xfs: active perag reference counting
[linux-block.git] / fs / xfs / libxfs / xfs_ag.c
CommitLineData
b16817b6
DC
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2018 Red Hat, Inc.
5 * All rights reserved.
6 */
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_trans_resv.h"
f327a007 13#include "xfs_bit.h"
b16817b6
DC
14#include "xfs_sb.h"
15#include "xfs_mount.h"
16#include "xfs_btree.h"
17#include "xfs_alloc_btree.h"
18#include "xfs_rmap_btree.h"
19#include "xfs_alloc.h"
49dd56f2 20#include "xfs_ialloc.h"
b16817b6
DC
21#include "xfs_rmap.h"
22#include "xfs_ag.h"
7cd5006b 23#include "xfs_ag_resv.h"
1302c6a2 24#include "xfs_health.h"
46141dc8
GX
25#include "xfs_error.h"
26#include "xfs_bmap.h"
27#include "xfs_defer.h"
28#include "xfs_log_format.h"
29#include "xfs_trans.h"
9bbafc71 30#include "xfs_trace.h"
07b6403a
DC
31#include "xfs_inode.h"
32#include "xfs_icache.h"
33
9bbafc71
DC
34
35/*
36 * Passive reference counting access wrappers to the perag structures. If the
37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
38 * up objects with passive references before freeing the structure. This is
39 * things like cached buffers.
40 */
41struct xfs_perag *
42xfs_perag_get(
43 struct xfs_mount *mp,
44 xfs_agnumber_t agno)
45{
46 struct xfs_perag *pag;
47 int ref = 0;
48
49 rcu_read_lock();
50 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
51 if (pag) {
52 ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 ref = atomic_inc_return(&pag->pag_ref);
54 }
55 rcu_read_unlock();
56 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
57 return pag;
58}
59
60/*
61 * search from @first to find the next perag with the given tag set.
62 */
63struct xfs_perag *
64xfs_perag_get_tag(
65 struct xfs_mount *mp,
66 xfs_agnumber_t first,
ffc18582 67 unsigned int tag)
9bbafc71
DC
68{
69 struct xfs_perag *pag;
70 int found;
71 int ref;
72
73 rcu_read_lock();
74 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
75 (void **)&pag, first, 1, tag);
76 if (found <= 0) {
77 rcu_read_unlock();
78 return NULL;
79 }
80 ref = atomic_inc_return(&pag->pag_ref);
81 rcu_read_unlock();
82 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
83 return pag;
84}
85
86void
87xfs_perag_put(
88 struct xfs_perag *pag)
89{
90 int ref;
91
92 ASSERT(atomic_read(&pag->pag_ref) > 0);
93 ref = atomic_dec_return(&pag->pag_ref);
94 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
95}
96
c4d5660a
DC
97/*
98 * Active references for perag structures. This is for short term access to the
99 * per ag structures for walking trees or accessing state. If an AG is being
100 * shrunk or is offline, then this will fail to find that AG and return NULL
101 * instead.
102 */
103struct xfs_perag *
104xfs_perag_grab(
105 struct xfs_mount *mp,
106 xfs_agnumber_t agno)
107{
108 struct xfs_perag *pag;
109
110 rcu_read_lock();
111 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
112 if (pag) {
113 trace_xfs_perag_grab(mp, pag->pag_agno,
114 atomic_read(&pag->pag_active_ref), _RET_IP_);
115 if (!atomic_inc_not_zero(&pag->pag_active_ref))
116 pag = NULL;
117 }
118 rcu_read_unlock();
119 return pag;
120}
121
122/*
123 * search from @first to find the next perag with the given tag set.
124 */
125struct xfs_perag *
126xfs_perag_grab_tag(
127 struct xfs_mount *mp,
128 xfs_agnumber_t first,
129 int tag)
130{
131 struct xfs_perag *pag;
132 int found;
133
134 rcu_read_lock();
135 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
136 (void **)&pag, first, 1, tag);
137 if (found <= 0) {
138 rcu_read_unlock();
139 return NULL;
140 }
141 trace_xfs_perag_grab_tag(mp, pag->pag_agno,
142 atomic_read(&pag->pag_active_ref), _RET_IP_);
143 if (!atomic_inc_not_zero(&pag->pag_active_ref))
144 pag = NULL;
145 rcu_read_unlock();
146 return pag;
147}
148
149void
150xfs_perag_rele(
151 struct xfs_perag *pag)
152{
153 trace_xfs_perag_rele(pag->pag_mount, pag->pag_agno,
154 atomic_read(&pag->pag_active_ref), _RET_IP_);
155 if (atomic_dec_and_test(&pag->pag_active_ref))
156 wake_up(&pag->pag_active_wq);
157}
158
9bbafc71
DC
159/*
160 * xfs_initialize_perag_data
161 *
162 * Read in each per-ag structure so we can count up the number of
163 * allocated inodes, free inodes and used filesystem blocks as this
164 * information is no longer persistent in the superblock. Once we have
165 * this information, write it into the in-core superblock structure.
