userfaultfd: wp: support write protection for userfault vma range
[linux-2.6-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3
AA
17#include <linux/mm.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/seq_file.h>
21#include <linux/file.h>
22#include <linux/bug.h>
23#include <linux/anon_inodes.h>
24#include <linux/syscalls.h>
25#include <linux/userfaultfd_k.h>
26#include <linux/mempolicy.h>
27#include <linux/ioctl.h>
28#include <linux/security.h>
cab350af 29#include <linux/hugetlb.h>
86039bd3 30
cefdca0a
PX
31int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
cbcfa130
EB
43 *
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
49 *
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
3004ec9c 53 */
86039bd3 54struct userfaultfd_ctx {
15b726ef
AA
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
86039bd3
AA
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
9cd75c3c
PE
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
2c5b7e1b
AA
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
3004ec9c 65 /* pseudo fd refcounting */
ca880420 66 refcount_t refcount;
86039bd3
AA
67 /* userfaultfd syscall flags */
68 unsigned int flags;
9cd75c3c
PE
69 /* features requested from the userspace */
70 unsigned int features;
86039bd3
AA
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
df2cc96e
MR
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
86039bd3
AA
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
79};
80
893e26e6
PE
81struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
85};
86
897ab3e0
MR
87struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
92};
93
86039bd3 94struct userfaultfd_wait_queue {
a9b85f94 95 struct uffd_msg msg;
ac6424b9 96 wait_queue_entry_t wq;
86039bd3 97 struct userfaultfd_ctx *ctx;
15a77c6f 98 bool waken;
86039bd3
AA
99};
100
101struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
104};
105
ac6424b9 106static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
107 int wake_flags, void *key)
108{
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
113
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
86039bd3
AA
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
a9b85f94
AA
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 121 goto out;
15a77c6f
AA
122 WRITE_ONCE(uwq->waken, true);
123 /*
a9668cd6
PZ
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
15a77c6f 126 */
86039bd3 127 ret = wake_up_state(wq->private, mode);
a9668cd6 128 if (ret) {
86039bd3
AA
129 /*
130 * Wake only once, autoremove behavior.
131 *
a9668cd6
PZ
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
135 *
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 139 */
2055da97 140 list_del_init(&wq->entry);
a9668cd6 141 }
86039bd3
AA
142out:
143 return ret;
144}
145
146/**
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
150 */
151static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152{
ca880420 153 refcount_inc(&ctx->refcount);
86039bd3
AA
154}
155
156/**
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158 * context.
159 * @ctx: [in] Pointer to userfaultfd context.
160 *
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163 */
164static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165{
ca880420 166 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 175 mmdrop(ctx->mm);
3004ec9c 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
177 }
178}
179
a9b85f94 180static inline void msg_init(struct uffd_msg *msg)
86039bd3 181{
a9b85f94
AA
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 /*
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
186 */
187 memset(msg, 0, sizeof(struct uffd_msg));
188}
189
190static inline struct uffd_msg userfault_msg(unsigned long address,
191 unsigned int flags,
9d4ac934
AP
192 unsigned long reason,
193 unsigned int features)
a9b85f94
AA
194{
195 struct uffd_msg msg;
196 msg_init(&msg);
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
86039bd3
AA
199 if (flags & FAULT_FLAG_WRITE)
200 /*
a4605a61 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
205 * a write fault.
86039bd3 206 */
a9b85f94 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
208 if (reason & VM_UFFD_WP)
209 /*
a9b85f94
AA
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
86039bd3 215 */
a9b85f94 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 217 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 219 return msg;
86039bd3
AA
220}
221
369cd212
MK
222#ifdef CONFIG_HUGETLB_PAGE
223/*
224 * Same functionality as userfaultfd_must_wait below with modifications for
225 * hugepmd ranges.
226 */
227static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 228 struct vm_area_struct *vma,
369cd212
MK
229 unsigned long address,
230 unsigned long flags,
231 unsigned long reason)
232{
233 struct mm_struct *mm = ctx->mm;
1e2c0436 234 pte_t *ptep, pte;
369cd212
MK
235 bool ret = true;
236
237 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
238
1e2c0436
JF
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241 if (!ptep)
369cd212
MK
242 goto out;
243
244 ret = false;
1e2c0436 245 pte = huge_ptep_get(ptep);
369cd212
MK
246
247 /*
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us.
250 */
1e2c0436 251 if (huge_pte_none(pte))
369cd212 252 ret = true;
1e2c0436 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
254 ret = true;
255out:
256 return ret;
257}
258#else
259static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 260 struct vm_area_struct *vma,
369cd212
MK
261 unsigned long address,
262 unsigned long flags,
263 unsigned long reason)
264{
265 return false; /* should never get here */
266}
267#endif /* CONFIG_HUGETLB_PAGE */
268
8d2afd96
AA
269/*
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 * threads.
275 */
276static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
278 unsigned long flags,
279 unsigned long reason)
280{
281 struct mm_struct *mm = ctx->mm;
282 pgd_t *pgd;
c2febafc 283 p4d_t *p4d;
8d2afd96
AA
284 pud_t *pud;
285 pmd_t *pmd, _pmd;
286 pte_t *pte;
287 bool ret = true;
288
289 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
c2febafc
KS
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
8d2afd96
AA
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
301 /*
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
305 *
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
308 */
309 _pmd = READ_ONCE(*pmd);
a365ac09 310 if (pmd_none(_pmd))
8d2afd96
AA
311 goto out;
312
313 ret = false;
a365ac09
HY
314 if (!pmd_present(_pmd))
315 goto out;
316
8d2afd96
AA
317 if (pmd_trans_huge(_pmd))
318 goto out;
319
320 /*
321 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322 * and use the standard pte_offset_map() instead of parsing _pmd.
323 */
324 pte = pte_offset_map(pmd, address);
325 /*
326 * Lockless access: we're in a wait_event so it's ok if it
327 * changes under us.
328 */
329 if (pte_none(*pte))
330 ret = true;
331 pte_unmap(pte);
332
333out:
334 return ret;
335}
336
3e69ad08
PX
337/* Should pair with userfaultfd_signal_pending() */
338static inline long userfaultfd_get_blocking_state(unsigned int flags)
339{
340 if (flags & FAULT_FLAG_INTERRUPTIBLE)
341 return TASK_INTERRUPTIBLE;
342
343 if (flags & FAULT_FLAG_KILLABLE)
344 return TASK_KILLABLE;
345
346 return TASK_UNINTERRUPTIBLE;
347}
348
349/* Should pair with userfaultfd_get_blocking_state() */
350static inline bool userfaultfd_signal_pending(unsigned int flags)
351{
352 if (flags & FAULT_FLAG_INTERRUPTIBLE)
353 return signal_pending(current);
354
355 if (flags & FAULT_FLAG_KILLABLE)
356 return fatal_signal_pending(current);
357
358 return false;
359}
360
86039bd3
AA
361/*
362 * The locking rules involved in returning VM_FAULT_RETRY depending on
363 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
364 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
365 * recommendation in __lock_page_or_retry is not an understatement.
366 *
367 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
368 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
369 * not set.
370 *
371 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
372 * set, VM_FAULT_RETRY can still be returned if and only if there are
373 * fatal_signal_pending()s, and the mmap_sem must be released before
374 * returning it.
