Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / fs / xfs / libxfs / xfs_alloc.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_format.h"
239880ef 9#include "xfs_log_format.h"
70a9883c 10#include "xfs_shared.h"
239880ef 11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_mount.h"
3ab78df2 14#include "xfs_defer.h"
1da177e4 15#include "xfs_btree.h"
673930c3 16#include "xfs_rmap.h"
a4fbe6ab 17#include "xfs_alloc_btree.h"
1da177e4 18#include "xfs_alloc.h"
efc27b52 19#include "xfs_extent_busy.h"
e9e899a2 20#include "xfs_errortag.h"
1da177e4 21#include "xfs_error.h"
0b1b213f 22#include "xfs_trace.h"
239880ef 23#include "xfs_trans.h"
4e0e6040 24#include "xfs_buf_item.h"
239880ef 25#include "xfs_log.h"
9bbafc71 26#include "xfs_ag.h"
3fd129b6 27#include "xfs_ag_resv.h"
f8f2835a 28#include "xfs_bmap.h"
de6077ec 29#include "xfs_health.h"
84a3c157 30#include "xfs_extfree_item.h"
f8f2835a 31
c201d9ca 32struct kmem_cache *xfs_extfree_item_cache;
1da177e4 33
c999a223 34struct workqueue_struct *xfs_alloc_wq;
1da177e4 35
1da177e4
LT
36#define XFSA_FIXUP_BNO_OK 1
37#define XFSA_FIXUP_CNT_OK 2
38
a78ee256
DC
39/*
40 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
41 * the beginning of the block for a proper header with the location information
42 * and CRC.
43 */
44unsigned int
45xfs_agfl_size(
46 struct xfs_mount *mp)
47{
48 unsigned int size = mp->m_sb.sb_sectsize;
49
38c26bfd 50 if (xfs_has_crc(mp))
a78ee256
DC
51 size -= sizeof(struct xfs_agfl);
52
53 return size / sizeof(xfs_agblock_t);
54}
55
af30dfa1
DW
56unsigned int
57xfs_refc_block(
58 struct xfs_mount *mp)
59{
38c26bfd 60 if (xfs_has_rmapbt(mp))
af30dfa1 61 return XFS_RMAP_BLOCK(mp) + 1;
38c26bfd 62 if (xfs_has_finobt(mp))
af30dfa1
DW
63 return XFS_FIBT_BLOCK(mp) + 1;
64 return XFS_IBT_BLOCK(mp) + 1;
65}
66
8018026e
DW
67xfs_extlen_t
68xfs_prealloc_blocks(
69 struct xfs_mount *mp)
70{
38c26bfd 71 if (xfs_has_reflink(mp))
af30dfa1 72 return xfs_refc_block(mp) + 1;
38c26bfd 73 if (xfs_has_rmapbt(mp))
8018026e 74 return XFS_RMAP_BLOCK(mp) + 1;
38c26bfd 75 if (xfs_has_finobt(mp))
8018026e
DW
76 return XFS_FIBT_BLOCK(mp) + 1;
77 return XFS_IBT_BLOCK(mp) + 1;
78}
79
52548852 80/*
f30f656e 81 * The number of blocks per AG that we withhold from xfs_dec_fdblocks to
93defd5a 82 * guarantee that we can refill the AGFL prior to allocating space in a nearly
4869b6e8 83 * full AG. Although the space described by the free space btrees, the
93defd5a
DW
84 * blocks used by the freesp btrees themselves, and the blocks owned by the
85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
86 * free space in the AG drop so low that the free space btrees cannot refill an
87 * empty AGFL up to the minimum level. Rather than grind through empty AGs
88 * until the fs goes down, we subtract this many AG blocks from the incore
89 * fdblocks to ensure user allocation does not overcommit the space the
90 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to
f30f656e 91 * withhold space from xfs_dec_fdblocks, so we do not account for that here.
93defd5a
DW
92 */
93#define XFS_ALLOCBT_AGFL_RESERVE 4
94
95/*
96 * Compute the number of blocks that we set aside to guarantee the ability to
97 * refill the AGFL and handle a full bmap btree split.
98 *
52548852
DW
99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
100 * AGF buffer (PV 947395), we place constraints on the relationship among
101 * actual allocations for data blocks, freelist blocks, and potential file data
102 * bmap btree blocks. However, these restrictions may result in no actual space
103 * allocated for a delayed extent, for example, a data block in a certain AG is
104 * allocated but there is no additional block for the additional bmap btree
105 * block due to a split of the bmap btree of the file. The result of this may
106 * lead to an infinite loop when the file gets flushed to disk and all delayed
107 * extents need to be actually allocated. To get around this, we explicitly set
108 * aside a few blocks which will not be reserved in delayed allocation.
109 *
93defd5a
DW
110 * For each AG, we need to reserve enough blocks to replenish a totally empty
111 * AGFL and 4 more to handle a potential split of the file's bmap btree.
52548852
DW
112 */
113unsigned int
114xfs_alloc_set_aside(
115 struct xfs_mount *mp)
116{
93defd5a 117 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
52548852
DW
118}
119
120/*
121 * When deciding how much space to allocate out of an AG, we limit the
122 * allocation maximum size to the size the AG. However, we cannot use all the
123 * blocks in the AG - some are permanently used by metadata. These
124 * blocks are generally:
125 * - the AG superblock, AGF, AGI and AGFL
126 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
127 * the AGI free inode and rmap btree root blocks.
128 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
129 * - the rmapbt root block
130 *
131 * The AG headers are sector sized, so the amount of space they take up is
132 * dependent on filesystem geometry. The others are all single blocks.
133 */
134unsigned int
135xfs_alloc_ag_max_usable(
136 struct xfs_mount *mp)
137{
138 unsigned int blocks;
139
140 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
93defd5a 141 blocks += XFS_ALLOCBT_AGFL_RESERVE;
52548852 142 blocks += 3; /* AGF, AGI btree root blocks */
38c26bfd 143 if (xfs_has_finobt(mp))
52548852 144 blocks++; /* finobt root block */
38c26bfd 145 if (xfs_has_rmapbt(mp))
93defd5a 146 blocks++; /* rmap root block */
38c26bfd 147 if (xfs_has_reflink(mp))
d0e853f3 148 blocks++; /* refcount root block */
52548852
DW
149
150 return mp->m_sb.sb_agblocks - blocks;
151}
152
73a8fd93
CH
153
154static int
155xfs_alloc_lookup(
156 struct xfs_btree_cur *cur,
157 xfs_lookup_t dir,
158 xfs_agblock_t bno,
159 xfs_extlen_t len,
160 int *stat)
161{
162 int error;
163
164 cur->bc_rec.a.ar_startblock = bno;
165 cur->bc_rec.a.ar_blockcount = len;
166 error = xfs_btree_lookup(cur, dir, stat);
b20775ed
CH
167 if (*stat == 1)
168 cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
169 else
170 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
73a8fd93
CH
171 return error;
172}
173
fe033cc8
CH
174/*
175 * Lookup the record equal to [bno, len] in the btree given by cur.
176 */
73a8fd93 177static inline int /* error */
fe033cc8
CH
178xfs_alloc_lookup_eq(
179 struct xfs_btree_cur *cur, /* btree cursor */
180 xfs_agblock_t bno, /* starting block of extent */
181 xfs_extlen_t len, /* length of extent */
182 int *stat) /* success/failure */
183{
73a8fd93 184 return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
fe033cc8
CH
185}
186
187/*
188 * Lookup the first record greater than or equal to [bno, len]
189 * in the btree given by cur.
190 */
a66d6363 191int /* error */
fe033cc8
CH
192xfs_alloc_lookup_ge(
193 struct xfs_btree_cur *cur, /* btree cursor */
194 xfs_agblock_t bno, /* starting block of extent */
195 xfs_extlen_t len, /* length of extent */
196 int *stat) /* success/failure */
197{
73a8fd93 198 return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
fe033cc8
CH
199}
200
201/*
202 * Lookup the first record less than or equal to [bno, len]
203 * in the btree given by cur.
204 */
ce1d802e 205int /* error */
fe033cc8
CH
206xfs_alloc_lookup_le(
207 struct xfs_btree_cur *cur, /* btree cursor */
208 xfs_agblock_t bno, /* starting block of extent */
209 xfs_extlen_t len, /* length of extent */
210 int *stat) /* success/failure */
211{
73a8fd93 212 return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
f6b428a4
BF
213}
214
215static inline bool
216xfs_alloc_cur_active(
217 struct xfs_btree_cur *cur)
218{
b20775ed 219 return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
fe033cc8
CH
220}
221
278d0ca1
CH
222/*
223 * Update the record referred to by cur to the value given
224 * by [bno, len].
225 * This either works (return 0) or gets an EFSCORRUPTED error.
226 */
227STATIC int /* error */
228xfs_alloc_update(
229 struct xfs_btree_cur *cur, /* btree cursor */
230 xfs_agblock_t bno, /* starting block of extent */
231 xfs_extlen_t len) /* length of extent */
232{
233 union xfs_btree_rec rec;
234
235 rec.alloc.ar_startblock = cpu_to_be32(bno);
236 rec.alloc.ar_blockcount = cpu_to_be32(len);
237 return xfs_btree_update(cur, &rec);
238}
fe033cc8 239
35e3b9a1
DW
240/* Convert the ondisk btree record to its incore representation. */
241void
242xfs_alloc_btrec_to_irec(
243 const union xfs_btree_rec *rec,
244 struct xfs_alloc_rec_incore *irec)
245{
246 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
247 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
248}
249
250/* Simple checks for free space records. */
251xfs_failaddr_t
252xfs_alloc_check_irec(
4bdfd7d1
DW
253 struct xfs_perag *pag,
254 const struct xfs_alloc_rec_incore *irec)
35e3b9a1 255{
35e3b9a1
DW
256 if (irec->ar_blockcount == 0)
257 return __this_address;
258
259 /* check for valid extent range, including overflow */
260 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
261 return __this_address;
262
263 return NULL;
264}
265
ee12eaaa
DW
266static inline int
267xfs_alloc_complain_bad_rec(
268 struct xfs_btree_cur *cur,
269 xfs_failaddr_t fa,
270 const struct xfs_alloc_rec_incore *irec)
271{
272 struct xfs_mount *mp = cur->bc_mp;
273
274 xfs_warn(mp,
77953b97 275 "%sbt record corruption in AG %d detected at %pS!",
77a530e6 276 cur->bc_ops->name, cur->bc_group->xg_gno, fa);
ee12eaaa
DW
277 xfs_warn(mp,
278 "start block 0x%x block count 0x%x", irec->ar_startblock,
279 irec->ar_blockcount);
a78d10f4 280 xfs_btree_mark_sick(cur);
ee12eaaa
DW
281 return -EFSCORRUPTED;
282}
283
8cc938fe
CH
284/*
285 * Get the data from the pointed-to record.
286 */
a46db608 287int /* error */
8cc938fe
CH
288xfs_alloc_get_rec(
289 struct xfs_btree_cur *cur, /* btree cursor */
290 xfs_agblock_t *bno, /* output: starting block of extent */
291 xfs_extlen_t *len, /* output: length of extent */
292 int *stat) /* output: success/failure */
293{
35e3b9a1 294 struct xfs_alloc_rec_incore irec;
8cc938fe 295 union xfs_btree_rec *rec;
35e3b9a1 296 xfs_failaddr_t fa;
8cc938fe
CH
297 int error;
298
299 error = xfs_btree_get_rec(cur, &rec, stat);
a37f7b12
DW
300 if (error || !(*stat))
301 return error;
a37f7b12 302
35e3b9a1 303 xfs_alloc_btrec_to_irec(rec, &irec);
77a530e6 304 fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
35e3b9a1 305 if (fa)
ee12eaaa 306 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
9e6c08d4 307
35e3b9a1
DW
308 *bno = irec.ar_startblock;
309 *len = irec.ar_blockcount;
9e6c08d4 310 return 0;
8cc938fe
CH
311}
312
1da177e4
LT
313/*
314 * Compute aligned version of the found extent.
315 * Takes alignment and min length into account.
316 */
ebf55872 317STATIC bool
1da177e4 318xfs_alloc_compute_aligned(
86fa8af6 319 xfs_alloc_arg_t *args, /* allocation argument structure */
1da177e4
LT
320 xfs_agblock_t foundbno, /* starting block in found extent */
321 xfs_extlen_t foundlen, /* length in found extent */
1da177e4 322 xfs_agblock_t *resbno, /* result block number */
ebf55872
CH
323 xfs_extlen_t *reslen, /* result length */
324 unsigned *busy_gen)
1da177e4 325{
ebf55872
CH
326 xfs_agblock_t bno = foundbno;
327 xfs_extlen_t len = foundlen;
bfe46d4e 328 xfs_extlen_t diff;
ebf55872 329 bool busy;
1da177e4 330
e26f0501 331 /* Trim busy sections out of found extent */
adbc76aa
CH
332 busy = xfs_extent_busy_trim(pag_group(args->pag), args->minlen,
333 args->maxlen, &bno, &len, busy_gen);
e26f0501 334
bfe46d4e
BF
335 /*
336 * If we have a largish extent that happens to start before min_agbno,
337 * see if we can shift it into range...
338 */
339 if (bno < args->min_agbno && bno + len > args->min_agbno) {
340 diff = args->min_agbno - bno;
341 if (len > diff) {
342 bno += diff;
343 len -= diff;
344 }
345 }
346
e26f0501
CH
347 if (args->alignment > 1 && len >= args->minlen) {
348 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
bfe46d4e
BF
349
350 diff = aligned_bno - bno;
e26f0501
CH
351
352 *resbno = aligned_bno;
353 *reslen = diff >= len ? 0 : len - diff;
1da177e4 354 } else {
e26f0501
CH
355 *resbno = bno;
356 *reslen = len;
1da177e4 357 }
ebf55872
CH
358
359 return busy;
1da177e4
LT
360}
361
362/*
363 * Compute best start block and diff for "near" allocations.
364 * freelen >= wantlen already checked by caller.
365 */
366STATIC xfs_extlen_t /* difference value (absolute) */
367xfs_alloc_compute_diff(
368 xfs_agblock_t wantbno, /* target starting block */
369 xfs_extlen_t wantlen, /* target length */
370 xfs_extlen_t alignment, /* target alignment */
292378ed 371 int datatype, /* are we allocating data? */
1da177e4
LT
372 xfs_agblock_t freebno, /* freespace's starting block */
373 xfs_extlen_t freelen, /* freespace's length */
374 xfs_agblock_t *newbnop) /* result: best start block from free */
375{
376 xfs_agblock_t freeend; /* end of freespace extent */
377 xfs_agblock_t newbno1; /* return block number */
378 xfs_agblock_t newbno2; /* other new block number */
379 xfs_extlen_t newlen1=0; /* length with newbno1 */
380 xfs_extlen_t newlen2=0; /* length with newbno2 */
381 xfs_agblock_t wantend; /* end of target extent */
c34d570d 382 bool userdata = datatype & XFS_ALLOC_USERDATA;
1da177e4
LT
383
384 ASSERT(freelen >= wantlen);
385 freeend = freebno + freelen;
386 wantend = wantbno + wantlen;
211d022c
JK
387 /*
388 * We want to allocate from the start of a free extent if it is past
389 * the desired block or if we are allocating user data and the free
390 * extent is before desired block. The second case is there to allow
391 * for contiguous allocation from the remaining free space if the file
392 * grows in the short term.
393 */
394 if (freebno >= wantbno || (userdata && freeend < wantend)) {
1da177e4
LT
395 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
396 newbno1 = NULLAGBLOCK;
397 } else if (freeend >= wantend && alignment > 1) {
398 newbno1 = roundup(wantbno, alignment);
399 newbno2 = newbno1 - alignment;
400 if (newbno1 >= freeend)
401 newbno1 = NULLAGBLOCK;
402 else
403 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
404 if (newbno2 < freebno)
405 newbno2 = NULLAGBLOCK;
406 else
407 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
408 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
409 if (newlen1 < newlen2 ||
410 (newlen1 == newlen2 &&
ca3ac4bf
MWO
411 abs_diff(newbno1, wantbno) >
412 abs_diff(newbno2, wantbno)))
1da177e4
LT
413 newbno1 = newbno2;
414 } else if (newbno2 != NULLAGBLOCK)
415 newbno1 = newbno2;
416 } else if (freeend >= wantend) {
417 newbno1 = wantbno;
418 } else if (alignment > 1) {
419 newbno1 = roundup(freeend - wantlen, alignment);
420 if (newbno1 > freeend - wantlen &&
421 newbno1 - alignment >= freebno)
422 newbno1 -= alignment;
423 else if (newbno1 >= freeend)
424 newbno1 = NULLAGBLOCK;
425 } else
426 newbno1 = freeend - wantlen;
427 *newbnop = newbno1;
ca3ac4bf 428 return newbno1 == NULLAGBLOCK ? 0 : abs_diff(newbno1, wantbno);
1da177e4
LT
429}
430
431/*
432 * Fix up the length, based on mod and prod.
433 * len should be k * prod + mod for some k.
434 * If len is too small it is returned unchanged.
435 * If len hits maxlen it is left alone.
436 */
437STATIC void
438xfs_alloc_fix_len(
439 xfs_alloc_arg_t *args) /* allocation argument structure */
440{
441 xfs_extlen_t k;
442 xfs_extlen_t rlen;
443
444 ASSERT(args->mod < args->prod);
445 rlen = args->len;
446 ASSERT(rlen >= args->minlen);
447 ASSERT(rlen <= args->maxlen);
448 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
449 (args->mod == 0 && rlen < args->prod))
450 return;
451 k = rlen % args->prod;
452 if (k == args->mod)
453 return;
30265117
JK
454 if (k > args->mod)
455 rlen = rlen - (k - args->mod);
456 else
457 rlen = rlen - args->prod + (args->mod - k);
3790a8cd 458 /* casts to (int) catch length underflows */
30265117
JK
459 if ((int)rlen < (int)args->minlen)
460 return;
461 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
462 ASSERT(rlen % args->prod == args->mod);
54fee133
CH
463 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
464 rlen + args->minleft);
1da177e4
LT
465 args->len = rlen;
466}
467
94a0333b
ZW
468/*
469 * Determine if the cursor points to the block that contains the right-most
470 * block of records in the by-count btree. This block contains the largest
471 * contiguous free extent in the AG, so if we modify a record in this block we
472 * need to call xfs_alloc_fixup_longest() once the modifications are done to
473 * ensure the agf->agf_longest field is kept up to date with the longest free
474 * extent tracked by the by-count btree.
475 */
476static bool
477xfs_alloc_cursor_at_lastrec(
478 struct xfs_btree_cur *cnt_cur)
479{
480 struct xfs_btree_block *block;
481 union xfs_btree_ptr ptr;
482 struct xfs_buf *bp;
483
484 block = xfs_btree_get_block(cnt_cur, 0, &bp);
485
486 xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB);
487 return xfs_btree_ptr_is_null(cnt_cur, &ptr);
488}
489
490/*
491 * Find the rightmost record of the cntbt, and return the longest free space
492 * recorded in it. Simply set both the block number and the length to their
493 * maximum values before searching.