166 */
167int
168xfs_initialize_perag_data(
50920116
DC
169 struct xfs_mount *mp,
170 xfs_agnumber_t agcount)
9bbafc71 171{
50920116
DC
172 xfs_agnumber_t index;
173 struct xfs_perag *pag;
174 struct xfs_sb *sbp = &mp->m_sb;
175 uint64_t ifree = 0;
176 uint64_t ialloc = 0;
177 uint64_t bfree = 0;
178 uint64_t bfreelst = 0;
179 uint64_t btree = 0;
180 uint64_t fdblocks;
181 int error = 0;
9bbafc71
DC
182
183 for (index = 0; index < agcount; index++) {
184 /*
08d3e84f
DC
185 * Read the AGF and AGI buffers to populate the per-ag
186 * structures for us.
9bbafc71 187 */
99b13c7f 188 pag = xfs_perag_get(mp, index);
08d3e84f
DC
189 error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
190 if (!error)
191 error = xfs_ialloc_read_agi(pag, NULL, NULL);
99b13c7f
DC
192 if (error) {
193 xfs_perag_put(pag);
9bbafc71 194 return error;
99b13c7f 195 }
a95fee40 196
9bbafc71
DC
197 ifree += pag->pagi_freecount;
198 ialloc += pag->pagi_count;
199 bfree += pag->pagf_freeblks;
200 bfreelst += pag->pagf_flcount;
201 btree += pag->pagf_btreeblks;
202 xfs_perag_put(pag);
203 }
204 fdblocks = bfree + bfreelst + btree;
205
206 /*
207 * If the new summary counts are obviously incorrect, fail the
208 * mount operation because that implies the AGFs are also corrupt.
209 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
210 * will prevent xfs_repair from fixing anything.
211 */
212 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
213 xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
214 error = -EFSCORRUPTED;
215 goto out;
216 }
217
218 /* Overwrite incore superblock counters with just-read data */
219 spin_lock(&mp->m_sb_lock);
220 sbp->sb_ifree = ifree;
221 sbp->sb_icount = ialloc;
222 sbp->sb_fdblocks = fdblocks;
223 spin_unlock(&mp->m_sb_lock);
224
225 xfs_reinit_percpu_counters(mp);
226out:
227 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
228 return error;
229}
b16817b6 230
07b6403a
DC
231STATIC void
232__xfs_free_perag(
233 struct rcu_head *head)
234{
235 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
236
237 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
07b6403a
DC
238 kmem_free(pag);
239}
240
241/*
242 * Free up the per-ag resources associated with the mount structure.
243 */
244void
245xfs_free_perag(
246 struct xfs_mount *mp)
247{
248 struct xfs_perag *pag;
249 xfs_agnumber_t agno;
250
251 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
252 spin_lock(&mp->m_perag_lock);
253 pag = radix_tree_delete(&mp->m_perag_tree, agno);
254 spin_unlock(&mp->m_perag_lock);
255 ASSERT(pag);
5b55cbc2 256 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
07b6403a
DC
257
258 cancel_delayed_work_sync(&pag->pag_blockgc_work);
07b6403a
DC
259 xfs_buf_hash_destroy(pag);
260
c4d5660a
DC
261 /* drop the mount's active reference */
262 xfs_perag_rele(pag);
263 XFS_IS_CORRUPT(pag->pag_mount,
264 atomic_read(&pag->pag_active_ref) != 0);
07b6403a
DC
265 call_rcu(&pag->rcu_head, __xfs_free_perag);
266 }
267}
268
0800169e
DC
269/* Find the size of the AG, in blocks. */
270static xfs_agblock_t
271__xfs_ag_block_count(
272 struct xfs_mount *mp,
273 xfs_agnumber_t agno,
274 xfs_agnumber_t agcount,
275 xfs_rfsblock_t dblocks)
276{
277 ASSERT(agno < agcount);
278
279 if (agno < agcount - 1)
280 return mp->m_sb.sb_agblocks;
281 return dblocks - (agno * mp->m_sb.sb_agblocks);
282}
283
284xfs_agblock_t
285xfs_ag_block_count(
286 struct xfs_mount *mp,
287 xfs_agnumber_t agno)
288{
289 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
290 mp->m_sb.sb_dblocks);
291}
292
2d6ca832
DC
293/* Calculate the first and last possible inode number in an AG. */
294static void
295__xfs_agino_range(
296 struct xfs_mount *mp,
297 xfs_agblock_t eoag,
298 xfs_agino_t *first,
299 xfs_agino_t *last)
300{
301 xfs_agblock_t bno;
302
303 /*
304 * Calculate the first inode, which will be in the first
305 * cluster-aligned block after the AGFL.
