the record referred to by cur to the value given.
278d0ca1
CH
77 * This either works (return 0) or gets an EFSCORRUPTED error.
78 */
79STATIC int /* error */
80xfs_inobt_update(
81 struct xfs_btree_cur *cur, /* btree cursor */
afabc24a 82 xfs_inobt_rec_incore_t *irec) /* btree record */
278d0ca1
CH
83{
84 union xfs_btree_rec rec;
85
afabc24a 86 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
5419040f
BF
87 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
88 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
89 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
90 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
91 } else {
92 /* ir_holemask/ir_count not supported on-disk */
93 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
94 }
afabc24a 95 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
278d0ca1
CH
96 return xfs_btree_update(cur, &rec);
97}
98
8cc938fe
CH
99/*
100 * Get the data from the pointed-to record.
101 */
102int /* error */
103xfs_inobt_get_rec(
104 struct xfs_btree_cur *cur, /* btree cursor */
2e287a73 105 xfs_inobt_rec_incore_t *irec, /* btree record */
8cc938fe
CH
106 int *stat) /* output: success/failure */
107{
108 union xfs_btree_rec *rec;
109 int error;
110
111 error = xfs_btree_get_rec(cur, &rec, stat);
5419040f
BF
112 if (error || *stat == 0)
113 return error;
114
115 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
116 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
117 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
118 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
119 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
120 } else {
121 /*
122 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
123 * values for full inode chunks.
124 */
125 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
126 irec->ir_count = XFS_INODES_PER_CHUNK;
127 irec->ir_freecount =
128 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
8cc938fe 129 }
5419040f
BF
130 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
131
132 return 0;
8cc938fe
CH
133}
134
0aa0a756
BF
135/*
136 * Insert a single inobt record. Cursor must already point to desired location.
137 */
138STATIC int
139xfs_inobt_insert_rec(
140 struct xfs_btree_cur *cur,
5419040f
BF
141 __uint16_t holemask,
142 __uint8_t count,
0aa0a756
BF
143 __int32_t freecount,
144 xfs_inofree_t free,
145 int *stat)
146{
5419040f
BF
147 cur->bc_rec.i.ir_holemask = holemask;
148 cur->bc_rec.i.ir_count = count;
0aa0a756
BF
149 cur->bc_rec.i.ir_freecount = freecount;
150 cur->bc_rec.i.ir_free = free;
151 return xfs_btree_insert(cur, stat);
152}
153
154/*
155 * Insert records describing a newly allocated inode chunk into the inobt.
156 */
157STATIC int
158xfs_inobt_insert(
159 struct xfs_mount *mp,
160 struct xfs_trans *tp,
161 struct xfs_buf *agbp,
162 xfs_agino_t newino,
163 xfs_agino_t newlen,
164 xfs_btnum_t btnum)
165{
166 struct xfs_btree_cur *cur;
167 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
168 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
169 xfs_agino_t thisino;
170 int i;
171 int error;
172
173 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
174
175 for (thisino = newino;
176 thisino < newino + newlen;
177 thisino += XFS_INODES_PER_CHUNK) {
178 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
179 if (error) {
180 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
181 return error;
182 }
183 ASSERT(i == 0);
184
5419040f
BF
185 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
186 XFS_INODES_PER_CHUNK,
187 XFS_INODES_PER_CHUNK,
0aa0a756
BF
188 XFS_INOBT_ALL_FREE, &i);
189 if (error) {
190 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
191 return error;
192 }
193 ASSERT(i == 1);
194 }
195
196 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
197
198 return 0;
199}
200
0b48db80
DC
201/*
202 * Verify that the number of free inodes in the AGI is correct.
203 */
204#ifdef DEBUG
205STATIC int
206xfs_check_agi_freecount(
207 struct xfs_btree_cur *cur,
208 struct xfs_agi *agi)
209{
210 if (cur->bc_nlevels == 1) {
211 xfs_inobt_rec_incore_t rec;
212 int freecount = 0;
213 int error;
214 int i;
215
21875505 216 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
0b48db80
DC
217 if (error)
218 return error;
219
220 do {
221 error = xfs_inobt_get_rec(cur, &rec, &i);
222 if (error)
223 return error;
224
225 if (i) {
226 freecount += rec.ir_freecount;
227 error = xfs_btree_increment(cur, 0, &i);
228 if (error)
229 return error;
230 }
231 } while (i == 1);
232
233 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
234 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
235 }
236 return 0;
237}
238#else
239#define xfs_check_agi_freecount(cur, agi) 0
240#endif
241
85c0b2ab 242/*
28c8e41a
DC
243 * Initialise a new set of inodes. When called without a transaction context
244 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
245 * than logging them (which in a transaction context puts them into the AIL
246 * for writeback rather than the xfsbufd queue).
85c0b2ab 247 */
ddf6ad01 248int
85c0b2ab
DC
249xfs_ialloc_inode_init(
250 struct xfs_mount *mp,
251 struct xfs_trans *tp,
28c8e41a 252 struct list_head *buffer_list,
463958af 253 int icount,
85c0b2ab
DC
254 xfs_agnumber_t agno,
255 xfs_agblock_t agbno,
256 xfs_agblock_t length,
257 unsigned int gen)
258{
259 struct xfs_buf *fbuf;
260 struct xfs_dinode *free;
6e0c7b8c 261 int nbufs, blks_per_cluster, inodes_per_cluster;
85c0b2ab
DC
262 int version;
263 int i, j;
264 xfs_daddr_t d;
93848a99 265 xfs_ino_t ino = 0;
85c0b2ab
DC
266
267 /*
6e0c7b8c
JL
268 * Loop over the new block(s), filling in the inodes. For small block
269 * sizes, manipulate the inodes in buffers which are multiples of the
270 * blocks size.
85c0b2ab 271 */
6e0c7b8c
JL
272 blks_per_cluster = xfs_icluster_size_fsb(mp);
273 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
274 nbufs = length / blks_per_cluster;
85c0b2ab
DC
275
276 /*
93848a99
CH
277 * Figure out what version number to use in the inodes we create. If
278 * the superblock version has caught up to the one that supports the new
279 * inode format, then use the new inode version. Otherwise use the old
280 * version so that old kernels will continue to be able to use the file
281 * system.
282 *
283 * For v3 inodes, we also need to write the inode number into the inode,
284 * so calculate the first inode number of the chunk here as
285 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
286 * across multiple filesystem blocks (such as a cluster) and so cannot
287 * be used in the cluster buffer loop below.
288 *
289 * Further, because we are writing the inode directly into the buffer
290 * and calculating a CRC on the entire inode, we have ot log the entire
291 * inode so that the entire range the CRC covers is present in the log.
292 * That means for v3 inode we log the entire buffer rather than just the
293 * inode cores.
85c0b2ab 294 */
93848a99
CH
295 if (xfs_sb_version_hascrc(&mp->m_sb)) {
296 version = 3;
297 ino = XFS_AGINO_TO_INO(mp, agno,
298 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
ddf6ad01
DC
299
300 /*
301 * log the initialisation that is about to take place as an
302 * logical operation. This means the transaction does not
303 * need to log the physical changes to the inode buffers as log
304 * recovery will know what initialisation is actually needed.
305 * Hence we only need to log the buffers as "ordered" buffers so
306 * they track in the AIL as if they were physically logged.
307 */
308 if (tp)
463958af 309 xfs_icreate_log(tp, agno, agbno, icount,
ddf6ad01 310 mp->m_sb.sb_inodesize, length, gen);
263997a6 311 } else
85c0b2ab 312 version = 2;
85c0b2ab
DC
313
314 for (j = 0; j < nbufs; j++) {
315 /*
316 * Get the block.
317 */
318 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
319 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
7c4cebe8
DC
320 mp->m_bsize * blks_per_cluster,
321 XBF_UNMAPPED);
2a30f36d 322 if (!fbuf)
2451337d 323 return -ENOMEM;
ddf6ad01
DC
324
325 /* Initialize the inode buffers and log them appropriately. */
1813dd64 326 fbuf->b_ops = &xfs_inode_buf_ops;
93848a99 327 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
6e0c7b8c 328 for (i = 0; i < inodes_per_cluster; i++) {
85c0b2ab 329 int ioffset = i << mp->m_sb.sb_inodelog;
93848a99 330 uint isize = xfs_dinode_size(version);
85c0b2ab
DC
331
332 free = xfs_make_iptr(mp, fbuf, i);
333 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
334 free->di_version = version;
335 free->di_gen = cpu_to_be32(gen);
336 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
93848a99
CH
337
338 if (version == 3) {
339 free->di_ino = cpu_to_be64(ino);
340 ino++;
341 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
342 xfs_dinode_calc_crc(mp, free);
28c8e41a 343 } else if (tp) {
93848a99
CH
344 /* just log the inode core */
345 xfs_trans_log_buf(tp, fbuf, ioffset,
346 ioffset + isize - 1);
347 }
348 }
28c8e41a
DC
349
350 if (tp) {
351 /*
352 * Mark the buffer as an inode allocation buffer so it
353 * sticks in AIL at the point of this allocation
354 * transaction. This ensures the they are on disk before
355 * the tail of the log can be moved past this
356 * transaction (i.e. by preventing relogging from moving
357 * it forward in the log).
358 */
359 xfs_trans_inode_alloc_buf(tp, fbuf);
360 if (version == 3) {
ddf6ad01
DC
361 /*
362 * Mark the buffer as ordered so that they are
363 * not physically logged in the transaction but
364 * still tracked in the AIL as part of the
365 * transaction and pin the log appropriately.
366 */
367 xfs_trans_ordered_buf(tp, fbuf);
28c8e41a
DC
368 xfs_trans_log_buf(tp, fbuf, 0,
369 BBTOB(fbuf->b_length) - 1);
370 }
371 } else {
372 fbuf->b_flags |= XBF_DONE;
373 xfs_buf_delwri_queue(fbuf, buffer_list);
374 xfs_buf_relse(fbuf);
85c0b2ab 375 }
85c0b2ab 376 }
2a30f36d 377 return 0;
85c0b2ab
DC
378}
379
56d1115c
BF
380/*
381 * Align startino and allocmask for a recently allocated sparse chunk such that
382 * they are fit for insertion (or merge) into the on-disk inode btrees.
383 *
384 * Background:
385 *
386 * When enabled, sparse inode support increases the inode alignment from cluster
387 * size to inode chunk size. This means that the minimum range between two
388 * non-adjacent inode records in the inobt is large enough for a full inode
389 * record. This allows for cluster sized, cluster aligned block allocation
390 * without need to worry about whether the resulting inode record overlaps with
391 * another record in the tree. Without this basic rule, we would have to deal
392 * with the consequences of overlap by potentially undoing recent allocations in
393 * the inode allocation codepath.
