xfs: give xfs_refcount_intent its own perag reference
[linux-block.git] / fs / xfs / libxfs / xfs_ag.c
CommitLineData
b16817b6
DC
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2018 Red Hat, Inc.
5 * All rights reserved.
6 */
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_trans_resv.h"
f327a007 13#include "xfs_bit.h"
b16817b6
DC
14#include "xfs_sb.h"
15#include "xfs_mount.h"
16#include "xfs_btree.h"
17#include "xfs_alloc_btree.h"
18#include "xfs_rmap_btree.h"
19#include "xfs_alloc.h"
49dd56f2 20#include "xfs_ialloc.h"
b16817b6
DC
21#include "xfs_rmap.h"
22#include "xfs_ag.h"
7cd5006b 23#include "xfs_ag_resv.h"
1302c6a2 24#include "xfs_health.h"
46141dc8
GX
25#include "xfs_error.h"
26#include "xfs_bmap.h"
27#include "xfs_defer.h"
28#include "xfs_log_format.h"
29#include "xfs_trans.h"
9bbafc71 30#include "xfs_trace.h"
07b6403a
DC
31#include "xfs_inode.h"
32#include "xfs_icache.h"
33
9bbafc71
DC
34
35/*
36 * Passive reference counting access wrappers to the perag structures. If the
37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
38 * up objects with passive references before freeing the structure. This is
39 * things like cached buffers.
40 */
41struct xfs_perag *
42xfs_perag_get(
43 struct xfs_mount *mp,
44 xfs_agnumber_t agno)
45{
46 struct xfs_perag *pag;
9bbafc71
DC
47
48 rcu_read_lock();
49 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
50 if (pag) {
368e2d09 51 trace_xfs_perag_get(pag, _RET_IP_);
9bbafc71 52 ASSERT(atomic_read(&pag->pag_ref) >= 0);
368e2d09 53 atomic_inc(&pag->pag_ref);
9bbafc71
DC
54 }
55 rcu_read_unlock();
9bbafc71
DC
56 return pag;
57}
58
59/*
60 * search from @first to find the next perag with the given tag set.
61 */
62struct xfs_perag *
63xfs_perag_get_tag(
64 struct xfs_mount *mp,
65 xfs_agnumber_t first,
ffc18582 66 unsigned int tag)
9bbafc71
DC
67{
68 struct xfs_perag *pag;
69 int found;
9bbafc71
DC
70
71 rcu_read_lock();
72 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
73 (void **)&pag, first, 1, tag);
74 if (found <= 0) {
75 rcu_read_unlock();
76 return NULL;
77 }
368e2d09
DC
78 trace_xfs_perag_get_tag(pag, _RET_IP_);
79 atomic_inc(&pag->pag_ref);
9bbafc71 80 rcu_read_unlock();
9bbafc71
DC
81 return pag;
82}
83
84void
85xfs_perag_put(
86 struct xfs_perag *pag)
87{
368e2d09 88 trace_xfs_perag_put(pag, _RET_IP_);
9bbafc71 89 ASSERT(atomic_read(&pag->pag_ref) > 0);
368e2d09 90 atomic_dec(&pag->pag_ref);
9bbafc71
DC
91}
92
c4d5660a
DC
93/*
94 * Active references for perag structures. This is for short term access to the
95 * per ag structures for walking trees or accessing state. If an AG is being
96 * shrunk or is offline, then this will fail to find that AG and return NULL
97 * instead.
98 */
99struct xfs_perag *
100xfs_perag_grab(
101 struct xfs_mount *mp,
102 xfs_agnumber_t agno)
103{
104 struct xfs_perag *pag;
105
106 rcu_read_lock();
107 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
108 if (pag) {
368e2d09 109 trace_xfs_perag_grab(pag, _RET_IP_);
c4d5660a
DC
110 if (!atomic_inc_not_zero(&pag->pag_active_ref))
111 pag = NULL;
112 }
113 rcu_read_unlock();
114 return pag;
115}
116
117/*
118 * search from @first to find the next perag with the given tag set.
119 */
120struct xfs_perag *
121xfs_perag_grab_tag(
122 struct xfs_mount *mp,
123 xfs_agnumber_t first,
124 int tag)
125{
126 struct xfs_perag *pag;
127 int found;
128
129 rcu_read_lock();
130 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
131 (void **)&pag, first, 1, tag);
132 if (found <= 0) {
133 rcu_read_unlock();
134 return NULL;
135 }
368e2d09 136 trace_xfs_perag_grab_tag(pag, _RET_IP_);
c4d5660a
DC
137 if (!atomic_inc_not_zero(&pag->pag_active_ref))
138 pag = NULL;
139 rcu_read_unlock();
140 return pag;
141}
142
143void
144xfs_perag_rele(
145 struct xfs_perag *pag)
146{
368e2d09 147 trace_xfs_perag_rele(pag, _RET_IP_);
c4d5660a
DC
148 if (atomic_dec_and_test(&pag->pag_active_ref))
149 wake_up(&pag->pag_active_wq);
150}
151
9bbafc71
DC
152/*
153 * xfs_initialize_perag_data
154 *
155 * Read in each per-ag structure so we can count up the number of
156 * allocated inodes, free inodes and used filesystem blocks as this
157 * information is no longer persistent in the superblock. Once we have
158 * this information, write it into the in-core superblock structure.