306 */
307 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
308 *first = XFS_AGB_TO_AGINO(mp, bno);
309
310 /*
311 * Calculate the last inode, which will be at the end of the
312 * last (aligned) cluster that can be allocated in the AG.
313 */
314 bno = round_down(eoag, M_IGEO(mp)->cluster_align);
315 *last = XFS_AGB_TO_AGINO(mp, bno) - 1;
316}
317
318void
319xfs_agino_range(
320 struct xfs_mount *mp,
321 xfs_agnumber_t agno,
322 xfs_agino_t *first,
323 xfs_agino_t *last)
324{
325 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
326}
327
07b6403a
DC
328int
329xfs_initialize_perag(
330 struct xfs_mount *mp,
331 xfs_agnumber_t agcount,
0800169e 332 xfs_rfsblock_t dblocks,
07b6403a
DC
333 xfs_agnumber_t *maxagi)
334{
335 struct xfs_perag *pag;
336 xfs_agnumber_t index;
337 xfs_agnumber_t first_initialised = NULLAGNUMBER;
338 int error;
339
340 /*
341 * Walk the current per-ag tree so we don't try to initialise AGs
342 * that already exist (growfs case). Allocate and insert all the
343 * AGs we don't find ready for initialisation.
344 */
345 for (index = 0; index < agcount; index++) {
346 pag = xfs_perag_get(mp, index);
347 if (pag) {
348 xfs_perag_put(pag);
349 continue;
350 }
351
352 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
353 if (!pag) {
354 error = -ENOMEM;
355 goto out_unwind_new_pags;
356 }
357 pag->pag_agno = index;
358 pag->pag_mount = mp;
359
360 error = radix_tree_preload(GFP_NOFS);
361 if (error)
362 goto out_free_pag;
363
364 spin_lock(&mp->m_perag_lock);
365 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
366 WARN_ON_ONCE(1);
367 spin_unlock(&mp->m_perag_lock);
368 radix_tree_preload_end();
369 error = -EEXIST;
370 goto out_free_pag;
371 }
372 spin_unlock(&mp->m_perag_lock);
373 radix_tree_preload_end();
374
29f11fce 375#ifdef __KERNEL__
07b6403a
DC
376 /* Place kernel structure only init below this point. */
377 spin_lock_init(&pag->pag_ici_lock);
378 spin_lock_init(&pag->pagb_lock);
379 spin_lock_init(&pag->pag_state_lock);
380 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
381 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
382 init_waitqueue_head(&pag->pagb_wait);
c4d5660a 383 init_waitqueue_head(&pag->pag_active_wq);
07b6403a
DC
384 pag->pagb_count = 0;
385 pag->pagb_tree = RB_ROOT;
29f11fce 386#endif /* __KERNEL__ */
07b6403a
DC
387
388 error = xfs_buf_hash_init(pag);
389 if (error)
390 goto out_remove_pag;
391
c4d5660a
DC
392 /* Active ref owned by mount indicates AG is online. */
393 atomic_set(&pag->pag_active_ref, 1);
394
07b6403a
DC
395 /* first new pag is fully initialized */
396 if (first_initialised == NULLAGNUMBER)
397 first_initialised = index;
0800169e
DC
398
399 /*
400 * Pre-calculated geometry
401 */
402 pag->block_count = __xfs_ag_block_count(mp, index, agcount,
403 dblocks);
404 pag->min_block = XFS_AGFL_BLOCK(mp);
2d6ca832
DC
405 __xfs_agino_range(mp, pag->block_count, &pag->agino_min,
406 &pag->agino_max);
07b6403a
DC
407 }
408
409 index = xfs_set_inode_alloc(mp, agcount);
410
411 if (maxagi)
412 *maxagi = index;
413
414 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
415 return 0;
416
07b6403a
DC
417out_remove_pag:
418 radix_tree_delete(&mp->m_perag_tree, index);
419out_free_pag:
420 kmem_free(pag);
421out_unwind_new_pags:
422 /* unwind any prior newly initialized pags */
423 for (index = first_initialised; index < agcount; index++) {
424 pag = radix_tree_delete(&mp->m_perag_tree, index);
425 if (!pag)
426 break;
427 xfs_buf_hash_destroy(pag);
07b6403a
DC
428 kmem_free(pag);
429 }
430 return error;
431}
b16817b6 432
2842b6db 433static int
b16817b6
DC
434xfs_get_aghdr_buf(
435 struct xfs_mount *mp,