394 *
395 * Because of this alignment rule (which is enforced on mount), there are two
396 * inobt possibilities for newly allocated sparse chunks. One is that the
397 * aligned inode record for the chunk covers a range of inodes not already
398 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
399 * other is that a record already exists at the aligned startino that considers
400 * the newly allocated range as sparse. In the latter case, record content is
401 * merged in hope that sparse inode chunks fill to full chunks over time.
402 */
403STATIC void
404xfs_align_sparse_ino(
405 struct xfs_mount *mp,
406 xfs_agino_t *startino,
407 uint16_t *allocmask)
408{
409 xfs_agblock_t agbno;
410 xfs_agblock_t mod;
411 int offset;
412
413 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
414 mod = agbno % mp->m_sb.sb_inoalignmt;
415 if (!mod)
416 return;
417
418 /* calculate the inode offset and align startino */
419 offset = mod << mp->m_sb.sb_inopblog;
420 *startino -= offset;
421
422 /*
423 * Since startino has been aligned down, left shift allocmask such that
424 * it continues to represent the same physical inodes relative to the
425 * new startino.
426 */
427 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
428}
429
430/*
431 * Determine whether the source inode record can merge into the target. Both
432 * records must be sparse, the inode ranges must match and there must be no
433 * allocation overlap between the records.
434 */
435STATIC bool
436__xfs_inobt_can_merge(
437 struct xfs_inobt_rec_incore *trec, /* tgt record */
438 struct xfs_inobt_rec_incore *srec) /* src record */
439{
440 uint64_t talloc;
441 uint64_t salloc;
442
443 /* records must cover the same inode range */
444 if (trec->ir_startino != srec->ir_startino)
445 return false;
446
447 /* both records must be sparse */
448 if (!xfs_inobt_issparse(trec->ir_holemask) ||
449 !xfs_inobt_issparse(srec->ir_holemask))
450 return false;
451
452 /* both records must track some inodes */
453 if (!trec->ir_count || !srec->ir_count)
454 return false;
455
456 /* can't exceed capacity of a full record */
457 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
458 return false;
459
460 /* verify there is no allocation overlap */
461 talloc = xfs_inobt_irec_to_allocmask(trec);
462 salloc = xfs_inobt_irec_to_allocmask(srec);
463 if (talloc & salloc)
464 return false;
465
466 return true;
467}
468
469/*
470 * Merge the source inode record into the target. The caller must call
471 * __xfs_inobt_can_merge() to ensure the merge is valid.
472 */
473STATIC void
474__xfs_inobt_rec_merge(
475 struct xfs_inobt_rec_incore *trec, /* target */
476 struct xfs_inobt_rec_incore *srec) /* src */
477{
478 ASSERT(trec->ir_startino == srec->ir_startino);
479
480 /* combine the counts */
481 trec->ir_count += srec->ir_count;
482 trec->ir_freecount += srec->ir_freecount;
483
484 /*
485 * Merge the holemask and free mask. For both fields, 0 bits refer to
486 * allocated inodes. We combine the allocated ranges with bitwise AND.
487 */
488 trec->ir_holemask &= srec->ir_holemask;
489 trec->ir_free &= srec->ir_free;
490}
491
492/*
493 * Insert a new sparse inode chunk into the associated inode btree. The inode
494 * record for the sparse chunk is pre-aligned to a startino that should match
495 * any pre-existing sparse inode record in the tree. This allows sparse chunks
496 * to fill over time.
497 *
498 * This function supports two modes of handling preexisting records depending on
499 * the merge flag. If merge is true, the provided record is merged with the
500 * existing record and updated in place. The merged record is returned in nrec.
501 * If merge is false, an existing record is replaced with the provided record.
502 * If no preexisting record exists, the provided record is always inserted.
503 *
504 * It is considered corruption if a merge is requested and not possible. Given
505 * the sparse inode alignment constraints, this should never happen.
506 */
507STATIC int
508xfs_inobt_insert_sprec(
509 struct xfs_mount *mp,
510 struct xfs_trans *tp,
511 struct xfs_buf *agbp,
512 int btnum,
513 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
514 bool merge) /* merge or replace */
515{
516 struct xfs_btree_cur *cur;
517 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
518 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
519 int error;
520 int i;
521 struct xfs_inobt_rec_incore rec;
522
523 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
524
525 /* the new record is pre-aligned so we know where to look */
526 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
527 if (error)
528 goto error;
529 /* if nothing there, insert a new record and return */
530 if (i == 0) {
531 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
532 nrec->ir_count, nrec->ir_freecount,
533 nrec->ir_free, &i);
534 if (error)
535 goto error;
536 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
537
538 goto out;
539 }
540
541 /*
542 * A record exists at this startino. Merge or replace the record
543 * depending on what we've been asked to do.
544 */
545 if (merge) {
546 error = xfs_inobt_get_rec(cur, &rec, &i);
547 if (error)
548 goto error;
549 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
550 XFS_WANT_CORRUPTED_GOTO(mp,
551 rec.ir_startino == nrec->ir_startino,
552 error);
553
554 /*
555 * This should never fail. If we have coexisting records that
556 * cannot merge, something is seriously wrong.
557 */
558 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
559 error);
560
561 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
562 rec.ir_holemask, nrec->ir_startino,
563 nrec->ir_holemask);
564
565 /* merge to nrec to output the updated record */
566 __xfs_inobt_rec_merge(nrec, &rec);
567
568 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
569 nrec->ir_holemask);
570
571 error = xfs_inobt_rec_check_count(mp, nrec);
572 if (error)
573 goto error;
574 }
575
576 error = xfs_inobt_update(cur, nrec);
577 if (error)
578 goto error;
579
580out:
581 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
582 return 0;
583error:
584 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
585 return error;
586}
587
1da177e4
LT
588/*
589 * Allocate new inodes in the allocation group specified by agbp.
590 * Return 0 for success, else error code.
591 */
592STATIC int /* error code or 0 */
593xfs_ialloc_ag_alloc(
594 xfs_trans_t *tp, /* transaction pointer */
595 xfs_buf_t *agbp, /* alloc group buffer */
596 int *alloc)
597{
598 xfs_agi_t *agi; /* allocation group header */
599 xfs_alloc_arg_t args; /* allocation argument structure */
92821e2b 600 xfs_agnumber_t agno;
1da177e4 601 int error;
1da177e4
LT
602 xfs_agino_t newino; /* new first inode's number */
603 xfs_agino_t newlen; /* new number of inodes */
3ccb8b5f 604 int isaligned = 0; /* inode allocation at stripe unit */
1da177e4 605 /* boundary */
56d1115c
BF
606 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
607 struct xfs_inobt_rec_incore rec;
44b56e0a 608 struct xfs_perag *pag;
1da177e4 609
a0041684 610 memset(&args, 0, sizeof(args));
1da177e4
LT
611 args.tp = tp;
612 args.mp = tp->t_mountp;
613
614 /*
615 * Locking will ensure that we don't have two callers in here
616 * at one time.
617 */
71783438 618 newlen = args.mp->m_ialloc_inos;
1da177e4 619 if (args.mp->m_maxicount &&
501ab323
DC
620 percpu_counter_read(&args.mp->m_icount) + newlen >
621 args.mp->m_maxicount)
2451337d 622 return -ENOSPC;
126cd105 623 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
1da177e4 624 /*
3ccb8b5f
GO
625 * First try to allocate inodes contiguous with the last-allocated
626 * chunk of inodes. If the filesystem is striped, this will fill
627 * an entire stripe unit with inodes.
28c8e41a 628 */
1da177e4 629 agi = XFS_BUF_TO_AGI(agbp);
3ccb8b5f 630 newino = be32_to_cpu(agi->agi_newino);
85c0b2ab 631 agno = be32_to_cpu(agi->agi_seqno);
019ff2d5 632 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
126cd105 633 args.mp->m_ialloc_blks;
019ff2d5
NS
634 if (likely(newino != NULLAGINO &&
635 (args.agbno < be32_to_cpu(agi->agi_length)))) {
85c0b2ab 636 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f 637 args.type = XFS_ALLOCTYPE_THIS_BNO;
3ccb8b5f 638 args.prod = 1;
75de2a91 639
3ccb8b5f 640 /*
75de2a91
DC
641 * We need to take into account alignment here to ensure that
642 * we don't modify the free list if we fail to have an exact
643 * block. If we don't have an exact match, and every oher
644 * attempt allocation attempt fails, we'll end up cancelling
645 * a dirty transaction and shutting down.
646 *
647 * For an exact allocation, alignment must be 1,
648 * however we need to take cluster alignment into account when
649 * fixing up the freelist. Use the minalignslop field to
650 * indicate that extra blocks might be required for alignment,
651 * but not to use them in the actual exact allocation.
3ccb8b5f 652 */
75de2a91 653 args.alignment = 1;
7a1df156 654 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
75de2a91
DC
655
656 /* Allow space for the inode btree to split. */
0d87e656 657 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
658 if ((error = xfs_alloc_vextent(&args)))
659 return error;
e480a723
BF
660
661 /*
662 * This request might have dirtied the transaction if the AG can
663 * satisfy the request, but the exact block was not available.
664 * If the allocation did fail, subsequent requests will relax
665 * the exact agbno requirement and increase the alignment
666 * instead. It is critical that the total size of the request
667 * (len + alignment + slop) does not increase from this point
668 * on, so reset minalignslop to ensure it is not included in
669 * subsequent requests.
670 */
671 args.minalignslop = 0;
3ccb8b5f
GO
672 } else
673 args.fsbno = NULLFSBLOCK;
1da177e4 674
3ccb8b5f
GO
675 if (unlikely(args.fsbno == NULLFSBLOCK)) {
676 /*
677 * Set the alignment for the allocation.
678 * If stripe alignment is turned on then align at stripe unit
679 * boundary.
019ff2d5
NS
680 * If the cluster size is smaller than a filesystem block
681 * then we're doing I/O for inodes in filesystem block size
3ccb8b5f
GO
682 * pieces, so don't need alignment anyway.
683 */
684 isaligned = 0;
685 if (args.mp->m_sinoalign) {
686 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
687 args.alignment = args.mp->m_dalign;
688 isaligned = 1;
75de2a91 689 } else
7a1df156 690 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
3ccb8b5f
GO
691 /*
692 * Need to figure out where to allocate the inode blocks.
693 * Ideally they should be spaced out through the a.g.