494 */
495static int
496xfs_cntbt_longest(
497 struct xfs_btree_cur *cnt_cur,
498 xfs_extlen_t *longest)
499{
500 struct xfs_alloc_rec_incore irec;
501 union xfs_btree_rec *rec;
502 int stat = 0;
503 int error;
504
505 memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec));
506 error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat);
507 if (error)
508 return error;
509 if (!stat) {
510 /* totally empty tree */
511 *longest = 0;
512 return 0;
513 }
514
515 error = xfs_btree_get_rec(cnt_cur, &rec, &stat);
516 if (error)
517 return error;
518 if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) {
519 xfs_btree_mark_sick(cnt_cur);
520 return -EFSCORRUPTED;
521 }
522
523 xfs_alloc_btrec_to_irec(rec, &irec);
524 *longest = irec.ar_blockcount;
525 return 0;
526}
527
528/*
529 * Update the longest contiguous free extent in the AG from the by-count cursor
530 * that is passed to us. This should be done at the end of any allocation or
531 * freeing operation that touches the longest extent in the btree.
532 *
533 * Needing to update the longest extent can be determined by calling
534 * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record
535 * modification but before the modification begins.
536 */
537static int
538xfs_alloc_fixup_longest(
539 struct xfs_btree_cur *cnt_cur)
540{
77a530e6 541 struct xfs_perag *pag = to_perag(cnt_cur->bc_group);
94a0333b
ZW
542 struct xfs_buf *bp = cnt_cur->bc_ag.agbp;
543 struct xfs_agf *agf = bp->b_addr;
544 xfs_extlen_t longest = 0;
545 int error;
546
547 /* Lookup last rec in order to update AGF. */
548 error = xfs_cntbt_longest(cnt_cur, &longest);
549 if (error)
550 return error;
551
552 pag->pagf_longest = longest;
553 agf->agf_longest = cpu_to_be32(pag->pagf_longest);
554 xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST);
555
556 return 0;
557}
558
1da177e4
LT
559/*
560 * Update the two btrees, logically removing from freespace the extent
561 * starting at rbno, rlen blocks. The extent is contained within the
562 * actual (current) free extent fbno for flen blocks.
563 * Flags are passed in indicating whether the cursors are set to the
564 * relevant records.
565 */
566STATIC int /* error code */
567xfs_alloc_fixup_trees(
ae127f08
DW
568 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
569 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
1da177e4
LT
570 xfs_agblock_t fbno, /* starting block of free extent */
571 xfs_extlen_t flen, /* length of free extent */
572 xfs_agblock_t rbno, /* starting block of returned extent */
573 xfs_extlen_t rlen, /* length of returned extent */
574 int flags) /* flags, XFSA_FIXUP_... */
575{
576 int error; /* error code */
577 int i; /* operation results */
578 xfs_agblock_t nfbno1; /* first new free startblock */
579 xfs_agblock_t nfbno2; /* second new free startblock */
580 xfs_extlen_t nflen1=0; /* first new free length */
581 xfs_extlen_t nflen2=0; /* second new free length */
5fb5aeee 582 struct xfs_mount *mp;
94a0333b 583 bool fixup_longest = false;
5fb5aeee
ES
584
585 mp = cnt_cur->bc_mp;
1da177e4
LT
586
587 /*
588 * Look up the record in the by-size tree if necessary.
589 */
590 if (flags & XFSA_FIXUP_CNT_OK) {
591#ifdef DEBUG
592 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
593 return error;
f9e03706
DW
594 if (XFS_IS_CORRUPT(mp,
595 i != 1 ||
596 nfbno1 != fbno ||
989d5ec3
DW
597 nflen1 != flen)) {
598 xfs_btree_mark_sick(cnt_cur);
f9e03706 599 return -EFSCORRUPTED;
989d5ec3 600 }
1da177e4
LT
601#endif
602 } else {
603 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
604 return error;
989d5ec3
DW
605 if (XFS_IS_CORRUPT(mp, i != 1)) {
606 xfs_btree_mark_sick(cnt_cur);
f9e03706 607 return -EFSCORRUPTED;
989d5ec3 608 }
1da177e4
LT
609 }
610 /*
611 * Look up the record in the by-block tree if necessary.
612 */
613 if (flags & XFSA_FIXUP_BNO_OK) {
614#ifdef DEBUG
615 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
616 return error;
f9e03706
DW
617 if (XFS_IS_CORRUPT(mp,
618 i != 1 ||
619 nfbno1 != fbno ||
989d5ec3
DW
620 nflen1 != flen)) {
621 xfs_btree_mark_sick(bno_cur);
f9e03706 622 return -EFSCORRUPTED;
989d5ec3 623 }
1da177e4
LT
624#endif
625 } else {
626 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
627 return error;
989d5ec3
DW
628 if (XFS_IS_CORRUPT(mp, i != 1)) {
629 xfs_btree_mark_sick(bno_cur);
f9e03706 630 return -EFSCORRUPTED;
989d5ec3 631 }
1da177e4 632 }
7cc95a82 633
1da177e4 634#ifdef DEBUG
7cc95a82
CH
635 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
636 struct xfs_btree_block *bnoblock;
637 struct xfs_btree_block *cntblock;
638
6ca444cf
DW
639 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
640 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
1da177e4 641
f9e03706
DW
642 if (XFS_IS_CORRUPT(mp,
643 bnoblock->bb_numrecs !=
989d5ec3
DW
644 cntblock->bb_numrecs)) {
645 xfs_btree_mark_sick(bno_cur);
f9e03706 646 return -EFSCORRUPTED;
989d5ec3 647 }
1da177e4
LT
648 }
649#endif
7cc95a82 650
1da177e4
LT
651 /*
652 * Deal with all four cases: the allocated record is contained
653 * within the freespace record, so we can have new freespace
654 * at either (or both) end, or no freespace remaining.
655 */
656 if (rbno == fbno && rlen == flen)
657 nfbno1 = nfbno2 = NULLAGBLOCK;
658 else if (rbno == fbno) {
659 nfbno1 = rbno + rlen;
660 nflen1 = flen - rlen;
661 nfbno2 = NULLAGBLOCK;
662 } else if (rbno + rlen == fbno + flen) {
663 nfbno1 = fbno;
664 nflen1 = flen - rlen;
665 nfbno2 = NULLAGBLOCK;
666 } else {
667 nfbno1 = fbno;
668 nflen1 = rbno - fbno;
669 nfbno2 = rbno + rlen;
670 nflen2 = (fbno + flen) - nfbno2;
671 }
94a0333b
ZW
672
673 if (xfs_alloc_cursor_at_lastrec(cnt_cur))
674 fixup_longest = true;
675
1da177e4
LT
676 /*
677 * Delete the entry from the by-size btree.
678 */
91cca5df 679 if ((error = xfs_btree_delete(cnt_cur, &i)))
1da177e4 680 return error;
989d5ec3
DW
681 if (XFS_IS_CORRUPT(mp, i != 1)) {
682 xfs_btree_mark_sick(cnt_cur);
f9e03706 683 return -EFSCORRUPTED;
989d5ec3 684 }
1da177e4
LT
685 /*
686 * Add new by-size btree entry(s).
687 */
688 if (nfbno1 != NULLAGBLOCK) {
689 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
690 return error;
989d5ec3
DW
691 if (XFS_IS_CORRUPT(mp, i != 0)) {
692 xfs_btree_mark_sick(cnt_cur);
f9e03706 693 return -EFSCORRUPTED;
989d5ec3 694 }
4b22a571 695 if ((error = xfs_btree_insert(cnt_cur, &i)))
1da177e4 696 return error;
989d5ec3
DW
697 if (XFS_IS_CORRUPT(mp, i != 1)) {
698 xfs_btree_mark_sick(cnt_cur);
f9e03706 699 return -EFSCORRUPTED;
989d5ec3 700 }
1da177e4
LT
701 }
702 if (nfbno2 != NULLAGBLOCK) {
703 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
704 return error;
989d5ec3
DW
705 if (XFS_IS_CORRUPT(mp, i != 0)) {
706 xfs_btree_mark_sick(cnt_cur);
f9e03706 707 return -EFSCORRUPTED;
989d5ec3 708 }
4b22a571 709 if ((error = xfs_btree_insert(cnt_cur, &i)))
1da177e4 710 return error;
989d5ec3
DW
711 if (XFS_IS_CORRUPT(mp, i != 1)) {
712 xfs_btree_mark_sick(cnt_cur);
f9e03706 713 return -EFSCORRUPTED;
989d5ec3 714 }
1da177e4
LT
715 }
716 /*
717 * Fix up the by-block btree entry(s).
718 */
719 if (nfbno1 == NULLAGBLOCK) {
720 /*
721 * No remaining freespace, just delete the by-block tree entry.
722 */
91cca5df 723 if ((error = xfs_btree_delete(bno_cur, &i)))
1da177e4 724 return error;
989d5ec3
DW
725 if (XFS_IS_CORRUPT(mp, i != 1)) {
726 xfs_btree_mark_sick(bno_cur);
f9e03706 727 return -EFSCORRUPTED;
989d5ec3 728 }
1da177e4
LT
729 } else {
730 /*
731 * Update the by-block entry to start later|be shorter.
732 */
733 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
734 return error;
735 }
736 if (nfbno2 != NULLAGBLOCK) {
737 /*
738 * 2 resulting free entries, need to add one.
739 */
740 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
741 return error;
989d5ec3
DW
742 if (XFS_IS_CORRUPT(mp, i != 0)) {
743 xfs_btree_mark_sick(bno_cur);
f9e03706 744 return -EFSCORRUPTED;
989d5ec3 745 }
4b22a571 746 if ((error = xfs_btree_insert(bno_cur, &i)))
1da177e4 747 return error;
989d5ec3
DW
748 if (XFS_IS_CORRUPT(mp, i != 1)) {
749 xfs_btree_mark_sick(bno_cur);
f9e03706 750 return -EFSCORRUPTED;
989d5ec3 751 }
1da177e4 752 }
94a0333b
ZW
753
754 if (fixup_longest)
755 return xfs_alloc_fixup_longest(cnt_cur);
756
1da177e4
LT
757 return 0;
758}
759
e0a8de7d
DC
760/*
761 * We do not verify the AGFL contents against AGF-based index counters here,
762 * even though we may have access to the perag that contains shadow copies. We
763 * don't know if the AGF based counters have been checked, and if they have they
764 * still may be inconsistent because they haven't yet been reset on the first
765 * allocation after the AGF has been read in.
766 *
767 * This means we can only check that all agfl entries contain valid or null
768 * values because we can't reliably determine the active range to exclude
769 * NULLAGBNO as a valid value.
770 *
771 * However, we can't even do that for v4 format filesystems because there are
772 * old versions of mkfs out there that does not initialise the AGFL to known,
773 * verifiable values. HEnce we can't tell the difference between a AGFL block
774 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
775 *
776 * As a result, we can only fully validate AGFL block numbers when we pull them
777 * from the freelist in xfs_alloc_get_freelist().
778 */
a6a781a5 779static xfs_failaddr_t
612cfbfe 780xfs_agfl_verify(
bb80c6d7
DC
781 struct xfs_buf *bp)
782{
dbd329f1 783 struct xfs_mount *mp = bp->b_mount;
bb80c6d7 784 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
183606d8 785 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
bb80c6d7
DC
786 int i;
787
38c26bfd 788 if (!xfs_has_crc(mp))
b5572597
DW
789 return NULL;
790
39708c20 791 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
a6a781a5 792 return __this_address;
39708c20 793 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
a6a781a5 794 return __this_address;
77c95bba
CH
795 /*
796 * during growfs operations, the perag is not fully initialised,
797 * so we can't use it for any useful checking. growfs ensures we can't
798 * use it by using uncached buffers that don't have the perag attached
799 * so we can detect and avoid this problem.
800 */
e9c4d8bf 801 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != pag_agno((bp->b_pag)))
a6a781a5 802 return __this_address;
77c95bba 803
a78ee256 804 for (i = 0; i < xfs_agfl_size(mp); i++) {
183606d8
CH
805 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
806 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
a6a781a5 807 return __this_address;
bb80c6d7 808 }
a45086e2 809
a6a781a5
DW
810 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
811 return __this_address;
812 return NULL;
77c95bba
CH
813}
814
815static void
816xfs_agfl_read_verify(
817 struct xfs_buf *bp)
818{
dbd329f1 819 struct xfs_mount *mp = bp->b_mount;
bc1a09b8 820 xfs_failaddr_t fa;
77c95bba
CH
821
822 /*
823 * There is no verification of non-crc AGFLs because mkfs does not
824 * initialise the AGFL to zero or NULL. Hence the only valid part of the
825 * AGFL is what the AGF says is active. We can't get to the AGF, so we
826 * can't verify just those entries are valid.
827 */
38c26bfd 828 if (!xfs_has_crc(mp))
77c95bba
CH
829 return;
830
ce5028cf 831 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
bc1a09b8
DW
832 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
833 else {
834 fa = xfs_agfl_verify(bp);
835 if (fa)
836 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
837 }
612cfbfe
DC
838}
839
1813dd64 840static void
612cfbfe
DC
841xfs_agfl_write_verify(
842 struct xfs_buf *bp)
843{
dbd329f1 844 struct xfs_mount *mp = bp->b_mount;
fb1755a6 845 struct xfs_buf_log_item *bip = bp->b_log_item;
bc1a09b8 846 xfs_failaddr_t fa;
612cfbfe 847
77c95bba 848 /* no verification of non-crc AGFLs */
38c26bfd 849 if (!xfs_has_crc(mp))
77c95bba
CH
850 return;
851
bc1a09b8
DW
852 fa = xfs_agfl_verify(bp);
853 if (fa) {
854 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
77c95bba
CH
855 return;
856 }
857
858 if (bip)
859 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
860
f1dbcd7e 861 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
bb80c6d7
DC
862}
863
1813dd64 864const struct xfs_buf_ops xfs_agfl_buf_ops = {
233135b7 865 .name = "xfs_agfl",
39708c20 866 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
1813dd64
DC
867 .verify_read = xfs_agfl_read_verify,
868 .verify_write = xfs_agfl_write_verify,
b5572597 869 .verify_struct = xfs_agfl_verify,
1813dd64
DC
870};
871
1da177e4
LT
872/*
873 * Read in the allocation group free block array.
874 */
cec7bb7d 875int
1da177e4 876xfs_alloc_read_agfl(
cec7bb7d
DC
877 struct xfs_perag *pag,
878 struct xfs_trans *tp,
879 struct xfs_buf **bpp)
1da177e4 880{
e9c4d8bf 881 struct xfs_mount *mp = pag_mount(pag);
cec7bb7d
DC
882 struct xfs_buf *bp;
883 int error;
1da177e4 884
e9c4d8bf
CH
885 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
886 XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGFL_DADDR(mp)),
1813dd64 887 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
de6077ec
DW
888 if (xfs_metadata_is_sick(error))
889 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
1da177e4
LT
890 if (error)
891 return error;
38f23232 892 xfs_buf_set_ref(bp, XFS_AGFL_REF);
1da177e4
LT
893 *bpp = bp;
894 return 0;
895}
896
ecb6928f
CH
897STATIC int
898xfs_alloc_update_counters(
899 struct xfs_trans *tp,
ecb6928f
CH
900 struct xfs_buf *agbp,
901 long len)
902{
9798f615 903 struct xfs_agf *agf = agbp->b_addr;
ecb6928f 904
92a00544 905 agbp->b_pag->pagf_freeblks += len;
ecb6928f
CH
906 be32_add_cpu(&agf->agf_freeblks, len);
907
ecb6928f 908 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
a5155b87 909 be32_to_cpu(agf->agf_length))) {
8d57c216 910 xfs_buf_mark_corrupt(agbp);
de6077ec 911 xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
2451337d 912 return -EFSCORRUPTED;
a5155b87 913 }
ecb6928f
CH
914
915 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
916 return 0;
917}
918
1da177e4 919/*
f5e7dbea 920 * Block allocation algorithm and data structures.
1da177e4 921 */
f5e7dbea
BF
922struct xfs_alloc_cur {
923 struct xfs_btree_cur *cnt; /* btree cursors */
924 struct xfs_btree_cur *bnolt;
925 struct xfs_btree_cur *bnogt;
dc8e69bd 926 xfs_extlen_t cur_len;/* current search length */
c62321a2
BF
927 xfs_agblock_t rec_bno;/* extent startblock */
928 xfs_extlen_t rec_len;/* extent length */
929 xfs_agblock_t bno; /* alloc bno */
930 xfs_extlen_t len; /* alloc len */
931 xfs_extlen_t diff; /* diff from search bno */
d6d3aff2
BF
932 unsigned int busy_gen;/* busy state */
933 bool busy;
f5e7dbea
BF
934};
935
936/*
937 * Set up cursors, etc. in the extent allocation cursor. This function can be
938 * called multiple times to reset an initialized structure without having to
939 * reallocate cursors.
940 */
941static int
942xfs_alloc_cur_setup(
943 struct xfs_alloc_arg *args,
944 struct xfs_alloc_cur *acur)
945{
946 int error;
947 int i;
948
dc8e69bd 949 acur->cur_len = args->maxlen;
c62321a2
BF
950 acur->rec_bno = 0;
951 acur->rec_len = 0;
952 acur->bno = 0;
953 acur->len = 0;
396bbf3c 954 acur->diff = -1;
d6d3aff2
BF
955 acur->busy = false;
956 acur->busy_gen = 0;
957
f5e7dbea
BF
958 /*
959 * Perform an initial cntbt lookup to check for availability of maxlen
960 * extents. If this fails, we'll return -ENOSPC to signal the caller to
961 * attempt a small allocation.
962 */
963 if (!acur->cnt)
1c8b9fd2
CH
964 acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
965 args->agbp, args->pag);
f5e7dbea
BF
966 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
967 if (error)
968 return error;
969
970 /*
971 * Allocate the bnobt left and right search cursors.
972 */
973 if (!acur->bnolt)
1c8b9fd2
CH
974 acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
975 args->agbp, args->pag);
f5e7dbea 976 if (!acur->bnogt)
1c8b9fd2
CH
977 acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
978 args->agbp, args->pag);
f5e7dbea
BF
979 return i == 1 ? 0 : -ENOSPC;
980}
981
982static void
983xfs_alloc_cur_close(
984 struct xfs_alloc_cur *acur,
985 bool error)
986{
987 int cur_error = XFS_BTREE_NOERROR;
988
989 if (error)
990 cur_error = XFS_BTREE_ERROR;
991
992 if (acur->cnt)
993 xfs_btree_del_cursor(acur->cnt, cur_error);
994 if (acur->bnolt)
995 xfs_btree_del_cursor(acur->bnolt, cur_error);
996 if (acur->bnogt)
997 xfs_btree_del_cursor(acur->bnogt, cur_error);
998 acur->cnt = acur->bnolt = acur->bnogt = NULL;
999}
1da177e4 1000
396bbf3c
BF
1001/*
1002 * Check an extent for allocation and track the best available candidate in the
1003 * allocation structure. The cursor is deactivated if it has entered an out of
1004 * range state based on allocation arguments. Optionally return the extent
1005 * extent geometry and allocation status if requested by the caller.
1006 */
1007static int
1008xfs_alloc_cur_check(
1009 struct xfs_alloc_arg *args,
1010 struct xfs_alloc_cur *acur,
1011 struct xfs_btree_cur *cur,
1012 int *new)
1013{
1014 int error, i;
1015 xfs_agblock_t bno, bnoa, bnew;
1016 xfs_extlen_t len, lena, diff = -1;
1017 bool busy;
1018 unsigned busy_gen = 0;
1019 bool deactivate = false;
ec793e69 1020 bool isbnobt = xfs_btree_is_bno(cur->bc_ops);
396bbf3c
BF
1021
1022 *new = 0;
1023
1024 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1025 if (error)
1026 return error;
989d5ec3
DW
1027 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1028 xfs_btree_mark_sick(cur);
f9e03706 1029 return -EFSCORRUPTED;
989d5ec3 1030 }
396bbf3c
BF
1031
1032 /*
1033 * Check minlen and deactivate a cntbt cursor if out of acceptable size
1034 * range (i.e., walking backwards looking for a minlen extent).