159 */
160int
161xfs_initialize_perag_data(
50920116
DC
162 struct xfs_mount *mp,
163 xfs_agnumber_t agcount)
9bbafc71 164{
50920116
DC
165 xfs_agnumber_t index;
166 struct xfs_perag *pag;
167 struct xfs_sb *sbp = &mp->m_sb;
168 uint64_t ifree = 0;
169 uint64_t ialloc = 0;
170 uint64_t bfree = 0;
171 uint64_t bfreelst = 0;
172 uint64_t btree = 0;
173 uint64_t fdblocks;
174 int error = 0;
9bbafc71
DC
175
176 for (index = 0; index < agcount; index++) {
177 /*
08d3e84f
DC
178 * Read the AGF and AGI buffers to populate the per-ag
179 * structures for us.
9bbafc71 180 */
99b13c7f 181 pag = xfs_perag_get(mp, index);
08d3e84f
DC
182 error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
183 if (!error)
184 error = xfs_ialloc_read_agi(pag, NULL, NULL);
99b13c7f
DC
185 if (error) {
186 xfs_perag_put(pag);
9bbafc71 187 return error;
99b13c7f 188 }
a95fee40 189
9bbafc71
DC
190 ifree += pag->pagi_freecount;
191 ialloc += pag->pagi_count;
192 bfree += pag->pagf_freeblks;
193 bfreelst += pag->pagf_flcount;
194 btree += pag->pagf_btreeblks;
195 xfs_perag_put(pag);
196 }
197 fdblocks = bfree + bfreelst + btree;
198
199 /*
200 * If the new summary counts are obviously incorrect, fail the
201 * mount operation because that implies the AGFs are also corrupt.
202 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
203 * will prevent xfs_repair from fixing anything.
204 */
205 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
206 xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
207 error = -EFSCORRUPTED;
208 goto out;
209 }
210
211 /* Overwrite incore superblock counters with just-read data */
212 spin_lock(&mp->m_sb_lock);
213 sbp->sb_ifree = ifree;
214 sbp->sb_icount = ialloc;
215 sbp->sb_fdblocks = fdblocks;
216 spin_unlock(&mp->m_sb_lock);
217
218 xfs_reinit_percpu_counters(mp);
219out:
220 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
221 return error;
222}
b16817b6 223
07b6403a
DC
224STATIC void
225__xfs_free_perag(
226 struct rcu_head *head)
227{
228 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
229
230 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
07b6403a
DC
231 kmem_free(pag);
232}
233
234/*
235 * Free up the per-ag resources associated with the mount structure.
236 */
237void
238xfs_free_perag(
239 struct xfs_mount *mp)
240{
241 struct xfs_perag *pag;
242 xfs_agnumber_t agno;
243
244 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
245 spin_lock(&mp->m_perag_lock);
246 pag = radix_tree_delete(&mp->m_perag_tree, agno);
247 spin_unlock(&mp->m_perag_lock);
248 ASSERT(pag);
5b55cbc2 249 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
07b6403a
DC
250
251 cancel_delayed_work_sync(&pag->pag_blockgc_work);
07b6403a
DC
252 xfs_buf_hash_destroy(pag);
253
c4d5660a
DC
254 /* drop the mount's active reference */
255 xfs_perag_rele(pag);
256 XFS_IS_CORRUPT(pag->pag_mount,
257 atomic_read(&pag->pag_active_ref) != 0);
07b6403a
DC
258 call_rcu(&pag->rcu_head, __xfs_free_perag);
259 }
260}
261
0800169e
DC
262/* Find the size of the AG, in blocks. */
263static xfs_agblock_t
264__xfs_ag_block_count(
265 struct xfs_mount *mp,
266 xfs_agnumber_t agno,
267 xfs_agnumber_t agcount,
268 xfs_rfsblock_t dblocks)
269{
270 ASSERT(agno < agcount);
271
272 if (agno < agcount - 1)
273 return mp->m_sb.sb_agblocks;
274 return dblocks - (agno * mp->m_sb.sb_agblocks);
275}
276
277xfs_agblock_t
278xfs_ag_block_count(
279 struct xfs_mount *mp,
280 xfs_agnumber_t agno)
281{
282 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
283 mp->m_sb.sb_dblocks);
284}
285
2d6ca832
DC
286/* Calculate the first and last possible inode number in an AG. */
287static void
288__xfs_agino_range(
289 struct xfs_mount *mp,
290 xfs_agblock_t eoag,
291 xfs_agino_t *first,
292 xfs_agino_t *last)
293{
294 xfs_agblock_t bno;
295
296 /*
297 * Calculate the first inode, which will be in the first
298 * cluster-aligned block after the AGFL.