694 * For now, just allocate blocks up front.
695 */
696 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 697 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f
GO
698 /*
699 * Allocate a fixed-size extent of inodes.
700 */
701 args.type = XFS_ALLOCTYPE_NEAR_BNO;
3ccb8b5f
GO
702 args.prod = 1;
703 /*
704 * Allow space for the inode btree to split.
705 */
0d87e656 706 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
707 if ((error = xfs_alloc_vextent(&args)))
708 return error;
709 }
019ff2d5 710
1da177e4
LT
711 /*
712 * If stripe alignment is turned on, then try again with cluster
713 * alignment.
714 */
715 if (isaligned && args.fsbno == NULLFSBLOCK) {
716 args.type = XFS_ALLOCTYPE_NEAR_BNO;
16259e7d 717 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 718 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
7a1df156 719 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
1da177e4
LT
720 if ((error = xfs_alloc_vextent(&args)))
721 return error;
722 }
723
56d1115c
BF
724 /*
725 * Finally, try a sparse allocation if the filesystem supports it and
726 * the sparse allocation length is smaller than a full chunk.
727 */
728 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
729 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
730 args.fsbno == NULLFSBLOCK) {
731 args.type = XFS_ALLOCTYPE_NEAR_BNO;
732 args.agbno = be32_to_cpu(agi->agi_root);
733 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
734 args.alignment = args.mp->m_sb.sb_spino_align;
735 args.prod = 1;
736
737 args.minlen = args.mp->m_ialloc_min_blks;
738 args.maxlen = args.minlen;
739
740 /*
741 * The inode record will be aligned to full chunk size. We must
742 * prevent sparse allocation from AG boundaries that result in
743 * invalid inode records, such as records that start at agbno 0
744 * or extend beyond the AG.
745 *
746 * Set min agbno to the first aligned, non-zero agbno and max to
747 * the last aligned agbno that is at least one full chunk from
748 * the end of the AG.
749 */
750 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
751 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
752 args.mp->m_sb.sb_inoalignmt) -
753 args.mp->m_ialloc_blks;
754
755 error = xfs_alloc_vextent(&args);
756 if (error)
757 return error;
758
759 newlen = args.len << args.mp->m_sb.sb_inopblog;
760 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
761 }
762
1da177e4
LT
763 if (args.fsbno == NULLFSBLOCK) {
764 *alloc = 0;
765 return 0;
766 }
767 ASSERT(args.len == args.minlen);
1da177e4 768
359346a9 769 /*
85c0b2ab
DC
770 * Stamp and write the inode buffers.
771 *
359346a9
DC
772 * Seed the new inode cluster with a random generation number. This
773 * prevents short-term reuse of generation numbers if a chunk is
774 * freed and then immediately reallocated. We use random numbers
775 * rather than a linear progression to prevent the next generation
776 * number from being easily guessable.
777 */
463958af
BF
778 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
779 args.agbno, args.len, prandom_u32());
d42f08f6 780
2a30f36d
CS
781 if (error)
782 return error;
85c0b2ab
DC
783 /*
784 * Convert the results.
785 */
786 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
56d1115c
BF
787
788 if (xfs_inobt_issparse(~allocmask)) {
789 /*
790 * We've allocated a sparse chunk. Align the startino and mask.
791 */
792 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
793
794 rec.ir_startino = newino;
795 rec.ir_holemask = ~allocmask;
796 rec.ir_count = newlen;
797 rec.ir_freecount = newlen;
798 rec.ir_free = XFS_INOBT_ALL_FREE;
799
800 /*
801 * Insert the sparse record into the inobt and allow for a merge
802 * if necessary. If a merge does occur, rec is updated to the
803 * merged record.
804 */
805 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
806 &rec, true);
807 if (error == -EFSCORRUPTED) {
808 xfs_alert(args.mp,
809 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
810 XFS_AGINO_TO_INO(args.mp, agno,
811 rec.ir_startino),
812 rec.ir_holemask, rec.ir_count);
813 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
814 }
815 if (error)
816 return error;
817
818 /*
819 * We can't merge the part we've just allocated as for the inobt
820 * due to finobt semantics. The original record may or may not
821 * exist independent of whether physical inodes exist in this
822 * sparse chunk.
823 *
824 * We must update the finobt record based on the inobt record.
825 * rec contains the fully merged and up to date inobt record
826 * from the previous call. Set merge false to replace any
827 * existing record with this one.
828 */
829 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
831 XFS_BTNUM_FINO, &rec,
832 false);
833 if (error)
834 return error;
835 }
836 } else {
837 /* full chunk - insert new records to both btrees */
838 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
839 XFS_BTNUM_INO);
840 if (error)
841 return error;
842
843 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
844 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
845 newlen, XFS_BTNUM_FINO);
846 if (error)
847 return error;
848 }
849 }
850
851 /*
852 * Update AGI counts and newino.
853 */
413d57c9
MS
854 be32_add_cpu(&agi->agi_count, newlen);
855 be32_add_cpu(&agi->agi_freecount, newlen);
44b56e0a
DC
856 pag = xfs_perag_get(args.mp, agno);
857 pag->pagi_freecount += newlen;
858 xfs_perag_put(pag);
16259e7d 859 agi->agi_newino = cpu_to_be32(newino);
85c0b2ab 860
1da177e4
LT
861 /*
862 * Log allocation group header fields
863 */
864 xfs_ialloc_log_agi(tp, agbp,
865 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
866 /*
867 * Modify/log superblock values for inode count and inode free count.
868 */
869 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
870 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
871 *alloc = 1;
872 return 0;
873}
874
b8f82a4a 875STATIC xfs_agnumber_t
1da177e4
LT
876xfs_ialloc_next_ag(
877 xfs_mount_t *mp)
878{
879 xfs_agnumber_t agno;
880
881 spin_lock(&mp->m_agirotor_lock);
882 agno = mp->m_agirotor;
8aea3ff4 883 if (++mp->m_agirotor >= mp->m_maxagi)
1da177e4
LT
884 mp->m_agirotor = 0;
885 spin_unlock(&mp->m_agirotor_lock);
886
887 return agno;
888}
889
890/*
891 * Select an allocation group to look for a free inode in, based on the parent
2f21ff1c 892 * inode and the mode. Return the allocation group buffer.
1da177e4 893 */
55d6af64 894STATIC xfs_agnumber_t
1da177e4
LT
895xfs_ialloc_ag_select(
896 xfs_trans_t *tp, /* transaction pointer */
897 xfs_ino_t parent, /* parent directory inode number */
576b1d67 898 umode_t mode, /* bits set to indicate file type */
1da177e4
LT
899 int okalloc) /* ok to allocate more space */
900{
1da177e4
LT
901 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
902 xfs_agnumber_t agno; /* current ag number */
903 int flags; /* alloc buffer locking flags */
904 xfs_extlen_t ineed; /* blocks needed for inode allocation */
905 xfs_extlen_t longest = 0; /* longest extent available */
906 xfs_mount_t *mp; /* mount point structure */
907 int needspace; /* file mode implies space allocated */
908 xfs_perag_t *pag; /* per allocation group data */
909 xfs_agnumber_t pagno; /* parent (starting) ag number */
55d6af64 910 int error;
1da177e4
LT
911
912 /*
913 * Files of these types need at least one block if length > 0
914 * (and they won't fit in the inode, but that's hard to figure out).
915 */
916 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
917 mp = tp->t_mountp;
918 agcount = mp->m_maxagi;
919 if (S_ISDIR(mode))
920 pagno = xfs_ialloc_next_ag(mp);
921 else {
922 pagno = XFS_INO_TO_AGNO(mp, parent);
923 if (pagno >= agcount)
924 pagno = 0;
925 }
55d6af64 926
1da177e4 927 ASSERT(pagno < agcount);
55d6af64 928
1da177e4
LT
929 /*
930 * Loop through allocation groups, looking for one with a little
931 * free space in it. Note we don't look for free inodes, exactly.
932 * Instead, we include whether there is a need to allocate inodes
933 * to mean that blocks must be allocated for them,
934 * if none are currently free.
935 */
936 agno = pagno;
937 flags = XFS_ALLOC_FLAG_TRYLOCK;
1da177e4 938 for (;;) {
44b56e0a 939 pag = xfs_perag_get(mp, agno);
55d6af64
CH
940 if (!pag->pagi_inodeok) {
941 xfs_ialloc_next_ag(mp);
942 goto nextag;
943 }
944
1da177e4 945 if (!pag->pagi_init) {
55d6af64
CH
946 error = xfs_ialloc_pagi_init(mp, tp, agno);
947 if (error)
1da177e4 948 goto nextag;
55d6af64 949 }
1da177e4 950
55d6af64
CH
951 if (pag->pagi_freecount) {
952 xfs_perag_put(pag);
953 return agno;
1da177e4
LT
954 }
955
55d6af64
CH
956 if (!okalloc)
957 goto nextag;
958
959 if (!pag->pagf_init) {
960 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
961 if (error)
1da177e4 962 goto nextag;
1da177e4 963 }
55d6af64
CH
964
965 /*
7a1df156
DC
966 * Check that there is enough free space for the file plus a
967 * chunk of inodes if we need to allocate some. If this is the
968 * first pass across the AGs, take into account the potential
969 * space needed for alignment of inode chunks when checking the
970 * longest contiguous free space in the AG - this prevents us
971 * from getting ENOSPC because we have free space larger than
972 * m_ialloc_blks but alignment constraints prevent us from using
973 * it.
974 *
975 * If we can't find an AG with space for full alignment slack to
976 * be taken into account, we must be near ENOSPC in all AGs.
977 * Hence we don't include alignment for the second pass and so
978 * if we fail allocation due to alignment issues then it is most
979 * likely a real ENOSPC condition.
55d6af64 980 */
066a1884 981 ineed = mp->m_ialloc_min_blks;
7a1df156
DC
982 if (flags && ineed > 1)
983 ineed += xfs_ialloc_cluster_alignment(mp);
55d6af64
CH
984 longest = pag->pagf_longest;
985 if (!longest)
986 longest = pag->pagf_flcount > 0;
987
988 if (pag->pagf_freeblks >= needspace + ineed &&
989 longest >= ineed) {
990 xfs_perag_put(pag);
991 return agno;
1da177e4 992 }
1da177e4 993nextag:
44b56e0a 994 xfs_perag_put(pag);
1da177e4
LT
995 /*
996 * No point in iterating over the rest, if we're shutting
997 * down.