375 */
2b740303 376vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 377{
82b0f8c3 378 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
379 struct userfaultfd_ctx *ctx;
380 struct userfaultfd_wait_queue uwq;
2b740303 381 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 382 bool must_wait;
15a77c6f 383 long blocking_state;
86039bd3 384
64c2b203
AA
385 /*
386 * We don't do userfault handling for the final child pid update.
387 *
388 * We also don't do userfault handling during
389 * coredumping. hugetlbfs has the special
390 * follow_hugetlb_page() to skip missing pages in the
391 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
392 * the no_page_table() helper in follow_page_mask(), but the
393 * shmem_vm_ops->fault method is invoked even during
394 * coredumping without mmap_sem and it ends up here.
395 */
396 if (current->flags & (PF_EXITING|PF_DUMPCORE))
397 goto out;
398
399 /*
400 * Coredumping runs without mmap_sem so we can only check that
401 * the mmap_sem is held, if PF_DUMPCORE was not set.
402 */
403 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
404
82b0f8c3 405 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 406 if (!ctx)
ba85c702 407 goto out;
86039bd3
AA
408
409 BUG_ON(ctx->mm != mm);
410
411 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
412 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
413
2d6d6f5a
PS
414 if (ctx->features & UFFD_FEATURE_SIGBUS)
415 goto out;
416
86039bd3
AA
417 /*
418 * If it's already released don't get it. This avoids to loop
419 * in __get_user_pages if userfaultfd_release waits on the
420 * caller of handle_userfault to release the mmap_sem.
421 */
6aa7de05 422 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
423 /*
424 * Don't return VM_FAULT_SIGBUS in this case, so a non
425 * cooperative manager can close the uffd after the
426 * last UFFDIO_COPY, without risking to trigger an
427 * involuntary SIGBUS if the process was starting the
428 * userfaultfd while the userfaultfd was still armed
429 * (but after the last UFFDIO_COPY). If the uffd
430 * wasn't already closed when the userfault reached
431 * this point, that would normally be solved by
432 * userfaultfd_must_wait returning 'false'.
433 *
434 * If we were to return VM_FAULT_SIGBUS here, the non
435 * cooperative manager would be instead forced to
436 * always call UFFDIO_UNREGISTER before it can safely
437 * close the uffd.
438 */
439 ret = VM_FAULT_NOPAGE;
ba85c702 440 goto out;
656710a6 441 }
86039bd3
AA
442
443 /*
444 * Check that we can return VM_FAULT_RETRY.
445 *
446 * NOTE: it should become possible to return VM_FAULT_RETRY
447 * even if FAULT_FLAG_TRIED is set without leading to gup()
448 * -EBUSY failures, if the userfaultfd is to be extended for
449 * VM_UFFD_WP tracking and we intend to arm the userfault
450 * without first stopping userland access to the memory. For
451 * VM_UFFD_MISSING userfaults this is enough for now.
452 */
82b0f8c3 453 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
454 /*
455 * Validate the invariant that nowait must allow retry
456 * to be sure not to return SIGBUS erroneously on
457 * nowait invocations.
458 */
82b0f8c3 459 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
460#ifdef CONFIG_DEBUG_VM
461 if (printk_ratelimit()) {
462 printk(KERN_WARNING
82b0f8c3
JK
463 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464 vmf->flags);
86039bd3
AA
465 dump_stack();
466 }
467#endif
ba85c702 468 goto out;
86039bd3
AA
469 }
470
471 /*
472 * Handle nowait, not much to do other than tell it to retry
473 * and wait.
474 */
ba85c702 475 ret = VM_FAULT_RETRY;
82b0f8c3 476 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 477 goto out;
86039bd3
AA
478
479 /* take the reference before dropping the mmap_sem */
480 userfaultfd_ctx_get(ctx);
481
86039bd3
AA
482 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483 uwq.wq.private = current;
9d4ac934
AP
484 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485 ctx->features);
86039bd3 486 uwq.ctx = ctx;
15a77c6f 487 uwq.waken = false;
86039bd3 488
3e69ad08 489 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 490
cbcfa130 491 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
492 /*
493 * After the __add_wait_queue the uwq is visible to userland
494 * through poll/read().
495 */
15b726ef
AA
496 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497 /*
498 * The smp_mb() after __set_current_state prevents the reads
499 * following the spin_unlock to happen before the list_add in
500 * __add_wait_queue.
501 */
15a77c6f 502 set_current_state(blocking_state);
cbcfa130 503 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 504
369cd212
MK
505 if (!is_vm_hugetlb_page(vmf->vma))
506 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507 reason);
508 else
7868a208
PA
509 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510 vmf->address,
369cd212 511 vmf->flags, reason);
8d2afd96
AA
512 up_read(&mm->mmap_sem);
513
6aa7de05 514 if (likely(must_wait && !READ_ONCE(ctx->released) &&
3e69ad08 515 !userfaultfd_signal_pending(vmf->flags))) {
a9a08845 516 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 517 schedule();
ba85c702 518 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
519
520 /*
521 * False wakeups can orginate even from rwsem before
522 * up_read() however userfaults will wait either for a
523 * targeted wakeup on the specific uwq waitqueue from
524 * wake_userfault() or for signals or for uffd
525 * release.
526 */
527 while (!READ_ONCE(uwq.waken)) {
528 /*
529 * This needs the full smp_store_mb()
530 * guarantee as the state write must be
531 * visible to other CPUs before reading
532 * uwq.waken from other CPUs.
533 */
534 set_current_state(blocking_state);
535 if (READ_ONCE(uwq.waken) ||
536 READ_ONCE(ctx->released) ||
3e69ad08 537 userfaultfd_signal_pending(vmf->flags))
15a77c6f
AA
538 break;
539 schedule();
540 }
ba85c702 541 }
86039bd3 542
ba85c702 543 __set_current_state(TASK_RUNNING);
15b726ef
AA
544
545 /*
546 * Here we race with the list_del; list_add in
547 * userfaultfd_ctx_read(), however because we don't ever run
548 * list_del_init() to refile across the two lists, the prev
549 * and next pointers will never point to self. list_add also
550 * would never let any of the two pointers to point to
551 * self. So list_empty_careful won't risk to see both pointers
552 * pointing to self at any time during the list refile. The
553 * only case where list_del_init() is called is the full
554 * removal in the wake function and there we don't re-list_add
555 * and it's fine not to block on the spinlock. The uwq on this
556 * kernel stack can be released after the list_del_init.
557 */
2055da97 558 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 559 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
560 /*
561 * No need of list_del_init(), the uwq on the stack
562 * will be freed shortly anyway.
563 */
2055da97 564 list_del(&uwq.wq.entry);
cbcfa130 565 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 566 }
86039bd3
AA
567
568 /*
569 * ctx may go away after this if the userfault pseudo fd is
570 * already released.
571 */
572 userfaultfd_ctx_put(ctx);
573
ba85c702
AA
574out:
575 return ret;
86039bd3
AA
576}
577
8c9e7bb7
AA
578static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
579 struct userfaultfd_wait_queue *ewq)
9cd75c3c 580{
0cbb4b4f
AA
581 struct userfaultfd_ctx *release_new_ctx;
582
9a69a829
AA
583 if (WARN_ON_ONCE(current->flags & PF_EXITING))
584 goto out;
9cd75c3c
PE
585
586 ewq->ctx = ctx;
587 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 588 release_new_ctx = NULL;
9cd75c3c 589
cbcfa130 590 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
591 /*
592 * After the __add_wait_queue the uwq is visible to userland
593 * through poll/read().