1035 */
1036 if (len < args->minlen) {
fec0afda 1037 deactivate = !isbnobt;
396bbf3c
BF
1038 goto out;
1039 }
1040
1041 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
1042 &busy_gen);
1043 acur->busy |= busy;
1044 if (busy)
1045 acur->busy_gen = busy_gen;
1046 /* deactivate a bnobt cursor outside of locality range */
fec0afda
BF
1047 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
1048 deactivate = isbnobt;
396bbf3c 1049 goto out;
fec0afda 1050 }
396bbf3c
BF
1051 if (lena < args->minlen)
1052 goto out;
1053
1054 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
1055 xfs_alloc_fix_len(args);
1056 ASSERT(args->len >= args->minlen);
1057 if (args->len < acur->len)
1058 goto out;
1059
1060 /*
1061 * We have an aligned record that satisfies minlen and beats or matches
1062 * the candidate extent size. Compare locality for near allocation mode.
1063 */
396bbf3c
BF
1064 diff = xfs_alloc_compute_diff(args->agbno, args->len,
1065 args->alignment, args->datatype,
1066 bnoa, lena, &bnew);
1067 if (bnew == NULLAGBLOCK)
1068 goto out;
fec0afda
BF
1069
1070 /*
1071 * Deactivate a bnobt cursor with worse locality than the current best.
1072 */
1073 if (diff > acur->diff) {
1074 deactivate = isbnobt;
396bbf3c 1075 goto out;
fec0afda 1076 }
396bbf3c
BF
1077
1078 ASSERT(args->len > acur->len ||
1079 (args->len == acur->len && diff <= acur->diff));
1080 acur->rec_bno = bno;
1081 acur->rec_len = len;
1082 acur->bno = bnew;
1083 acur->len = args->len;
1084 acur->diff = diff;
1085 *new = 1;
1086
78d7aabd
BF
1087 /*
1088 * We're done if we found a perfect allocation. This only deactivates
1089 * the current cursor, but this is just an optimization to terminate a
1090 * cntbt search that otherwise runs to the edge of the tree.
1091 */
1092 if (acur->diff == 0 && acur->len == args->maxlen)
1093 deactivate = true;
396bbf3c
BF
1094out:
1095 if (deactivate)
b20775ed 1096 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
77953b97 1097 trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
396bbf3c
BF
1098 return 0;
1099}
1100
d2968825
BF
1101/*
1102 * Complete an allocation of a candidate extent. Remove the extent from both
1103 * trees and update the args structure.
1104 */
1105STATIC int
1106xfs_alloc_cur_finish(
1107 struct xfs_alloc_arg *args,
1108 struct xfs_alloc_cur *acur)
1109{
1110 int error;
1111
1112 ASSERT(acur->cnt && acur->bnolt);
1113 ASSERT(acur->bno >= acur->rec_bno);
1114 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
b33874fb 1115 ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len));
d2968825
BF
1116
1117 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
1118 acur->rec_len, acur->bno, acur->len, 0);
1119 if (error)
1120 return error;
1121
1122 args->agbno = acur->bno;
1123 args->len = acur->len;
1124 args->wasfromfl = 0;
1125
1126 trace_xfs_alloc_cur(args);
1127 return 0;
1128}
1129
dc8e69bd
BF
1130/*
1131 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1132 * bno optimized lookup to search for extents with ideal size and locality.
1133 */
1134STATIC int
1135xfs_alloc_cntbt_iter(
1136 struct xfs_alloc_arg *args,
1137 struct xfs_alloc_cur *acur)
1138{
1139 struct xfs_btree_cur *cur = acur->cnt;
1140 xfs_agblock_t bno;
1141 xfs_extlen_t len, cur_len;
1142 int error;
1143 int i;
1144
1145 if (!xfs_alloc_cur_active(cur))
1146 return 0;
1147
1148 /* locality optimized lookup */
1149 cur_len = acur->cur_len;
1150 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1151 if (error)
1152 return error;
1153 if (i == 0)
1154 return 0;
1155 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1156 if (error)
1157 return error;
1158
1159 /* check the current record and update search length from it */
1160 error = xfs_alloc_cur_check(args, acur, cur, &i);
1161 if (error)
1162 return error;
1163 ASSERT(len >= acur->cur_len);
1164 acur->cur_len = len;
1165
1166 /*
1167 * We looked up the first record >= [agbno, len] above. The agbno is a
1168 * secondary key and so the current record may lie just before or after
1169 * agbno. If it is past agbno, check the previous record too so long as
1170 * the length matches as it may be closer. Don't check a smaller record
1171 * because that could deactivate our cursor.
1172 */
1173 if (bno > args->agbno) {
1174 error = xfs_btree_decrement(cur, 0, &i);
1175 if (!error && i) {
1176 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1177 if (!error && i && len == acur->cur_len)
1178 error = xfs_alloc_cur_check(args, acur, cur,
1179 &i);
1180 }
1181 if (error)
1182 return error;
1183 }
1184
1185 /*
1186 * Increment the search key until we find at least one allocation
1187 * candidate or if the extent we found was larger. Otherwise, double the
1188 * search key to optimize the search. Efficiency is more important here
1189 * than absolute best locality.
1190 */
1191 cur_len <<= 1;
1192 if (!acur->len || acur->cur_len >= cur_len)
1193 acur->cur_len++;
1194 else
1195 acur->cur_len = cur_len;
1196
1197 return error;
1198}
1199
c63cdd4f
BF
1200/*
1201 * Deal with the case where only small freespaces remain. Either return the
1202 * contents of the last freespace record, or allocate space from the freelist if
1203 * there is nothing in the tree.
1204 */
1205STATIC int /* error */
1206xfs_alloc_ag_vextent_small(
1207 struct xfs_alloc_arg *args, /* allocation argument structure */
1208 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1209 xfs_agblock_t *fbnop, /* result block number */
1210 xfs_extlen_t *flenp, /* result length */
1211 int *stat) /* status: 0-freelist, 1-normal/none */
1212{
9798f615 1213 struct xfs_agf *agf = args->agbp->b_addr;
c63cdd4f
BF
1214 int error = 0;
1215 xfs_agblock_t fbno = NULLAGBLOCK;
1216 xfs_extlen_t flen = 0;
6691cd92 1217 int i = 0;
c63cdd4f 1218
6691cd92
BF
1219 /*
1220 * If a cntbt cursor is provided, try to allocate the largest record in
1221 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1222 * allocation. Make sure to respect minleft even when pulling from the
1223 * freelist.
1224 */
1225 if (ccur)
1226 error = xfs_btree_decrement(ccur, 0, &i);
c63cdd4f
BF
1227 if (error)
1228 goto error;
1229 if (i) {
1230 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1231 if (error)
1232 goto error;
f9e03706 1233 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
989d5ec3 1234 xfs_btree_mark_sick(ccur);
f9e03706
DW
1235 error = -EFSCORRUPTED;
1236 goto error;
1237 }
c63cdd4f
BF
1238 goto out;
1239 }
1240
1241 if (args->minlen != 1 || args->alignment != 1 ||
1242 args->resv == XFS_AG_RESV_AGFL ||
9798f615 1243 be32_to_cpu(agf->agf_flcount) <= args->minleft)
c63cdd4f
BF
1244 goto out;
1245
49f0d84e
DC
1246 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1247 &fbno, 0);
c63cdd4f
BF
1248 if (error)
1249 goto error;
1250 if (fbno == NULLAGBLOCK)
1251 goto out;
1252
adbc76aa 1253 xfs_extent_busy_reuse(pag_group(args->pag), fbno, 1,
c34d570d 1254 (args->datatype & XFS_ALLOC_NOBUSY));
c63cdd4f 1255
c34d570d 1256 if (args->datatype & XFS_ALLOC_USERDATA) {
c63cdd4f
BF
1257 struct xfs_buf *bp;
1258
ee647f85 1259 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
856a920a 1260 xfs_agbno_to_daddr(args->pag, fbno),
ee647f85
DW
1261 args->mp->m_bsize, 0, &bp);
1262 if (error)
c63cdd4f 1263 goto error;
c63cdd4f
BF
1264 xfs_trans_binval(args->tp, bp);
1265 }
7e36a3a6
BF
1266 *fbnop = args->agbno = fbno;
1267 *flenp = args->len = 1;
9798f615 1268 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
989d5ec3 1269 xfs_btree_mark_sick(ccur);
f9e03706
DW
1270 error = -EFSCORRUPTED;
1271 goto error;
1272 }
c63cdd4f
BF
1273 args->wasfromfl = 1;
1274 trace_xfs_alloc_small_freelist(args);
1275
1276 /*
1277 * If we're feeding an AGFL block to something that doesn't live in the
1278 * free space, we need to clear out the OWN_AG rmap.
1279 */
fa9c3c19 1280 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
c63cdd4f
BF
1281 &XFS_RMAP_OINFO_AG);
1282 if (error)
1283 goto error;
1284
1285 *stat = 0;
1286 return 0;
1287
1288out:
1289 /*
1290 * Can't do the allocation, give up.
1291 */
1292 if (flen < args->minlen) {
1293 args->agbno = NULLAGBLOCK;
1294 trace_xfs_alloc_small_notenough(args);
1295 flen = 0;
1296 }
1297 *fbnop = fbno;
1298 *flenp = flen;
1299 *stat = 1;
1300 trace_xfs_alloc_small_done(args);
1301 return 0;
1302
1303error:
1304 trace_xfs_alloc_small_error(args);
1305 return error;
1306}
1307
1da177e4
LT
1308/*
1309 * Allocate a variable extent at exactly agno/bno.
1310 * Extent's length (returned in *len) will be between minlen and maxlen,
1311 * and of the form k * prod + mod unless there's nothing that large.
1312 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1313 */
1314STATIC int /* error */
1315xfs_alloc_ag_vextent_exact(
1316 xfs_alloc_arg_t *args) /* allocation argument structure */
1317{
ae127f08
DW
1318 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1319 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1da177e4
LT
1320 int error;
1321 xfs_agblock_t fbno; /* start block of found extent */
1da177e4 1322 xfs_extlen_t flen; /* length of found extent */
ebf55872
CH
1323 xfs_agblock_t tbno; /* start block of busy extent */
1324 xfs_extlen_t tlen; /* length of busy extent */
1325 xfs_agblock_t tend; /* end block of busy extent */
1da177e4 1326 int i; /* success/failure of operation */
ebf55872 1327 unsigned busy_gen;
1da177e4
LT
1328
1329 ASSERT(args->alignment == 1);
9f9baab3 1330
1da177e4
LT
1331 /*
1332 * Allocate/initialize a cursor for the by-number freespace btree.
1333 */
1c8b9fd2
CH
1334 bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1335 args->pag);
9f9baab3 1336
1da177e4
LT
1337 /*
1338 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1339 * Look for the closest free block <= bno, it must contain bno
1340 * if any free block does.
1341 */
9f9baab3
CH
1342 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1343 if (error)
1da177e4 1344 goto error0;
9f9baab3
CH
1345 if (!i)
1346 goto not_found;
1347
1da177e4
LT
1348 /*
1349 * Grab the freespace record.
1350 */
9f9baab3
CH
1351 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1352 if (error)
1da177e4 1353 goto error0;
f9e03706 1354 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
989d5ec3 1355 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
1356 error = -EFSCORRUPTED;
1357 goto error0;
1358 }
1da177e4 1359 ASSERT(fbno <= args->agbno);
9f9baab3 1360
1da177e4 1361 /*
e26f0501 1362 * Check for overlapping busy extents.
1da177e4 1363 */
ebf55872
CH
1364 tbno = fbno;
1365 tlen = flen;
adbc76aa
CH
1366 xfs_extent_busy_trim(pag_group(args->pag), args->minlen, args->maxlen,
1367 &tbno, &tlen, &busy_gen);
e26f0501
CH
1368
1369 /*
1370 * Give up if the start of the extent is busy, or the freespace isn't
1371 * long enough for the minimum request.
1372 */
1373 if (tbno > args->agbno)
1374 goto not_found;
1375 if (tlen < args->minlen)
1376 goto not_found;
1377 tend = tbno + tlen;
1378 if (tend < args->agbno + args->minlen)
9f9baab3
CH
1379 goto not_found;
1380
1da177e4
LT
1381 /*
1382 * End of extent will be smaller of the freespace end and the
1383 * maximal requested end.
9f9baab3 1384 *
1da177e4
LT
1385 * Fix the length according to mod and prod if given.
1386 */
81463b1c
CS
1387 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1388 - args->agbno;
1da177e4 1389 xfs_alloc_fix_len(args);
81463b1c 1390 ASSERT(args->agbno + args->len <= tend);
9f9baab3 1391
1da177e4 1392 /*
81463b1c 1393 * We are allocating agbno for args->len
1da177e4
LT
1394 * Allocate/initialize a cursor for the by-size btree.
1395 */
1c8b9fd2
CH
1396 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1397 args->pag);
b33874fb 1398 ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len));
9f9baab3
CH
1399 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1400 args->len, XFSA_FIXUP_BNO_OK);
1401 if (error) {
1da177e4
LT
1402 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1403 goto error0;
1404 }
9f9baab3 1405
1da177e4
LT
1406 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1407 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
0b1b213f 1408
1da177e4 1409 args->wasfromfl = 0;
9f9baab3
CH
1410 trace_xfs_alloc_exact_done(args);
1411 return 0;
1412
1413not_found:
1414 /* Didn't find it, return null. */
1415 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1416 args->agbno = NULLAGBLOCK;
1417 trace_xfs_alloc_exact_notfound(args);
1da177e4
LT
1418 return 0;
1419
1420error0:
1421 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
0b1b213f 1422 trace_xfs_alloc_exact_error(args);
1da177e4
LT
1423 return error;
1424}
1425
489a150f 1426/*
78d7aabd
BF
1427 * Search a given number of btree records in a given direction. Check each
1428 * record against the good extent we've already found.
489a150f
CH
1429 */
1430STATIC int
78d7aabd 1431xfs_alloc_walk_iter(
fec0afda
BF
1432 struct xfs_alloc_arg *args,
1433 struct xfs_alloc_cur *acur,
1434 struct xfs_btree_cur *cur,
78d7aabd
BF
1435 bool increment,
1436 bool find_one, /* quit on first candidate */
1437 int count, /* rec count (-1 for infinite) */
1438 int *stat)
489a150f 1439{
489a150f
CH
1440 int error;
1441 int i;
489a150f 1442
78d7aabd
BF
1443 *stat = 0;
1444
489a150f 1445 /*
fec0afda
BF
1446 * Search so long as the cursor is active or we find a better extent.
1447 * The cursor is deactivated if it extends beyond the range of the
1448 * current allocation candidate.
489a150f 1449 */
78d7aabd 1450 while (xfs_alloc_cur_active(cur) && count) {
fec0afda 1451 error = xfs_alloc_cur_check(args, acur, cur, &i);
489a150f 1452 if (error)
fec0afda 1453 return error;
78d7aabd
BF
1454 if (i == 1) {
1455 *stat = 1;
1456 if (find_one)
1457 break;
1458 }
fec0afda
BF
1459 if (!xfs_alloc_cur_active(cur))
1460 break;
489a150f 1461
fec0afda
BF
1462 if (increment)
1463 error = xfs_btree_increment(cur, 0, &i);
489a150f 1464 else
fec0afda 1465 error = xfs_btree_decrement(cur, 0, &i);
489a150f 1466 if (error)
fec0afda
BF
1467 return error;
1468 if (i == 0)
b20775ed 1469 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
78d7aabd
BF
1470
1471 if (count > 0)
1472 count--;
fec0afda 1473 }
489a150f 1474
489a150f 1475 return 0;
489a150f
CH
1476}
1477
0e26d5ca 1478/*
dc8e69bd
BF
1479 * Search the by-bno and by-size btrees in parallel in search of an extent with
1480 * ideal locality based on the NEAR mode ->agbno locality hint.
0e26d5ca
BF
1481 */
1482STATIC int
dc8e69bd 1483xfs_alloc_ag_vextent_locality(
0e26d5ca
BF
1484 struct xfs_alloc_arg *args,
1485 struct xfs_alloc_cur *acur,
1486 int *stat)
1487{
1488 struct xfs_btree_cur *fbcur = NULL;
1489 int error;
1490 int i;
1491 bool fbinc;
1492
1493 ASSERT(acur->len == 0);
0e26d5ca
BF
1494
1495 *stat = 0;
1496
dc8e69bd
BF
1497 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1498 if (error)
1499 return error;
0e26d5ca
BF
1500 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1501 if (error)
1502 return error;
1503 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1504 if (error)
1505 return error;
1506
1507 /*
dc8e69bd
BF
1508 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1509 * right and lookup the closest extent to the locality hint for each
1510 * extent size key in the cntbt. The entire search terminates
1511 * immediately on a bnobt hit because that means we've found best case
1512 * locality. Otherwise the search continues until the cntbt cursor runs
1513 * off the end of the tree. If no allocation candidate is found at this
1514 * point, give up on locality, walk backwards from the end of the cntbt
1515 * and take the first available extent.
1516 *
1517 * The parallel tree searches balance each other out to provide fairly
1518 * consistent performance for various situations. The bnobt search can
1519 * have pathological behavior in the worst case scenario of larger
1520 * allocation requests and fragmented free space. On the other hand, the
1521 * bnobt is able to satisfy most smaller allocation requests much more
1522 * quickly than the cntbt. The cntbt search can sift through fragmented
1523 * free space and sets of free extents for larger allocation requests
1524 * more quickly than the bnobt. Since the locality hint is just a hint
1525 * and we don't want to scan the entire bnobt for perfect locality, the
1526 * cntbt search essentially bounds the bnobt search such that we can
1527 * find good enough locality at reasonable performance in most cases.
0e26d5ca
BF
1528 */
1529 while (xfs_alloc_cur_active(acur->bnolt) ||
dc8e69bd
BF
1530 xfs_alloc_cur_active(acur->bnogt) ||
1531 xfs_alloc_cur_active(acur->cnt)) {
1532
1533 trace_xfs_alloc_cur_lookup(args);
1534
1535 /*
1536 * Search the bnobt left and right. In the case of a hit, finish
1537 * the search in the opposite direction and we're done.
1538 */
0e26d5ca
BF
1539 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1540 true, 1, &i);
1541 if (error)
1542 return error;
1543 if (i == 1) {
1544 trace_xfs_alloc_cur_left(args);
1545 fbcur = acur->bnogt;
1546 fbinc = true;
1547 break;
1548 }
0e26d5ca
BF
1549 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1550 1, &i);
1551 if (error)
1552 return error;
1553 if (i == 1) {
1554 trace_xfs_alloc_cur_right(args);
1555 fbcur = acur->bnolt;
1556 fbinc = false;
1557 break;
1558 }
dc8e69bd
BF
1559
1560 /*
1561 * Check the extent with best locality based on the current
1562 * extent size search key and keep track of the best candidate.
1563 */
1564 error = xfs_alloc_cntbt_iter(args, acur);
1565 if (error)
1566 return error;
1567 if (!xfs_alloc_cur_active(acur->cnt)) {
1568 trace_xfs_alloc_cur_lookup_done(args);
1569 break;
1570 }
1571 }
1572
1573 /*
1574 * If we failed to find anything due to busy extents, return empty
1575 * handed so the caller can flush and retry. If no busy extents were
1576 * found, walk backwards from the end of the cntbt as a last resort.