299 */
300 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
301 *first = XFS_AGB_TO_AGINO(mp, bno);
302
303 /*
304 * Calculate the last inode, which will be at the end of the
305 * last (aligned) cluster that can be allocated in the AG.
306 */
307 bno = round_down(eoag, M_IGEO(mp)->cluster_align);
308 *last = XFS_AGB_TO_AGINO(mp, bno) - 1;
309}
310
311void
312xfs_agino_range(
313 struct xfs_mount *mp,
314 xfs_agnumber_t agno,
315 xfs_agino_t *first,
316 xfs_agino_t *last)
317{
318 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
319}
320
07b6403a
DC
321int
322xfs_initialize_perag(
323 struct xfs_mount *mp,
324 xfs_agnumber_t agcount,
0800169e 325 xfs_rfsblock_t dblocks,
07b6403a
DC
326 xfs_agnumber_t *maxagi)
327{
328 struct xfs_perag *pag;
329 xfs_agnumber_t index;
330 xfs_agnumber_t first_initialised = NULLAGNUMBER;
331 int error;
332
333 /*
334 * Walk the current per-ag tree so we don't try to initialise AGs
335 * that already exist (growfs case). Allocate and insert all the
336 * AGs we don't find ready for initialisation.
337 */
338 for (index = 0; index < agcount; index++) {
339 pag = xfs_perag_get(mp, index);
340 if (pag) {
341 xfs_perag_put(pag);
342 continue;
343 }
344
345 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
346 if (!pag) {
347 error = -ENOMEM;
348 goto out_unwind_new_pags;
349 }
350 pag->pag_agno = index;
351 pag->pag_mount = mp;
352
353 error = radix_tree_preload(GFP_NOFS);
354 if (error)
355 goto out_free_pag;
356
357 spin_lock(&mp->m_perag_lock);
358 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
359 WARN_ON_ONCE(1);
360 spin_unlock(&mp->m_perag_lock);
361 radix_tree_preload_end();
362 error = -EEXIST;
363 goto out_free_pag;
364 }
365 spin_unlock(&mp->m_perag_lock);
366 radix_tree_preload_end();
367
29f11fce 368#ifdef __KERNEL__
07b6403a
DC
369 /* Place kernel structure only init below this point. */
370 spin_lock_init(&pag->pag_ici_lock);
371 spin_lock_init(&pag->pagb_lock);
372 spin_lock_init(&pag->pag_state_lock);
373 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
374 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
375 init_waitqueue_head(&pag->pagb_wait);
c4d5660a 376 init_waitqueue_head(&pag->pag_active_wq);
07b6403a
DC
377 pag->pagb_count = 0;
378 pag->pagb_tree = RB_ROOT;
29f11fce 379#endif /* __KERNEL__ */
07b6403a
DC
380
381 error = xfs_buf_hash_init(pag);
382 if (error)
383 goto out_remove_pag;
384
c4d5660a
DC
385 /* Active ref owned by mount indicates AG is online. */
386 atomic_set(&pag->pag_active_ref, 1);
387
07b6403a
DC
388 /* first new pag is fully initialized */
389 if (first_initialised == NULLAGNUMBER)
390 first_initialised = index;
0800169e
DC
391
392 /*
393 * Pre-calculated geometry
394 */
395 pag->block_count = __xfs_ag_block_count(mp, index, agcount,
396 dblocks);
397 pag->min_block = XFS_AGFL_BLOCK(mp);
2d6ca832
DC
398 __xfs_agino_range(mp, pag->block_count, &pag->agino_min,
399 &pag->agino_max);
07b6403a
DC
400 }
401
402 index = xfs_set_inode_alloc(mp, agcount);
403
404 if (maxagi)
405 *maxagi = index;
406
407 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
408 return 0;
409
07b6403a
DC
410out_remove_pag:
411 radix_tree_delete(&mp->m_perag_tree, index);
412out_free_pag:
413 kmem_free(pag);
414out_unwind_new_pags:
415 /* unwind any prior newly initialized pags */
416 for (index = first_initialised; index < agcount; index++) {
417 pag = radix_tree_delete(&mp->m_perag_tree, index);
418 if (!pag)
419 break;
420 xfs_buf_hash_destroy(pag);
07b6403a
DC
421 kmem_free(pag);
422 }
423 return error;
424}
b16817b6 425
2842b6db 426static int
b16817b6
DC
427xfs_get_aghdr_buf(
428 struct xfs_mount *mp,