594 */
595 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
596 for (;;) {
597 set_current_state(TASK_KILLABLE);
598 if (ewq->msg.event == 0)
599 break;
6aa7de05 600 if (READ_ONCE(ctx->released) ||
9cd75c3c 601 fatal_signal_pending(current)) {
384632e6
AA
602 /*
603 * &ewq->wq may be queued in fork_event, but
604 * __remove_wait_queue ignores the head
605 * parameter. It would be a problem if it
606 * didn't.
607 */
9cd75c3c 608 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
609 if (ewq->msg.event == UFFD_EVENT_FORK) {
610 struct userfaultfd_ctx *new;
611
612 new = (struct userfaultfd_ctx *)
613 (unsigned long)
614 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 615 release_new_ctx = new;
7eb76d45 616 }
9cd75c3c
PE
617 break;
618 }
619
cbcfa130 620 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 621
a9a08845 622 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
623 schedule();
624
cbcfa130 625 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
626 }
627 __set_current_state(TASK_RUNNING);
cbcfa130 628 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 629
0cbb4b4f
AA
630 if (release_new_ctx) {
631 struct vm_area_struct *vma;
632 struct mm_struct *mm = release_new_ctx->mm;
633
634 /* the various vma->vm_userfaultfd_ctx still points to it */
635 down_write(&mm->mmap_sem);
04f5866e
AA
636 /* no task can run (and in turn coredump) yet */
637 VM_WARN_ON(!mmget_still_valid(mm));
0cbb4b4f 638 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 639 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
31e810aa
MR
641 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
642 }
0cbb4b4f
AA
643 up_write(&mm->mmap_sem);
644
645 userfaultfd_ctx_put(release_new_ctx);
646 }
647
9cd75c3c
PE
648 /*
649 * ctx may go away after this if the userfault pseudo fd is
650 * already released.
651 */
9a69a829 652out:
df2cc96e 653 WRITE_ONCE(ctx->mmap_changing, false);
9cd75c3c 654 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
655}
656
657static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
658 struct userfaultfd_wait_queue *ewq)
659{
660 ewq->msg.event = 0;
661 wake_up_locked(&ctx->event_wqh);
662 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
663}
664
893e26e6
PE
665int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
666{
667 struct userfaultfd_ctx *ctx = NULL, *octx;
668 struct userfaultfd_fork_ctx *fctx;
669
670 octx = vma->vm_userfaultfd_ctx.ctx;
671 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
672 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
673 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
674 return 0;
675 }
676
677 list_for_each_entry(fctx, fcs, list)
678 if (fctx->orig == octx) {
679 ctx = fctx->new;
680 break;
681 }
682
683 if (!ctx) {
684 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
685 if (!fctx)
686 return -ENOMEM;
687
688 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
689 if (!ctx) {
690 kfree(fctx);
691 return -ENOMEM;
692 }
693
ca880420 694 refcount_set(&ctx->refcount, 1);
893e26e6
PE
695 ctx->flags = octx->flags;
696 ctx->state = UFFD_STATE_RUNNING;
697 ctx->features = octx->features;
698 ctx->released = false;
df2cc96e 699 ctx->mmap_changing = false;
893e26e6 700 ctx->mm = vma->vm_mm;
00bb31fa 701 mmgrab(ctx->mm);
893e26e6
PE
702
703 userfaultfd_ctx_get(octx);
df2cc96e 704 WRITE_ONCE(octx->mmap_changing, true);
893e26e6
PE
705 fctx->orig = octx;
706 fctx->new = ctx;
707 list_add_tail(&fctx->list, fcs);
708 }
709
710 vma->vm_userfaultfd_ctx.ctx = ctx;
711 return 0;
712}
713
8c9e7bb7 714static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
715{
716 struct userfaultfd_ctx *ctx = fctx->orig;
717 struct userfaultfd_wait_queue ewq;
718
719 msg_init(&ewq.msg);
720
721 ewq.msg.event = UFFD_EVENT_FORK;
722 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
723
8c9e7bb7 724 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
725}
726
727void dup_userfaultfd_complete(struct list_head *fcs)
728{
893e26e6
PE
729 struct userfaultfd_fork_ctx *fctx, *n;
730
731 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 732 dup_fctx(fctx);
893e26e6
PE
733 list_del(&fctx->list);
734 kfree(fctx);
735 }
736}
737
72f87654
PE
738void mremap_userfaultfd_prep(struct vm_area_struct *vma,
739 struct vm_userfaultfd_ctx *vm_ctx)
740{
741 struct userfaultfd_ctx *ctx;
742
743 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
744
745 if (!ctx)
746 return;
747
748 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
749 vm_ctx->ctx = ctx;
750 userfaultfd_ctx_get(ctx);
df2cc96e 751 WRITE_ONCE(ctx->mmap_changing, true);
3cfd22be
PX
752 } else {
753 /* Drop uffd context if remap feature not enabled */
754 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
755 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
72f87654
PE
756 }
757}
758
90794bf1 759void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
760 unsigned long from, unsigned long to,
761 unsigned long len)
762{
90794bf1 763 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
764 struct userfaultfd_wait_queue ewq;
765
766 if (!ctx)
767 return;
768
769 if (to & ~PAGE_MASK) {
770 userfaultfd_ctx_put(ctx);
771 return;
772 }
773
774 msg_init(&ewq.msg);
775
776 ewq.msg.event = UFFD_EVENT_REMAP;
777 ewq.msg.arg.remap.from = from;
778 ewq.msg.arg.remap.to = to;
779 ewq.msg.arg.remap.len = len;
780
781 userfaultfd_event_wait_completion(ctx, &ewq);
782}
783
70ccb92f 784bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 785 unsigned long start, unsigned long end)
05ce7724
PE
786{
787 struct mm_struct *mm = vma->vm_mm;
788 struct userfaultfd_ctx *ctx;
789 struct userfaultfd_wait_queue ewq;
790
791 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 792 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 793 return true;
05ce7724
PE
794
795 userfaultfd_ctx_get(ctx);
df2cc96e 796 WRITE_ONCE(ctx->mmap_changing, true);
05ce7724
PE
797 up_read(&mm->mmap_sem);
798
05ce7724
PE
799 msg_init(&ewq.msg);
800
d811914d
MR
801 ewq.msg.event = UFFD_EVENT_REMOVE;
802 ewq.msg.arg.remove.start = start;
803 ewq.msg.arg.remove.end = end;
05ce7724
PE
804
805 userfaultfd_event_wait_completion(ctx, &ewq);
806
70ccb92f 807 return false;
05ce7724
PE
808}
809
897ab3e0
MR
810static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
811 unsigned long start, unsigned long end)
812{
813 struct userfaultfd_unmap_ctx *unmap_ctx;
814
815 list_for_each_entry(unmap_ctx, unmaps, list)
816 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
817 unmap_ctx->end == end)
818 return true;
819
820 return false;
821}
822
823int userfaultfd_unmap_prep(struct vm_area_struct *vma,
824 unsigned long start, unsigned long end,
825 struct list_head *unmaps)
826{
827 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
828 struct userfaultfd_unmap_ctx *unmap_ctx;
829 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
830
831 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
832 has_unmap_ctx(ctx, unmaps, start, end))
833 continue;
834
835 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
836 if (!unmap_ctx)
837 return -ENOMEM;
838
839 userfaultfd_ctx_get(ctx);
df2cc96e 840 WRITE_ONCE(ctx->mmap_changing, true);
897ab3e0
MR
841 unmap_ctx->ctx = ctx;
842 unmap_ctx->start = start;
843 unmap_ctx->end = end;
844 list_add_tail(&unmap_ctx->list, unmaps);
845 }
846
847 return 0;
848}
849
850void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
851{
852 struct userfaultfd_unmap_ctx *ctx, *n;
853 struct userfaultfd_wait_queue ewq;
854
855 list_for_each_entry_safe(ctx, n, uf, list) {
856 msg_init(&ewq.msg);
857
858 ewq.msg.event = UFFD_EVENT_UNMAP;
859 ewq.msg.arg.remove.start = ctx->start;
860 ewq.msg.arg.remove.end = ctx->end;
861
862 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
863
864 list_del(&ctx->list);
865 kfree(ctx);
866 }
867}
868
86039bd3
AA
869static int userfaultfd_release(struct inode *inode, struct file *file)
870{
871 struct userfaultfd_ctx *ctx = file->private_data;
872 struct mm_struct *mm = ctx->mm;
873 struct vm_area_struct *vma, *prev;
874 /* len == 0 means wake all */
875 struct userfaultfd_wake_range range = { .len = 0, };
876 unsigned long new_flags;
46d0b24c 877 bool still_valid;
86039bd3 878
6aa7de05 879 WRITE_ONCE(ctx->released, true);
86039bd3 880
d2005e3f
ON
881 if (!mmget_not_zero(mm))
882 goto wakeup;
883
86039bd3
AA
884 /*
885 * Flush page faults out of all CPUs. NOTE: all page faults
886 * must be retried without returning VM_FAULT_SIGBUS if
887 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
888 * changes while handle_userfault released the mmap_sem. So
889 * it's critical that released is set to true (above), before
890 * taking the mmap_sem for writing.