1577 */
1578 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1579 error = xfs_btree_decrement(acur->cnt, 0, &i);
1580 if (error)
1581 return error;
1582 if (i) {
b20775ed 1583 acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
dc8e69bd
BF
1584 fbcur = acur->cnt;
1585 fbinc = false;
1586 }
0e26d5ca
BF
1587 }
1588
dc8e69bd
BF
1589 /*
1590 * Search in the opposite direction for a better entry in the case of
1591 * a bnobt hit or walk backwards from the end of the cntbt.
1592 */
0e26d5ca
BF
1593 if (fbcur) {
1594 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1595 &i);
1596 if (error)
1597 return error;
1598 }
1599
1600 if (acur->len)
1601 *stat = 1;
1602
1603 return 0;
1604}
1605
5113f8ec
DW
1606/* Check the last block of the cnt btree for allocations. */
1607static int
1608xfs_alloc_ag_vextent_lastblock(
1609 struct xfs_alloc_arg *args,
1610 struct xfs_alloc_cur *acur,
1611 xfs_agblock_t *bno,
1612 xfs_extlen_t *len,
1613 bool *allocated)
1614{
1615 int error;
1616 int i;
1617
1618#ifdef DEBUG
1619 /* Randomly don't execute the first algorithm. */
8032bf12 1620 if (get_random_u32_below(2))
5113f8ec
DW
1621 return 0;
1622#endif
1623
1624 /*
1625 * Start from the entry that lookup found, sequence through all larger
1626 * free blocks. If we're actually pointing at a record smaller than
1627 * maxlen, go to the start of this block, and skip all those smaller
1628 * than minlen.
1629 */
77ca1eed 1630 if (*len || args->alignment > 1) {
6ca444cf 1631 acur->cnt->bc_levels[0].ptr = 1;
5113f8ec
DW
1632 do {
1633 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1634 if (error)
1635 return error;
989d5ec3
DW
1636 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1637 xfs_btree_mark_sick(acur->cnt);
f9e03706 1638 return -EFSCORRUPTED;
989d5ec3 1639 }
5113f8ec
DW
1640 if (*len >= args->minlen)
1641 break;
1642 error = xfs_btree_increment(acur->cnt, 0, &i);
1643 if (error)
1644 return error;
1645 } while (i);
1646 ASSERT(*len >= args->minlen);
1647 if (!i)
1648 return 0;
1649 }
1650
1651 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1652 if (error)
1653 return error;
1654
1655 /*
1656 * It didn't work. We COULD be in a case where there's a good record
1657 * somewhere, so try again.
1658 */
1659 if (acur->len == 0)
1660 return 0;
1661
1662 trace_xfs_alloc_near_first(args);
1663 *allocated = true;
1664 return 0;
1665}
1666
1da177e4
LT
1667/*
1668 * Allocate a variable extent near bno in the allocation group agno.
1669 * Extent's length (returned in len) will be between minlen and maxlen,
1670 * and of the form k * prod + mod unless there's nothing that large.
1671 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1672 */
f5e7dbea 1673STATIC int
1da177e4 1674xfs_alloc_ag_vextent_near(
6a2a9d77
DC
1675 struct xfs_alloc_arg *args,
1676 uint32_t alloc_flags)
1da177e4 1677{
f5e7dbea 1678 struct xfs_alloc_cur acur = {};
fec0afda
BF
1679 int error; /* error code */
1680 int i; /* result code, temporary */
fec0afda
BF
1681 xfs_agblock_t bno;
1682 xfs_extlen_t len;
e26f0501 1683
cf085a1b 1684 /* handle uninitialized agbno range so caller doesn't have to */
bfe46d4e
BF
1685 if (!args->min_agbno && !args->max_agbno)
1686 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1687 ASSERT(args->min_agbno <= args->max_agbno);
1688
1689 /* clamp agbno to the range if it's outside */
1690 if (args->agbno < args->min_agbno)
1691 args->agbno = args->min_agbno;
1692 if (args->agbno > args->max_agbno)
1693 args->agbno = args->max_agbno;
1694
8ebbf262
DC
1695 /* Retry once quickly if we find busy extents before blocking. */
1696 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
e26f0501 1697restart:
fec0afda 1698 len = 0;
e26f0501 1699
1da177e4 1700 /*
f5e7dbea
BF
1701 * Set up cursors and see if there are any free extents as big as
1702 * maxlen. If not, pick the last entry in the tree unless the tree is
1703 * empty.
1da177e4 1704 */
f5e7dbea
BF
1705 error = xfs_alloc_cur_setup(args, &acur);
1706 if (error == -ENOSPC) {
fec0afda
BF
1707 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1708 &len, &i);
f5e7dbea
BF
1709 if (error)
1710 goto out;
fec0afda 1711 if (i == 0 || len == 0) {
e26f0501 1712 trace_xfs_alloc_near_noentry(args);
f5e7dbea 1713 goto out;
1da177e4
LT
1714 }
1715 ASSERT(i == 1);
f5e7dbea
BF
1716 } else if (error) {
1717 goto out;
1da177e4 1718 }
e26f0501 1719
1da177e4
LT
1720 /*
1721 * First algorithm.
1722 * If the requested extent is large wrt the freespaces available
1723 * in this a.g., then the cursor will be pointing to a btree entry
1724 * near the right edge of the tree. If it's in the last btree leaf
1725 * block, then we just examine all the entries in that block
1726 * that are big enough, and pick the best one.
1da177e4 1727 */
5113f8ec
DW
1728 if (xfs_btree_islastblock(acur.cnt, 0)) {
1729 bool allocated = false;
78d7aabd 1730
5113f8ec
DW
1731 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1732 &allocated);
78d7aabd
BF
1733 if (error)
1734 goto out;
5113f8ec
DW
1735 if (allocated)
1736 goto alloc_finish;
1da177e4 1737 }
f5e7dbea 1738
1da177e4 1739 /*
dc8e69bd
BF
1740 * Second algorithm. Combined cntbt and bnobt search to find ideal
1741 * locality.
1da177e4 1742 */
dc8e69bd 1743 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
f5e7dbea
BF
1744 if (error)
1745 goto out;
1746
1da177e4
LT
1747 /*
1748 * If we couldn't get anything, give up.
1749 */
fec0afda 1750 if (!acur.len) {
d6d3aff2 1751 if (acur.busy) {
8ebbf262
DC
1752 /*
1753 * Our only valid extents must have been busy. Flush and
1754 * retry the allocation again. If we get an -EAGAIN
1755 * error, we're being told that a deadlock was avoided
1756 * and the current transaction needs committing before
1757 * the allocation can be retried.
1758 */
e26f0501 1759 trace_xfs_alloc_near_busy(args);
adbc76aa
CH
1760 error = xfs_extent_busy_flush(args->tp,
1761 pag_group(args->pag), acur.busy_gen,
1762 alloc_flags);
8ebbf262
DC
1763 if (error)
1764 goto out;
1765
1766 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
e26f0501
CH
1767 goto restart;
1768 }
0b1b213f 1769 trace_xfs_alloc_size_neither(args);
1da177e4 1770 args->agbno = NULLAGBLOCK;
f5e7dbea 1771 goto out;
1da177e4 1772 }
489a150f 1773
5113f8ec 1774alloc_finish:
d2968825
BF
1775 /* fix up btrees on a successful allocation */
1776 error = xfs_alloc_cur_finish(args, &acur);
0b1b213f 1777
f5e7dbea
BF
1778out:
1779 xfs_alloc_cur_close(&acur, error);
1da177e4
LT
1780 return error;
1781}
1782
1783/*
1784 * Allocate a variable extent anywhere in the allocation group agno.
1785 * Extent's length (returned in len) will be between minlen and maxlen,
1786 * and of the form k * prod + mod unless there's nothing that large.
1787 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1788 */
6a2a9d77 1789static int
1da177e4 1790xfs_alloc_ag_vextent_size(
6a2a9d77
DC
1791 struct xfs_alloc_arg *args,
1792 uint32_t alloc_flags)
1da177e4 1793{
6a2a9d77
DC
1794 struct xfs_agf *agf = args->agbp->b_addr;
1795 struct xfs_btree_cur *bno_cur;
1796 struct xfs_btree_cur *cnt_cur;
1797 xfs_agblock_t fbno; /* start of found freespace */
1798 xfs_extlen_t flen; /* length of found freespace */
1799 xfs_agblock_t rbno; /* returned block number */
1800 xfs_extlen_t rlen; /* length of returned extent */
1801 bool busy;
1802 unsigned busy_gen;
1803 int error;
1804 int i;
1da177e4 1805
8ebbf262
DC
1806 /* Retry once quickly if we find busy extents before blocking. */
1807 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
e26f0501 1808restart:
1da177e4
LT
1809 /*
1810 * Allocate and initialize a cursor for the by-size btree.
1811 */
1c8b9fd2
CH
1812 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1813 args->pag);
1da177e4 1814 bno_cur = NULL;
e26f0501 1815
1da177e4
LT
1816 /*
1817 * Look for an entry >= maxlen+alignment-1 blocks.
1818 */
1819 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1820 args->maxlen + args->alignment - 1, &i)))
1821 goto error0;
e26f0501 1822
1da177e4 1823 /*
ebf55872
CH
1824 * If none then we have to settle for a smaller extent. In the case that
1825 * there are no large extents, this will return the last entry in the
1826 * tree unless the tree is empty. In the case that there are only busy
1827 * large extents, this will return the largest small extent unless there
e26f0501 1828 * are no smaller extents available.
1da177e4 1829 */
ebf55872 1830 if (!i) {
e26f0501
CH
1831 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1832 &fbno, &flen, &i);
1833 if (error)
1da177e4
LT
1834 goto error0;
1835 if (i == 0 || flen == 0) {
1836 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
0b1b213f 1837 trace_xfs_alloc_size_noentry(args);
1da177e4
LT
1838 return 0;
1839 }
1840 ASSERT(i == 1);
ebf55872
CH
1841 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1842 &rlen, &busy_gen);
e26f0501
CH
1843 } else {
1844 /*
1845 * Search for a non-busy extent that is large enough.
e26f0501
CH
1846 */
1847 for (;;) {
1848 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1849 if (error)
1850 goto error0;
f9e03706 1851 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
989d5ec3 1852 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
1853 error = -EFSCORRUPTED;
1854 goto error0;
1855 }
e26f0501 1856
ebf55872
CH
1857 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1858 &rbno, &rlen, &busy_gen);
e26f0501
CH
1859
1860 if (rlen >= args->maxlen)
1861 break;
1862
1863 error = xfs_btree_increment(cnt_cur, 0, &i);
1864 if (error)
1865 goto error0;
8ebbf262
DC
1866 if (i)
1867 continue;
1868
1869 /*
1870 * Our only valid extents must have been busy. Flush and
1871 * retry the allocation again. If we get an -EAGAIN
1872 * error, we're being told that a deadlock was avoided
1873 * and the current transaction needs committing before
1874 * the allocation can be retried.
1875 */
1876 trace_xfs_alloc_size_busy(args);
adbc76aa
CH
1877 error = xfs_extent_busy_flush(args->tp,
1878 pag_group(args->pag), busy_gen,
1879 alloc_flags);
8ebbf262
DC
1880 if (error)
1881 goto error0;
1882
1883 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1884 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1885 goto restart;
e26f0501 1886 }
1da177e4 1887 }
e26f0501 1888
1da177e4
LT
1889 /*
1890 * In the first case above, we got the last entry in the
1891 * by-size btree. Now we check to see if the space hits maxlen
1892 * once aligned; if not, we search left for something better.
1893 * This can't happen in the second case above.
1894 */
1da177e4 1895 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
f9e03706
DW
1896 if (XFS_IS_CORRUPT(args->mp,
1897 rlen != 0 &&
1898 (rlen > flen ||
1899 rbno + rlen > fbno + flen))) {
989d5ec3 1900 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
1901 error = -EFSCORRUPTED;
1902 goto error0;
1903 }
1da177e4
LT
1904 if (rlen < args->maxlen) {
1905 xfs_agblock_t bestfbno;
1906 xfs_extlen_t bestflen;
1907 xfs_agblock_t bestrbno;
1908 xfs_extlen_t bestrlen;
1909
1910 bestrlen = rlen;
1911 bestrbno = rbno;
1912 bestflen = flen;
1913 bestfbno = fbno;
1914 for (;;) {
8df4da4a 1915 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1da177e4
LT
1916 goto error0;
1917 if (i == 0)
1918 break;
1919 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1920 &i)))
1921 goto error0;
f9e03706 1922 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
989d5ec3 1923 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
1924 error = -EFSCORRUPTED;
1925 goto error0;
1926 }
3ef22684 1927 if (flen <= bestrlen)
1da177e4 1928 break;
ebf55872
CH
1929 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1930 &rbno, &rlen, &busy_gen);
1da177e4 1931 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
f9e03706
DW
1932 if (XFS_IS_CORRUPT(args->mp,
1933 rlen != 0 &&
1934 (rlen > flen ||
1935 rbno + rlen > fbno + flen))) {
989d5ec3 1936 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
1937 error = -EFSCORRUPTED;
1938 goto error0;
1939 }
1da177e4
LT
1940 if (rlen > bestrlen) {
1941 bestrlen = rlen;
1942 bestrbno = rbno;
1943 bestflen = flen;
1944 bestfbno = fbno;
1945 if (rlen == args->maxlen)
1946 break;
1947 }
1948 }
1949 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1950 &i)))
1951 goto error0;
f9e03706 1952 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
989d5ec3 1953 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
1954 error = -EFSCORRUPTED;
1955 goto error0;
1956 }
1da177e4
LT
1957 rlen = bestrlen;
1958 rbno = bestrbno;
1959 flen = bestflen;
1960 fbno = bestfbno;
1961 }
1962 args->wasfromfl = 0;
1963 /*
1964 * Fix up the length.
1965 */
1966 args->len = rlen;
e26f0501 1967 if (rlen < args->minlen) {
ebf55872 1968 if (busy) {
8ebbf262
DC
1969 /*
1970 * Our only valid extents must have been busy. Flush and
1971 * retry the allocation again. If we get an -EAGAIN
1972 * error, we're being told that a deadlock was avoided
1973 * and the current transaction needs committing before
1974 * the allocation can be retried.
1975 */
e26f0501 1976 trace_xfs_alloc_size_busy(args);
adbc76aa
CH
1977 error = xfs_extent_busy_flush(args->tp,
1978 pag_group(args->pag), busy_gen,
1979 alloc_flags);
8ebbf262
DC
1980 if (error)
1981 goto error0;
1982
1983 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1984 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
e26f0501
CH
1985 goto restart;
1986 }
1987 goto out_nominleft;
1da177e4 1988 }
e26f0501
CH
1989 xfs_alloc_fix_len(args);
1990
1da177e4 1991 rlen = args->len;
f9e03706 1992 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
989d5ec3 1993 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
1994 error = -EFSCORRUPTED;
1995 goto error0;
1996 }
1da177e4
LT
1997 /*
1998 * Allocate and initialize a cursor for the by-block tree.
1999 */
1c8b9fd2
CH
2000 bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
2001 args->pag);
1da177e4
LT
2002 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
2003 rbno, rlen, XFSA_FIXUP_CNT_OK)))
2004 goto error0;
2005 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2006 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2007 cnt_cur = bno_cur = NULL;
2008 args->len = rlen;
2009 args->agbno = rbno;
f9e03706
DW
2010 if (XFS_IS_CORRUPT(args->mp,
2011 args->agbno + args->len >
9798f615 2012 be32_to_cpu(agf->agf_length))) {
989d5ec3 2013 xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
f9e03706
DW
2014 error = -EFSCORRUPTED;
2015 goto error0;
2016 }
0b1b213f 2017 trace_xfs_alloc_size_done(args);
1da177e4
LT
2018 return 0;
2019
2020error0:
0b1b213f 2021 trace_xfs_alloc_size_error(args);
1da177e4
LT
2022 if (cnt_cur)
2023 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2024 if (bno_cur)
2025 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2026 return error;
e26f0501
CH
2027
2028out_nominleft:
2029 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2030 trace_xfs_alloc_size_nominleft(args);
2031 args->agbno = NULLAGBLOCK;
2032 return 0;
1da177e4
LT
2033}
2034
1da177e4
LT
2035/*
2036 * Free the extent starting at agno/bno for length.
2037 */
d40c2865 2038int
1da177e4 2039xfs_free_ag_extent(
66e3237e
DW
2040 struct xfs_trans *tp,
2041 struct xfs_buf *agbp,
66e3237e
DW
2042 xfs_agblock_t bno,
2043 xfs_extlen_t len,
2044 const struct xfs_owner_info *oinfo,
2045 enum xfs_ag_resv_type type)
1da177e4 2046{
66e3237e 2047 struct xfs_mount *mp;
66e3237e
DW
2048 struct xfs_btree_cur *bno_cur;
2049 struct xfs_btree_cur *cnt_cur;
2050 xfs_agblock_t gtbno; /* start of right neighbor */
2051 xfs_extlen_t gtlen; /* length of right neighbor */
2052 xfs_agblock_t ltbno; /* start of left neighbor */
2053 xfs_extlen_t ltlen; /* length of left neighbor */
2054 xfs_agblock_t nbno; /* new starting block of freesp */
2055 xfs_extlen_t nlen; /* new length of freespace */
2056 int haveleft; /* have a left neighbor */
2057 int haveright; /* have a right neighbor */
2058 int i;
2059 int error;
fa9c3c19 2060 struct xfs_perag *pag = agbp->b_pag;
94a0333b 2061 bool fixup_longest = false;
1da177e4 2062
673930c3 2063 bno_cur = cnt_cur = NULL;
1da177e4 2064 mp = tp->t_mountp;
673930c3 2065
33df3a9c 2066 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
fa9c3c19 2067 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
673930c3
DW
2068 if (error)
2069 goto error0;
2070 }
2071
1da177e4
LT
2072 /*
2073 * Allocate and initialize a cursor for the by-block btree.
2074 */
1c8b9fd2 2075 bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
1da177e4
LT
2076 /*
2077 * Look for a neighboring block on the left (lower block numbers)
2078 * that is contiguous with this space.
2079 */
2080 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
2081 goto error0;
2082 if (haveleft) {
2083 /*
2084 * There is a block to our left.
2085 */
2086 if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
2087 goto error0;
f9e03706 2088 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2089 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2090 error = -EFSCORRUPTED;
2091 goto error0;
2092 }
1da177e4
LT
2093 /*
2094 * It's not contiguous, though.
2095 */
2096 if (ltbno + ltlen < bno)
2097 haveleft = 0;
2098 else {
2099 /*
2100 * If this failure happens the request to free this
2101 * space was invalid, it's (partly) already free.
2102 * Very bad.
2103 */
f9e03706 2104 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
989d5ec3 2105 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2106 error = -EFSCORRUPTED;
2107 goto error0;
2108 }
1da177e4
LT
2109 }
2110 }
2111 /*
2112 * Look for a neighboring block on the right (higher block numbers)
2113 * that is contiguous with this space.
2114 */
637aa50f 2115 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1da177e4
LT
2116 goto error0;
2117 if (haveright) {
2118 /*
2119 * There is a block to our right.
2120 */
2121 if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
2122 goto error0;
f9e03706 2123 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2124 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2125 error = -EFSCORRUPTED;
2126 goto error0;
2127 }
1da177e4
LT
2128 /*
2129 * It's not contiguous, though.
2130 */
2131 if (bno + len < gtbno)
2132 haveright = 0;
2133 else {
2134 /*
2135 * If this failure happens the request to free this
2136 * space was invalid, it's (partly) already free.
2137 * Very bad.
2138 */
f9e03706 2139 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
989d5ec3 2140 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2141 error = -EFSCORRUPTED;
2142 goto error0;
2143 }
1da177e4
LT
2144 }
2145 }
2146 /*
2147 * Now allocate and initialize a cursor for the by-size tree.