436 xfs_daddr_t blkno,
437 size_t numblks,
2842b6db 438 struct xfs_buf **bpp,
b16817b6
DC
439 const struct xfs_buf_ops *ops)
440{
441 struct xfs_buf *bp;
2842b6db 442 int error;
b16817b6 443
2842b6db
DW
444 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
445 if (error)
446 return error;
b16817b6 447
b16817b6
DC
448 bp->b_maps[0].bm_bn = blkno;
449 bp->b_ops = ops;
450
2842b6db
DW
451 *bpp = bp;
452 return 0;
b16817b6
DC
453}
454
455/*
456 * Generic btree root block init function
457 */
458static void
459xfs_btroot_init(
460 struct xfs_mount *mp,
461 struct xfs_buf *bp,
462 struct aghdr_init_data *id)
463{
f5b999c0 464 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
b16817b6
DC
465}
466
8d90857c 467/* Finish initializing a free space btree. */
b16817b6 468static void
8d90857c 469xfs_freesp_init_recs(
b16817b6
DC
470 struct xfs_mount *mp,
471 struct xfs_buf *bp,
472 struct aghdr_init_data *id)
473{
474 struct xfs_alloc_rec *arec;
f327a007 475 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
b16817b6 476
b16817b6
DC
477 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
478 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
f327a007 479
36029dee 480 if (xfs_ag_contains_log(mp, id->agno)) {
f327a007
DW
481 struct xfs_alloc_rec *nrec;
482 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
483 mp->m_sb.sb_logstart);
484
485 ASSERT(start >= mp->m_ag_prealloc_blocks);
486 if (start != mp->m_ag_prealloc_blocks) {
487 /*
488 * Modify first record to pad stripe align of log
489 */
490 arec->ar_blockcount = cpu_to_be32(start -
491 mp->m_ag_prealloc_blocks);
492 nrec = arec + 1;
493
494 /*
495 * Insert second record at start of internal log
496 * which then gets trimmed.
497 */
498 nrec->ar_startblock = cpu_to_be32(
499 be32_to_cpu(arec->ar_startblock) +
500 be32_to_cpu(arec->ar_blockcount));
501 arec = nrec;
502 be16_add_cpu(&block->bb_numrecs, 1);
503 }
504 /*
505 * Change record start to after the internal log
506 */
507 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
508 }
509
510 /*
511 * Calculate the record block count and check for the case where
512 * the log might have consumed all available space in the AG. If
513 * so, reset the record count to 0 to avoid exposure of an invalid
514 * record start block.
515 */
b16817b6
DC
516 arec->ar_blockcount = cpu_to_be32(id->agsize -
517 be32_to_cpu(arec->ar_startblock));
f327a007
DW
518 if (!arec->ar_blockcount)
519 block->bb_numrecs = 0;
b16817b6
DC
520}
521
8d90857c
DW
522/*
523 * Alloc btree root block init functions
524 */
b16817b6 525static void
8d90857c 526xfs_bnoroot_init(
b16817b6
DC
527 struct xfs_mount *mp,
528 struct xfs_buf *bp,
529 struct aghdr_init_data *id)
530{
8d90857c
DW
531 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno);
532 xfs_freesp_init_recs(mp, bp, id);
533}
b16817b6 534
8d90857c
DW
535static void
536xfs_cntroot_init(
537 struct xfs_mount *mp,
538 struct xfs_buf *bp,
539 struct aghdr_init_data *id)
540{
f5b999c0 541 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno);
8d90857c 542 xfs_freesp_init_recs(mp, bp, id);
b16817b6
DC
543}
544
545/*
546 * Reverse map root block init
547 */
548static void
549xfs_rmaproot_init(
550 struct xfs_mount *mp,
551 struct xfs_buf *bp,
552 struct aghdr_init_data *id)
553{
554 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
555 struct xfs_rmap_rec *rrec;
556
f5b999c0 557 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
b16817b6
DC
558
559 /*
560 * mark the AG header regions as static metadata The BNO
561 * btree block is the first block after the headers, so
562 * it's location defines the size of region the static
563 * metadata consumes.