891 */
892 down_write(&mm->mmap_sem);
46d0b24c 893 still_valid = mmget_still_valid(mm);
86039bd3
AA
894 prev = NULL;
895 for (vma = mm->mmap; vma; vma = vma->vm_next) {
896 cond_resched();
897 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
898 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
899 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
900 prev = vma;
901 continue;
902 }
903 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
46d0b24c
ON
904 if (still_valid) {
905 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
906 new_flags, vma->anon_vma,
907 vma->vm_file, vma->vm_pgoff,
908 vma_policy(vma),
909 NULL_VM_UFFD_CTX);
910 if (prev)
911 vma = prev;
912 else
913 prev = vma;
914 }
86039bd3
AA
915 vma->vm_flags = new_flags;
916 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
917 }
918 up_write(&mm->mmap_sem);
d2005e3f
ON
919 mmput(mm);
920wakeup:
86039bd3 921 /*
15b726ef 922 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 923 * the last page faults that may have been already waiting on
15b726ef 924 * the fault_*wqh.
86039bd3 925 */
cbcfa130 926 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 927 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 928 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 929 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 930
5a18b64e
MR
931 /* Flush pending events that may still wait on event_wqh */
932 wake_up_all(&ctx->event_wqh);
933
a9a08845 934 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
935 userfaultfd_ctx_put(ctx);
936 return 0;
937}
938
15b726ef 939/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
940static inline struct userfaultfd_wait_queue *find_userfault_in(
941 wait_queue_head_t *wqh)
86039bd3 942{
ac6424b9 943 wait_queue_entry_t *wq;
15b726ef 944 struct userfaultfd_wait_queue *uwq;
86039bd3 945
456a7378 946 lockdep_assert_held(&wqh->lock);
86039bd3 947
15b726ef 948 uwq = NULL;
6dcc27fd 949 if (!waitqueue_active(wqh))
15b726ef
AA
950 goto out;
951 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 952 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
953 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
954out:
955 return uwq;
86039bd3 956}
6dcc27fd
PE
957
958static inline struct userfaultfd_wait_queue *find_userfault(
959 struct userfaultfd_ctx *ctx)
960{
961 return find_userfault_in(&ctx->fault_pending_wqh);
962}
86039bd3 963
9cd75c3c
PE
964static inline struct userfaultfd_wait_queue *find_userfault_evt(
965 struct userfaultfd_ctx *ctx)
966{
967 return find_userfault_in(&ctx->event_wqh);
968}
969
076ccb76 970static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
971{
972 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 973 __poll_t ret;
86039bd3
AA
974
975 poll_wait(file, &ctx->fd_wqh, wait);
976
977 switch (ctx->state) {
978 case UFFD_STATE_WAIT_API:
a9a08845 979 return EPOLLERR;
86039bd3 980 case UFFD_STATE_RUNNING:
ba85c702
AA
981 /*
982 * poll() never guarantees that read won't block.
983 * userfaults can be waken before they're read().
984 */
985 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 986 return EPOLLERR;
15b726ef
AA
987 /*
988 * lockless access to see if there are pending faults
989 * __pollwait last action is the add_wait_queue but
990 * the spin_unlock would allow the waitqueue_active to
991 * pass above the actual list_add inside
992 * add_wait_queue critical section. So use a full
993 * memory barrier to serialize the list_add write of
994 * add_wait_queue() with the waitqueue_active read
995 * below.
996 */
997 ret = 0;
998 smp_mb();
999 if (waitqueue_active(&ctx->fault_pending_wqh))
a9a08845 1000 ret = EPOLLIN;
9cd75c3c 1001 else if (waitqueue_active(&ctx->event_wqh))
a9a08845 1002 ret = EPOLLIN;
9cd75c3c 1003
86039bd3
AA
1004 return ret;
1005 default:
8474901a 1006 WARN_ON_ONCE(1);
a9a08845 1007 return EPOLLERR;
86039bd3
AA
1008 }
1009}
1010
893e26e6
PE
1011static const struct file_operations userfaultfd_fops;
1012
1013static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1014 struct userfaultfd_ctx *new,
1015 struct uffd_msg *msg)
1016{
1017 int fd;
893e26e6 1018
284cd241
EB
1019 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1020 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
893e26e6
PE
1021 if (fd < 0)
1022 return fd;
1023
893e26e6
PE
1024 msg->arg.reserved.reserved1 = 0;
1025 msg->arg.fork.ufd = fd;
893e26e6
PE
1026 return 0;
1027}
1028
86039bd3 1029static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 1030 struct uffd_msg *msg)
86039bd3
AA
1031{
1032 ssize_t ret;
1033 DECLARE_WAITQUEUE(wait, current);
15b726ef 1034 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1035 /*
1036 * Handling fork event requires sleeping operations, so
1037 * we drop the event_wqh lock, then do these ops, then
1038 * lock it back and wake up the waiter. While the lock is
1039 * dropped the ewq may go away so we keep track of it
1040 * carefully.
1041 */
1042 LIST_HEAD(fork_event);
1043 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1044
15b726ef 1045 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1046 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1047 __add_wait_queue(&ctx->fd_wqh, &wait);
1048 for (;;) {
1049 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1050 spin_lock(&ctx->fault_pending_wqh.lock);
1051 uwq = find_userfault(ctx);
1052 if (uwq) {
2c5b7e1b
AA
1053 /*
1054 * Use a seqcount to repeat the lockless check
1055 * in wake_userfault() to avoid missing
1056 * wakeups because during the refile both
1057 * waitqueue could become empty if this is the
1058 * only userfault.