2148 */
1c8b9fd2 2149 cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
1da177e4
LT
2150 /*
2151 * Have both left and right contiguous neighbors.
2152 * Merge all three into a single free block.
2153 */
2154 if (haveleft && haveright) {
2155 /*
2156 * Delete the old by-size entry on the left.
2157 */
2158 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2159 goto error0;
f9e03706 2160 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2161 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2162 error = -EFSCORRUPTED;
2163 goto error0;
2164 }
91cca5df 2165 if ((error = xfs_btree_delete(cnt_cur, &i)))
1da177e4 2166 goto error0;
f9e03706 2167 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2168 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2169 error = -EFSCORRUPTED;
2170 goto error0;
2171 }
1da177e4
LT
2172 /*
2173 * Delete the old by-size entry on the right.
2174 */
2175 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2176 goto error0;
f9e03706 2177 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2178 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2179 error = -EFSCORRUPTED;
2180 goto error0;
2181 }
91cca5df 2182 if ((error = xfs_btree_delete(cnt_cur, &i)))
1da177e4 2183 goto error0;
f9e03706 2184 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2185 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2186 error = -EFSCORRUPTED;
2187 goto error0;
2188 }
1da177e4
LT
2189 /*
2190 * Delete the old by-block entry for the right block.
2191 */
91cca5df 2192 if ((error = xfs_btree_delete(bno_cur, &i)))
1da177e4 2193 goto error0;
f9e03706 2194 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2195 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2196 error = -EFSCORRUPTED;
2197 goto error0;
2198 }
1da177e4
LT
2199 /*
2200 * Move the by-block cursor back to the left neighbor.
2201 */
8df4da4a 2202 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
1da177e4 2203 goto error0;
f9e03706 2204 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2205 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2206 error = -EFSCORRUPTED;
2207 goto error0;
2208 }
1da177e4
LT
2209#ifdef DEBUG
2210 /*
2211 * Check that this is the right record: delete didn't
2212 * mangle the cursor.
2213 */
2214 {
2215 xfs_agblock_t xxbno;
2216 xfs_extlen_t xxlen;
2217
2218 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2219 &i)))
2220 goto error0;
f9e03706
DW
2221 if (XFS_IS_CORRUPT(mp,
2222 i != 1 ||
2223 xxbno != ltbno ||
2224 xxlen != ltlen)) {
989d5ec3 2225 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2226 error = -EFSCORRUPTED;
2227 goto error0;
2228 }
1da177e4
LT
2229 }
2230#endif
2231 /*
2232 * Update remaining by-block entry to the new, joined block.
2233 */
2234 nbno = ltbno;
2235 nlen = len + ltlen + gtlen;
2236 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2237 goto error0;
2238 }
2239 /*
2240 * Have only a left contiguous neighbor.
2241 * Merge it together with the new freespace.
2242 */
2243 else if (haveleft) {
2244 /*
2245 * Delete the old by-size entry on the left.
2246 */
2247 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2248 goto error0;
f9e03706 2249 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2250 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2251 error = -EFSCORRUPTED;
2252 goto error0;
2253 }
91cca5df 2254 if ((error = xfs_btree_delete(cnt_cur, &i)))
1da177e4 2255 goto error0;
f9e03706 2256 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2257 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2258 error = -EFSCORRUPTED;
2259 goto error0;
2260 }
1da177e4
LT
2261 /*
2262 * Back up the by-block cursor to the left neighbor, and
2263 * update its length.
2264 */
8df4da4a 2265 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
1da177e4 2266 goto error0;
f9e03706 2267 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2268 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2269 error = -EFSCORRUPTED;
2270 goto error0;
2271 }
1da177e4
LT
2272 nbno = ltbno;
2273 nlen = len + ltlen;
2274 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2275 goto error0;
2276 }
2277 /*
2278 * Have only a right contiguous neighbor.
2279 * Merge it together with the new freespace.
2280 */
2281 else if (haveright) {
2282 /*
2283 * Delete the old by-size entry on the right.
2284 */
2285 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2286 goto error0;
f9e03706 2287 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2288 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2289 error = -EFSCORRUPTED;
2290 goto error0;
2291 }
91cca5df 2292 if ((error = xfs_btree_delete(cnt_cur, &i)))
1da177e4 2293 goto error0;
f9e03706 2294 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2295 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2296 error = -EFSCORRUPTED;
2297 goto error0;
2298 }
1da177e4
LT
2299 /*
2300 * Update the starting block and length of the right
2301 * neighbor in the by-block tree.
2302 */
2303 nbno = bno;
2304 nlen = len + gtlen;
2305 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2306 goto error0;
2307 }
2308 /*
2309 * No contiguous neighbors.
2310 * Insert the new freespace into the by-block tree.
2311 */
2312 else {
2313 nbno = bno;
2314 nlen = len;
4b22a571 2315 if ((error = xfs_btree_insert(bno_cur, &i)))
1da177e4 2316 goto error0;
f9e03706 2317 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2318 xfs_btree_mark_sick(bno_cur);
f9e03706
DW
2319 error = -EFSCORRUPTED;
2320 goto error0;
2321 }
1da177e4
LT
2322 }
2323 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2324 bno_cur = NULL;
94a0333b 2325
1da177e4
LT
2326 /*
2327 * In all cases we need to insert the new freespace in the by-size tree.
94a0333b
ZW
2328 *
2329 * If this new freespace is being inserted in the block that contains
2330 * the largest free space in the btree, make sure we also fix up the
2331 * agf->agf-longest tracker field.
1da177e4
LT
2332 */
2333 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2334 goto error0;
f9e03706 2335 if (XFS_IS_CORRUPT(mp, i != 0)) {
989d5ec3 2336 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2337 error = -EFSCORRUPTED;
2338 goto error0;
2339 }
94a0333b
ZW
2340 if (xfs_alloc_cursor_at_lastrec(cnt_cur))
2341 fixup_longest = true;
4b22a571 2342 if ((error = xfs_btree_insert(cnt_cur, &i)))
1da177e4 2343 goto error0;
f9e03706 2344 if (XFS_IS_CORRUPT(mp, i != 1)) {
989d5ec3 2345 xfs_btree_mark_sick(cnt_cur);
f9e03706
DW
2346 error = -EFSCORRUPTED;
2347 goto error0;
2348 }
94a0333b
ZW
2349 if (fixup_longest) {
2350 error = xfs_alloc_fixup_longest(cnt_cur);
2351 if (error)
2352 goto error0;
2353 }
2354
1da177e4
LT
2355 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2356 cnt_cur = NULL;
ecb6928f 2357
1da177e4
LT
2358 /*
2359 * Update the freespace totals in the ag and superblock.
2360 */
92a00544 2361 error = xfs_alloc_update_counters(tp, agbp, len);
db129fa0 2362 xfs_ag_resv_free_extent(pag, type, tp, len);
ecb6928f
CH
2363 if (error)
2364 goto error0;
2365
ff6d6af2
BD
2366 XFS_STATS_INC(mp, xs_freex);
2367 XFS_STATS_ADD(mp, xs_freeb, len);
0b1b213f 2368
db129fa0 2369 trace_xfs_free_extent(pag, bno, len, type, haveleft, haveright);
1da177e4 2370
1da177e4
LT
2371 return 0;
2372
2373 error0:
db129fa0 2374 trace_xfs_free_extent(pag, bno, len, type, -1, -1);
1da177e4
LT
2375 if (bno_cur)
2376 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2377 if (cnt_cur)
2378 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2379 return error;
2380}
2381
2382/*
2383 * Visible (exported) allocation/free functions.
2384 * Some of these are used just by xfs_alloc_btree.c and this file.
2385 */
2386
2387/*
7cb3efb4 2388 * Compute and fill in value of m_alloc_maxlevels.
1da177e4
LT
2389 */
2390void
2391xfs_alloc_compute_maxlevels(
2392 xfs_mount_t *mp) /* file system mount structure */
2393{
7cb3efb4 2394 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
19b54ee6 2395 (mp->m_sb.sb_agblocks + 1) / 2);
0ed5f735 2396 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
1da177e4
LT
2397}
2398
6cc87645 2399/*
3fd129b6
DW
2400 * Find the length of the longest extent in an AG. The 'need' parameter
2401 * specifies how much space we're going to need for the AGFL and the
2402 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2403 * other callers.
6cc87645
DC
2404 */
2405xfs_extlen_t
2406xfs_alloc_longest_free_extent(
50adbcb4 2407 struct xfs_perag *pag,
3fd129b6
DW
2408 xfs_extlen_t need,
2409 xfs_extlen_t reserved)
6cc87645 2410{
50adbcb4 2411 xfs_extlen_t delta = 0;
6cc87645 2412
3fd129b6
DW
2413 /*
2414 * If the AGFL needs a recharge, we'll have to subtract that from the
2415 * longest extent.
2416 */
6cc87645
DC
2417 if (need > pag->pagf_flcount)
2418 delta = need - pag->pagf_flcount;
2419
3fd129b6
DW
2420 /*
2421 * If we cannot maintain others' reservations with space from the
2422 * not-longest freesp extents, we'll have to subtract /that/ from
2423 * the longest extent too.
2424 */
2425 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2426 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2427
2428 /*
2429 * If the longest extent is long enough to satisfy all the
2430 * reservations and AGFL rules in place, we can return this extent.
2431 */
6cc87645 2432 if (pag->pagf_longest > delta)
e9c4d8bf 2433 return min_t(xfs_extlen_t, pag_mount(pag)->m_ag_max_usable,
1c743574 2434 pag->pagf_longest - delta);
3fd129b6
DW
2435
2436 /* Otherwise, let the caller try for 1 block if there's space. */
6cc87645
DC
2437 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2438}
2439
1cac233c
DW
2440/*
2441 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2442 * return the largest possible minimum length.
2443 */
496817b4
DC
2444unsigned int
2445xfs_alloc_min_freelist(
2446 struct xfs_mount *mp,
2447 struct xfs_perag *pag)
2448{
1cac233c 2449 /* AG btrees have at least 1 level. */
e45ea364
CH
2450 const unsigned int bno_level = pag ? pag->pagf_bno_level : 1;
2451 const unsigned int cnt_level = pag ? pag->pagf_cnt_level : 1;
2452 const unsigned int rmap_level = pag ? pag->pagf_rmap_level : 1;
496817b4
DC
2453 unsigned int min_free;
2454
7cb3efb4 2455 ASSERT(mp->m_alloc_maxlevels > 0);
1cac233c 2456
f63a5b37
OS
2457 /*
2458 * For a btree shorter than the maximum height, the worst case is that
2459 * every level gets split and a new level is added, then while inserting
2460 * another entry to refill the AGFL, every level under the old root gets
2461 * split again. This is:
2462 *
2463 * (full height split reservation) + (AGFL refill split height)
2464 * = (current height + 1) + (current height - 1)
2465 * = (new height) + (new height - 2)
2466 * = 2 * new height - 2
2467 *
2468 * For a btree of maximum height, the worst case is that every level
2469 * under the root gets split, then while inserting another entry to
2470 * refill the AGFL, every level under the root gets split again. This is
2471 * also:
2472 *
2473 * 2 * (current height - 1)
2474 * = 2 * (new height - 1)
2475 * = 2 * new height - 2
2476 */
2477
496817b4 2478 /* space needed by-bno freespace btree */
e45ea364 2479 min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
496817b4 2480 /* space needed by-size freespace btree */
e45ea364 2481 min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
52548852 2482 /* space needed reverse mapping used space btree */
ebd9027d 2483 if (xfs_has_rmapbt(mp))
e45ea364 2484 min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
496817b4
DC
2485 return min_free;
2486}
2487
72d55285
DC
2488/*
2489 * Check if the operation we are fixing up the freelist for should go ahead or
2490 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2491 * is dependent on whether the size and shape of free space available will
2492 * permit the requested allocation to take place.
2493 */
2494static bool
2495xfs_alloc_space_available(
2496 struct xfs_alloc_arg *args,
2497 xfs_extlen_t min_free,
2498 int flags)
2499{
2500 struct xfs_perag *pag = args->pag;
12ef8301 2501 xfs_extlen_t alloc_len, longest;
3fd129b6 2502 xfs_extlen_t reservation; /* blocks that are still reserved */
72d55285 2503 int available;
1ca89fbc 2504 xfs_extlen_t agflcount;
72d55285
DC
2505
2506 if (flags & XFS_ALLOC_FLAG_FREEING)
2507 return true;
2508
3fd129b6
DW
2509 reservation = xfs_ag_resv_needed(pag, args->resv);
2510
72d55285 2511 /* do we have enough contiguous free space for the allocation? */
12ef8301 2512 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
a1f69417 2513 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
12ef8301 2514 if (longest < alloc_len)
72d55285
DC
2515 return false;
2516
1ca89fbc
BF
2517 /*
2518 * Do we have enough free space remaining for the allocation? Don't
2519 * account extra agfl blocks because we are about to defer free them,
2520 * making them unavailable until the current transaction commits.
2521 */
2522 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2523 available = (int)(pag->pagf_freeblks + agflcount -
54fee133 2524 reservation - min_free - args->minleft);
12ef8301 2525 if (available < (int)max(args->total, alloc_len))
72d55285
DC
2526 return false;
2527
54fee133
CH
2528 /*
2529 * Clamp maxlen to the amount of free space available for the actual
2530 * extent allocation.
2531 */
2532 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2533 args->maxlen = available;
2534 ASSERT(args->maxlen > 0);
2535 ASSERT(args->maxlen >= args->minlen);
2536 }
2537
72d55285
DC
2538 return true;
2539}
2540
a27ba260 2541/*
e0a8de7d
DC
2542 * Check the agfl fields of the agf for inconsistency or corruption.
2543 *
2544 * The original purpose was to detect an agfl header padding mismatch between
2545 * current and early v5 kernels. This problem manifests as a 1-slot size
2546 * difference between the on-disk flcount and the active [first, last] range of
2547 * a wrapped agfl.
2548 *
2549 * However, we need to use these same checks to catch agfl count corruptions
2550 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2551 * way, we need to reset the agfl and warn the user.
a27ba260
BF
2552 *
2553 * Return true if a reset is required before the agfl can be used, false
2554 * otherwise.
2555 */
2556static bool
2557xfs_agfl_needs_reset(
2558 struct xfs_mount *mp,
2559 struct xfs_agf *agf)
2560{
2561 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2562 uint32_t l = be32_to_cpu(agf->agf_fllast);
2563 uint32_t c = be32_to_cpu(agf->agf_flcount);
2564 int agfl_size = xfs_agfl_size(mp);
2565 int active;
2566
a27ba260
BF
2567 /*
2568 * The agf read verifier catches severe corruption of these fields.
2569 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2570 * the verifier allows it.
2571 */
2572 if (f >= agfl_size || l >= agfl_size)
2573 return true;
2574 if (c > agfl_size)
2575 return true;
2576
2577 /*
2578 * Check consistency between the on-disk count and the active range. An
2579 * agfl padding mismatch manifests as an inconsistent flcount.
2580 */
2581 if (c && l >= f)
2582 active = l - f + 1;
2583 else if (c)
2584 active = agfl_size - f + l + 1;
2585 else
2586 active = 0;
2587
2588 return active != c;
2589}
2590
2591/*
2592 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2593 * agfl content cannot be trusted. Warn the user that a repair is required to
2594 * recover leaked blocks.
2595 *
2596 * The purpose of this mechanism is to handle filesystems affected by the agfl
2597 * header padding mismatch problem. A reset keeps the filesystem online with a
2598 * relatively minor free space accounting inconsistency rather than suffer the
2599 * inevitable crash from use of an invalid agfl block.
2600 */
2601static void
2602xfs_agfl_reset(
2603 struct xfs_trans *tp,
2604 struct xfs_buf *agbp,
2605 struct xfs_perag *pag)
2606{
2607 struct xfs_mount *mp = tp->t_mountp;
9798f615 2608 struct xfs_agf *agf = agbp->b_addr;
a27ba260 2609
7ac2ff8b 2610 ASSERT(xfs_perag_agfl_needs_reset(pag));
a27ba260
BF
2611 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2612
2613 xfs_warn(mp,
2614 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2615 "Please unmount and run xfs_repair.",
e9c4d8bf 2616 pag_agno(pag), pag->pagf_flcount);
a27ba260
BF
2617
2618 agf->agf_flfirst = 0;
2619 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2620 agf->agf_flcount = 0;
2621 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2622 XFS_AGF_FLCOUNT);
2623
2624 pag->pagf_flcount = 0;
7ac2ff8b 2625 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
a27ba260
BF
2626}
2627
c201d9ca
DW
2628/*
2629 * Add the extent to the list of extents to be free at transaction end.
2630 * The list is maintained sorted (by block number).
2631 */
e3042be3
DW
2632static int
2633xfs_defer_extent_free(
c201d9ca
DW
2634 struct xfs_trans *tp,
2635 xfs_fsblock_t bno,
2636 xfs_filblks_t len,
2637 const struct xfs_owner_info *oinfo,
b742d7b4 2638 enum xfs_ag_resv_type type,
980faece 2639 unsigned int free_flags,
e3042be3 2640 struct xfs_defer_pending **dfpp)
c201d9ca 2641{
578c714b 2642 struct xfs_extent_free_item *xefi;
c201d9ca 2643 struct xfs_mount *mp = tp->t_mountp;
c201d9ca 2644
95f0b95e 2645 ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
c201d9ca 2646 ASSERT(!isnullstartblock(bno));
980faece 2647 ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS));
c201d9ca 2648
4c8900bb
DW
2649 if (free_flags & XFS_FREE_EXTENT_REALTIME) {
2650 if (type != XFS_AG_RESV_NONE) {
2651 ASSERT(type == XFS_AG_RESV_NONE);
2652 return -EFSCORRUPTED;
2653 }
2654 if (XFS_IS_CORRUPT(mp, !xfs_verify_rtbext(mp, bno, len)))
2655 return -EFSCORRUPTED;
2656 } else {
2657 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2658 return -EFSCORRUPTED;
2659 }
7dfee17b 2660
578c714b 2661 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
c201d9ca 2662 GFP_KERNEL | __GFP_NOFAIL);
578c714b
DW
2663 xefi->xefi_startblock = bno;
2664 xefi->xefi_blockcount = (xfs_extlen_t)len;
b742d7b4 2665 xefi->xefi_agresv = type;
980faece 2666 if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD)
578c714b 2667 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
4c8900bb
DW
2668 if (free_flags & XFS_FREE_EXTENT_REALTIME)
2669 xefi->xefi_flags |= XFS_EFI_REALTIME;
b3b5ff41
DW
2670 if (oinfo) {
2671 ASSERT(oinfo->oi_offset == 0);
2672
2673 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
578c714b 2674 xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
b3b5ff41 2675 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
578c714b
DW
2676 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2677 xefi->xefi_owner = oinfo->oi_owner;
b3b5ff41 2678 } else {
578c714b 2679 xefi->xefi_owner = XFS_RMAP_OWN_NULL;
b3b5ff41 2680 }
4e0e2c0f 2681
84a3c157 2682 xfs_extent_free_defer_add(tp, xefi, dfpp);
e3042be3
DW
2683 return 0;
2684}
2685
2686int
2687xfs_free_extent_later(
2688 struct xfs_trans *tp,
2689 xfs_fsblock_t bno,
2690 xfs_filblks_t len,
2691 const struct xfs_owner_info *oinfo,
2692 enum xfs_ag_resv_type type,
980faece 2693 unsigned int free_flags)
e3042be3
DW
2694{
2695 struct xfs_defer_pending *dontcare = NULL;
2696
980faece 2697 return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags,
e3042be3
DW
2698 &dontcare);
2699}
2700
2701/*
2702 * Set up automatic freeing of unwritten space in the filesystem.