564 *
565 * Note: unlike mkfs, we never have to account for log
566 * space when growing the data regions
567 */
568 rrec = XFS_RMAP_REC_ADDR(block, 1);
569 rrec->rm_startblock = 0;
570 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
571 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
572 rrec->rm_offset = 0;
573
574 /* account freespace btree root blocks */
575 rrec = XFS_RMAP_REC_ADDR(block, 2);
576 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
577 rrec->rm_blockcount = cpu_to_be32(2);
578 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
579 rrec->rm_offset = 0;
580
581 /* account inode btree root blocks */
582 rrec = XFS_RMAP_REC_ADDR(block, 3);
583 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
584 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
585 XFS_IBT_BLOCK(mp));
586 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
587 rrec->rm_offset = 0;
588
589 /* account for rmap btree root */
590 rrec = XFS_RMAP_REC_ADDR(block, 4);
591 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
592 rrec->rm_blockcount = cpu_to_be32(1);
593 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
594 rrec->rm_offset = 0;
595
596 /* account for refc btree root */
38c26bfd 597 if (xfs_has_reflink(mp)) {
b16817b6
DC
598 rrec = XFS_RMAP_REC_ADDR(block, 5);
599 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
600 rrec->rm_blockcount = cpu_to_be32(1);
601 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
602 rrec->rm_offset = 0;
603 be16_add_cpu(&block->bb_numrecs, 1);
604 }
f327a007
DW
605
606 /* account for the log space */
36029dee 607 if (xfs_ag_contains_log(mp, id->agno)) {
f327a007
DW
608 rrec = XFS_RMAP_REC_ADDR(block,
609 be16_to_cpu(block->bb_numrecs) + 1);
610 rrec->rm_startblock = cpu_to_be32(
611 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
612 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
613 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
614 rrec->rm_offset = 0;
615 be16_add_cpu(&block->bb_numrecs, 1);
616 }
b16817b6
DC
617}
618
619/*
620 * Initialise new secondary superblocks with the pre-grow geometry, but mark
621 * them as "in progress" so we know they haven't yet been activated. This will
622 * get cleared when the update with the new geometry information is done after
623 * changes to the primary are committed. This isn't strictly necessary, but we
624 * get it for free with the delayed buffer write lists and it means we can tell
625 * if a grow operation didn't complete properly after the fact.
626 */
627static void
628xfs_sbblock_init(
629 struct xfs_mount *mp,
630 struct xfs_buf *bp,
631 struct aghdr_init_data *id)
632{
3e6e8afd 633 struct xfs_dsb *dsb = bp->b_addr;
b16817b6
DC
634
635 xfs_sb_to_disk(dsb, &mp->m_sb);
636 dsb->sb_inprogress = 1;
637}
638
639static void
640xfs_agfblock_init(
641 struct xfs_mount *mp,
642 struct xfs_buf *bp,
643 struct aghdr_init_data *id)
644{
9798f615 645 struct xfs_agf *agf = bp->b_addr;
b16817b6
DC
646 xfs_extlen_t tmpsize;
647
648 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
649 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
650 agf->agf_seqno = cpu_to_be32(id->agno);
651 agf->agf_length = cpu_to_be32(id->agsize);
652 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
653 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
654 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
655 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
38c26bfd 656 if (xfs_has_rmapbt(mp)) {
b16817b6
DC
657 agf->agf_roots[XFS_BTNUM_RMAPi] =
658 cpu_to_be32(XFS_RMAP_BLOCK(mp));
659 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
660 agf->agf_rmap_blocks = cpu_to_be32(1);
661 }
662
663 agf->agf_flfirst = cpu_to_be32(1);
664 agf->agf_fllast = 0;
665 agf->agf_flcount = 0;
666 tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
667 agf->agf_freeblks = cpu_to_be32(tmpsize);
668 agf->agf_longest = cpu_to_be32(tmpsize);
38c26bfd 669 if (xfs_has_crc(mp))
b16817b6 670 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
38c26bfd 671 if (xfs_has_reflink(mp)) {
b16817b6
DC
672 agf->agf_refcount_root = cpu_to_be32(
673 xfs_refc_block(mp));
674 agf->agf_refcount_level = cpu_to_be32(1);
675 agf->agf_refcount_blocks = cpu_to_be32(1);
676 }
f327a007 677
36029dee 678 if (xfs_ag_contains_log(mp, id->agno)) {
f327a007
DW
679 int64_t logblocks = mp->m_sb.sb_logblocks;
680
681 be32_add_cpu(&agf->agf_freeblks, -logblocks);
682 agf->agf_longest = cpu_to_be32(id->agsize -
683 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
684 }
b16817b6
DC
685}
686
687static void
688xfs_agflblock_init(
689 struct xfs_mount *mp,
690 struct xfs_buf *bp,