1059 */
1060 write_seqcount_begin(&ctx->refile_seq);
1061
86039bd3 1062 /*
15b726ef
AA
1063 * The fault_pending_wqh.lock prevents the uwq
1064 * to disappear from under us.
1065 *
1066 * Refile this userfault from
1067 * fault_pending_wqh to fault_wqh, it's not
1068 * pending anymore after we read it.
1069 *
1070 * Use list_del() by hand (as
1071 * userfaultfd_wake_function also uses
1072 * list_del_init() by hand) to be sure nobody
1073 * changes __remove_wait_queue() to use
1074 * list_del_init() in turn breaking the
1075 * !list_empty_careful() check in
2055da97 1076 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1077 * must never be empty at any time during the
1078 * refile, or the waitqueue could disappear
1079 * from under us. The "wait_queue_head_t"
1080 * parameter of __remove_wait_queue() is unused
1081 * anyway.
86039bd3 1082 */
2055da97 1083 list_del(&uwq->wq.entry);
c430d1e8 1084 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1085
2c5b7e1b
AA
1086 write_seqcount_end(&ctx->refile_seq);
1087
a9b85f94
AA
1088 /* careful to always initialize msg if ret == 0 */
1089 *msg = uwq->msg;
15b726ef 1090 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1091 ret = 0;
1092 break;
1093 }
15b726ef 1094 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1095
1096 spin_lock(&ctx->event_wqh.lock);
1097 uwq = find_userfault_evt(ctx);
1098 if (uwq) {
1099 *msg = uwq->msg;
1100
893e26e6
PE
1101 if (uwq->msg.event == UFFD_EVENT_FORK) {
1102 fork_nctx = (struct userfaultfd_ctx *)
1103 (unsigned long)
1104 uwq->msg.arg.reserved.reserved1;
2055da97 1105 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1106 /*
1107 * fork_nctx can be freed as soon as
1108 * we drop the lock, unless we take a
1109 * reference on it.
1110 */
1111 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1112 spin_unlock(&ctx->event_wqh.lock);
1113 ret = 0;
1114 break;
1115 }
1116
9cd75c3c
PE
1117 userfaultfd_event_complete(ctx, uwq);
1118 spin_unlock(&ctx->event_wqh.lock);
1119 ret = 0;
1120 break;
1121 }
1122 spin_unlock(&ctx->event_wqh.lock);
1123
86039bd3
AA
1124 if (signal_pending(current)) {
1125 ret = -ERESTARTSYS;
1126 break;
1127 }
1128 if (no_wait) {
1129 ret = -EAGAIN;
1130 break;
1131 }
ae62c16e 1132 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1133 schedule();
ae62c16e 1134 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1135 }
1136 __remove_wait_queue(&ctx->fd_wqh, &wait);
1137 __set_current_state(TASK_RUNNING);
ae62c16e 1138 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1139
893e26e6
PE
1140 if (!ret && msg->event == UFFD_EVENT_FORK) {
1141 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
cbcfa130 1142 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1143 if (!list_empty(&fork_event)) {
1144 /*
1145 * The fork thread didn't abort, so we can
1146 * drop the temporary refcount.
1147 */
1148 userfaultfd_ctx_put(fork_nctx);
1149
1150 uwq = list_first_entry(&fork_event,
1151 typeof(*uwq),
1152 wq.entry);
1153 /*
1154 * If fork_event list wasn't empty and in turn
1155 * the event wasn't already released by fork
1156 * (the event is allocated on fork kernel
1157 * stack), put the event back to its place in
1158 * the event_wq. fork_event head will be freed
1159 * as soon as we return so the event cannot
1160 * stay queued there no matter the current
1161 * "ret" value.
1162 */
1163 list_del(&uwq->wq.entry);
1164 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1165
384632e6
AA
1166 /*
1167 * Leave the event in the waitqueue and report
1168 * error to userland if we failed to resolve
1169 * the userfault fork.
1170 */
1171 if (likely(!ret))
893e26e6 1172 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1173 } else {
1174 /*
1175 * Here the fork thread aborted and the
1176 * refcount from the fork thread on fork_nctx
1177 * has already been released. We still hold
1178 * the reference we took before releasing the
1179 * lock above. If resolve_userfault_fork
1180 * failed we've to drop it because the
1181 * fork_nctx has to be freed in such case. If
1182 * it succeeded we'll hold it because the new
1183 * uffd references it.
1184 */
1185 if (ret)
1186 userfaultfd_ctx_put(fork_nctx);
893e26e6 1187 }
cbcfa130 1188 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1189 }
1190
86039bd3
AA
1191 return ret;
1192}
1193
1194static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1195 size_t count, loff_t *ppos)
1196{
1197 struct userfaultfd_ctx *ctx = file->private_data;
1198 ssize_t _ret, ret = 0;
a9b85f94 1199 struct uffd_msg msg;
86039bd3
AA
1200 int no_wait = file->f_flags & O_NONBLOCK;
1201
1202 if (ctx->state == UFFD_STATE_WAIT_API)
1203 return -EINVAL;
86039bd3
AA
1204
1205 for (;;) {
a9b85f94 1206 if (count < sizeof(msg))
86039bd3 1207 return ret ? ret : -EINVAL;
a9b85f94 1208 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1209 if (_ret < 0)
1210 return ret ? ret : _ret;
a9b85f94 1211 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1212 return ret ? ret : -EFAULT;
a9b85f94
AA
1213 ret += sizeof(msg);
1214 buf += sizeof(msg);
1215 count -= sizeof(msg);
86039bd3
AA
1216 /*
1217 * Allow to read more than one fault at time but only
1218 * block if waiting for the very first one.
1219 */
1220 no_wait = O_NONBLOCK;
1221 }
1222}
1223
1224static void __wake_userfault(struct userfaultfd_ctx *ctx,
1225 struct userfaultfd_wake_range *range)
1226{
cbcfa130 1227 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1228 /* wake all in the range and autoremove */
15b726ef 1229 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1230 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1231 range);
1232 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1233 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1234 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1235}
1236
1237static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1238 struct userfaultfd_wake_range *range)
1239{
2c5b7e1b
AA
1240 unsigned seq;
1241 bool need_wakeup;
1242
86039bd3
AA
1243 /*
1244 * To be sure waitqueue_active() is not reordered by the CPU
1245 * before the pagetable update, use an explicit SMP memory
1246 * barrier here. PT lock release or up_read(mmap_sem) still
1247 * have release semantics that can allow the
1248 * waitqueue_active() to be reordered before the pte update.
1249 */
1250 smp_mb();
1251
1252 /*
1253 * Use waitqueue_active because it's very frequent to
1254 * change the address space atomically even if there are no
1255 * userfaults yet. So we take the spinlock only when we're
1256 * sure we've userfaults to wake.