2703 *
2704 * This function attached a paused deferred extent free item to the
2705 * transaction. Pausing means that the EFI will be logged in the next
2706 * transaction commit, but the pending EFI will not be finished until the
2707 * pending item is unpaused.
2708 *
2709 * If the system goes down after the EFI has been persisted to the log but
2710 * before the pending item is unpaused, log recovery will find the EFI, fail to
2711 * find the EFD, and free the space.
2712 *
2713 * If the pending item is unpaused, the next transaction commit will log an EFD
2714 * without freeing the space.
2715 *
2716 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2717 * @args structure are set to the relevant values.
2718 */
2719int
2720xfs_alloc_schedule_autoreap(
2721 const struct xfs_alloc_arg *args,
980faece 2722 unsigned int free_flags,
e3042be3
DW
2723 struct xfs_alloc_autoreap *aarp)
2724{
2725 int error;
2726
2727 error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
980faece 2728 &args->oinfo, args->resv, free_flags, &aarp->dfp);
e3042be3
DW
2729 if (error)
2730 return error;
2731
2732 xfs_defer_item_pause(args->tp, aarp->dfp);
7dfee17b 2733 return 0;
c201d9ca
DW
2734}
2735
e3042be3
DW
2736/*
2737 * Cancel automatic freeing of unwritten space in the filesystem.
2738 *
2739 * Earlier, we created a paused deferred extent free item and attached it to
2740 * this transaction so that we could automatically roll back a new space
2741 * allocation if the system went down. Now we want to cancel the paused work
2742 * item by marking the EFI stale so we don't actually free the space, unpausing
2743 * the pending item and logging an EFD.
2744 *
2745 * The caller generally should have already mapped the space into the ondisk
2746 * filesystem. If the reserved space was partially used, the caller must call
2747 * xfs_free_extent_later to create a new EFI to free the unused space.
2748 */
2749void
2750xfs_alloc_cancel_autoreap(
2751 struct xfs_trans *tp,
2752 struct xfs_alloc_autoreap *aarp)
2753{
2754 struct xfs_defer_pending *dfp = aarp->dfp;
2755 struct xfs_extent_free_item *xefi;
2756
2757 if (!dfp)
2758 return;
2759
2760 list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2761 xefi->xefi_flags |= XFS_EFI_CANCELLED;
2762
2763 xfs_defer_item_unpause(tp, dfp);
2764}
2765
2766/*
2767 * Commit automatic freeing of unwritten space in the filesystem.
2768 *
2769 * This unpauses an earlier _schedule_autoreap and commits to freeing the
2770 * allocated space. Call this if none of the reserved space was used.
2771 */
2772void
2773xfs_alloc_commit_autoreap(
2774 struct xfs_trans *tp,
2775 struct xfs_alloc_autoreap *aarp)
2776{
2777 if (aarp->dfp)
2778 xfs_defer_item_unpause(tp, aarp->dfp);
2779}
2780
30151967
CB
2781/*
2782 * Check if an AGF has a free extent record whose length is equal to
2783 * args->minlen.
2784 */
2785STATIC int
2786xfs_exact_minlen_extent_available(
2787 struct xfs_alloc_arg *args,
2788 struct xfs_buf *agbp,
2789 int *stat)
2790{
2791 struct xfs_btree_cur *cnt_cur;
2792 xfs_agblock_t fbno;
2793 xfs_extlen_t flen;
2794 int error = 0;
2795
1c8b9fd2
CH
2796 cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
2797 args->pag);
30151967
CB
2798 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2799 if (error)
2800 goto out;
2801
2802 if (*stat == 0) {
a78d10f4 2803 xfs_btree_mark_sick(cnt_cur);
30151967
CB
2804 error = -EFSCORRUPTED;
2805 goto out;
2806 }
2807
2808 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2809 if (error)
2810 goto out;
2811
2812 if (*stat == 1 && flen != args->minlen)
2813 *stat = 0;
2814
2815out:
2816 xfs_btree_del_cursor(cnt_cur, error);
2817
2818 return error;
2819}
30151967 2820
1da177e4
LT
2821/*
2822 * Decide whether to use this allocation group for this allocation.
2823 * If so, fix up the btree freelist's size.
2824 */
2e9101da 2825int /* error */
1da177e4 2826xfs_alloc_fix_freelist(
396503fc 2827 struct xfs_alloc_arg *args, /* allocation argument structure */
6a2a9d77 2828 uint32_t alloc_flags)
1da177e4 2829{
396503fc
DC
2830 struct xfs_mount *mp = args->mp;
2831 struct xfs_perag *pag = args->pag;
2832 struct xfs_trans *tp = args->tp;
2833 struct xfs_buf *agbp = NULL;
2834 struct xfs_buf *agflbp = NULL;
2835 struct xfs_alloc_arg targs; /* local allocation arguments */
2836 xfs_agblock_t bno; /* freelist block */
2837 xfs_extlen_t need; /* total blocks needed in freelist */
c184f855 2838 int error = 0;
396503fc 2839
362f5e74
BF
2840 /* deferred ops (AGFL block frees) require permanent transactions */
2841 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2842
7ac2ff8b 2843 if (!xfs_perag_initialised_agf(pag)) {
6a2a9d77 2844 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
f48e2df8
DW
2845 if (error) {
2846 /* Couldn't lock the AGF so skip this AG. */
2847 if (error == -EAGAIN)
2848 error = 0;
396503fc 2849 goto out_no_agbp;
1da177e4 2850 }
396503fc 2851 }
1da177e4 2852
0e1edbd9 2853 /*
396503fc
DC
2854 * If this is a metadata preferred pag and we are user data then try
2855 * somewhere else if we are not being asked to try harder at this
2856 * point
1da177e4 2857 */
7ac2ff8b
DC
2858 if (xfs_perag_prefers_metadata(pag) &&
2859 (args->datatype & XFS_ALLOC_USERDATA) &&
6a2a9d77
DC
2860 (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2861 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
396503fc 2862 goto out_agbp_relse;
1da177e4
LT
2863 }
2864
496817b4 2865 need = xfs_alloc_min_freelist(mp, pag);
6a2a9d77 2866 if (!xfs_alloc_space_available(args, need, alloc_flags |
54fee133 2867 XFS_ALLOC_FLAG_CHECK))
396503fc 2868 goto out_agbp_relse;
0e1edbd9 2869
1da177e4
LT
2870 /*
2871 * Get the a.g. freespace buffer.
2872 * Can fail if we're not blocking on locks, and it's held.
2873 */
396503fc 2874 if (!agbp) {
6a2a9d77 2875 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
f48e2df8
DW
2876 if (error) {
2877 /* Couldn't lock the AGF so skip this AG. */
2878 if (error == -EAGAIN)
2879 error = 0;
396503fc 2880 goto out_no_agbp;
0e1edbd9 2881 }
1da177e4 2882 }
50adbcb4 2883
a27ba260 2884 /* reset a padding mismatched agfl before final free space check */
7ac2ff8b 2885 if (xfs_perag_agfl_needs_reset(pag))
a27ba260
BF
2886 xfs_agfl_reset(tp, agbp, pag);
2887
50adbcb4 2888 /* If there isn't enough total space or single-extent, reject it. */
496817b4 2889 need = xfs_alloc_min_freelist(mp, pag);
6a2a9d77 2890 if (!xfs_alloc_space_available(args, need, alloc_flags))
396503fc 2891 goto out_agbp_relse;
72d55285 2892
b611fddc 2893 if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) {
30151967
CB
2894 int stat;
2895
2896 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2897 if (error || !stat)
2898 goto out_agbp_relse;
2899 }
b611fddc 2900
1da177e4
LT
2901 /*
2902 * Make the freelist shorter if it's too long.
50adbcb4 2903 *
396503fc
DC
2904 * Note that from this point onwards, we will always release the agf and
2905 * agfl buffers on error. This handles the case where we error out and
2906 * the buffers are clean or may not have been joined to the transaction
2907 * and hence need to be released manually. If they have been joined to
2908 * the transaction, then xfs_trans_brelse() will handle them
2909 * appropriately based on the recursion count and dirty state of the
2910 * buffer.
2911 *
50adbcb4
DC
2912 * XXX (dgc): When we have lots of free space, does this buy us
2913 * anything other than extra overhead when we need to put more blocks
2914 * back on the free list? Maybe we should only do this when space is
2915 * getting low or the AGFL is more than half full?
04f13060
DW
2916 *
2917 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2918 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2919 * updating the rmapbt. Both flags are used in xfs_repair while we're
2920 * rebuilding the rmapbt, and neither are used by the kernel. They're
2921 * both required to ensure that rmaps are correctly recorded for the
2922 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2923 * repair/rmap.c in xfsprogs for details.
1da177e4 2924 */
04f13060 2925 memset(&targs, 0, sizeof(targs));
7280feda 2926 /* struct copy below */
6a2a9d77 2927 if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
7280feda 2928 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
04f13060 2929 else
7280feda 2930 targs.oinfo = XFS_RMAP_OINFO_AG;
6a2a9d77
DC
2931 while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2932 pag->pagf_flcount > need) {
49f0d84e 2933 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
92821e2b 2934 if (error)
396503fc 2935 goto out_agbp_relse;
4223f659 2936
7272f77c
CH
2937 /*
2938 * Defer the AGFL block free.
2939 *
2940 * This helps to prevent log reservation overruns due to too
2941 * many allocation operations in a transaction. AGFL frees are
2942 * prone to this problem because for one they are always freed
2943 * one at a time. Further, an immediate AGFL block free can
2944 * cause a btree join and require another block free before the
2945 * real allocation can proceed.
2946 * Deferring the free disconnects freeing up the AGFL slot from
2947 * freeing the block.
2948 */
856a920a
CH
2949 error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, bno),
2950 1, &targs.oinfo, XFS_AG_RESV_AGFL, 0);
7dfee17b
DC
2951 if (error)
2952 goto out_agbp_relse;
1da177e4 2953 }
50adbcb4 2954
1da177e4
LT
2955 targs.tp = tp;
2956 targs.mp = mp;
2957 targs.agbp = agbp;
2958 targs.agno = args->agno;
3fd129b6 2959 targs.alignment = targs.minlen = targs.prod = 1;
1da177e4 2960 targs.pag = pag;
cec7bb7d 2961 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
50adbcb4 2962 if (error)
396503fc 2963 goto out_agbp_relse;
50adbcb4
DC
2964
2965 /* Make the freelist longer if it's too short. */
2966 while (pag->pagf_flcount < need) {
1da177e4 2967 targs.agbno = 0;
50adbcb4 2968 targs.maxlen = need - pag->pagf_flcount;
0ab32086 2969 targs.resv = XFS_AG_RESV_AGFL;
50adbcb4
DC
2970
2971 /* Allocate as many blocks as possible at once. */
6a2a9d77 2972 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
396503fc
DC
2973 if (error)
2974 goto out_agflbp_relse;
2975
1da177e4
LT
2976 /*
2977 * Stop if we run out. Won't happen if callers are obeying
2978 * the restrictions correctly. Can happen for free calls
2979 * on a completely full ag.
2980 */
d210a28c 2981 if (targs.agbno == NULLAGBLOCK) {
6a2a9d77 2982 if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
0e1edbd9 2983 break;
396503fc 2984 goto out_agflbp_relse;
d210a28c 2985 }
4811c933
DC
2986
2987 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2988 error = xfs_rmap_alloc(tp, agbp, pag,
2989 targs.agbno, targs.len, &targs.oinfo);
2990 if (error)
2991 goto out_agflbp_relse;
2992 }
2993 error = xfs_alloc_update_counters(tp, agbp,
2994 -((long)(targs.len)));
2995 if (error)
2996 goto out_agflbp_relse;
2997
1da177e4
LT
2998 /*
2999 * Put each allocated block on the list.
3000 */
3001 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
8c392eb2 3002 error = xfs_alloc_put_freelist(pag, tp, agbp,
92821e2b
DC
3003 agflbp, bno, 0);
3004 if (error)
396503fc 3005 goto out_agflbp_relse;
1da177e4
LT
3006 }
3007 }
e63a3690 3008 xfs_trans_brelse(tp, agflbp);
1da177e4
LT
3009 args->agbp = agbp;
3010 return 0;
396503fc
DC
3011
3012out_agflbp_relse:
3013 xfs_trans_brelse(tp, agflbp);
3014out_agbp_relse:
3015 if (agbp)
3016 xfs_trans_brelse(tp, agbp);
3017out_no_agbp:
3018 args->agbp = NULL;
3019 return error;
1da177e4
LT
3020}
3021
3022/*
3023 * Get a block from the freelist.
3024 * Returns with the buffer for the block gotten.
3025 */
50920116 3026int
1da177e4 3027xfs_alloc_get_freelist(
49f0d84e 3028 struct xfs_perag *pag,
50920116
DC
3029 struct xfs_trans *tp,
3030 struct xfs_buf *agbp,
3031 xfs_agblock_t *bnop,
3032 int btreeblk)
1da177e4 3033{
50920116
DC
3034 struct xfs_agf *agf = agbp->b_addr;
3035 struct xfs_buf *agflbp;
3036 xfs_agblock_t bno;
3037 __be32 *agfl_bno;
3038 int error;
f53dde11 3039 uint32_t logflags;
50920116 3040 struct xfs_mount *mp = tp->t_mountp;
1da177e4 3041
1da177e4
LT
3042 /*
3043 * Freelist is empty, give up.
3044 */
3045 if (!agf->agf_flcount) {
3046 *bnop = NULLAGBLOCK;
3047 return 0;
3048 }
3049 /*
3050 * Read the array of free blocks.
3051 */
cec7bb7d 3052 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
77c95bba 3053 if (error)
1da177e4 3054 return error;
77c95bba
CH
3055
3056
1da177e4
LT
3057 /*
3058 * Get the block number and update the data structures.
3059 */
183606d8 3060 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
77c95bba 3061 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
3148ebf2
DC
3062 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
3063 return -EFSCORRUPTED;
3064
413d57c9 3065 be32_add_cpu(&agf->agf_flfirst, 1);
1da177e4 3066 xfs_trans_brelse(tp, agflbp);
a78ee256 3067 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
1da177e4 3068 agf->agf_flfirst = 0;
a862e0fd 3069
7ac2ff8b 3070 ASSERT(!xfs_perag_agfl_needs_reset(pag));
413d57c9 3071 be32_add_cpu(&agf->agf_flcount, -1);
1da177e4 3072 pag->pagf_flcount--;
92821e2b
DC
3073
3074 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
3075 if (btreeblk) {
413d57c9 3076 be32_add_cpu(&agf->agf_btreeblks, 1);
92821e2b
DC
3077 pag->pagf_btreeblks++;
3078 logflags |= XFS_AGF_BTREEBLKS;
3079 }
3080
92821e2b 3081 xfs_alloc_log_agf(tp, agbp, logflags);
1da177e4
LT
3082 *bnop = bno;
3083
1da177e4
LT
3084 return 0;
3085}
3086
3087/*
3088 * Log the given fields from the agf structure.
3089 */
3090void
3091xfs_alloc_log_agf(
f53dde11
DC
3092 struct xfs_trans *tp,
3093 struct xfs_buf *bp,
3094 uint32_t fields)
1da177e4
LT
3095{
3096 int first; /* first byte offset */
3097 int last; /* last byte offset */
3098 static const short offsets[] = {
3099 offsetof(xfs_agf_t, agf_magicnum),
3100 offsetof(xfs_agf_t, agf_versionnum),
3101 offsetof(xfs_agf_t, agf_seqno),
3102 offsetof(xfs_agf_t, agf_length),
e45ea364
CH
3103 offsetof(xfs_agf_t, agf_bno_root), /* also cnt/rmap root */
3104 offsetof(xfs_agf_t, agf_bno_level), /* also cnt/rmap levels */
1da177e4
LT
3105 offsetof(xfs_agf_t, agf_flfirst),
3106 offsetof(xfs_agf_t, agf_fllast),
3107 offsetof(xfs_agf_t, agf_flcount),
3108 offsetof(xfs_agf_t, agf_freeblks),
3109 offsetof(xfs_agf_t, agf_longest),
92821e2b 3110 offsetof(xfs_agf_t, agf_btreeblks),
4e0e6040 3111 offsetof(xfs_agf_t, agf_uuid),
f32866fd 3112 offsetof(xfs_agf_t, agf_rmap_blocks),
bdf28630
DW
3113 offsetof(xfs_agf_t, agf_refcount_blocks),
3114 offsetof(xfs_agf_t, agf_refcount_root),
3115 offsetof(xfs_agf_t, agf_refcount_level),
da1f039d
DW
3116 /* needed so that we don't log the whole rest of the structure: */
3117 offsetof(xfs_agf_t, agf_spare64),
1da177e4
LT
3118 sizeof(xfs_agf_t)
3119 };
3120
9798f615 3121 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
0b1b213f 3122
61fe135c 3123 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
4e0e6040 3124
1da177e4
LT
3125 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3126 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3127}
3128
1da177e4
LT
3129/*
3130 * Put the block on the freelist for the allocation group.
3131 */
50920116 3132int
1da177e4 3133xfs_alloc_put_freelist(
8c392eb2 3134 struct xfs_perag *pag,
50920116
DC
3135 struct xfs_trans *tp,
3136 struct xfs_buf *agbp,
3137 struct xfs_buf *agflbp,
3138 xfs_agblock_t bno,
3139 int btreeblk)
1da177e4 3140{
9798f615
CH
3141 struct xfs_mount *mp = tp->t_mountp;
3142 struct xfs_agf *agf = agbp->b_addr;
50920116 3143 __be32 *blockp;
1da177e4 3144 int error;
f53dde11 3145 uint32_t logflags;
77c95bba
CH
3146 __be32 *agfl_bno;
3147 int startoff;
1da177e4 3148
cec7bb7d
DC
3149 if (!agflbp) {
3150 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3151 if (error)
3152 return error;
3153 }
3154
413d57c9 3155 be32_add_cpu(&agf->agf_fllast, 1);
a78ee256 3156 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
1da177e4 3157 agf->agf_fllast = 0;
a862e0fd 3158
7ac2ff8b 3159 ASSERT(!xfs_perag_agfl_needs_reset(pag));
413d57c9 3160 be32_add_cpu(&agf->agf_flcount, 1);
1da177e4 3161 pag->pagf_flcount++;
92821e2b
DC
3162
3163 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3164 if (btreeblk) {
413d57c9 3165 be32_add_cpu(&agf->agf_btreeblks, -1);
92821e2b
DC
3166 pag->pagf_btreeblks--;
3167 logflags |= XFS_AGF_BTREEBLKS;
3168 }
3169
a78ee256 3170 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
77c95bba 3171
183606d8 3172 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
77c95bba 3173 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
e2101005 3174 *blockp = cpu_to_be32(bno);
77c95bba
CH
3175 startoff = (char *)blockp - (char *)agflbp->b_addr;
3176
92821e2b 3177 xfs_alloc_log_agf(tp, agbp, logflags);
77c95bba 3178
61fe135c 3179 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
77c95bba
CH
3180 xfs_trans_log_buf(tp, agflbp, startoff,
3181 startoff + sizeof(xfs_agblock_t) - 1);
1da177e4
LT
3182 return 0;
3183}
3184
2d7d1e7e
DW
3185/*
3186 * Check that this AGF/AGI header's sequence number and length matches the AG
3187 * number and size in fsblocks.