691 struct aghdr_init_data *id)
692{
693 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
694 __be32 *agfl_bno;
695 int bucket;
696
38c26bfd 697 if (xfs_has_crc(mp)) {
b16817b6
DC
698 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
699 agfl->agfl_seqno = cpu_to_be32(id->agno);
700 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
701 }
702
183606d8 703 agfl_bno = xfs_buf_to_agfl_bno(bp);
b16817b6
DC
704 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
705 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
706}
707
708static void
709xfs_agiblock_init(
710 struct xfs_mount *mp,
711 struct xfs_buf *bp,
712 struct aghdr_init_data *id)
713{
370c782b 714 struct xfs_agi *agi = bp->b_addr;
b16817b6
DC
715 int bucket;
716
717 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
718 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
719 agi->agi_seqno = cpu_to_be32(id->agno);
720 agi->agi_length = cpu_to_be32(id->agsize);
721 agi->agi_count = 0;
722 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
723 agi->agi_level = cpu_to_be32(1);
724 agi->agi_freecount = 0;
725 agi->agi_newino = cpu_to_be32(NULLAGINO);
726 agi->agi_dirino = cpu_to_be32(NULLAGINO);
38c26bfd 727 if (xfs_has_crc(mp))
b16817b6 728 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
38c26bfd 729 if (xfs_has_finobt(mp)) {
b16817b6
DC
730 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
731 agi->agi_free_level = cpu_to_be32(1);
732 }
733 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
734 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
ebd9027d 735 if (xfs_has_inobtcounts(mp)) {
2a39946c 736 agi->agi_iblocks = cpu_to_be32(1);
ebd9027d 737 if (xfs_has_finobt(mp))
2a39946c
DW
738 agi->agi_fblocks = cpu_to_be32(1);
739 }
b16817b6
DC
740}
741
742typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
743 struct aghdr_init_data *id);
744static int
745xfs_ag_init_hdr(
746 struct xfs_mount *mp,
747 struct aghdr_init_data *id,
748 aghdr_init_work_f work,
749 const struct xfs_buf_ops *ops)
b16817b6
DC
750{
751 struct xfs_buf *bp;
2842b6db 752 int error;
b16817b6 753
2842b6db
DW
754 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
755 if (error)
756 return error;
b16817b6
DC
757
758 (*work)(mp, bp, id);
759
760 xfs_buf_delwri_queue(bp, &id->buffer_list);
761 xfs_buf_relse(bp);
762 return 0;
763}
764
765struct xfs_aghdr_grow_data {
766 xfs_daddr_t daddr;
767 size_t numblks;
768 const struct xfs_buf_ops *ops;
769 aghdr_init_work_f work;
770 xfs_btnum_t type;
771 bool need_init;
772};
773
774/*
775 * Prepare new AG headers to be written to disk. We use uncached buffers here,
776 * as it is assumed these new AG headers are currently beyond the currently
777 * valid filesystem address space. Using cached buffers would trip over EOFS
778 * corruption detection alogrithms in the buffer cache lookup routines.
779 *
780 * This is a non-transactional function, but the prepared buffers are added to a
781 * delayed write buffer list supplied by the caller so they can submit them to
782 * disk and wait on them as required.
783 */
784int
785xfs_ag_init_headers(
786 struct xfs_mount *mp,
787 struct aghdr_init_data *id)
788
789{
790 struct xfs_aghdr_grow_data aghdr_data[] = {
791 { /* SB */
792 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
793 .numblks = XFS_FSS_TO_BB(mp, 1),
794 .ops = &xfs_sb_buf_ops,
795 .work = &xfs_sbblock_init,
796 .need_init = true
797 },
798 { /* AGF */
799 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
800 .numblks = XFS_FSS_TO_BB(mp, 1),
801 .ops = &xfs_agf_buf_ops,
802 .work = &xfs_agfblock_init,
803 .need_init = true
804 },
805 { /* AGFL */
806 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
807 .numblks = XFS_FSS_TO_BB(mp, 1),
808 .ops = &xfs_agfl_buf_ops,
809 .work = &xfs_agflblock_init,
810 .need_init = true
811 },
812 { /* AGI */
813 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
814 .numblks = XFS_FSS_TO_BB(mp, 1),
815 .ops = &xfs_agi_buf_ops,
816 .work = &xfs_agiblock_init,
817 .need_init = true
818 },
819 { /* BNO root block */
820 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
821 .numblks = BTOBB(mp->m_sb.sb_blocksize),
27df4f50 822 .ops = &xfs_bnobt_buf_ops,
b16817b6
DC
823 .work = &xfs_bnoroot_init,
824 .need_init = true
825 },
826 { /* CNT root block */
827 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
828 .numblks = BTOBB(mp->m_sb.sb_blocksize),
27df4f50 829 .ops = &xfs_cntbt_buf_ops,
b16817b6
DC
830 .work = &xfs_cntroot_init,
831 .need_init = true
832 },
833 { /* INO root block */
834 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
835 .numblks = BTOBB(mp->m_sb.sb_blocksize),