429 xfs_daddr_t blkno,
430 size_t numblks,
2842b6db 431 struct xfs_buf **bpp,
b16817b6
DC
432 const struct xfs_buf_ops *ops)
433{
434 struct xfs_buf *bp;
2842b6db 435 int error;
b16817b6 436
2842b6db
DW
437 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
438 if (error)
439 return error;
b16817b6 440
b16817b6
DC
441 bp->b_maps[0].bm_bn = blkno;
442 bp->b_ops = ops;
443
2842b6db
DW
444 *bpp = bp;
445 return 0;
b16817b6
DC
446}
447
448/*
449 * Generic btree root block init function
450 */
451static void
452xfs_btroot_init(
453 struct xfs_mount *mp,
454 struct xfs_buf *bp,
455 struct aghdr_init_data *id)
456{
f5b999c0 457 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
b16817b6
DC
458}
459
8d90857c 460/* Finish initializing a free space btree. */
b16817b6 461static void
8d90857c 462xfs_freesp_init_recs(
b16817b6
DC
463 struct xfs_mount *mp,
464 struct xfs_buf *bp,
465 struct aghdr_init_data *id)
466{
467 struct xfs_alloc_rec *arec;
f327a007 468 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
b16817b6 469
b16817b6
DC
470 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
471 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
f327a007 472
36029dee 473 if (xfs_ag_contains_log(mp, id->agno)) {
f327a007
DW
474 struct xfs_alloc_rec *nrec;
475 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
476 mp->m_sb.sb_logstart);
477
478 ASSERT(start >= mp->m_ag_prealloc_blocks);
479 if (start != mp->m_ag_prealloc_blocks) {
480 /*
481 * Modify first record to pad stripe align of log
482 */
483 arec->ar_blockcount = cpu_to_be32(start -
484 mp->m_ag_prealloc_blocks);
485 nrec = arec + 1;
486
487 /*
488 * Insert second record at start of internal log
489 * which then gets trimmed.
490 */
491 nrec->ar_startblock = cpu_to_be32(
492 be32_to_cpu(arec->ar_startblock) +
493 be32_to_cpu(arec->ar_blockcount));
494 arec = nrec;
495 be16_add_cpu(&block->bb_numrecs, 1);
496 }
497 /*
498 * Change record start to after the internal log
499 */
500 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
501 }
502
503 /*
504 * Calculate the record block count and check for the case where
505 * the log might have consumed all available space in the AG. If
506 * so, reset the record count to 0 to avoid exposure of an invalid
507 * record start block.
508 */
b16817b6
DC
509 arec->ar_blockcount = cpu_to_be32(id->agsize -
510 be32_to_cpu(arec->ar_startblock));
f327a007
DW
511 if (!arec->ar_blockcount)
512 block->bb_numrecs = 0;
b16817b6
DC
513}
514
8d90857c
DW
515/*
516 * Alloc btree root block init functions
517 */
b16817b6 518static void
8d90857c 519xfs_bnoroot_init(
b16817b6
DC
520 struct xfs_mount *mp,
521 struct xfs_buf *bp,
522 struct aghdr_init_data *id)
523{
8d90857c
DW
524 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno);
525 xfs_freesp_init_recs(mp, bp, id);
526}
b16817b6 527
8d90857c
DW
528static void
529xfs_cntroot_init(
530 struct xfs_mount *mp,
531 struct xfs_buf *bp,
532 struct aghdr_init_data *id)
533{
f5b999c0 534 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno);
8d90857c 535 xfs_freesp_init_recs(mp, bp, id);
b16817b6
DC
536}
537
538/*
539 * Reverse map root block init
540 */
541static void
542xfs_rmaproot_init(
543 struct xfs_mount *mp,
544 struct xfs_buf *bp,
545 struct aghdr_init_data *id)
546{
547 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
548 struct xfs_rmap_rec *rrec;
549
f5b999c0 550 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
b16817b6
DC
551
552 /*
553 * mark the AG header regions as static metadata The BNO
554 * btree block is the first block after the headers, so
555 * it's location defines the size of region the static
556 * metadata consumes.