998 */
1c1c6ebc 999 if (XFS_FORCED_SHUTDOWN(mp))
55d6af64 1000 return NULLAGNUMBER;
1da177e4
LT
1001 agno++;
1002 if (agno >= agcount)
1003 agno = 0;
1004 if (agno == pagno) {
1c1c6ebc 1005 if (flags == 0)
55d6af64 1006 return NULLAGNUMBER;
1da177e4
LT
1007 flags = 0;
1008 }
1009 }
1010}
1011
4254b0bb
CH
1012/*
1013 * Try to retrieve the next record to the left/right from the current one.
1014 */
1015STATIC int
1016xfs_ialloc_next_rec(
1017 struct xfs_btree_cur *cur,
1018 xfs_inobt_rec_incore_t *rec,
1019 int *done,
1020 int left)
1021{
1022 int error;
1023 int i;
1024
1025 if (left)
1026 error = xfs_btree_decrement(cur, 0, &i);
1027 else
1028 error = xfs_btree_increment(cur, 0, &i);
1029
1030 if (error)
1031 return error;
1032 *done = !i;
1033 if (i) {
1034 error = xfs_inobt_get_rec(cur, rec, &i);
1035 if (error)
1036 return error;
5fb5aeee 1037 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
4254b0bb
CH
1038 }
1039
1040 return 0;
1041}
1042
bd169565
DC
1043STATIC int
1044xfs_ialloc_get_rec(
1045 struct xfs_btree_cur *cur,
1046 xfs_agino_t agino,
1047 xfs_inobt_rec_incore_t *rec,
43df2ee6 1048 int *done)
bd169565
DC
1049{
1050 int error;
1051 int i;
1052
1053 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1054 if (error)
1055 return error;
1056 *done = !i;
1057 if (i) {
1058 error = xfs_inobt_get_rec(cur, rec, &i);
1059 if (error)
1060 return error;
5fb5aeee 1061 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
bd169565
DC
1062 }
1063
1064 return 0;
1065}
0b48db80 1066
d4cc540b
BF
1067/*
1068 * Return the offset of the first free inode in the record.
1069 */
1070STATIC int
1071xfs_inobt_first_free_inode(
1072 struct xfs_inobt_rec_incore *rec)
1073{
1074 return xfs_lowbit64(rec->ir_free);
1075}
1076
1da177e4 1077/*
6dd8638e 1078 * Allocate an inode using the inobt-only algorithm.
1da177e4 1079 */
f2ecc5e4 1080STATIC int
6dd8638e 1081xfs_dialloc_ag_inobt(
f2ecc5e4
CH
1082 struct xfs_trans *tp,
1083 struct xfs_buf *agbp,
1084 xfs_ino_t parent,
1085 xfs_ino_t *inop)
1da177e4 1086{
f2ecc5e4
CH
1087 struct xfs_mount *mp = tp->t_mountp;
1088 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1089 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1090 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1091 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1092 struct xfs_perag *pag;
1093 struct xfs_btree_cur *cur, *tcur;
1094 struct xfs_inobt_rec_incore rec, trec;
1095 xfs_ino_t ino;
1096 int error;
1097 int offset;
1098 int i, j;
1da177e4 1099
44b56e0a 1100 pag = xfs_perag_get(mp, agno);
bd169565 1101
4bb61069
CH
1102 ASSERT(pag->pagi_init);
1103 ASSERT(pag->pagi_inodeok);
1104 ASSERT(pag->pagi_freecount > 0);
1105
bd169565 1106 restart_pagno:
57bd3dbe 1107 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4
LT
1108 /*
1109 * If pagino is 0 (this is the root inode allocation) use newino.
1110 * This must work because we've just allocated some.
1111 */
1112 if (!pagino)
16259e7d 1113 pagino = be32_to_cpu(agi->agi_newino);
1da177e4 1114
0b48db80
DC
1115 error = xfs_check_agi_freecount(cur, agi);
1116 if (error)
1117 goto error0;
1da177e4 1118
1da177e4 1119 /*
4254b0bb 1120 * If in the same AG as the parent, try to get near the parent.
1da177e4
LT
1121 */
1122 if (pagno == agno) {
4254b0bb
CH
1123 int doneleft; /* done, to the left */
1124 int doneright; /* done, to the right */
bd169565 1125 int searchdistance = 10;
4254b0bb 1126
21875505 1127 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
4254b0bb 1128 if (error)
1da177e4 1129 goto error0;
c29aad41 1130 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
4254b0bb
CH
1131
1132 error = xfs_inobt_get_rec(cur, &rec, &j);
1133 if (error)
1134 goto error0;
c29aad41 1135 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
4254b0bb
CH
1136
1137 if (rec.ir_freecount > 0) {
1da177e4
LT
1138 /*
1139 * Found a free inode in the same chunk
4254b0bb 1140 * as the parent, done.
1da177e4 1141 */
4254b0bb 1142 goto alloc_inode;
1da177e4 1143 }
4254b0bb
CH
1144
1145
1da177e4 1146 /*
4254b0bb 1147 * In the same AG as parent, but parent's chunk is full.
1da177e4 1148 */
1da177e4 1149
4254b0bb
CH
1150 /* duplicate the cursor, search left & right simultaneously */
1151 error = xfs_btree_dup_cursor(cur, &tcur);
1152 if (error)
1153 goto error0;
1154
bd169565
DC
1155 /*
1156 * Skip to last blocks looked up if same parent inode.
1157 */
1158 if (pagino != NULLAGINO &&
1159 pag->pagl_pagino == pagino &&
1160 pag->pagl_leftrec != NULLAGINO &&
1161 pag->pagl_rightrec != NULLAGINO) {
1162 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
43df2ee6 1163 &trec, &doneleft);
bd169565
DC
1164 if (error)
1165 goto error1;
4254b0bb 1166
bd169565 1167 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
43df2ee6 1168 &rec, &doneright);
bd169565
DC
1169 if (error)
1170 goto error1;
1171 } else {
1172 /* search left with tcur, back up 1 record */
1173 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1174 if (error)
1175 goto error1;
1176
1177 /* search right with cur, go forward 1 record. */
1178 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1179 if (error)
1180 goto error1;
1181 }
4254b0bb
CH
1182
1183 /*
1184 * Loop until we find an inode chunk with a free inode.
1185 */
1186 while (!doneleft || !doneright) {
1187 int useleft; /* using left inode chunk this time */
1188
bd169565
DC
1189 if (!--searchdistance) {
1190 /*
1191 * Not in range - save last search
1192 * location and allocate a new inode
1193 */
3b826386 1194 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1195 pag->pagl_leftrec = trec.ir_startino;
1196 pag->pagl_rightrec = rec.ir_startino;
1197 pag->pagl_pagino = pagino;
1198 goto newino;
1199 }
1200
4254b0bb
CH
1201 /* figure out the closer block if both are valid. */
1202 if (!doneleft && !doneright) {
1203 useleft = pagino -
1204 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1205 rec.ir_startino - pagino;
1206 } else {
1207 useleft = !doneleft;
1da177e4 1208 }
4254b0bb
CH
1209
1210 /* free inodes to the left? */
1211 if (useleft && trec.ir_freecount) {
1212 rec = trec;
1213 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1214 cur = tcur;
bd169565
DC
1215
1216 pag->pagl_leftrec = trec.ir_startino;
1217 pag->pagl_rightrec = rec.ir_startino;
1218 pag->pagl_pagino = pagino;
4254b0bb 1219 goto alloc_inode;
1da177e4 1220 }
1da177e4 1221
4254b0bb
CH
1222 /* free inodes to the right? */
1223 if (!useleft && rec.ir_freecount) {
1224 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1225
1226 pag->pagl_leftrec = trec.ir_startino;
1227 pag->pagl_rightrec = rec.ir_startino;
1228 pag->pagl_pagino = pagino;
4254b0bb 1229 goto alloc_inode;
1da177e4 1230 }
4254b0bb
CH
1231
1232 /* get next record to check */
1233 if (useleft) {
1234 error = xfs_ialloc_next_rec(tcur, &trec,
1235 &doneleft, 1);
1236 } else {
1237 error = xfs_ialloc_next_rec(cur, &rec,
1238 &doneright, 0);
1239 }
1240 if (error)
1241 goto error1;
1da177e4 1242 }
bd169565
DC
1243
1244 /*
1245 * We've reached the end of the btree. because
1246 * we are only searching a small chunk of the
1247 * btree each search, there is obviously free
1248 * inodes closer to the parent inode than we
1249 * are now. restart the search again.
1250 */
1251 pag->pagl_pagino = NULLAGINO;
1252 pag->pagl_leftrec = NULLAGINO;
1253 pag->pagl_rightrec = NULLAGINO;
1254 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1255 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1256 goto restart_pagno;
1da177e4 1257 }
4254b0bb 1258
1da177e4 1259 /*
4254b0bb 1260 * In a different AG from the parent.
1da177e4
LT
1261 * See if the most recently allocated block has any free.
1262 */
bd169565 1263newino:
69ef921b 1264 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
21875505
CH
1265 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1266 XFS_LOOKUP_EQ, &i);
4254b0bb 1267 if (error)
1da177e4 1268 goto error0;
4254b0bb
CH
1269
1270 if (i == 1) {
1271 error = xfs_inobt_get_rec(cur, &rec, &j);
1272 if (error)
1273 goto error0;
1274
1275 if (j == 1 && rec.ir_freecount > 0) {
1276 /*
1277 * The last chunk allocated in the group
1278 * still has a free inode.
1279 */
1280 goto alloc_inode;
1281 }
1da177e4 1282 }
bd169565 1283 }
4254b0bb 1284
bd169565
DC
1285 /*
1286 * None left in the last group, search the whole AG
1287 */
1288 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1289 if (error)
1290 goto error0;
c29aad41 1291 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1292
1293 for (;;) {
1294 error = xfs_inobt_get_rec(cur, &rec, &i);
1295 if (error)
1296 goto error0;
c29aad41 1297 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1298 if (rec.ir_freecount > 0)
1299 break;
1300 error = xfs_btree_increment(cur, 0, &i);
4254b0bb
CH
1301 if (error)
1302 goto error0;
c29aad41 1303 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4 1304 }
4254b0bb
CH
1305
1306alloc_inode:
d4cc540b 1307 offset = xfs_inobt_first_free_inode(&rec);
1da177e4
LT
1308 ASSERT(offset >= 0);
1309 ASSERT(offset < XFS_INODES_PER_CHUNK);
1310 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1311 XFS_INODES_PER_CHUNK) == 0);
1312 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
0d87e656 1313 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1da177e4 1314 rec.ir_freecount--;
afabc24a
CH
1315 error = xfs_inobt_update(cur, &rec);
1316 if (error)
1da177e4 1317 goto error0;
413d57c9 1318 be32_add_cpu(&agi->agi_freecount, -1);
1da177e4 1319 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a 1320 pag->pagi_freecount--;
1da177e4 1321
0b48db80
DC
1322 error = xfs_check_agi_freecount(cur, agi);
1323 if (error)
1324 goto error0;
1325
1da177e4
LT
1326 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1327 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
44b56e0a 1328 xfs_perag_put(pag);
1da177e4
LT
1329 *inop = ino;
1330 return 0;
1331error1:
1332 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1333error0:
1334 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
44b56e0a 1335 xfs_perag_put(pag);
1da177e4
LT
1336 return error;
1337}
1338
6dd8638e
BF
1339/*
1340 * Use the free inode btree to allocate an inode based on distance from the
1341 * parent. Note that the provided cursor may be deleted and replaced.