836 .ops = &xfs_inobt_buf_ops,
837 .work = &xfs_btroot_init,
838 .type = XFS_BTNUM_INO,
839 .need_init = true
840 },
841 { /* FINO root block */
842 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
843 .numblks = BTOBB(mp->m_sb.sb_blocksize),
01e68f40 844 .ops = &xfs_finobt_buf_ops,
b16817b6
DC
845 .work = &xfs_btroot_init,
846 .type = XFS_BTNUM_FINO,
38c26bfd 847 .need_init = xfs_has_finobt(mp)
b16817b6
DC
848 },
849 { /* RMAP root block */
850 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
851 .numblks = BTOBB(mp->m_sb.sb_blocksize),
852 .ops = &xfs_rmapbt_buf_ops,
853 .work = &xfs_rmaproot_init,
38c26bfd 854 .need_init = xfs_has_rmapbt(mp)
b16817b6
DC
855 },
856 { /* REFC root block */
857 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
858 .numblks = BTOBB(mp->m_sb.sb_blocksize),
859 .ops = &xfs_refcountbt_buf_ops,
860 .work = &xfs_btroot_init,
861 .type = XFS_BTNUM_REFC,
38c26bfd 862 .need_init = xfs_has_reflink(mp)
b16817b6
DC
863 },
864 { /* NULL terminating block */
865 .daddr = XFS_BUF_DADDR_NULL,
866 }
867 };
868 struct xfs_aghdr_grow_data *dp;
869 int error = 0;
870
871 /* Account for AG free space in new AG */
872 id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
873 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
874 if (!dp->need_init)
875 continue;
876
877 id->daddr = dp->daddr;
878 id->numblks = dp->numblks;
879 id->type = dp->type;
880 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
881 if (error)
882 break;
883 }
884 return error;
885}
49dd56f2 886
46141dc8
GX
887int
888xfs_ag_shrink_space(
c6aee248 889 struct xfs_perag *pag,
46141dc8 890 struct xfs_trans **tpp,
46141dc8
GX
891 xfs_extlen_t delta)
892{
c6aee248 893 struct xfs_mount *mp = pag->pag_mount;
46141dc8
GX
894 struct xfs_alloc_arg args = {
895 .tp = *tpp,
896 .mp = mp,
897 .type = XFS_ALLOCTYPE_THIS_BNO,
898 .minlen = delta,
899 .maxlen = delta,
900 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
901 .resv = XFS_AG_RESV_NONE,
902 .prod = 1
903 };
904 struct xfs_buf *agibp, *agfbp;
905 struct xfs_agi *agi;
906 struct xfs_agf *agf;
a8f3522c 907 xfs_agblock_t aglen;
46141dc8
GX
908 int error, err2;
909
c6aee248 910 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
99b13c7f 911 error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
46141dc8
GX
912 if (error)
913 return error;
914
915 agi = agibp->b_addr;
916
08d3e84f 917 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
46141dc8
GX
918 if (error)
919 return error;
920
921 agf = agfbp->b_addr;
a8f3522c 922 aglen = be32_to_cpu(agi->agi_length);
46141dc8
GX
923 /* some extra paranoid checks before we shrink the ag */
924 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
925 return -EFSCORRUPTED;
a8f3522c 926 if (delta >= aglen)
46141dc8
GX
927 return -EINVAL;
928
c6aee248 929 args.fsbno = XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta);
46141dc8 930
da062d16
DW
931 /*
932 * Make sure that the last inode cluster cannot overlap with the new
933 * end of the AG, even if it's sparse.
934 */
c6aee248
DC
935 error = xfs_ialloc_check_shrink(*tpp, pag->pag_agno, agibp,
936 aglen - delta);
da062d16
DW
937 if (error)
938 return error;
939
46141dc8
GX
940 /*
941 * Disable perag reservations so it doesn't cause the allocation request
942 * to fail. We'll reestablish reservation before we return.
943 */
99b13c7f 944 error = xfs_ag_resv_free(pag);
46141dc8
GX
945 if (error)
946 return error;
947
948 /* internal log shouldn't also show up in the free space btrees */
949 error = xfs_alloc_vextent(&args);
950 if (!error && args.agbno == NULLAGBLOCK)
951 error = -ENOSPC;
952
953 if (error) {
954 /*
955 * if extent allocation fails, need to roll the transaction to
956 * ensure that the AGFL fixup has been committed anyway.
957 */
958 xfs_trans_bhold(*tpp, agfbp);
959 err2 = xfs_trans_roll(tpp);
960 if (err2)
961 return err2;
962 xfs_trans_bjoin(*tpp, agfbp);
963 goto resv_init_out;
964 }
965
966 /*
967 * if successfully deleted from freespace btrees, need to confirm
968 * per-AG reservation works as expected.
969 */
970 be32_add_cpu(&agi->agi_length, -delta);
971 be32_add_cpu(&agf->agf_length, -delta);
972
99b13c7f 973 err2 = xfs_ag_resv_init(pag, *tpp);
46141dc8
GX
974 if (err2) {
975 be32_add_cpu(&agi->agi_length, delta);
976 be32_add_cpu(&agf->agf_length, delta);
977 if (err2 != -ENOSPC)
978 goto resv_err;
979
c201d9ca 980 __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true);
46141dc8
GX
981
982 /*
983 * Roll the transaction before trying to re-init the per-ag
984 * reservation. The new transaction is clean so it will cancel
985 * without any side effects.