1257 */
2c5b7e1b
AA
1258 do {
1259 seq = read_seqcount_begin(&ctx->refile_seq);
1260 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1261 waitqueue_active(&ctx->fault_wqh);
1262 cond_resched();
1263 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1264 if (need_wakeup)
86039bd3
AA
1265 __wake_userfault(ctx, range);
1266}
1267
1268static __always_inline int validate_range(struct mm_struct *mm,
7d032574 1269 __u64 *start, __u64 len)
86039bd3
AA
1270{
1271 __u64 task_size = mm->task_size;
1272
7d032574
AK
1273 *start = untagged_addr(*start);
1274
1275 if (*start & ~PAGE_MASK)
86039bd3
AA
1276 return -EINVAL;
1277 if (len & ~PAGE_MASK)
1278 return -EINVAL;
1279 if (!len)
1280 return -EINVAL;
7d032574 1281 if (*start < mmap_min_addr)
86039bd3 1282 return -EINVAL;
7d032574 1283 if (*start >= task_size)
86039bd3 1284 return -EINVAL;
7d032574 1285 if (len > task_size - *start)
86039bd3
AA
1286 return -EINVAL;
1287 return 0;
1288}
1289
ba6907db
MR
1290static inline bool vma_can_userfault(struct vm_area_struct *vma)
1291{
cac67329
MR
1292 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1293 vma_is_shmem(vma);
ba6907db
MR
1294}
1295
86039bd3
AA
1296static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1297 unsigned long arg)
1298{
1299 struct mm_struct *mm = ctx->mm;
1300 struct vm_area_struct *vma, *prev, *cur;
1301 int ret;
1302 struct uffdio_register uffdio_register;
1303 struct uffdio_register __user *user_uffdio_register;
1304 unsigned long vm_flags, new_flags;
1305 bool found;
ce53e8e6 1306 bool basic_ioctls;
86039bd3
AA
1307 unsigned long start, end, vma_end;
1308
1309 user_uffdio_register = (struct uffdio_register __user *) arg;
1310
1311 ret = -EFAULT;
1312 if (copy_from_user(&uffdio_register, user_uffdio_register,
1313 sizeof(uffdio_register)-sizeof(__u64)))
1314 goto out;
1315
1316 ret = -EINVAL;
1317 if (!uffdio_register.mode)
1318 goto out;
1319 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1320 UFFDIO_REGISTER_MODE_WP))
1321 goto out;
1322 vm_flags = 0;
1323 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1324 vm_flags |= VM_UFFD_MISSING;
1325 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1326 vm_flags |= VM_UFFD_WP;
1327 /*
1328 * FIXME: remove the below error constraint by
1329 * implementing the wprotect tracking mode.
1330 */
1331 ret = -EINVAL;
1332 goto out;
1333 }
1334
7d032574 1335 ret = validate_range(mm, &uffdio_register.range.start,
86039bd3
AA
1336 uffdio_register.range.len);
1337 if (ret)
1338 goto out;
1339
1340 start = uffdio_register.range.start;
1341 end = start + uffdio_register.range.len;
1342
d2005e3f
ON
1343 ret = -ENOMEM;
1344 if (!mmget_not_zero(mm))
1345 goto out;
1346
86039bd3 1347 down_write(&mm->mmap_sem);
04f5866e
AA
1348 if (!mmget_still_valid(mm))
1349 goto out_unlock;
86039bd3 1350 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1351 if (!vma)
1352 goto out_unlock;
1353
1354 /* check that there's at least one vma in the range */
1355 ret = -EINVAL;
1356 if (vma->vm_start >= end)
1357 goto out_unlock;
1358
cab350af
MK
1359 /*
1360 * If the first vma contains huge pages, make sure start address
1361 * is aligned to huge page size.
1362 */
1363 if (is_vm_hugetlb_page(vma)) {
1364 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1365
1366 if (start & (vma_hpagesize - 1))
1367 goto out_unlock;
1368 }
1369
86039bd3
AA
1370 /*
1371 * Search for not compatible vmas.
86039bd3
AA
1372 */
1373 found = false;
ce53e8e6 1374 basic_ioctls = false;
86039bd3
AA
1375 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1376 cond_resched();
1377
1378 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1379 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1380
1381 /* check not compatible vmas */
1382 ret = -EINVAL;
ba6907db 1383 if (!vma_can_userfault(cur))
86039bd3 1384 goto out_unlock;
29ec9066
AA
1385
1386 /*
1387 * UFFDIO_COPY will fill file holes even without
1388 * PROT_WRITE. This check enforces that if this is a
1389 * MAP_SHARED, the process has write permission to the backing
1390 * file. If VM_MAYWRITE is set it also enforces that on a
1391 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1392 * F_WRITE_SEAL can be taken until the vma is destroyed.
1393 */
1394 ret = -EPERM;
1395 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1396 goto out_unlock;
1397
cab350af
MK
1398 /*
1399 * If this vma contains ending address, and huge pages
1400 * check alignment.
1401 */
1402 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1403 end > cur->vm_start) {
1404 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1405
1406 ret = -EINVAL;
1407
1408 if (end & (vma_hpagesize - 1))
1409 goto out_unlock;
1410 }
86039bd3
AA
1411
1412 /*
1413 * Check that this vma isn't already owned by a
1414 * different userfaultfd. We can't allow more than one
1415 * userfaultfd to own a single vma simultaneously or we
1416 * wouldn't know which one to deliver the userfaults to.
1417 */
1418 ret = -EBUSY;
1419 if (cur->vm_userfaultfd_ctx.ctx &&
1420 cur->vm_userfaultfd_ctx.ctx != ctx)
1421 goto out_unlock;
1422
cab350af
MK
1423 /*
1424 * Note vmas containing huge pages
1425 */
ce53e8e6
MR
1426 if (is_vm_hugetlb_page(cur))
1427 basic_ioctls = true;
cab350af 1428
86039bd3
AA
1429 found = true;
1430 }
1431 BUG_ON(!found);
1432
1433 if (vma->vm_start < start)
1434 prev = vma;
1435
1436 ret = 0;
1437 do {
1438 cond_resched();
1439
ba6907db 1440 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1441 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1443 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1444
1445 /*
1446 * Nothing to do: this vma is already registered into this
1447 * userfaultfd and with the right tracking mode too.
1448 */
1449 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450 (vma->vm_flags & vm_flags) == vm_flags)
1451 goto skip;
1452
1453 if (vma->vm_start > start)
1454 start = vma->vm_start;
1455 vma_end = min(end, vma->vm_end);
1456
9d4678eb
AA
1457 new_flags = (vma->vm_flags &
1458 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
86039bd3
AA
1459 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1460 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1461 vma_policy(vma),
1462 ((struct vm_userfaultfd_ctx){ ctx }));
1463 if (prev) {
1464 vma = prev;
1465 goto next;
1466 }
1467 if (vma->vm_start < start) {
1468 ret = split_vma(mm, vma, start, 1);
1469 if (ret)
1470 break;
1471 }
1472 if (vma->vm_end > end) {
1473 ret = split_vma(mm, vma, end, 0);
1474 if (ret)
1475 break;
1476 }
1477 next:
1478 /*
1479 * In the vma_merge() successful mprotect-like case 8:
1480 * the next vma was merged into the current one and
1481 * the current one has not been updated yet.
1482 */
1483 vma->vm_flags = new_flags;
1484 vma->vm_userfaultfd_ctx.ctx = ctx;
1485
1486 skip:
1487 prev = vma;
1488 start = vma->vm_end;
1489 vma = vma->vm_next;
1490 } while (vma && vma->vm_start < end);
1491out_unlock:
1492 up_write(&mm->mmap_sem);
d2005e3f 1493 mmput(mm);
86039bd3
AA
1494 if (!ret) {
1495 /*
1496 * Now that we scanned all vmas we can already tell
1497 * userland which ioctls methods are guaranteed to
1498 * succeed on this range.