1342 */
1343STATIC int
1344xfs_dialloc_ag_finobt_near(
1345 xfs_agino_t pagino,
1346 struct xfs_btree_cur **ocur,
1347 struct xfs_inobt_rec_incore *rec)
1348{
1349 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1350 struct xfs_btree_cur *rcur; /* right search cursor */
1351 struct xfs_inobt_rec_incore rrec;
1352 int error;
1353 int i, j;
1354
1355 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1356 if (error)
1357 return error;
1358
1359 if (i == 1) {
1360 error = xfs_inobt_get_rec(lcur, rec, &i);
1361 if (error)
1362 return error;
5fb5aeee 1363 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
6dd8638e
BF
1364
1365 /*
1366 * See if we've landed in the parent inode record. The finobt
1367 * only tracks chunks with at least one free inode, so record
1368 * existence is enough.
1369 */
1370 if (pagino >= rec->ir_startino &&
1371 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1372 return 0;
1373 }
1374
1375 error = xfs_btree_dup_cursor(lcur, &rcur);
1376 if (error)
1377 return error;
1378
1379 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1380 if (error)
1381 goto error_rcur;
1382 if (j == 1) {
1383 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1384 if (error)
1385 goto error_rcur;
c29aad41 1386 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
6dd8638e
BF
1387 }
1388
c29aad41 1389 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
6dd8638e
BF
1390 if (i == 1 && j == 1) {
1391 /*
1392 * Both the left and right records are valid. Choose the closer
1393 * inode chunk to the target.
1394 */
1395 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1396 (rrec.ir_startino - pagino)) {
1397 *rec = rrec;
1398 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1399 *ocur = rcur;
1400 } else {
1401 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1402 }
1403 } else if (j == 1) {
1404 /* only the right record is valid */
1405 *rec = rrec;
1406 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1407 *ocur = rcur;
1408 } else if (i == 1) {
1409 /* only the left record is valid */
1410 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1411 }
1412
1413 return 0;
1414
1415error_rcur:
1416 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1417 return error;
1418}
1419
1420/*
1421 * Use the free inode btree to find a free inode based on a newino hint. If
1422 * the hint is NULL, find the first free inode in the AG.
1423 */
1424STATIC int
1425xfs_dialloc_ag_finobt_newino(
1426 struct xfs_agi *agi,
1427 struct xfs_btree_cur *cur,
1428 struct xfs_inobt_rec_incore *rec)
1429{
1430 int error;
1431 int i;
1432
1433 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
e68ed775
DC
1434 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1435 XFS_LOOKUP_EQ, &i);
6dd8638e
BF
1436 if (error)
1437 return error;
1438 if (i == 1) {
1439 error = xfs_inobt_get_rec(cur, rec, &i);
1440 if (error)
1441 return error;
5fb5aeee 1442 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1443 return 0;
1444 }
1445 }
1446
1447 /*
1448 * Find the first inode available in the AG.
1449 */
1450 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1451 if (error)
1452 return error;
5fb5aeee 1453 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1454
1455 error = xfs_inobt_get_rec(cur, rec, &i);
1456 if (error)
1457 return error;
5fb5aeee 1458 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1459
1460 return 0;
1461}
1462
1463/*
1464 * Update the inobt based on a modification made to the finobt. Also ensure that
1465 * the records from both trees are equivalent post-modification.
1466 */
1467STATIC int
1468xfs_dialloc_ag_update_inobt(
1469 struct xfs_btree_cur *cur, /* inobt cursor */
1470 struct xfs_inobt_rec_incore *frec, /* finobt record */
1471 int offset) /* inode offset */
1472{
1473 struct xfs_inobt_rec_incore rec;
1474 int error;
1475 int i;
1476
1477 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1478 if (error)
1479 return error;
5fb5aeee 1480 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1481
1482 error = xfs_inobt_get_rec(cur, &rec, &i);
1483 if (error)
1484 return error;
5fb5aeee 1485 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1486 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1487 XFS_INODES_PER_CHUNK) == 0);
1488
1489 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1490 rec.ir_freecount--;
1491
5fb5aeee 1492 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
6dd8638e
BF
1493 (rec.ir_freecount == frec->ir_freecount));
1494
b72091f2 1495 return xfs_inobt_update(cur, &rec);
6dd8638e
BF
1496}
1497
1498/*
1499 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1500 * back to the inobt search algorithm.
1501 *
1502 * The caller selected an AG for us, and made sure that free inodes are
1503 * available.
1504 */
1505STATIC int
1506xfs_dialloc_ag(
1507 struct xfs_trans *tp,
1508 struct xfs_buf *agbp,
1509 xfs_ino_t parent,
1510 xfs_ino_t *inop)
1511{
1512 struct xfs_mount *mp = tp->t_mountp;
1513 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1514 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1515 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1516 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1517 struct xfs_perag *pag;
1518 struct xfs_btree_cur *cur; /* finobt cursor */
1519 struct xfs_btree_cur *icur; /* inobt cursor */
1520 struct xfs_inobt_rec_incore rec;
1521 xfs_ino_t ino;
1522 int error;
1523 int offset;
1524 int i;
1525
1526 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1527 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1528
1529 pag = xfs_perag_get(mp, agno);
1530
1531 /*
1532 * If pagino is 0 (this is the root inode allocation) use newino.
1533 * This must work because we've just allocated some.
1534 */
1535 if (!pagino)
1536 pagino = be32_to_cpu(agi->agi_newino);
1537
1538 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1539
1540 error = xfs_check_agi_freecount(cur, agi);
1541 if (error)
1542 goto error_cur;
1543
1544 /*
1545 * The search algorithm depends on whether we're in the same AG as the
1546 * parent. If so, find the closest available inode to the parent. If
1547 * not, consider the agi hint or find the first free inode in the AG.
1548 */
1549 if (agno == pagno)
1550 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1551 else
1552 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1553 if (error)
1554 goto error_cur;
1555
d4cc540b 1556 offset = xfs_inobt_first_free_inode(&rec);
6dd8638e
BF
1557 ASSERT(offset >= 0);
1558 ASSERT(offset < XFS_INODES_PER_CHUNK);
1559 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1560 XFS_INODES_PER_CHUNK) == 0);
1561 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1562
1563 /*
1564 * Modify or remove the finobt record.
1565 */
1566 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1567 rec.ir_freecount--;
1568 if (rec.ir_freecount)
1569 error = xfs_inobt_update(cur, &rec);
1570 else
1571 error = xfs_btree_delete(cur, &i);
1572 if (error)
1573 goto error_cur;
1574
1575 /*
1576 * The finobt has now been updated appropriately. We haven't updated the
1577 * agi and superblock yet, so we can create an inobt cursor and validate
1578 * the original freecount. If all is well, make the equivalent update to
1579 * the inobt using the finobt record and offset information.
1580 */
1581 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1582
1583 error = xfs_check_agi_freecount(icur, agi);
1584 if (error)
1585 goto error_icur;
1586
1587 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1588 if (error)
1589 goto error_icur;
1590
1591 /*
1592 * Both trees have now been updated. We must update the perag and
1593 * superblock before we can check the freecount for each btree.
1594 */
1595 be32_add_cpu(&agi->agi_freecount, -1);
1596 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1597 pag->pagi_freecount--;
1598
1599 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1600
1601 error = xfs_check_agi_freecount(icur, agi);
1602 if (error)
1603 goto error_icur;
1604 error = xfs_check_agi_freecount(cur, agi);
1605 if (error)
1606 goto error_icur;
1607
1608 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1609 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1610 xfs_perag_put(pag);
1611 *inop = ino;
1612 return 0;
1613
1614error_icur:
1615 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1616error_cur:
1617 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1618 xfs_perag_put(pag);
1619 return error;
1620}
1621
f2ecc5e4
CH
1622/*
1623 * Allocate an inode on disk.
1624 *
1625 * Mode is used to tell whether the new inode will need space, and whether it
1626 * is a directory.
1627 *
1628 * This function is designed to be called twice if it has to do an allocation
1629 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1630 * If an inode is available without having to performn an allocation, an inode
cd856db6
CM
1631 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1632 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1633 * The caller should then commit the current transaction, allocate a
f2ecc5e4
CH
1634 * new transaction, and call xfs_dialloc() again, passing in the previous value
1635 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1636 * buffer is locked across the two calls, the second call is guaranteed to have
1637 * a free inode available.
1638 *
1639 * Once we successfully pick an inode its number is returned and the on-disk
1640 * data structures are updated. The inode itself is not read in, since doing so
1641 * would break ordering constraints with xfs_reclaim.
1642 */
1643int
1644xfs_dialloc(
1645 struct xfs_trans *tp,
1646 xfs_ino_t parent,
1647 umode_t mode,
1648 int okalloc,
1649 struct xfs_buf **IO_agbp,
f2ecc5e4
CH
1650 xfs_ino_t *inop)
1651{
55d6af64 1652 struct xfs_mount *mp = tp->t_mountp;
f2ecc5e4
CH
1653 struct xfs_buf *agbp;
1654 xfs_agnumber_t agno;
f2ecc5e4
CH
1655 int error;
1656 int ialloced;
1657 int noroom = 0;
be60fe54 1658 xfs_agnumber_t start_agno;
f2ecc5e4
CH
1659 struct xfs_perag *pag;
1660
4bb61069 1661 if (*IO_agbp) {
f2ecc5e4 1662 /*
4bb61069
CH
1663 * If the caller passes in a pointer to the AGI buffer,
1664 * continue where we left off before. In this case, we
f2ecc5e4
CH
1665 * know that the allocation group has free inodes.