557 *
558 * Note: unlike mkfs, we never have to account for log
559 * space when growing the data regions
560 */
561 rrec = XFS_RMAP_REC_ADDR(block, 1);
562 rrec->rm_startblock = 0;
563 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
564 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
565 rrec->rm_offset = 0;
566
567 /* account freespace btree root blocks */
568 rrec = XFS_RMAP_REC_ADDR(block, 2);
569 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
570 rrec->rm_blockcount = cpu_to_be32(2);
571 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
572 rrec->rm_offset = 0;
573
574 /* account inode btree root blocks */
575 rrec = XFS_RMAP_REC_ADDR(block, 3);
576 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
577 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
578 XFS_IBT_BLOCK(mp));
579 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
580 rrec->rm_offset = 0;
581
582 /* account for rmap btree root */
583 rrec = XFS_RMAP_REC_ADDR(block, 4);
584 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
585 rrec->rm_blockcount = cpu_to_be32(1);
586 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
587 rrec->rm_offset = 0;
588
589 /* account for refc btree root */
38c26bfd 590 if (xfs_has_reflink(mp)) {
b16817b6
DC
591 rrec = XFS_RMAP_REC_ADDR(block, 5);
592 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
593 rrec->rm_blockcount = cpu_to_be32(1);
594 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
595 rrec->rm_offset = 0;
596 be16_add_cpu(&block->bb_numrecs, 1);
597 }
f327a007
DW
598
599 /* account for the log space */
36029dee 600 if (xfs_ag_contains_log(mp, id->agno)) {
f327a007
DW
601 rrec = XFS_RMAP_REC_ADDR(block,
602 be16_to_cpu(block->bb_numrecs) + 1);
603 rrec->rm_startblock = cpu_to_be32(
604 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
605 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
606 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
607 rrec->rm_offset = 0;
608 be16_add_cpu(&block->bb_numrecs, 1);
609 }
b16817b6
DC
610}
611
612/*
613 * Initialise new secondary superblocks with the pre-grow geometry, but mark
614 * them as "in progress" so we know they haven't yet been activated. This will
615 * get cleared when the update with the new geometry information is done after
616 * changes to the primary are committed. This isn't strictly necessary, but we
617 * get it for free with the delayed buffer write lists and it means we can tell
618 * if a grow operation didn't complete properly after the fact.
619 */
620static void
621xfs_sbblock_init(
622 struct xfs_mount *mp,
623 struct xfs_buf *bp,
624 struct aghdr_init_data *id)
625{
3e6e8afd 626 struct xfs_dsb *dsb = bp->b_addr;
b16817b6
DC
627
628 xfs_sb_to_disk(dsb, &mp->m_sb);
629 dsb->sb_inprogress = 1;
630}
631
632static void
633xfs_agfblock_init(
634 struct xfs_mount *mp,
635 struct xfs_buf *bp,
636 struct aghdr_init_data *id)
637{
9798f615 638 struct xfs_agf *agf = bp->b_addr;
b16817b6
DC
639 xfs_extlen_t tmpsize;
640
641 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
642 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
643 agf->agf_seqno = cpu_to_be32(id->agno);
644 agf->agf_length = cpu_to_be32(id->agsize);
645 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
646 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
647 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
648 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
38c26bfd 649 if (xfs_has_rmapbt(mp)) {
b16817b6
DC
650 agf->agf_roots[XFS_BTNUM_RMAPi] =
651 cpu_to_be32(XFS_RMAP_BLOCK(mp));
652 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
653 agf->agf_rmap_blocks = cpu_to_be32(1);
654 }
655
656 agf->agf_flfirst = cpu_to_be32(1);
657 agf->agf_fllast = 0;
658 agf->agf_flcount = 0;
659 tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
660 agf->agf_freeblks = cpu_to_be32(tmpsize);
661 agf->agf_longest = cpu_to_be32(tmpsize);
38c26bfd 662 if (xfs_has_crc(mp))
b16817b6 663 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
38c26bfd 664 if (xfs_has_reflink(mp)) {
b16817b6
DC
665 agf->agf_refcount_root = cpu_to_be32(
666 xfs_refc_block(mp));
667 agf->agf_refcount_level = cpu_to_be32(1);
668 agf->agf_refcount_blocks = cpu_to_be32(1);
669 }
f327a007 670
36029dee 671 if (xfs_ag_contains_log(mp, id->agno)) {
f327a007
DW
672 int64_t logblocks = mp->m_sb.sb_logblocks;
673
674 be32_add_cpu(&agf->agf_freeblks, -logblocks);