1499 */
ce53e8e6 1500 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1501 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1502 &user_uffdio_register->ioctls))
1503 ret = -EFAULT;
1504 }
1505out:
1506 return ret;
1507}
1508
1509static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1510 unsigned long arg)
1511{
1512 struct mm_struct *mm = ctx->mm;
1513 struct vm_area_struct *vma, *prev, *cur;
1514 int ret;
1515 struct uffdio_range uffdio_unregister;
1516 unsigned long new_flags;
1517 bool found;
1518 unsigned long start, end, vma_end;
1519 const void __user *buf = (void __user *)arg;
1520
1521 ret = -EFAULT;
1522 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1523 goto out;
1524
7d032574 1525 ret = validate_range(mm, &uffdio_unregister.start,
86039bd3
AA
1526 uffdio_unregister.len);
1527 if (ret)
1528 goto out;
1529
1530 start = uffdio_unregister.start;
1531 end = start + uffdio_unregister.len;
1532
d2005e3f
ON
1533 ret = -ENOMEM;
1534 if (!mmget_not_zero(mm))
1535 goto out;
1536
86039bd3 1537 down_write(&mm->mmap_sem);
04f5866e
AA
1538 if (!mmget_still_valid(mm))
1539 goto out_unlock;
86039bd3 1540 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1541 if (!vma)
1542 goto out_unlock;
1543
1544 /* check that there's at least one vma in the range */
1545 ret = -EINVAL;
1546 if (vma->vm_start >= end)
1547 goto out_unlock;
1548
cab350af
MK
1549 /*
1550 * If the first vma contains huge pages, make sure start address
1551 * is aligned to huge page size.
1552 */
1553 if (is_vm_hugetlb_page(vma)) {
1554 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1555
1556 if (start & (vma_hpagesize - 1))
1557 goto out_unlock;
1558 }
1559
86039bd3
AA
1560 /*
1561 * Search for not compatible vmas.
86039bd3
AA
1562 */
1563 found = false;
1564 ret = -EINVAL;
1565 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1566 cond_resched();
1567
1568 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1569 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1570
1571 /*
1572 * Check not compatible vmas, not strictly required
1573 * here as not compatible vmas cannot have an
1574 * userfaultfd_ctx registered on them, but this
1575 * provides for more strict behavior to notice
1576 * unregistration errors.
1577 */
ba6907db 1578 if (!vma_can_userfault(cur))
86039bd3
AA
1579 goto out_unlock;
1580
1581 found = true;
1582 }
1583 BUG_ON(!found);
1584
1585 if (vma->vm_start < start)
1586 prev = vma;
1587
1588 ret = 0;
1589 do {
1590 cond_resched();
1591
ba6907db 1592 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1593
1594 /*
1595 * Nothing to do: this vma is already registered into this
1596 * userfaultfd and with the right tracking mode too.
1597 */
1598 if (!vma->vm_userfaultfd_ctx.ctx)
1599 goto skip;
1600
01e881f5
AA
1601 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1602
86039bd3
AA
1603 if (vma->vm_start > start)
1604 start = vma->vm_start;
1605 vma_end = min(end, vma->vm_end);
1606
09fa5296
AA
1607 if (userfaultfd_missing(vma)) {
1608 /*
1609 * Wake any concurrent pending userfault while
1610 * we unregister, so they will not hang
1611 * permanently and it avoids userland to call
1612 * UFFDIO_WAKE explicitly.
1613 */
1614 struct userfaultfd_wake_range range;
1615 range.start = start;
1616 range.len = vma_end - start;
1617 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1618 }
1619
86039bd3
AA
1620 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1621 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1622 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1623 vma_policy(vma),
1624 NULL_VM_UFFD_CTX);
1625 if (prev) {
1626 vma = prev;
1627 goto next;
1628 }
1629 if (vma->vm_start < start) {
1630 ret = split_vma(mm, vma, start, 1);
1631 if (ret)
1632 break;
1633 }
1634 if (vma->vm_end > end) {
1635 ret = split_vma(mm, vma, end, 0);
1636 if (ret)
1637 break;
1638 }
1639 next:
1640 /*
1641 * In the vma_merge() successful mprotect-like case 8:
1642 * the next vma was merged into the current one and
1643 * the current one has not been updated yet.
1644 */
1645 vma->vm_flags = new_flags;
1646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1647
1648 skip:
1649 prev = vma;
1650 start = vma->vm_end;
1651 vma = vma->vm_next;
1652 } while (vma && vma->vm_start < end);
1653out_unlock:
1654 up_write(&mm->mmap_sem);
d2005e3f 1655 mmput(mm);
86039bd3
AA
1656out:
1657 return ret;
1658}
1659
1660/*
ba85c702
AA
1661 * userfaultfd_wake may be used in combination with the
1662 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1663 */
1664static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1665 unsigned long arg)
1666{
1667 int ret;
1668 struct uffdio_range uffdio_wake;
1669 struct userfaultfd_wake_range range;
1670 const void __user *buf = (void __user *)arg;
1671
1672 ret = -EFAULT;
1673 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1674 goto out;
1675
7d032574 1676 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1677 if (ret)
1678 goto out;
1679
1680 range.start = uffdio_wake.start;
1681 range.len = uffdio_wake.len;
1682
1683 /*
1684 * len == 0 means wake all and we don't want to wake all here,
1685 * so check it again to be sure.
1686 */
1687 VM_BUG_ON(!range.len);
1688
1689 wake_userfault(ctx, &range);
1690 ret = 0;
1691
1692out:
1693 return ret;
1694}
1695
ad465cae
AA
1696static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1697 unsigned long arg)
1698{
1699 __s64 ret;
1700 struct uffdio_copy uffdio_copy;
1701 struct uffdio_copy __user *user_uffdio_copy;
1702 struct userfaultfd_wake_range range;
1703
1704 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1705
df2cc96e
MR
1706 ret = -EAGAIN;
1707 if (READ_ONCE(ctx->mmap_changing))
1708 goto out;
1709
ad465cae
AA
1710 ret = -EFAULT;
1711 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1712 /* don't copy "copy" last field */
1713 sizeof(uffdio_copy)-sizeof(__s64)))
1714 goto out;
1715
7d032574 1716 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1717 if (ret)
1718 goto out;
1719 /*
1720 * double check for wraparound just in case. copy_from_user()
1721 * will later check uffdio_copy.src + uffdio_copy.len to fit
1722 * in the userland range.