1666 */
1667 agbp = *IO_agbp;
4bb61069 1668 goto out_alloc;
f2ecc5e4 1669 }
4bb61069
CH
1670
1671 /*
1672 * We do not have an agbp, so select an initial allocation
1673 * group for inode allocation.
1674 */
be60fe54
CH
1675 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1676 if (start_agno == NULLAGNUMBER) {
4bb61069
CH
1677 *inop = NULLFSINO;
1678 return 0;
1679 }
55d6af64 1680
f2ecc5e4
CH
1681 /*
1682 * If we have already hit the ceiling of inode blocks then clear
1683 * okalloc so we scan all available agi structures for a free
1684 * inode.
1685 */
f2ecc5e4 1686 if (mp->m_maxicount &&
501ab323
DC
1687 percpu_counter_read(&mp->m_icount) + mp->m_ialloc_inos >
1688 mp->m_maxicount) {
f2ecc5e4
CH
1689 noroom = 1;
1690 okalloc = 0;
1691 }
1692
1693 /*
1694 * Loop until we find an allocation group that either has free inodes
1695 * or in which we can allocate some inodes. Iterate through the
1696 * allocation groups upward, wrapping at the end.
1697 */
be60fe54
CH
1698 agno = start_agno;
1699 for (;;) {
1700 pag = xfs_perag_get(mp, agno);
1701 if (!pag->pagi_inodeok) {
1702 xfs_ialloc_next_ag(mp);
1703 goto nextag;
1704 }
1705
1706 if (!pag->pagi_init) {
1707 error = xfs_ialloc_pagi_init(mp, tp, agno);
1708 if (error)
1709 goto out_error;
f2ecc5e4 1710 }
be60fe54 1711
f2ecc5e4 1712 /*
be60fe54 1713 * Do a first racy fast path check if this AG is usable.
f2ecc5e4 1714 */
be60fe54
CH
1715 if (!pag->pagi_freecount && !okalloc)
1716 goto nextag;
1717
c4982110
CH
1718 /*
1719 * Then read in the AGI buffer and recheck with the AGI buffer
1720 * lock held.
1721 */
be60fe54
CH
1722 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1723 if (error)
1724 goto out_error;
1725
be60fe54
CH
1726 if (pag->pagi_freecount) {
1727 xfs_perag_put(pag);
1728 goto out_alloc;
1729 }
1730
c4982110
CH
1731 if (!okalloc)
1732 goto nextag_relse_buffer;
1733
be60fe54
CH
1734
1735 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1736 if (error) {
1737 xfs_trans_brelse(tp, agbp);
1738
2451337d 1739 if (error != -ENOSPC)
be60fe54
CH
1740 goto out_error;
1741
1742 xfs_perag_put(pag);
f2ecc5e4 1743 *inop = NULLFSINO;
be60fe54 1744 return 0;
f2ecc5e4 1745 }
be60fe54
CH
1746
1747 if (ialloced) {
1748 /*
1749 * We successfully allocated some inodes, return
1750 * the current context to the caller so that it
1751 * can commit the current transaction and call
1752 * us again where we left off.
1753 */
1754 ASSERT(pag->pagi_freecount > 0);
f2ecc5e4 1755 xfs_perag_put(pag);
be60fe54
CH
1756
1757 *IO_agbp = agbp;
1758 *inop = NULLFSINO;
1759 return 0;
f2ecc5e4 1760 }
be60fe54 1761
c4982110
CH
1762nextag_relse_buffer:
1763 xfs_trans_brelse(tp, agbp);
be60fe54 1764nextag:
f2ecc5e4 1765 xfs_perag_put(pag);
be60fe54
CH
1766 if (++agno == mp->m_sb.sb_agcount)
1767 agno = 0;
1768 if (agno == start_agno) {
1769 *inop = NULLFSINO;
2451337d 1770 return noroom ? -ENOSPC : 0;
be60fe54 1771 }
f2ecc5e4
CH
1772 }
1773
4bb61069 1774out_alloc:
f2ecc5e4
CH
1775 *IO_agbp = NULL;
1776 return xfs_dialloc_ag(tp, agbp, parent, inop);
be60fe54
CH
1777out_error:
1778 xfs_perag_put(pag);
b474c7ae 1779 return error;
f2ecc5e4
CH
1780}
1781
2b64ee5c
BF
1782STATIC int
1783xfs_difree_inobt(
1784 struct xfs_mount *mp,
1785 struct xfs_trans *tp,
1786 struct xfs_buf *agbp,
1787 xfs_agino_t agino,
1788 struct xfs_bmap_free *flist,
0d907a3b 1789 int *deleted,
2b64ee5c
BF
1790 xfs_ino_t *first_ino,
1791 struct xfs_inobt_rec_incore *orec)
1da177e4 1792{
2b64ee5c
BF
1793 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1794 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1795 struct xfs_perag *pag;
1796 struct xfs_btree_cur *cur;
1797 struct xfs_inobt_rec_incore rec;
1798 int ilen;
1799 int error;
1800 int i;
1801 int off;
1da177e4 1802
69ef921b 1803 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2b64ee5c
BF
1804 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1805
1da177e4
LT
1806 /*
1807 * Initialize the cursor.
1808 */
57bd3dbe 1809 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4 1810
0b48db80
DC
1811 error = xfs_check_agi_freecount(cur, agi);
1812 if (error)
1813 goto error0;
1814
1da177e4
LT
1815 /*
1816 * Look for the entry describing this inode.
1817 */
21875505 1818 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
0b932ccc
DC
1819 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1820 __func__, error);
1da177e4
LT
1821 goto error0;
1822 }
c29aad41 1823 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
2e287a73
CH
1824 error = xfs_inobt_get_rec(cur, &rec, &i);
1825 if (error) {
0b932ccc
DC
1826 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1827 __func__, error);
1da177e4
LT
1828 goto error0;
1829 }
c29aad41 1830 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4
LT
1831 /*
1832 * Get the offset in the inode chunk.
1833 */
1834 off = agino - rec.ir_startino;
1835 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
0d87e656 1836 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1da177e4
LT
1837 /*
1838 * Mark the inode free & increment the count.
1839 */
0d87e656 1840 rec.ir_free |= XFS_INOBT_MASK(off);
1da177e4
LT
1841 rec.ir_freecount++;
1842
1843 /*
999633d3
BF
1844 * When an inode chunk is free, it becomes eligible for removal. Don't
1845 * remove the chunk if the block size is large enough for multiple inode
1846 * chunks (that might not be free).
1da177e4 1847 */
1bd960ee 1848 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
999633d3
BF
1849 rec.ir_free == XFS_INOBT_ALL_FREE &&
1850 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1da177e4 1851
376c2f3a 1852 *deleted = 1;
1da177e4
LT
1853 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1854
1855 /*
1856 * Remove the inode cluster from the AGI B+Tree, adjust the
1857 * AGI and Superblock inode counts, and mark the disk space
1858 * to be freed when the transaction is committed.
1859 */
999633d3 1860 ilen = rec.ir_freecount;
413d57c9
MS
1861 be32_add_cpu(&agi->agi_count, -ilen);
1862 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1da177e4 1863 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
44b56e0a
DC
1864 pag = xfs_perag_get(mp, agno);
1865 pag->pagi_freecount -= ilen - 1;
1866 xfs_perag_put(pag);
1da177e4
LT
1867 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1868 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1869
91cca5df 1870 if ((error = xfs_btree_delete(cur, &i))) {
0b932ccc
DC
1871 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1872 __func__, error);
1da177e4
LT
1873 goto error0;
1874 }
1875
126cd105
JL
1876 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1877 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
1878 mp->m_ialloc_blks, flist, mp);
1da177e4 1879 } else {
376c2f3a 1880 *deleted = 0;
1da177e4 1881
afabc24a
CH
1882 error = xfs_inobt_update(cur, &rec);
1883 if (error) {
0b932ccc
DC
1884 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1885 __func__, error);
1da177e4
LT
1886 goto error0;
1887 }
afabc24a 1888
1da177e4
LT
1889 /*
1890 * Change the inode free counts and log the ag/sb changes.
1891 */
413d57c9 1892 be32_add_cpu(&agi->agi_freecount, 1);
1da177e4 1893 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a
DC
1894 pag = xfs_perag_get(mp, agno);
1895 pag->pagi_freecount++;
1896 xfs_perag_put(pag);
1da177e4
LT
1897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1898 }
1899
0b48db80
DC
1900 error = xfs_check_agi_freecount(cur, agi);
1901 if (error)
1902 goto error0;
1da177e4 1903
2b64ee5c 1904 *orec = rec;
1da177e4
LT
1905 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1906 return 0;
1907
1908error0:
1909 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1910 return error;
1911}
1912
3efa4ffd
BF
1913/*
1914 * Free an inode in the free inode btree.
1915 */
1916STATIC int
1917xfs_difree_finobt(
1918 struct xfs_mount *mp,
1919 struct xfs_trans *tp,
1920 struct xfs_buf *agbp,
1921 xfs_agino_t agino,
1922 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
1923{
1924 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1925 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1926 struct xfs_btree_cur *cur;
1927 struct xfs_inobt_rec_incore rec;
1928 int offset = agino - ibtrec->ir_startino;
1929 int error;
1930 int i;
1931
1932 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1933
1934 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
1935 if (error)
1936 goto error;
1937 if (i == 0) {
1938 /*
1939 * If the record does not exist in the finobt, we must have just
1940 * freed an inode in a previously fully allocated chunk. If not,
1941 * something is out of sync.
1942 */
c29aad41 1943 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
3efa4ffd 1944
5419040f
BF
1945 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
1946 ibtrec->ir_count,
1947 ibtrec->ir_freecount,
3efa4ffd
BF
1948 ibtrec->ir_free, &i);
1949 if (error)
1950 goto error;
1951 ASSERT(i == 1);
1952
1953 goto out;
1954 }
1955
1956 /*
1957 * Read and update the existing record. We could just copy the ibtrec
1958 * across here, but that would defeat the purpose of having redundant
1959 * metadata. By making the modifications independently, we can catch
1960 * corruptions that we wouldn't see if we just copied from one record
1961 * to another.
1962 */
1963 error = xfs_inobt_get_rec(cur, &rec, &i);
1964 if (error)
1965 goto error;
c29aad41 1966 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
3efa4ffd
BF
1967
1968 rec.ir_free |= XFS_INOBT_MASK(offset);
1969 rec.ir_freecount++;
1970
c29aad41 1971 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
3efa4ffd
BF
1972 (rec.ir_freecount == ibtrec->ir_freecount),
1973 error);
1974
1975 /*
1976 * The content of inobt records should always match between the inobt
1977 * and finobt. The lifecycle of records in the finobt is different from
1978 * the inobt in that the finobt only tracks records with at least one
1979 * free inode. Hence, if all of the inodes are free and we aren't
1980 * keeping inode chunks permanently on disk, remove the record.