675 agf->agf_longest = cpu_to_be32(id->agsize -
676 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
677 }
b16817b6
DC
678}
679
680static void
681xfs_agflblock_init(
682 struct xfs_mount *mp,
683 struct xfs_buf *bp,
684 struct aghdr_init_data *id)
685{
686 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
687 __be32 *agfl_bno;
688 int bucket;
689
38c26bfd 690 if (xfs_has_crc(mp)) {
b16817b6
DC
691 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
692 agfl->agfl_seqno = cpu_to_be32(id->agno);
693 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
694 }
695
183606d8 696 agfl_bno = xfs_buf_to_agfl_bno(bp);
b16817b6
DC
697 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
698 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
699}
700
701static void
702xfs_agiblock_init(
703 struct xfs_mount *mp,
704 struct xfs_buf *bp,
705 struct aghdr_init_data *id)
706{
370c782b 707 struct xfs_agi *agi = bp->b_addr;
b16817b6
DC
708 int bucket;
709
710 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
711 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
712 agi->agi_seqno = cpu_to_be32(id->agno);
713 agi->agi_length = cpu_to_be32(id->agsize);
714 agi->agi_count = 0;
715 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
716 agi->agi_level = cpu_to_be32(1);
717 agi->agi_freecount = 0;
718 agi->agi_newino = cpu_to_be32(NULLAGINO);
719 agi->agi_dirino = cpu_to_be32(NULLAGINO);
38c26bfd 720 if (xfs_has_crc(mp))
b16817b6 721 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
38c26bfd 722 if (xfs_has_finobt(mp)) {
b16817b6
DC
723 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
724 agi->agi_free_level = cpu_to_be32(1);
725 }
726 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
727 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
ebd9027d 728 if (xfs_has_inobtcounts(mp)) {
2a39946c 729 agi->agi_iblocks = cpu_to_be32(1);
ebd9027d 730 if (xfs_has_finobt(mp))
2a39946c
DW
731 agi->agi_fblocks = cpu_to_be32(1);
732 }
b16817b6
DC
733}
734
735typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
736 struct aghdr_init_data *id);
737static int
738xfs_ag_init_hdr(
739 struct xfs_mount *mp,
740 struct aghdr_init_data *id,
741 aghdr_init_work_f work,
742 const struct xfs_buf_ops *ops)
b16817b6
DC
743{
744 struct xfs_buf *bp;
2842b6db 745 int error;
b16817b6 746
2842b6db
DW
747 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
748 if (error)
749 return error;
b16817b6
DC
750
751 (*work)(mp, bp, id);
752
753 xfs_buf_delwri_queue(bp, &id->buffer_list);
754 xfs_buf_relse(bp);
755 return 0;
756}
757
758struct xfs_aghdr_grow_data {
759 xfs_daddr_t daddr;
760 size_t numblks;
761 const struct xfs_buf_ops *ops;
762 aghdr_init_work_f work;
763 xfs_btnum_t type;
764 bool need_init;
765};
766
767/*
768 * Prepare new AG headers to be written to disk. We use uncached buffers here,
769 * as it is assumed these new AG headers are currently beyond the currently
770 * valid filesystem address space. Using cached buffers would trip over EOFS
771 * corruption detection alogrithms in the buffer cache lookup routines.
772 *
773 * This is a non-transactional function, but the prepared buffers are added to a
774 * delayed write buffer list supplied by the caller so they can submit them to
775 * disk and wait on them as required.
776 */
777int
778xfs_ag_init_headers(
779 struct xfs_mount *mp,
780 struct aghdr_init_data *id)
781
782{
783 struct xfs_aghdr_grow_data aghdr_data[] = {
784 { /* SB */
785 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
786 .numblks = XFS_FSS_TO_BB(mp, 1),
787 .ops = &xfs_sb_buf_ops,
788 .work = &xfs_sbblock_init,
789 .need_init = true
790 },
791 { /* AGF */
792 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
793 .numblks = XFS_FSS_TO_BB(mp, 1),
794 .ops = &xfs_agf_buf_ops,
795 .work = &xfs_agfblock_init,
796 .need_init = true
797 },
798 { /* AGFL */
799 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
800 .numblks = XFS_FSS_TO_BB(mp, 1),
801 .ops = &xfs_agfl_buf_ops,
802 .work = &xfs_agflblock_init,
803 .need_init = true
804 },
805 { /* AGI */
806 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
807 .numblks = XFS_FSS_TO_BB(mp, 1),
808 .ops = &xfs_agi_buf_ops,
809 .work = &xfs_agiblock_init,
810 .need_init = true
811 },
812 { /* BNO root block */
813 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
814 .numblks = BTOBB(mp->m_sb.sb_blocksize),
27df4f50 815 .ops = &xfs_bnobt_buf_ops,
b16817b6
DC
816 .work = &xfs_bnoroot_init,