3188 */
3189xfs_failaddr_t
3190xfs_validate_ag_length(
3191 struct xfs_buf *bp,
3192 uint32_t seqno,
3193 uint32_t length)
3194{
3195 struct xfs_mount *mp = bp->b_mount;
3196 /*
3197 * During growfs operations, the perag is not fully initialised,
3198 * so we can't use it for any useful checking. growfs ensures we can't
3199 * use it by using uncached buffers that don't have the perag attached
3200 * so we can detect and avoid this problem.
3201 */
e9c4d8bf 3202 if (bp->b_pag && seqno != pag_agno(bp->b_pag))
2d7d1e7e
DW
3203 return __this_address;
3204
3205 /*
3206 * Only the last AG in the filesystem is allowed to be shorter
3207 * than the AG size recorded in the superblock.
3208 */
3209 if (length != mp->m_sb.sb_agblocks) {
3210 /*
3211 * During growfs, the new last AG can get here before we
3212 * have updated the superblock. Give it a pass on the seqno
3213 * check.
3214 */
3215 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3216 return __this_address;
3217 if (length < XFS_MIN_AG_BLOCKS)
3218 return __this_address;
3219 if (length > mp->m_sb.sb_agblocks)
3220 return __this_address;
3221 }
3222
3223 return NULL;
3224}
3225
e0a8de7d
DC
3226/*
3227 * Verify the AGF is consistent.
3228 *
3229 * We do not verify the AGFL indexes in the AGF are fully consistent here
3230 * because of issues with variable on-disk structure sizes. Instead, we check
3231 * the agfl indexes for consistency when we initialise the perag from the AGF
3232 * information after a read completes.
3233 *
3234 * If the index is inconsistent, then we mark the perag as needing an AGFL
3235 * reset. The first AGFL update performed then resets the AGFL indexes and
3236 * refills the AGFL with known good free blocks, allowing the filesystem to
3237 * continue operating normally at the cost of a few leaked free space blocks.
3238 */
a6a781a5 3239static xfs_failaddr_t
612cfbfe 3240xfs_agf_verify(
b5572597
DW
3241 struct xfs_buf *bp)
3242{
dbd329f1 3243 struct xfs_mount *mp = bp->b_mount;
9798f615 3244 struct xfs_agf *agf = bp->b_addr;
2d7d1e7e
DW
3245 xfs_failaddr_t fa;
3246 uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno);
edd8276d 3247 uint32_t agf_length = be32_to_cpu(agf->agf_length);
5d5f527d 3248
38c26bfd 3249 if (xfs_has_crc(mp)) {
a45086e2 3250 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
a6a781a5 3251 return __this_address;
9798f615 3252 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
a6a781a5 3253 return __this_address;
a45086e2 3254 }
5d5f527d 3255
39708c20
BF
3256 if (!xfs_verify_magic(bp, agf->agf_magicnum))
3257 return __this_address;
3258
edd8276d 3259 if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
a6a781a5 3260 return __this_address;
5d5f527d 3261
edd8276d
DC
3262 /*
3263 * Both agf_seqno and agf_length need to validated before anything else
3264 * block number related in the AGF or AGFL can be checked.
edd8276d 3265 */
2d7d1e7e
DW
3266 fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3267 if (fa)
3268 return fa;
edd8276d
DC
3269
3270 if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3271 return __this_address;
3272 if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3273 return __this_address;
3274 if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
d0c7feaf
ZB
3275 return __this_address;
3276
3277 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
edd8276d 3278 be32_to_cpu(agf->agf_freeblks) > agf_length)
d0c7feaf
ZB
3279 return __this_address;
3280
e45ea364
CH
3281 if (be32_to_cpu(agf->agf_bno_level) < 1 ||
3282 be32_to_cpu(agf->agf_cnt_level) < 1 ||
3283 be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
3284 be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
a6a781a5 3285 return __this_address;
e1b05723 3286
edd8276d
DC
3287 if (xfs_has_lazysbcount(mp) &&
3288 be32_to_cpu(agf->agf_btreeblks) > agf_length)
d0c7feaf
ZB
3289 return __this_address;
3290
edd8276d
DC
3291 if (xfs_has_rmapbt(mp)) {
3292 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3293 return __this_address;
5d5f527d 3294
e45ea364
CH
3295 if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
3296 be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
edd8276d
DC
3297 return __this_address;
3298 }
4e0e6040 3299
edd8276d
DC
3300 if (xfs_has_reflink(mp)) {
3301 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3302 return __this_address;
d0c7feaf 3303
edd8276d
DC
3304 if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3305 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3306 return __this_address;
3307 }
46eeb521 3308
a6a781a5 3309 return NULL;
612cfbfe
DC
3310}
3311
1813dd64
DC
3312static void
3313xfs_agf_read_verify(
612cfbfe
DC
3314 struct xfs_buf *bp)
3315{
dbd329f1 3316 struct xfs_mount *mp = bp->b_mount;
bc1a09b8 3317 xfs_failaddr_t fa;
4e0e6040 3318
38c26bfd 3319 if (xfs_has_crc(mp) &&
ce5028cf 3320 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
bc1a09b8
DW
3321 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3322 else {
b5572597 3323 fa = xfs_agf_verify(bp);
bc1a09b8
DW
3324 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3325 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3326 }
612cfbfe 3327}
5d5f527d 3328
b0f539de 3329static void
1813dd64 3330xfs_agf_write_verify(
612cfbfe
DC
3331 struct xfs_buf *bp)
3332{
dbd329f1 3333 struct xfs_mount *mp = bp->b_mount;
fb1755a6 3334 struct xfs_buf_log_item *bip = bp->b_log_item;
9798f615 3335 struct xfs_agf *agf = bp->b_addr;
bc1a09b8 3336 xfs_failaddr_t fa;
4e0e6040 3337
b5572597 3338 fa = xfs_agf_verify(bp);
bc1a09b8
DW
3339 if (fa) {
3340 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
4e0e6040
DC
3341 return;
3342 }
3343
38c26bfd 3344 if (!xfs_has_crc(mp))
4e0e6040
DC
3345 return;
3346
3347 if (bip)
9798f615 3348 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
4e0e6040 3349
f1dbcd7e 3350 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
5d5f527d
DC
3351}
3352
1813dd64 3353const struct xfs_buf_ops xfs_agf_buf_ops = {
233135b7 3354 .name = "xfs_agf",
39708c20 3355 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
1813dd64
DC
3356 .verify_read = xfs_agf_read_verify,
3357 .verify_write = xfs_agf_write_verify,
b5572597 3358 .verify_struct = xfs_agf_verify,
1813dd64
DC
3359};
3360
1da177e4
LT
3361/*
3362 * Read in the allocation group header (free/alloc section).
3363 */
fa044ae7 3364int
4805621a 3365xfs_read_agf(
fa044ae7
DC
3366 struct xfs_perag *pag,
3367 struct xfs_trans *tp,
3368 int flags,
3369 struct xfs_buf **agfbpp)
1da177e4 3370{
e9c4d8bf 3371 struct xfs_mount *mp = pag_mount(pag);
fa044ae7 3372 int error;
1da177e4 3373
c4ae021b 3374 trace_xfs_read_agf(pag);
d123031a 3375
4ed8e27b 3376 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
e9c4d8bf 3377 XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGF_DADDR(mp)),
fa044ae7 3378 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
de6077ec
DW
3379 if (xfs_metadata_is_sick(error))
3380 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
1da177e4
LT
3381 if (error)
3382 return error;
4805621a 3383
fa044ae7 3384 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
4805621a
FCH
3385 return 0;
3386}
3387
3388/*
76b47e52
DC
3389 * Read in the allocation group header (free/alloc section) and initialise the
3390 * perag structure if necessary. If the caller provides @agfbpp, then return the
3391 * locked buffer to the caller, otherwise free it.
4805621a 3392 */
08d3e84f 3393int
4805621a 3394xfs_alloc_read_agf(
08d3e84f
DC
3395 struct xfs_perag *pag,
3396 struct xfs_trans *tp,
3397 int flags,
76b47e52 3398 struct xfs_buf **agfbpp)
4805621a 3399{
e9c4d8bf 3400 struct xfs_mount *mp = pag_mount(pag);
76b47e52 3401 struct xfs_buf *agfbp;
08d3e84f 3402 struct xfs_agf *agf;
4805621a 3403 int error;
16eaab83 3404 int allocbt_blks;
4805621a 3405
c4ae021b 3406 trace_xfs_alloc_read_agf(pag);
4805621a 3407
f48e2df8
DW
3408 /* We don't support trylock when freeing. */
3409 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3410 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
fa044ae7 3411 error = xfs_read_agf(pag, tp,
0cadda1c 3412 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
76b47e52 3413 &agfbp);
4805621a
FCH
3414 if (error)
3415 return error;
4805621a 3416
76b47e52 3417 agf = agfbp->b_addr;
7ac2ff8b 3418 if (!xfs_perag_initialised_agf(pag)) {
16259e7d 3419 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
92821e2b 3420 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
16259e7d
CH
3421 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3422 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
e45ea364
CH
3423 pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
3424 pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
3425 pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
46eeb521 3426 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
e9c4d8bf 3427 if (xfs_agfl_needs_reset(mp, agf))
7ac2ff8b 3428 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
e2e63b07
DW
3429 else
3430 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
16eaab83
BF
3431
3432 /*
3433 * Update the in-core allocbt counter. Filter out the rmapbt
3434 * subset of the btreeblks counter because the rmapbt is managed
3435 * by perag reservation. Subtract one for the rmapbt root block
3436 * because the rmap counter includes it while the btreeblks
3437 * counter only tracks non-root blocks.
3438 */
3439 allocbt_blks = pag->pagf_btreeblks;
e9c4d8bf 3440 if (xfs_has_rmapbt(mp))
16eaab83
BF
3441 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3442 if (allocbt_blks > 0)
e9c4d8bf 3443 atomic64_add(allocbt_blks, &mp->m_allocbt_blks);
7ac2ff8b
DC
3444
3445 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
1da177e4 3446 }
db6a2274 3447
1da177e4 3448#ifdef DEBUG
db6a2274
DC
3449 /*
3450 * It's possible for the AGF to be out of sync if the block device is
3451 * silently dropping writes. This can happen in fstests with dmflakey
3452 * enabled, which allows the buffer to be cleaned and reclaimed by
3453 * memory pressure and then re-read from disk here. We will get a
3454 * stale version of the AGF from disk, and nothing good can happen from
3455 * here. Hence if we detect this situation, immediately shut down the
3456 * filesystem.
3457 *
3458 * This can also happen if we are already in the middle of a forced
3459 * shutdown, so don't bother checking if we are already shut down.
3460 */
3461 if (!xfs_is_shutdown(pag_mount(pag))) {
3462 bool ok = true;
3463
3464 ok &= pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks);
3465 ok &= pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks);
3466 ok &= pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks);
3467 ok &= pag->pagf_flcount == be32_to_cpu(agf->agf_flcount);
3468 ok &= pag->pagf_longest == be32_to_cpu(agf->agf_longest);
3469 ok &= pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level);
3470 ok &= pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level);
3471
3472 if (XFS_IS_CORRUPT(pag_mount(pag), !ok)) {
3473 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
3474 xfs_trans_brelse(tp, agfbp);
3475 xfs_force_shutdown(pag_mount(pag),
3476 SHUTDOWN_CORRUPT_ONDISK);
3477 return -EFSCORRUPTED;
3478 }
1da177e4 3479 }
db6a2274
DC
3480#endif /* DEBUG */
3481
76b47e52
DC
3482 if (agfbpp)
3483 *agfbpp = agfbp;
3484 else
3485 xfs_trans_brelse(tp, agfbp);
1da177e4
LT
3486 return 0;
3487}
3488
3489/*
ecd788a9
DC
3490 * Pre-proces allocation arguments to set initial state that we don't require
3491 * callers to set up correctly, as well as bounds check the allocation args
3492 * that are set up.
1da177e4 3493 */
ecd788a9
DC
3494static int
3495xfs_alloc_vextent_check_args(
319c9e87 3496 struct xfs_alloc_arg *args,
8b813568
DC
3497 xfs_fsblock_t target,
3498 xfs_agnumber_t *minimum_agno)
1da177e4 3499{
ecd788a9
DC
3500 struct xfs_mount *mp = args->mp;
3501 xfs_agblock_t agsize;
1da177e4 3502
230e8fe8 3503 args->fsbno = NULLFSBLOCK;
ecd788a9 3504
8b813568
DC
3505 *minimum_agno = 0;
3506 if (args->tp->t_highest_agno != NULLAGNUMBER)
3507 *minimum_agno = args->tp->t_highest_agno;
3508
1da177e4
LT
3509 /*
3510 * Just fix this up, for the case where the last a.g. is shorter
3511 * (or there's only one a.g.) and the caller couldn't easily figure
3512 * that out (xfs_bmap_alloc).
3513 */
3514 agsize = mp->m_sb.sb_agblocks;
3515 if (args->maxlen > agsize)
3516 args->maxlen = agsize;
3517 if (args->alignment == 0)
3518 args->alignment = 1;
74b9aa63
DC
3519
3520 ASSERT(args->minlen > 0);
3521 ASSERT(args->maxlen > 0);
3522 ASSERT(args->alignment > 0);
3523 ASSERT(args->resv != XFS_AG_RESV_AGFL);
3524
319c9e87
DC
3525 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3526 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
1da177e4
LT
3527 ASSERT(args->minlen <= args->maxlen);
3528 ASSERT(args->minlen <= agsize);
3529 ASSERT(args->mod < args->prod);
74b9aa63 3530
319c9e87
DC
3531 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3532 XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
1da177e4
LT
3533 args->minlen > args->maxlen || args->minlen > agsize ||
3534 args->mod >= args->prod) {
0b1b213f 3535 trace_xfs_alloc_vextent_badargs(args);
ecd788a9
DC
3536 return -ENOSPC;
3537 }
8b813568
DC
3538
3539 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3540 trace_xfs_alloc_vextent_skip_deadlock(args);
3541 return -ENOSPC;
3542 }
ecd788a9 3543 return 0;
8b813568 3544
ecd788a9
DC
3545}
3546
74b9aa63
DC
3547/*
3548 * Prepare an AG for allocation. If the AG is not prepared to accept the
3549 * allocation, return failure.
3550 *
3551 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3552 * modified to hold their own perag references.
3553 */
3554static int
3555xfs_alloc_vextent_prepare_ag(
00dcd17c 3556 struct xfs_alloc_arg *args,
6a2a9d77 3557 uint32_t alloc_flags)
74b9aa63
DC
3558{
3559 bool need_pag = !args->pag;
3560 int error;
3561
3562 if (need_pag)
3563 args->pag = xfs_perag_get(args->mp, args->agno);
3564
3432ef61 3565 args->agbp = NULL;
6a2a9d77 3566 error = xfs_alloc_fix_freelist(args, alloc_flags);
74b9aa63
DC
3567 if (error) {
3568 trace_xfs_alloc_vextent_nofix(args);
3569 if (need_pag)
3570 xfs_perag_put(args->pag);
3571 args->agbno = NULLAGBLOCK;
3572 return error;
3573 }
3574 if (!args->agbp) {
3575 /* cannot allocate in this AG at all */
3576 trace_xfs_alloc_vextent_noagbp(args);
3577 args->agbno = NULLAGBLOCK;
3578 return 0;
3579 }
3580 args->wasfromfl = 0;
3581 return 0;
3582}
3583
ecd788a9 3584/*
e4d17426
DC
3585 * Post-process allocation results to account for the allocation if it succeed
3586 * and set the allocated block number correctly for the caller.
ecd788a9 3587 *
e4d17426 3588 * XXX: we should really be returning ENOSPC for ENOSPC, not
ecd788a9
DC
3589 * hiding it behind a "successful" NULLFSBLOCK allocation.
3590 */
e4d17426
DC
3591static int
3592xfs_alloc_vextent_finish(
ecd788a9 3593 struct xfs_alloc_arg *args,
e4d17426
DC
3594 xfs_agnumber_t minimum_agno,
3595 int alloc_error,
3596 bool drop_perag)
ecd788a9
DC
3597{
3598 struct xfs_mount *mp = args->mp;
e4d17426 3599 int error = 0;
ecd788a9
DC
3600
3601 /*
3602 * We can end up here with a locked AGF. If we failed, the caller is
3603 * likely going to try to allocate again with different parameters, and
3604 * that can widen the AGs that are searched for free space. If we have
3605 * to do BMBT block allocation, we have to do a new allocation.
3606 *
3607 * Hence leaving this function with the AGF locked opens up potential
3608 * ABBA AGF deadlocks because a future allocation attempt in this
3609 * transaction may attempt to lock a lower number AGF.
3610 *
3611 * We can't release the AGF until the transaction is commited, so at
3612 * this point we must update the "first allocation" tracker to point at
3613 * this AG if the tracker is empty or points to a lower AG. This allows
3614 * the next allocation attempt to be modified appropriately to avoid
3615 * deadlocks.
3616 */
3617 if (args->agbp &&
3618 (args->tp->t_highest_agno == NULLAGNUMBER ||
3619 args->agno > minimum_agno))
3620 args->tp->t_highest_agno = args->agno;
3621
e4d17426
DC
3622 /*
3623 * If the allocation failed with an error or we had an ENOSPC result,
3624 * preserve the returned error whilst also marking the allocation result
3625 * as "no extent allocated". This ensures that callers that fail to
3626 * capture the error will still treat it as a failed allocation.
3627 */
3628 if (alloc_error || args->agbno == NULLAGBLOCK) {
ecd788a9 3629 args->fsbno = NULLFSBLOCK;
e4d17426
DC
3630 error = alloc_error;
3631 goto out_drop_perag;
ecd788a9
DC
3632 }
3633
856a920a 3634 args->fsbno = xfs_agbno_to_fsb(args->pag, args->agbno);
e4d17426 3635
ecd788a9
DC
3636 ASSERT(args->len >= args->minlen);
3637 ASSERT(args->len <= args->maxlen);
3638 ASSERT(args->agbno % args->alignment == 0);
3639 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
e4d17426
DC
3640
3641 /* if not file data, insert new block into the reverse map btree */
3642 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3643 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3644 args->agbno, args->len, &args->oinfo);
3645 if (error)
3646 goto out_drop_perag;
3647 }
3648
3649 if (!args->wasfromfl) {
3650 error = xfs_alloc_update_counters(args->tp, args->agbp,
3651 -((long)(args->len)));
3652 if (error)
3653 goto out_drop_perag;
3654
adbc76aa
CH
3655 ASSERT(!xfs_extent_busy_search(pag_group(args->pag),
3656 args->agbno, args->len));
e4d17426
DC
3657 }
3658
3659 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3660
3661 XFS_STATS_INC(mp, xs_allocx);
3662 XFS_STATS_ADD(mp, xs_allocb, args->len);
3663
e6fbb716
DW
3664 trace_xfs_alloc_vextent_finish(args);
3665
e4d17426 3666out_drop_perag:
3432ef61
DC
3667 if (drop_perag && args->pag) {
3668 xfs_perag_rele(args->pag);
e4d17426
DC
3669 args->pag = NULL;
3670 }
3671 return error;
ecd788a9
DC
3672}
3673
3674/*
230e8fe8
DC
3675 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3676 * you need an exact sized allocation without locality constraints, this is the
3677 * fastest way to do it.