1981 * Otherwise, update the record with the new information.
999633d3
BF
1982 *
1983 * Note that we currently can't free chunks when the block size is large
1984 * enough for multiple chunks. Leave the finobt record to remain in sync
1985 * with the inobt.
3efa4ffd 1986 */
999633d3
BF
1987 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
1988 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
3efa4ffd
BF
1989 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1990 error = xfs_btree_delete(cur, &i);
1991 if (error)
1992 goto error;
1993 ASSERT(i == 1);
1994 } else {
1995 error = xfs_inobt_update(cur, &rec);
1996 if (error)
1997 goto error;
1998 }
1999
2000out:
2001 error = xfs_check_agi_freecount(cur, agi);
2002 if (error)
2003 goto error;
2004
2005 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2006 return 0;
2007
2008error:
2009 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2010 return error;
2011}
2012
2b64ee5c
BF
2013/*
2014 * Free disk inode. Carefully avoids touching the incore inode, all
2015 * manipulations incore are the caller's responsibility.
2016 * The on-disk inode is not changed by this operation, only the
2017 * btree (free inode mask) is changed.
2018 */
2019int
2020xfs_difree(
2021 struct xfs_trans *tp, /* transaction pointer */
2022 xfs_ino_t inode, /* inode to be freed */
2023 struct xfs_bmap_free *flist, /* extents to free */
0d907a3b 2024 int *deleted,/* set if inode cluster was deleted */
2b64ee5c
BF
2025 xfs_ino_t *first_ino)/* first inode in deleted cluster */
2026{
2027 /* REFERENCED */
2028 xfs_agblock_t agbno; /* block number containing inode */
2029 struct xfs_buf *agbp; /* buffer for allocation group header */
2030 xfs_agino_t agino; /* allocation group inode number */
2031 xfs_agnumber_t agno; /* allocation group number */
2032 int error; /* error return value */
2033 struct xfs_mount *mp; /* mount structure for filesystem */
2034 struct xfs_inobt_rec_incore rec;/* btree record */
2035
2036 mp = tp->t_mountp;
2037
2038 /*
2039 * Break up inode number into its components.
2040 */
2041 agno = XFS_INO_TO_AGNO(mp, inode);
2042 if (agno >= mp->m_sb.sb_agcount) {
2043 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2044 __func__, agno, mp->m_sb.sb_agcount);
2045 ASSERT(0);
2451337d 2046 return -EINVAL;
2b64ee5c
BF
2047 }
2048 agino = XFS_INO_TO_AGINO(mp, inode);
2049 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2050 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2051 __func__, (unsigned long long)inode,
2052 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2053 ASSERT(0);
2451337d 2054 return -EINVAL;
2b64ee5c
BF
2055 }
2056 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2057 if (agbno >= mp->m_sb.sb_agblocks) {
2058 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2059 __func__, agbno, mp->m_sb.sb_agblocks);
2060 ASSERT(0);
2451337d 2061 return -EINVAL;
2b64ee5c
BF
2062 }
2063 /*
2064 * Get the allocation group header.
2065 */
2066 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2067 if (error) {
2068 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2069 __func__, error);
2070 return error;
2071 }
2072
2073 /*
2074 * Fix up the inode allocation btree.
2075 */
0d907a3b 2076 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
2b64ee5c
BF
2077 &rec);
2078 if (error)
2079 goto error0;
2080
3efa4ffd
BF
2081 /*
2082 * Fix up the free inode btree.
2083 */
2084 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2085 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2086 if (error)
2087 goto error0;
2088 }
2089
2b64ee5c
BF
2090 return 0;
2091
2092error0:
2093 return error;
2094}
2095
7124fe0a
DC
2096STATIC int
2097xfs_imap_lookup(
2098 struct xfs_mount *mp,
2099 struct xfs_trans *tp,
2100 xfs_agnumber_t agno,
2101 xfs_agino_t agino,
2102 xfs_agblock_t agbno,
2103 xfs_agblock_t *chunk_agbno,
2104 xfs_agblock_t *offset_agbno,
2105 int flags)
2106{
2107 struct xfs_inobt_rec_incore rec;
2108 struct xfs_btree_cur *cur;
2109 struct xfs_buf *agbp;
7124fe0a
DC
2110 int error;
2111 int i;
2112
2113 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2114 if (error) {
53487786
DC
2115 xfs_alert(mp,
2116 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2117 __func__, error, agno);
7124fe0a
DC
2118 return error;
2119 }
2120
2121 /*
4536f2ad
DC
2122 * Lookup the inode record for the given agino. If the record cannot be
2123 * found, then it's an invalid inode number and we should abort. Once
2124 * we have a record, we need to ensure it contains the inode number
2125 * we are looking up.
7124fe0a 2126 */
57bd3dbe 2127 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
4536f2ad 2128 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
7124fe0a
DC
2129 if (!error) {
2130 if (i)
2131 error = xfs_inobt_get_rec(cur, &rec, &i);
2132 if (!error && i == 0)
2451337d 2133 error = -EINVAL;
7124fe0a
DC
2134 }
2135
2136 xfs_trans_brelse(tp, agbp);
2137 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2138 if (error)
2139 return error;
2140
4536f2ad
DC
2141 /* check that the returned record contains the required inode */
2142 if (rec.ir_startino > agino ||
71783438 2143 rec.ir_startino + mp->m_ialloc_inos <= agino)
2451337d 2144 return -EINVAL;
4536f2ad 2145
7124fe0a 2146 /* for untrusted inodes check it is allocated first */
1920779e 2147 if ((flags & XFS_IGET_UNTRUSTED) &&
7124fe0a 2148 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2451337d 2149 return -EINVAL;
7124fe0a
DC
2150
2151 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2152 *offset_agbno = agbno - *chunk_agbno;
2153 return 0;
2154}
2155
1da177e4 2156/*
94e1b69d 2157 * Return the location of the inode in imap, for mapping it into a buffer.
1da177e4 2158 */
1da177e4 2159int
94e1b69d
CH
2160xfs_imap(
2161 xfs_mount_t *mp, /* file system mount structure */
2162 xfs_trans_t *tp, /* transaction pointer */
1da177e4 2163 xfs_ino_t ino, /* inode to locate */
94e1b69d
CH
2164 struct xfs_imap *imap, /* location map structure */
2165 uint flags) /* flags for inode btree lookup */
1da177e4
LT
2166{
2167 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1da177e4
LT
2168 xfs_agino_t agino; /* inode number within alloc group */
2169 xfs_agnumber_t agno; /* allocation group number */
2170 int blks_per_cluster; /* num blocks per inode cluster */
2171 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1da177e4 2172 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1da177e4 2173 int error; /* error code */
1da177e4 2174 int offset; /* index of inode in its buffer */
836a94ad 2175 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1da177e4
LT
2176
2177 ASSERT(ino != NULLFSINO);
94e1b69d 2178
1da177e4
LT
2179 /*
2180 * Split up the inode number into its parts.
2181 */
2182 agno = XFS_INO_TO_AGNO(mp, ino);
2183 agino = XFS_INO_TO_AGINO(mp, ino);
2184 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2185 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2186 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2187#ifdef DEBUG
1920779e
DC
2188 /*
2189 * Don't output diagnostic information for untrusted inodes
2190 * as they can be invalid without implying corruption.
2191 */
2192 if (flags & XFS_IGET_UNTRUSTED)
2451337d 2193 return -EINVAL;
1da177e4 2194 if (agno >= mp->m_sb.sb_agcount) {
53487786
DC
2195 xfs_alert(mp,
2196 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2197 __func__, agno, mp->m_sb.sb_agcount);
1da177e4
LT
2198 }
2199 if (agbno >= mp->m_sb.sb_agblocks) {
53487786
DC
2200 xfs_alert(mp,
2201 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2202 __func__, (unsigned long long)agbno,
2203 (unsigned long)mp->m_sb.sb_agblocks);
1da177e4
LT
2204 }
2205 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
53487786
DC
2206 xfs_alert(mp,
2207 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2208 __func__, ino,
2209 XFS_AGINO_TO_INO(mp, agno, agino));
1da177e4 2210 }
745b1f47 2211 xfs_stack_trace();
1da177e4 2212#endif /* DEBUG */
2451337d 2213 return -EINVAL;
1da177e4 2214 }
94e1b69d 2215
f9e5abcf 2216 blks_per_cluster = xfs_icluster_size_fsb(mp);
7124fe0a
DC
2217
2218 /*
2219 * For bulkstat and handle lookups, we have an untrusted inode number
2220 * that we have to verify is valid. We cannot do this just by reading
2221 * the inode buffer as it may have been unlinked and removed leaving
2222 * inodes in stale state on disk. Hence we have to do a btree lookup
2223 * in all cases where an untrusted inode number is passed.
2224 */
1920779e 2225 if (flags & XFS_IGET_UNTRUSTED) {
7124fe0a
DC
2226 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2227 &chunk_agbno, &offset_agbno, flags);
2228 if (error)
2229 return error;
2230 goto out_map;
2231 }
2232
94e1b69d
CH
2233 /*
2234 * If the inode cluster size is the same as the blocksize or
2235 * smaller we get to the buffer by simple arithmetics.
2236 */
f9e5abcf 2237 if (blks_per_cluster == 1) {
1da177e4
LT
2238 offset = XFS_INO_TO_OFFSET(mp, ino);
2239 ASSERT(offset < mp->m_sb.sb_inopblock);
94e1b69d
CH
2240
2241 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2242 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2243 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1da177e4
LT
2244 return 0;
2245 }
94e1b69d 2246
94e1b69d
CH
2247 /*
2248 * If the inode chunks are aligned then use simple maths to
2249 * find the location. Otherwise we have to do a btree
2250 * lookup to find the location.
2251 */
1da177e4
LT
2252 if (mp->m_inoalign_mask) {
2253 offset_agbno = agbno & mp->m_inoalign_mask;
2254 chunk_agbno = agbno - offset_agbno;
2255 } else {
7124fe0a
DC
2256 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2257 &chunk_agbno, &offset_agbno, flags);
1da177e4
LT
2258 if (error)
2259 return error;
1da177e4 2260 }
94e1b69d 2261
7124fe0a 2262out_map:
1da177e4
LT
2263 ASSERT(agbno >= chunk_agbno);
2264 cluster_agbno = chunk_agbno +
2265 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2266 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2267 XFS_INO_TO_OFFSET(mp, ino);
94e1b69d
CH
2268
2269 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2270 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2271 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2272
2273 /*
2274 * If the inode number maps to a block outside the bounds
2275 * of the file system then return NULL rather than calling
2276 * read_buf and panicing when we get an error from the
2277 * driver.