817 .need_init = true
818 },
819 { /* CNT root block */
820 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
821 .numblks = BTOBB(mp->m_sb.sb_blocksize),
27df4f50 822 .ops = &xfs_cntbt_buf_ops,
b16817b6
DC
823 .work = &xfs_cntroot_init,
824 .need_init = true
825 },
826 { /* INO root block */
827 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
828 .numblks = BTOBB(mp->m_sb.sb_blocksize),
829 .ops = &xfs_inobt_buf_ops,
830 .work = &xfs_btroot_init,
831 .type = XFS_BTNUM_INO,
832 .need_init = true
833 },
834 { /* FINO root block */
835 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
836 .numblks = BTOBB(mp->m_sb.sb_blocksize),
01e68f40 837 .ops = &xfs_finobt_buf_ops,
b16817b6
DC
838 .work = &xfs_btroot_init,
839 .type = XFS_BTNUM_FINO,
38c26bfd 840 .need_init = xfs_has_finobt(mp)
b16817b6
DC
841 },
842 { /* RMAP root block */
843 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
844 .numblks = BTOBB(mp->m_sb.sb_blocksize),
845 .ops = &xfs_rmapbt_buf_ops,
846 .work = &xfs_rmaproot_init,
38c26bfd 847 .need_init = xfs_has_rmapbt(mp)
b16817b6
DC
848 },
849 { /* REFC root block */
850 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
851 .numblks = BTOBB(mp->m_sb.sb_blocksize),
852 .ops = &xfs_refcountbt_buf_ops,
853 .work = &xfs_btroot_init,
854 .type = XFS_BTNUM_REFC,
38c26bfd 855 .need_init = xfs_has_reflink(mp)
b16817b6
DC
856 },
857 { /* NULL terminating block */
858 .daddr = XFS_BUF_DADDR_NULL,
859 }
860 };
861 struct xfs_aghdr_grow_data *dp;
862 int error = 0;
863
864 /* Account for AG free space in new AG */
865 id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
866 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
867 if (!dp->need_init)
868 continue;
869
870 id->daddr = dp->daddr;
871 id->numblks = dp->numblks;
872 id->type = dp->type;
873 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
874 if (error)
875 break;
876 }
877 return error;
878}
49dd56f2 879
46141dc8
GX
880int
881xfs_ag_shrink_space(
c6aee248 882 struct xfs_perag *pag,
46141dc8 883 struct xfs_trans **tpp,
46141dc8
GX
884 xfs_extlen_t delta)
885{
c6aee248 886 struct xfs_mount *mp = pag->pag_mount;
46141dc8
GX
887 struct xfs_alloc_arg args = {
888 .tp = *tpp,
889 .mp = mp,
74c36a86 890 .pag = pag,
46141dc8
GX
891 .minlen = delta,
892 .maxlen = delta,
893 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
894 .resv = XFS_AG_RESV_NONE,
895 .prod = 1
896 };
897 struct xfs_buf *agibp, *agfbp;
898 struct xfs_agi *agi;
899 struct xfs_agf *agf;
a8f3522c 900 xfs_agblock_t aglen;
46141dc8
GX
901 int error, err2;
902
c6aee248 903 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
99b13c7f 904 error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
46141dc8
GX
905 if (error)
906 return error;
907
908 agi = agibp->b_addr;
909
08d3e84f 910 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
46141dc8
GX
911 if (error)
912 return error;
913
914 agf = agfbp->b_addr;
a8f3522c 915 aglen = be32_to_cpu(agi->agi_length);
46141dc8
GX
916 /* some extra paranoid checks before we shrink the ag */
917 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
918 return -EFSCORRUPTED;
a8f3522c 919 if (delta >= aglen)
46141dc8
GX
920 return -EINVAL;
921
da062d16
DW
922 /*
923 * Make sure that the last inode cluster cannot overlap with the new
924 * end of the AG, even if it's sparse.
925 */
dedab3e4 926 error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
da062d16
DW
927 if (error)
928 return error;
929
46141dc8
GX
930 /*
931 * Disable perag reservations so it doesn't cause the allocation request
932 * to fail. We'll reestablish reservation before we return.
933 */
99b13c7f 934 error = xfs_ag_resv_free(pag);
46141dc8
GX
935 if (error)
936 return error;
937
938 /* internal log shouldn't also show up in the free space btrees */
5f36b2ce
DC
939 error = xfs_alloc_vextent_exact_bno(&args,
940 XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
46141dc8
GX
941 if (!error && args.agbno == NULLAGBLOCK)
942 error = -ENOSPC;
943
944 if (error) {
945 /*
946 * if extent allocation fails, need to roll the transaction to
947 * ensure that the AGFL fixup has been committed anyway.
948 */
949 xfs_trans_bhold(*tpp, agfbp);
950 err2 = xfs_trans_roll(tpp);
951 if (err2)
952 return err2;
953 xfs_trans_bjoin(*tpp, agfbp);
954 goto resv_init_out;
955 }
956
957 /*
958 * if successfully deleted from freespace btrees, need to confirm
959 * per-AG reservation works as expected.