3678 *
3679 * Caller is expected to hold a perag reference in args->pag.
ecd788a9 3680 */
74c36a86 3681int
ecd788a9 3682xfs_alloc_vextent_this_ag(
5f36b2ce
DC
3683 struct xfs_alloc_arg *args,
3684 xfs_agnumber_t agno)
ecd788a9 3685{
8b813568 3686 xfs_agnumber_t minimum_agno;
6a2a9d77 3687 uint32_t alloc_flags = 0;
ecd788a9
DC
3688 int error;
3689
6de4b1ab 3690 ASSERT(args->pag != NULL);
e9c4d8bf 3691 ASSERT(pag_agno(args->pag) == agno);
6de4b1ab 3692
8b813568
DC
3693 args->agno = agno;
3694 args->agbno = 0;
e6fbb716
DW
3695
3696 trace_xfs_alloc_vextent_this_ag(args);
3697
856a920a
CH
3698 error = xfs_alloc_vextent_check_args(args,
3699 xfs_agbno_to_fsb(args->pag, 0), &minimum_agno);
ecd788a9
DC
3700 if (error) {
3701 if (error == -ENOSPC)
3702 return 0;
3703 return error;
3704 }
3705
6a2a9d77 3706 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
74b9aa63 3707 if (!error && args->agbp)
6a2a9d77 3708 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
74b9aa63 3709
e4d17426 3710 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
ecd788a9
DC
3711}
3712
3713/*
3714 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3715 *
3716 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3717 * allocation attempts in @start_agno have locality information. If we fail to
3718 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3719 * we attempt to allocation in as there is no locality optimisation possible for
3720 * those allocations.
3721 *
3432ef61
DC
3722 * On return, args->pag may be left referenced if we finish before the "all
3723 * failed" return point. The allocation finish still needs the perag, and
3724 * so the caller will release it once they've finished the allocation.
3725 *
ecd788a9
DC
3726 * When we wrap the AG iteration at the end of the filesystem, we have to be
3727 * careful not to wrap into AGs below ones we already have locked in the
3728 * transaction if we are doing a blocking iteration. This will result in an
3729 * out-of-order locking of AGFs and hence can cause deadlocks.
3730 */
3731static int
3732xfs_alloc_vextent_iterate_ags(
3733 struct xfs_alloc_arg *args,
3734 xfs_agnumber_t minimum_agno,
3735 xfs_agnumber_t start_agno,
230e8fe8 3736 xfs_agblock_t target_agbno,
6a2a9d77 3737 uint32_t alloc_flags)
ecd788a9
DC
3738{
3739 struct xfs_mount *mp = args->mp;
9eb77596 3740 xfs_agnumber_t restart_agno = minimum_agno;
3432ef61 3741 xfs_agnumber_t agno;
ecd788a9 3742 int error = 0;
1dd0510f 3743
6a2a9d77 3744 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
9eb77596 3745 restart_agno = 0;
3432ef61 3746restart:
9eb77596 3747 for_each_perag_wrap_range(mp, start_agno, restart_agno,
3432ef61
DC
3748 mp->m_sb.sb_agcount, agno, args->pag) {
3749 args->agno = agno;
6a2a9d77 3750 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
74b9aa63 3751 if (error)
1da177e4 3752 break;
3432ef61
DC
3753 if (!args->agbp) {
3754 trace_xfs_alloc_vextent_loopfailed(args);
3755 continue;
74b9aa63 3756 }
ecd788a9 3757
ecd788a9 3758 /*
3432ef61
DC
3759 * Allocation is supposed to succeed now, so break out of the
3760 * loop regardless of whether we succeed or not.
ecd788a9 3761 */
3432ef61 3762 if (args->agno == start_agno && target_agbno) {
230e8fe8 3763 args->agbno = target_agbno;
6a2a9d77 3764 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3432ef61
DC
3765 } else {
3766 args->agbno = 0;
6a2a9d77 3767 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
ecd788a9 3768 }
3432ef61
DC
3769 break;
3770 }
3771 if (error) {
3772 xfs_perag_rele(args->pag);
ecd788a9 3773 args->pag = NULL;
3432ef61 3774 return error;
ecd788a9 3775 }
3432ef61
DC
3776 if (args->agbp)
3777 return 0;
3778
e4d17426 3779 /*
3432ef61
DC
3780 * We didn't find an AG we can alloation from. If we were given
3781 * constraining flags by the caller, drop them and retry the allocation
3782 * without any constraints being set.
e4d17426 3783 */
6a2a9d77
DC
3784 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3785 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
9eb77596 3786 restart_agno = minimum_agno;
3432ef61
DC
3787 goto restart;
3788 }
3789
3790 ASSERT(args->pag == NULL);
3791 trace_xfs_alloc_vextent_allfailed(args);
3792 return 0;
ecd788a9 3793}
0b1b213f 3794
ecd788a9
DC
3795/*
3796 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3797 * to allocate blocks. It starts with a near allocation attempt in the initial
3798 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3799 * back to zero if allowed by previous allocations in this transaction,
3800 * otherwise will wrap back to the start AG and run a second blocking pass to
3801 * the end of the filesystem.
3802 */
2a7f6d41 3803int
ecd788a9
DC
3804xfs_alloc_vextent_start_ag(
3805 struct xfs_alloc_arg *args,
2a7f6d41 3806 xfs_fsblock_t target)
ecd788a9
DC
3807{
3808 struct xfs_mount *mp = args->mp;
8b813568 3809 xfs_agnumber_t minimum_agno;
ecd788a9
DC
3810 xfs_agnumber_t start_agno;
3811 xfs_agnumber_t rotorstep = xfs_rotorstep;
3812 bool bump_rotor = false;
6a2a9d77 3813 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
ecd788a9 3814 int error;
1dd0510f 3815
6de4b1ab
DW
3816 ASSERT(args->pag == NULL);
3817
8b813568
DC
3818 args->agno = NULLAGNUMBER;
3819 args->agbno = NULLAGBLOCK;
e6fbb716 3820
4dfb02d5 3821 trace_xfs_alloc_vextent_start_ag(args);
e6fbb716 3822
8b813568 3823 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
ecd788a9
DC
3824 if (error) {
3825 if (error == -ENOSPC)
3826 return 0;
3827 return error;
3828 }
1dd0510f 3829
ecd788a9
DC
3830 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3831 xfs_is_inode32(mp)) {
2a7f6d41 3832 target = XFS_AGB_TO_FSB(mp,
ecd788a9
DC
3833 ((mp->m_agfrotor / rotorstep) %
3834 mp->m_sb.sb_agcount), 0);
3835 bump_rotor = 1;
3836 }
255c5162 3837
230e8fe8 3838 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
ecd788a9 3839 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
6a2a9d77 3840 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
230e8fe8 3841
ecd788a9
DC
3842 if (bump_rotor) {
3843 if (args->agno == start_agno)
3844 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3845 (mp->m_sb.sb_agcount * rotorstep);
3846 else
3847 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3848 (mp->m_sb.sb_agcount * rotorstep);
1da177e4 3849 }
3fbbbea3 3850
e4d17426 3851 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
ecd788a9
DC
3852}
3853
3854/*
230e8fe8 3855 * Iterate from the agno indicated via @target through to the end of the
ecd788a9 3856 * filesystem attempting blocking allocation. This does not wrap or try a second
230e8fe8 3857 * pass, so will not recurse into AGs lower than indicated by the target.
ecd788a9 3858 */
319c9e87 3859int
ecd788a9
DC
3860xfs_alloc_vextent_first_ag(
3861 struct xfs_alloc_arg *args,
319c9e87
DC
3862 xfs_fsblock_t target)
3863 {
ecd788a9 3864 struct xfs_mount *mp = args->mp;
8b813568 3865 xfs_agnumber_t minimum_agno;
ecd788a9 3866 xfs_agnumber_t start_agno;
6a2a9d77 3867 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
ecd788a9
DC
3868 int error;
3869
6de4b1ab
DW
3870 ASSERT(args->pag == NULL);
3871
8b813568
DC
3872 args->agno = NULLAGNUMBER;
3873 args->agbno = NULLAGBLOCK;
e6fbb716 3874
4dfb02d5 3875 trace_xfs_alloc_vextent_first_ag(args);
e6fbb716 3876
8b813568 3877 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
ecd788a9
DC
3878 if (error) {
3879 if (error == -ENOSPC)
3880 return 0;
3881 return error;
1da177e4 3882 }
1dd0510f 3883
319c9e87 3884 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
230e8fe8 3885 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
6a2a9d77 3886 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
e4d17426 3887 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
1da177e4
LT
3888}
3889
5f36b2ce 3890/*
74b9aa63
DC
3891 * Allocate at the exact block target or fail. Caller is expected to hold a
3892 * perag reference in args->pag.
5f36b2ce
DC
3893 */
3894int
3895xfs_alloc_vextent_exact_bno(
3896 struct xfs_alloc_arg *args,
3897 xfs_fsblock_t target)
3898{
3899 struct xfs_mount *mp = args->mp;
8b813568 3900 xfs_agnumber_t minimum_agno;
5f36b2ce
DC
3901 int error;
3902
6de4b1ab 3903 ASSERT(args->pag != NULL);
e9c4d8bf 3904 ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
6de4b1ab 3905
8b813568
DC
3906 args->agno = XFS_FSB_TO_AGNO(mp, target);
3907 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
e6fbb716 3908
4dfb02d5 3909 trace_xfs_alloc_vextent_exact_bno(args);
e6fbb716 3910
8b813568 3911 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
5f36b2ce
DC
3912 if (error) {
3913 if (error == -ENOSPC)
3914 return 0;
3915 return error;
3916 }
3917
00dcd17c 3918 error = xfs_alloc_vextent_prepare_ag(args, 0);
74b9aa63 3919 if (!error && args->agbp)
230e8fe8 3920 error = xfs_alloc_ag_vextent_exact(args);
5f36b2ce 3921
e4d17426 3922 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
5f36b2ce
DC
3923}
3924
ecd788a9 3925/*
db4710fd
DC
3926 * Allocate an extent as close to the target as possible. If there are not
3927 * viable candidates in the AG, then fail the allocation.
74b9aa63
DC
3928 *
3929 * Caller may or may not have a per-ag reference in args->pag.
ecd788a9
DC
3930 */
3931int
db4710fd
DC
3932xfs_alloc_vextent_near_bno(
3933 struct xfs_alloc_arg *args,
3934 xfs_fsblock_t target)
ecd788a9 3935{
db4710fd 3936 struct xfs_mount *mp = args->mp;
8b813568 3937 xfs_agnumber_t minimum_agno;
e4d17426 3938 bool needs_perag = args->pag == NULL;
6a2a9d77 3939 uint32_t alloc_flags = 0;
74c36a86 3940 int error;
ecd788a9 3941
6de4b1ab 3942 if (!needs_perag)
e9c4d8bf 3943 ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
6de4b1ab 3944
8b813568
DC
3945 args->agno = XFS_FSB_TO_AGNO(mp, target);
3946 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
e6fbb716 3947
4dfb02d5 3948 trace_xfs_alloc_vextent_near_bno(args);
e6fbb716 3949
8b813568 3950 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
db4710fd
DC
3951 if (error) {
3952 if (error == -ENOSPC)
3953 return 0;
3954 return error;
ecd788a9 3955 }
db4710fd 3956
e4d17426 3957 if (needs_perag)
3432ef61 3958 args->pag = xfs_perag_grab(mp, args->agno);
e4d17426 3959
6a2a9d77 3960 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
74b9aa63 3961 if (!error && args->agbp)
6a2a9d77 3962 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
74b9aa63 3963
e4d17426 3964 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
ecd788a9
DC
3965}
3966
4d89e20b
DC
3967/* Ensure that the freelist is at full capacity. */
3968int
3969xfs_free_extent_fix_freelist(
3970 struct xfs_trans *tp,
45d06621 3971 struct xfs_perag *pag,
4d89e20b 3972 struct xfs_buf **agbp)
1da177e4 3973{
4d89e20b
DC
3974 struct xfs_alloc_arg args;
3975 int error;
1da177e4 3976
4d89e20b 3977 memset(&args, 0, sizeof(struct xfs_alloc_arg));
1da177e4
LT
3978 args.tp = tp;
3979 args.mp = tp->t_mountp;
e9c4d8bf 3980 args.agno = pag_agno(pag);
45d06621 3981 args.pag = pag;
be65b18a
DC
3982
3983 /*
3984 * validate that the block number is legal - the enables us to detect
3985 * and handle a silent filesystem corruption rather than crashing.
3986 */
be65b18a 3987 if (args.agno >= args.mp->m_sb.sb_agcount)
2451337d 3988 return -EFSCORRUPTED;
be65b18a 3989
be65b18a
DC
3990 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3991 if (error)
45d06621 3992 return error;
4d89e20b
DC
3993
3994 *agbp = args.agbp;
45d06621 3995 return 0;
4d89e20b
DC
3996}
3997
3998/*
3999 * Free an extent.
4000 * Just break up the extent address and hand off to xfs_free_ag_extent
4001 * after fixing up the freelist.
4002 */
66e3237e 4003int
fcb762f5 4004__xfs_free_extent(
66e3237e 4005 struct xfs_trans *tp,
b2ccab31
DW
4006 struct xfs_perag *pag,
4007 xfs_agblock_t agbno,
66e3237e
DW
4008 xfs_extlen_t len,
4009 const struct xfs_owner_info *oinfo,
4010 enum xfs_ag_resv_type type,
4011 bool skip_discard)
4d89e20b 4012{
66e3237e
DW
4013 struct xfs_mount *mp = tp->t_mountp;
4014 struct xfs_buf *agbp;
9798f615 4015 struct xfs_agf *agf;
66e3237e
DW
4016 int error;
4017 unsigned int busy_flags = 0;
4d89e20b
DC
4018
4019 ASSERT(len != 0);
0ab32086 4020 ASSERT(type != XFS_AG_RESV_AGFL);
4d89e20b 4021
ba9e7802 4022 if (XFS_TEST_ERROR(false, mp,
9e24cfd0 4023 XFS_ERRTAG_FREE_EXTENT))
ba9e7802
DW
4024 return -EIO;
4025
45d06621 4026 error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
989d5ec3
DW
4027 if (error) {
4028 if (xfs_metadata_is_sick(error))
4029 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
b2ccab31 4030 return error;
989d5ec3
DW
4031 }
4032
9798f615 4033 agf = agbp->b_addr;
4d89e20b 4034
f9e03706 4035 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
989d5ec3 4036 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
f9e03706 4037 error = -EFSCORRUPTED;
45d06621 4038 goto err_release;
f9e03706 4039 }
be65b18a
DC
4040
4041 /* validate the extent size is legal now we have the agf locked */
9798f615 4042 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
989d5ec3 4043 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
f9e03706 4044 error = -EFSCORRUPTED;
45d06621 4045 goto err_release;
f9e03706 4046 }
be65b18a 4047
db129fa0 4048 error = xfs_free_ag_extent(tp, agbp, agbno, len, oinfo, type);
4d89e20b 4049 if (error)
45d06621 4050 goto err_release;
4d89e20b 4051
fcb762f5
BF
4052 if (skip_discard)
4053 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
adbc76aa 4054 xfs_extent_busy_insert(tp, pag_group(pag), agbno, len, busy_flags);
4d89e20b
DC
4055 return 0;
4056
45d06621 4057err_release:
4d89e20b 4058 xfs_trans_brelse(tp, agbp);
1da177e4
LT
4059 return error;
4060}
2d520bfa
DW
4061
4062struct xfs_alloc_query_range_info {
4063 xfs_alloc_query_range_fn fn;
4064 void *priv;
4065};
4066
4067/* Format btree record and pass to our callback. */
4068STATIC int
4069xfs_alloc_query_range_helper(
4070 struct xfs_btree_cur *cur,
159eb69d 4071 const union xfs_btree_rec *rec,
2d520bfa
DW
4072 void *priv)
4073{
4074 struct xfs_alloc_query_range_info *query = priv;
4075 struct xfs_alloc_rec_incore irec;
ee12eaaa 4076 xfs_failaddr_t fa;
2d520bfa 4077
35e3b9a1 4078 xfs_alloc_btrec_to_irec(rec, &irec);
77a530e6 4079 fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
ee12eaaa
DW
4080 if (fa)
4081 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
35e3b9a1 4082
2d520bfa
DW
4083 return query->fn(cur, &irec, query->priv);
4084}
4085
4086/* Find all free space within a given range of blocks. */
4087int
4088xfs_alloc_query_range(
4089 struct xfs_btree_cur *cur,
04dcb474
DW
4090 const struct xfs_alloc_rec_incore *low_rec,
4091 const struct xfs_alloc_rec_incore *high_rec,
2d520bfa
DW
4092 xfs_alloc_query_range_fn fn,
4093 void *priv)
4094{
75dc0345
DW
4095 union xfs_btree_irec low_brec = { .a = *low_rec };
4096 union xfs_btree_irec high_brec = { .a = *high_rec };
4097 struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn };
2d520bfa 4098
ec793e69 4099 ASSERT(xfs_btree_is_bno(cur->bc_ops));
2d520bfa
DW
4100 return xfs_btree_query_range(cur, &low_brec, &high_brec,
4101 xfs_alloc_query_range_helper, &query);
4102}
e9a2599a
DW
4103
4104/* Find all free space records. */
4105int
4106xfs_alloc_query_all(
4107 struct xfs_btree_cur *cur,
4108 xfs_alloc_query_range_fn fn,
4109 void *priv)
4110{
4111 struct xfs_alloc_query_range_info query;
4112
ec793e69 4113 ASSERT(xfs_btree_is_bno(cur->bc_ops));
e9a2599a
DW
4114 query.priv = priv;
4115 query.fn = fn;
4116 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
4117}
21ec5416 4118
6abc7aef
DW
4119/*
4120 * Scan part of the keyspace of the free space and tell us if the area has no
4121 * records, is fully mapped by records, or is partially filled.
4122 */
ce1d802e 4123int
6abc7aef 4124xfs_alloc_has_records(
ce1d802e
DW
4125 struct xfs_btree_cur *cur,
4126 xfs_agblock_t bno,
4127 xfs_extlen_t len,
6abc7aef 4128 enum xbtree_recpacking *outcome)
ce1d802e
DW
4129{
4130 union xfs_btree_irec low;
4131 union xfs_btree_irec high;
4132
4133 memset(&low, 0, sizeof(low));
4134 low.a.ar_startblock = bno;
4135 memset(&high, 0xFF, sizeof(high));
4136 high.a.ar_startblock = bno + len - 1;
4137
4a200a09 4138 return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
ce1d802e 4139}
9f3a080e
DW
4140
4141/*
4142 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
5bb46e3e 4143 * error code or XFS_ITER_*.
9f3a080e
DW
4144 */
4145int
4146xfs_agfl_walk(
4147 struct xfs_mount *mp,
4148 struct xfs_agf *agf,
4149 struct xfs_buf *agflbp,
4150 xfs_agfl_walk_fn walk_fn,
4151 void *priv)
4152{
4153 __be32 *agfl_bno;
4154 unsigned int i;
4155 int error;
4156
183606d8 4157 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
9f3a080e
DW
4158 i = be32_to_cpu(agf->agf_flfirst);
4159
4160 /* Nothing to walk in an empty AGFL. */
4161 if (agf->agf_flcount == cpu_to_be32(0))
4162 return 0;
4163
4164 /* Otherwise, walk from first to last, wrapping as needed. */
4165 for (;;) {
4166 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4167 if (error)
4168 return error;
4169 if (i == be32_to_cpu(agf->agf_fllast))
4170 break;
4171 if (++i == xfs_agfl_size(mp))
4172 i = 0;
4173 }
4174
4175 return 0;
4176}
c201d9ca
DW
4177
4178int __init
4179xfs_extfree_intent_init_cache(void)
4180{
4181 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4182 sizeof(struct xfs_extent_free_item),
4183 0, 0, NULL);
4184
4185 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4186}
4187
4188void
4189xfs_extfree_intent_destroy_cache(void)
4190{
4191 kmem_cache_destroy(xfs_extfree_item_cache);
4192 xfs_extfree_item_cache = NULL;
4193}