2278 */
2279 if ((imap->im_blkno + imap->im_len) >
2280 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
53487786
DC
2281 xfs_alert(mp,
2282 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2283 __func__, (unsigned long long) imap->im_blkno,
94e1b69d
CH
2284 (unsigned long long) imap->im_len,
2285 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2451337d 2286 return -EINVAL;
94e1b69d 2287 }
1da177e4 2288 return 0;
1da177e4
LT
2289}
2290
2291/*
2292 * Compute and fill in value of m_in_maxlevels.
2293 */
2294void
2295xfs_ialloc_compute_maxlevels(
2296 xfs_mount_t *mp) /* file system mount structure */
2297{
2298 int level;
2299 uint maxblocks;
2300 uint maxleafents;
2301 int minleafrecs;
2302 int minnoderecs;
2303
2304 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
2305 XFS_INODES_PER_CHUNK_LOG;
2306 minleafrecs = mp->m_alloc_mnr[0];
2307 minnoderecs = mp->m_alloc_mnr[1];
2308 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
2309 for (level = 1; maxblocks > 1; level++)
2310 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
2311 mp->m_in_maxlevels = level;
2312}
2313
2314/*
aafc3c24
BF
2315 * Log specified fields for the ag hdr (inode section). The growth of the agi
2316 * structure over time requires that we interpret the buffer as two logical
2317 * regions delineated by the end of the unlinked list. This is due to the size
2318 * of the hash table and its location in the middle of the agi.
2319 *
2320 * For example, a request to log a field before agi_unlinked and a field after
2321 * agi_unlinked could cause us to log the entire hash table and use an excessive
2322 * amount of log space. To avoid this behavior, log the region up through
2323 * agi_unlinked in one call and the region after agi_unlinked through the end of
2324 * the structure in another.
1da177e4
LT
2325 */
2326void
2327xfs_ialloc_log_agi(
2328 xfs_trans_t *tp, /* transaction pointer */
2329 xfs_buf_t *bp, /* allocation group header buffer */
2330 int fields) /* bitmask of fields to log */
2331{
2332 int first; /* first byte number */
2333 int last; /* last byte number */
2334 static const short offsets[] = { /* field starting offsets */
2335 /* keep in sync with bit definitions */
2336 offsetof(xfs_agi_t, agi_magicnum),
2337 offsetof(xfs_agi_t, agi_versionnum),
2338 offsetof(xfs_agi_t, agi_seqno),
2339 offsetof(xfs_agi_t, agi_length),
2340 offsetof(xfs_agi_t, agi_count),
2341 offsetof(xfs_agi_t, agi_root),
2342 offsetof(xfs_agi_t, agi_level),
2343 offsetof(xfs_agi_t, agi_freecount),
2344 offsetof(xfs_agi_t, agi_newino),
2345 offsetof(xfs_agi_t, agi_dirino),
2346 offsetof(xfs_agi_t, agi_unlinked),
aafc3c24
BF
2347 offsetof(xfs_agi_t, agi_free_root),
2348 offsetof(xfs_agi_t, agi_free_level),
1da177e4
LT
2349 sizeof(xfs_agi_t)
2350 };
2351#ifdef DEBUG
2352 xfs_agi_t *agi; /* allocation group header */
2353
2354 agi = XFS_BUF_TO_AGI(bp);
69ef921b 2355 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1da177e4 2356#endif
aafc3c24
BF
2357
2358 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2359
1da177e4 2360 /*
aafc3c24
BF
2361 * Compute byte offsets for the first and last fields in the first
2362 * region and log the agi buffer. This only logs up through
2363 * agi_unlinked.
1da177e4 2364 */
aafc3c24
BF
2365 if (fields & XFS_AGI_ALL_BITS_R1) {
2366 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2367 &first, &last);
2368 xfs_trans_log_buf(tp, bp, first, last);
2369 }
2370
1da177e4 2371 /*
aafc3c24
BF
2372 * Mask off the bits in the first region and calculate the first and
2373 * last field offsets for any bits in the second region.
1da177e4 2374 */
aafc3c24
BF
2375 fields &= ~XFS_AGI_ALL_BITS_R1;
2376 if (fields) {
2377 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2378 &first, &last);
2379 xfs_trans_log_buf(tp, bp, first, last);
2380 }
1da177e4
LT
2381}
2382
5e1be0fb
CH
2383#ifdef DEBUG
2384STATIC void
2385xfs_check_agi_unlinked(
2386 struct xfs_agi *agi)
2387{
2388 int i;
2389
2390 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2391 ASSERT(agi->agi_unlinked[i]);
2392}
2393#else
2394#define xfs_check_agi_unlinked(agi)
2395#endif
2396
983d09ff 2397static bool
612cfbfe 2398xfs_agi_verify(
3702ce6e
DC
2399 struct xfs_buf *bp)
2400{
2401 struct xfs_mount *mp = bp->b_target->bt_mount;
2402 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
3702ce6e 2403
983d09ff
DC
2404 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2405 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2406 return false;
3702ce6e
DC
2407 /*
2408 * Validate the magic number of the agi block.
2409 */
983d09ff
DC
2410 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2411 return false;
2412 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2413 return false;
3702ce6e 2414
e1b05723
ES
2415 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2416 return false;
3702ce6e
DC
2417 /*
2418 * during growfs operations, the perag is not fully initialised,
2419 * so we can't use it for any useful checking. growfs ensures we can't
2420 * use it by using uncached buffers that don't have the perag attached
2421 * so we can detect and avoid this problem.
2422 */
983d09ff
DC
2423 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2424 return false;
3702ce6e 2425
3702ce6e 2426 xfs_check_agi_unlinked(agi);
983d09ff 2427 return true;
612cfbfe
DC
2428}
2429
1813dd64
DC
2430static void
2431xfs_agi_read_verify(
612cfbfe
DC
2432 struct xfs_buf *bp)
2433{
983d09ff 2434 struct xfs_mount *mp = bp->b_target->bt_mount;
983d09ff 2435
ce5028cf
ES
2436 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2437 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2451337d 2438 xfs_buf_ioerror(bp, -EFSBADCRC);
ce5028cf
ES
2439 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2440 XFS_ERRTAG_IALLOC_READ_AGI,
2441 XFS_RANDOM_IALLOC_READ_AGI))
2451337d 2442 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf
ES
2443
2444 if (bp->b_error)
2445 xfs_verifier_error(bp);
612cfbfe
DC
2446}
2447
b0f539de 2448static void
1813dd64 2449xfs_agi_write_verify(
612cfbfe
DC
2450 struct xfs_buf *bp)
2451{
983d09ff
DC
2452 struct xfs_mount *mp = bp->b_target->bt_mount;
2453 struct xfs_buf_log_item *bip = bp->b_fspriv;
2454
2455 if (!xfs_agi_verify(bp)) {
2451337d 2456 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf 2457 xfs_verifier_error(bp);
983d09ff
DC
2458 return;
2459 }
2460
2461 if (!xfs_sb_version_hascrc(&mp->m_sb))
2462 return;
2463
2464 if (bip)
2465 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 2466 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
3702ce6e
DC
2467}
2468
1813dd64
DC
2469const struct xfs_buf_ops xfs_agi_buf_ops = {
2470 .verify_read = xfs_agi_read_verify,
2471 .verify_write = xfs_agi_write_verify,
2472};
2473
1da177e4
LT
2474/*
2475 * Read in the allocation group header (inode allocation section)
2476 */
2477int
5e1be0fb
CH
2478xfs_read_agi(
2479 struct xfs_mount *mp, /* file system mount structure */
2480 struct xfs_trans *tp, /* transaction pointer */
2481 xfs_agnumber_t agno, /* allocation group number */
2482 struct xfs_buf **bpp) /* allocation group hdr buf */
1da177e4 2483{
5e1be0fb 2484 int error;
1da177e4 2485
d123031a 2486 trace_xfs_read_agi(mp, agno);
5e1be0fb 2487
d123031a 2488 ASSERT(agno != NULLAGNUMBER);
5e1be0fb 2489 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4 2490 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1813dd64 2491 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1da177e4
LT
2492 if (error)
2493 return error;
5e1be0fb 2494
38f23232 2495 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
5e1be0fb
CH
2496 return 0;
2497}
2498
2499int
2500xfs_ialloc_read_agi(
2501 struct xfs_mount *mp, /* file system mount structure */
2502 struct xfs_trans *tp, /* transaction pointer */
2503 xfs_agnumber_t agno, /* allocation group number */
2504 struct xfs_buf **bpp) /* allocation group hdr buf */
2505{
2506 struct xfs_agi *agi; /* allocation group header */
2507 struct xfs_perag *pag; /* per allocation group data */
2508 int error;
2509
d123031a
DC
2510 trace_xfs_ialloc_read_agi(mp, agno);
2511
5e1be0fb
CH
2512 error = xfs_read_agi(mp, tp, agno, bpp);
2513 if (error)
2514 return error;
2515
2516 agi = XFS_BUF_TO_AGI(*bpp);
44b56e0a 2517 pag = xfs_perag_get(mp, agno);
1da177e4 2518 if (!pag->pagi_init) {
16259e7d 2519 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
92821e2b 2520 pag->pagi_count = be32_to_cpu(agi->agi_count);
1da177e4 2521 pag->pagi_init = 1;
1da177e4 2522 }
1da177e4 2523
5e1be0fb
CH
2524 /*
2525 * It's possible for these to be out of sync if
2526 * we are in the middle of a forced shutdown.
2527 */
2528 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2529 XFS_FORCED_SHUTDOWN(mp));
44b56e0a 2530 xfs_perag_put(pag);
1da177e4
LT
2531 return 0;
2532}
92821e2b
DC
2533
2534/*
2535 * Read in the agi to initialise the per-ag data in the mount structure
2536 */
2537int
2538xfs_ialloc_pagi_init(
2539 xfs_mount_t *mp, /* file system mount structure */
2540 xfs_trans_t *tp, /* transaction pointer */
2541 xfs_agnumber_t agno) /* allocation group number */
2542{
2543 xfs_buf_t *bp = NULL;
2544 int error;
2545
2546 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2547 if (error)
2548 return error;
2549 if (bp)
2550 xfs_trans_brelse(tp, bp);
2551 return 0;
2552}