960 */
961 be32_add_cpu(&agi->agi_length, -delta);
962 be32_add_cpu(&agf->agf_length, -delta);
963
99b13c7f 964 err2 = xfs_ag_resv_init(pag, *tpp);
46141dc8
GX
965 if (err2) {
966 be32_add_cpu(&agi->agi_length, delta);
967 be32_add_cpu(&agf->agf_length, delta);
968 if (err2 != -ENOSPC)
969 goto resv_err;
970
c201d9ca 971 __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true);
46141dc8
GX
972
973 /*
974 * Roll the transaction before trying to re-init the per-ag
975 * reservation. The new transaction is clean so it will cancel
976 * without any side effects.
977 */
978 error = xfs_defer_finish(tpp);
979 if (error)
980 return error;
981
982 error = -ENOSPC;
983 goto resv_init_out;
984 }
985 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
986 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
987 return 0;
99b13c7f 988
46141dc8 989resv_init_out:
99b13c7f 990 err2 = xfs_ag_resv_init(pag, *tpp);
46141dc8
GX
991 if (!err2)
992 return error;
993resv_err:
994 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
995 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
996 return err2;
997}
998
49dd56f2
DC
999/*
1000 * Extent the AG indicated by the @id by the length passed in
1001 */
1002int
1003xfs_ag_extend_space(
c6aee248 1004 struct xfs_perag *pag,
49dd56f2 1005 struct xfs_trans *tp,
49dd56f2
DC
1006 xfs_extlen_t len)
1007{
49dd56f2
DC
1008 struct xfs_buf *bp;
1009 struct xfs_agi *agi;
1010 struct xfs_agf *agf;
1011 int error;
1012
c6aee248
DC
1013 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1014
99b13c7f 1015 error = xfs_ialloc_read_agi(pag, tp, &bp);
49dd56f2
DC
1016 if (error)
1017 return error;
1018
370c782b 1019 agi = bp->b_addr;
49dd56f2 1020 be32_add_cpu(&agi->agi_length, len);
49dd56f2
DC
1021 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1022
1023 /*
1024 * Change agf length.
1025 */
08d3e84f 1026 error = xfs_alloc_read_agf(pag, tp, 0, &bp);
49dd56f2
DC
1027 if (error)
1028 return error;
1029
9798f615 1030 agf = bp->b_addr;
49dd56f2
DC
1031 be32_add_cpu(&agf->agf_length, len);
1032 ASSERT(agf->agf_length == agi->agi_length);
1033 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1034
1035 /*
1036 * Free the new space.
1037 *
7280feda 1038 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
49dd56f2
DC
1039 * this doesn't actually exist in the rmap btree.
1040 */
c6aee248 1041 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
7280feda 1042 len, &XFS_RMAP_OINFO_SKIP_UPDATE);
49dd56f2
DC
1043 if (error)
1044 return error;
1045
b2ccab31
DW
1046 error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1047 len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
0800169e
DC
1048 if (error)
1049 return error;
1050
1051 /* Update perag geometry */
1052 pag->block_count = be32_to_cpu(agf->agf_length);
2d6ca832
DC
1053 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1054 &pag->agino_max);
0800169e 1055 return 0;
49dd56f2 1056}
7cd5006b
DW
1057
1058/* Retrieve AG geometry. */
1059int
1060xfs_ag_get_geometry(
c6aee248 1061 struct xfs_perag *pag,
7cd5006b
DW
1062 struct xfs_ag_geometry *ageo)
1063{
1064 struct xfs_buf *agi_bp;
1065 struct xfs_buf *agf_bp;
1066 struct xfs_agi *agi;
1067 struct xfs_agf *agf;
7cd5006b
DW
1068 unsigned int freeblks;
1069 int error;
1070
7cd5006b 1071 /* Lock the AG headers. */
99b13c7f 1072 error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
7cd5006b
DW
1073 if (error)
1074 return error;
08d3e84f 1075 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
7cd5006b
DW
1076 if (error)
1077 goto out_agi;
92a00544 1078
7cd5006b
DW
1079 /* Fill out form. */
1080 memset(ageo, 0, sizeof(*ageo));
c6aee248 1081 ageo->ag_number = pag->pag_agno;
7cd5006b 1082
370c782b 1083 agi = agi_bp->b_addr;
7cd5006b
DW
1084 ageo->ag_icount = be32_to_cpu(agi->agi_count);
1085 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1086
9798f615 1087 agf = agf_bp->b_addr;
7cd5006b
DW
1088 ageo->ag_length = be32_to_cpu(agf->agf_length);
1089 freeblks = pag->pagf_freeblks +
1090 pag->pagf_flcount +
1091 pag->pagf_btreeblks -
1092 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1093 ageo->ag_freeblks = freeblks;
1302c6a2 1094 xfs_ag_geom_health(pag, ageo);
7cd5006b
DW
1095
1096 /* Release resources. */
7cd5006b
DW
1097 xfs_buf_relse(agf_bp);
1098out_agi:
1099 xfs_buf_relse(agi_bp);
1100 return error;
1101}