986 */
987 error = xfs_defer_finish(tpp);
988 if (error)
989 return error;
990
991 error = -ENOSPC;
992 goto resv_init_out;
993 }
994 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
995 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
996 return 0;
99b13c7f 997
46141dc8 998resv_init_out:
99b13c7f 999 err2 = xfs_ag_resv_init(pag, *tpp);
46141dc8
GX
1000 if (!err2)
1001 return error;
1002resv_err:
1003 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
1004 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1005 return err2;
1006}
1007
49dd56f2
DC
1008/*
1009 * Extent the AG indicated by the @id by the length passed in
1010 */
1011int
1012xfs_ag_extend_space(
c6aee248 1013 struct xfs_perag *pag,
49dd56f2 1014 struct xfs_trans *tp,
49dd56f2
DC
1015 xfs_extlen_t len)
1016{
49dd56f2
DC
1017 struct xfs_buf *bp;
1018 struct xfs_agi *agi;
1019 struct xfs_agf *agf;
1020 int error;
1021
c6aee248
DC
1022 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1023
99b13c7f 1024 error = xfs_ialloc_read_agi(pag, tp, &bp);
49dd56f2
DC
1025 if (error)
1026 return error;
1027
370c782b 1028 agi = bp->b_addr;
49dd56f2 1029 be32_add_cpu(&agi->agi_length, len);
49dd56f2
DC
1030 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1031
1032 /*
1033 * Change agf length.
1034 */
08d3e84f 1035 error = xfs_alloc_read_agf(pag, tp, 0, &bp);
49dd56f2
DC
1036 if (error)
1037 return error;
1038
9798f615 1039 agf = bp->b_addr;
49dd56f2
DC
1040 be32_add_cpu(&agf->agf_length, len);
1041 ASSERT(agf->agf_length == agi->agi_length);
1042 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1043
1044 /*
1045 * Free the new space.
1046 *
7280feda 1047 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
49dd56f2
DC
1048 * this doesn't actually exist in the rmap btree.
1049 */
c6aee248 1050 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
7280feda 1051 len, &XFS_RMAP_OINFO_SKIP_UPDATE);
49dd56f2
DC
1052 if (error)
1053 return error;
1054
0800169e 1055 error = xfs_free_extent(tp, XFS_AGB_TO_FSB(pag->pag_mount, pag->pag_agno,
49dd56f2 1056 be32_to_cpu(agf->agf_length) - len),
7280feda
DW
1057 len, &XFS_RMAP_OINFO_SKIP_UPDATE,
1058 XFS_AG_RESV_NONE);
0800169e
DC
1059 if (error)
1060 return error;
1061
1062 /* Update perag geometry */
1063 pag->block_count = be32_to_cpu(agf->agf_length);
2d6ca832
DC
1064 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1065 &pag->agino_max);
0800169e 1066 return 0;
49dd56f2 1067}
7cd5006b
DW
1068
1069/* Retrieve AG geometry. */
1070int
1071xfs_ag_get_geometry(
c6aee248 1072 struct xfs_perag *pag,
7cd5006b
DW
1073 struct xfs_ag_geometry *ageo)
1074{
1075 struct xfs_buf *agi_bp;
1076 struct xfs_buf *agf_bp;
1077 struct xfs_agi *agi;
1078 struct xfs_agf *agf;
7cd5006b
DW
1079 unsigned int freeblks;
1080 int error;
1081
7cd5006b 1082 /* Lock the AG headers. */
99b13c7f 1083 error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
7cd5006b
DW
1084 if (error)
1085 return error;
08d3e84f 1086 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
7cd5006b
DW
1087 if (error)
1088 goto out_agi;
92a00544 1089
7cd5006b
DW
1090 /* Fill out form. */
1091 memset(ageo, 0, sizeof(*ageo));
c6aee248 1092 ageo->ag_number = pag->pag_agno;
7cd5006b 1093
370c782b 1094 agi = agi_bp->b_addr;
7cd5006b
DW
1095 ageo->ag_icount = be32_to_cpu(agi->agi_count);
1096 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1097
9798f615 1098 agf = agf_bp->b_addr;
7cd5006b
DW
1099 ageo->ag_length = be32_to_cpu(agf->agf_length);
1100 freeblks = pag->pagf_freeblks +
1101 pag->pagf_flcount +
1102 pag->pagf_btreeblks -
1103 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1104 ageo->ag_freeblks = freeblks;
1302c6a2 1105 xfs_ag_geom_health(pag, ageo);
7cd5006b
DW
1106
1107 /* Release resources. */
7cd5006b
DW
1108 xfs_buf_relse(agf_bp);
1109out_agi:
1110 xfs_buf_relse(agi_bp);
1111 return error;
1112}