1723 */
1724 ret = -EINVAL;
1725 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1726 goto out;
72981e0e 1727 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1728 goto out;
d2005e3f
ON
1729 if (mmget_not_zero(ctx->mm)) {
1730 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
72981e0e
AA
1731 uffdio_copy.len, &ctx->mmap_changing,
1732 uffdio_copy.mode);
d2005e3f 1733 mmput(ctx->mm);
96333187 1734 } else {
e86b298b 1735 return -ESRCH;
d2005e3f 1736 }
ad465cae
AA
1737 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1738 return -EFAULT;
1739 if (ret < 0)
1740 goto out;
1741 BUG_ON(!ret);
1742 /* len == 0 would wake all */
1743 range.len = ret;
1744 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1745 range.start = uffdio_copy.dst;
1746 wake_userfault(ctx, &range);
1747 }
1748 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1749out:
1750 return ret;
1751}
1752
1753static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1754 unsigned long arg)
1755{
1756 __s64 ret;
1757 struct uffdio_zeropage uffdio_zeropage;
1758 struct uffdio_zeropage __user *user_uffdio_zeropage;
1759 struct userfaultfd_wake_range range;
1760
1761 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1762
df2cc96e
MR
1763 ret = -EAGAIN;
1764 if (READ_ONCE(ctx->mmap_changing))
1765 goto out;
1766
ad465cae
AA
1767 ret = -EFAULT;
1768 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1769 /* don't copy "zeropage" last field */
1770 sizeof(uffdio_zeropage)-sizeof(__s64)))
1771 goto out;
1772
7d032574 1773 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
ad465cae
AA
1774 uffdio_zeropage.range.len);
1775 if (ret)
1776 goto out;
1777 ret = -EINVAL;
1778 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1779 goto out;
1780
d2005e3f
ON
1781 if (mmget_not_zero(ctx->mm)) {
1782 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1783 uffdio_zeropage.range.len,
1784 &ctx->mmap_changing);
d2005e3f 1785 mmput(ctx->mm);
9d95aa4b 1786 } else {
e86b298b 1787 return -ESRCH;
d2005e3f 1788 }
ad465cae
AA
1789 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1790 return -EFAULT;
1791 if (ret < 0)
1792 goto out;
1793 /* len == 0 would wake all */
1794 BUG_ON(!ret);
1795 range.len = ret;
1796 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1797 range.start = uffdio_zeropage.range.start;
1798 wake_userfault(ctx, &range);
1799 }
1800 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1801out:
1802 return ret;
1803}
1804
9cd75c3c
PE
1805static inline unsigned int uffd_ctx_features(__u64 user_features)
1806{
1807 /*
1808 * For the current set of features the bits just coincide
1809 */
1810 return (unsigned int)user_features;
1811}
1812
86039bd3
AA
1813/*
1814 * userland asks for a certain API version and we return which bits
1815 * and ioctl commands are implemented in this kernel for such API
1816 * version or -EINVAL if unknown.
1817 */
1818static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1819 unsigned long arg)
1820{
1821 struct uffdio_api uffdio_api;
1822 void __user *buf = (void __user *)arg;
1823 int ret;
65603144 1824 __u64 features;
86039bd3
AA
1825
1826 ret = -EINVAL;
1827 if (ctx->state != UFFD_STATE_WAIT_API)
1828 goto out;
1829 ret = -EFAULT;
a9b85f94 1830 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1831 goto out;
65603144 1832 features = uffdio_api.features;
3c1c24d9
MR
1833 ret = -EINVAL;
1834 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1835 goto err_out;
1836 ret = -EPERM;
1837 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1838 goto err_out;
65603144
AA
1839 /* report all available features and ioctls to userland */
1840 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1841 uffdio_api.ioctls = UFFD_API_IOCTLS;
1842 ret = -EFAULT;
1843 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1844 goto out;
1845 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1846 /* only enable the requested features for this uffd context */
1847 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1848 ret = 0;
1849out:
1850 return ret;
3c1c24d9
MR
1851err_out:
1852 memset(&uffdio_api, 0, sizeof(uffdio_api));
1853 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1854 ret = -EFAULT;
1855 goto out;
86039bd3
AA
1856}
1857
1858static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1859 unsigned long arg)
1860{
1861 int ret = -EINVAL;
1862 struct userfaultfd_ctx *ctx = file->private_data;
1863
e6485a47
AA
1864 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1865 return -EINVAL;
1866
86039bd3
AA
1867 switch(cmd) {
1868 case UFFDIO_API:
1869 ret = userfaultfd_api(ctx, arg);
1870 break;
1871 case UFFDIO_REGISTER:
1872 ret = userfaultfd_register(ctx, arg);
1873 break;
1874 case UFFDIO_UNREGISTER:
1875 ret = userfaultfd_unregister(ctx, arg);
1876 break;
1877 case UFFDIO_WAKE:
1878 ret = userfaultfd_wake(ctx, arg);
1879 break;
ad465cae
AA
1880 case UFFDIO_COPY:
1881 ret = userfaultfd_copy(ctx, arg);
1882 break;
1883 case UFFDIO_ZEROPAGE:
1884 ret = userfaultfd_zeropage(ctx, arg);
1885 break;
86039bd3
AA
1886 }
1887 return ret;
1888}
1889
1890#ifdef CONFIG_PROC_FS
1891static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1892{
1893 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1894 wait_queue_entry_t *wq;
86039bd3
AA
1895 unsigned long pending = 0, total = 0;
1896
cbcfa130 1897 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 1898 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1899 pending++;
1900 total++;
1901 }
2055da97 1902 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
1903 total++;
1904 }
cbcfa130 1905 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1906
1907 /*
1908 * If more protocols will be added, there will be all shown
1909 * separated by a space. Like this:
1910 * protocols: aa:... bb:...
1911 */
1912 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1913 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1914 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1915}
1916#endif
1917
1918static const struct file_operations userfaultfd_fops = {
1919#ifdef CONFIG_PROC_FS
1920 .show_fdinfo = userfaultfd_show_fdinfo,
1921#endif
1922 .release = userfaultfd_release,
1923 .poll = userfaultfd_poll,
1924 .read = userfaultfd_read,
1925 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 1926 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
1927 .llseek = noop_llseek,
1928};
1929
3004ec9c
AA
1930static void init_once_userfaultfd_ctx(void *mem)
1931{
1932 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1933
1934 init_waitqueue_head(&ctx->fault_pending_wqh);
1935 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1936 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1937 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1938 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1939}
1940
284cd241 1941SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 1942{
86039bd3 1943 struct userfaultfd_ctx *ctx;
284cd241 1944 int fd;
86039bd3 1945
cefdca0a
PX
1946 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1947 return -EPERM;
1948
86039bd3
AA
1949 BUG_ON(!current->mm);
1950
1951 /* Check the UFFD_* constants for consistency. */
1952 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1953 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1954
86039bd3 1955 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
284cd241 1956 return -EINVAL;
86039bd3 1957
3004ec9c 1958 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 1959 if (!ctx)
284cd241 1960 return -ENOMEM;
86039bd3 1961
ca880420 1962 refcount_set(&ctx->refcount, 1);
86039bd3 1963 ctx->flags = flags;
9cd75c3c 1964 ctx->features = 0;
86039bd3
AA
1965 ctx->state = UFFD_STATE_WAIT_API;
1966 ctx->released = false;
df2cc96e 1967 ctx->mmap_changing = false;
86039bd3
AA
1968 ctx->mm = current->mm;
1969 /* prevent the mm struct to be freed */
f1f10076 1970 mmgrab(ctx->mm);
86039bd3 1971
284cd241
EB
1972 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1973 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1974 if (fd < 0) {
d2005e3f 1975 mmdrop(ctx->mm);
3004ec9c 1976 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1977 }
86039bd3 1978 return fd;
86039bd3 1979}
3004ec9c
AA
1980
1981static int __init userfaultfd_init(void)
1982{
1983 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1984 sizeof(struct userfaultfd_ctx),
1985 0,
1986 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1987 init_once_userfaultfd_ctx);
1988 return 0;
1989}
1990__initcall(userfaultfd_init);