mm,page_alloc: drop unnecessary checks from pfn_range_valid_contig
[linux-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
6dfeaff9 18#include <linux/mmu_notifier.h>
86039bd3
AA
19#include <linux/poll.h>
20#include <linux/slab.h>
21#include <linux/seq_file.h>
22#include <linux/file.h>
23#include <linux/bug.h>
24#include <linux/anon_inodes.h>
25#include <linux/syscalls.h>
26#include <linux/userfaultfd_k.h>
27#include <linux/mempolicy.h>
28#include <linux/ioctl.h>
29#include <linux/security.h>
cab350af 30#include <linux/hugetlb.h>
86039bd3 31
d0d4730a 32int sysctl_unprivileged_userfaultfd __read_mostly;
cefdca0a 33
3004ec9c
AA
34static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
86039bd3
AA
36enum userfaultfd_state {
37 UFFD_STATE_WAIT_API,
38 UFFD_STATE_RUNNING,
39};
40
3004ec9c
AA
41/*
42 * Start with fault_pending_wqh and fault_wqh so they're more likely
43 * to be in the same cacheline.
cbcfa130
EB
44 *
45 * Locking order:
46 * fd_wqh.lock
47 * fault_pending_wqh.lock
48 * fault_wqh.lock
49 * event_wqh.lock
50 *
51 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
52 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
53 * also taken in IRQ context.
3004ec9c 54 */
86039bd3 55struct userfaultfd_ctx {
15b726ef
AA
56 /* waitqueue head for the pending (i.e. not read) userfaults */
57 wait_queue_head_t fault_pending_wqh;
58 /* waitqueue head for the userfaults */
86039bd3
AA
59 wait_queue_head_t fault_wqh;
60 /* waitqueue head for the pseudo fd to wakeup poll/read */
61 wait_queue_head_t fd_wqh;
9cd75c3c
PE
62 /* waitqueue head for events */
63 wait_queue_head_t event_wqh;
2c5b7e1b 64 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 65 seqcount_spinlock_t refile_seq;
3004ec9c 66 /* pseudo fd refcounting */
ca880420 67 refcount_t refcount;
86039bd3
AA
68 /* userfaultfd syscall flags */
69 unsigned int flags;
9cd75c3c
PE
70 /* features requested from the userspace */
71 unsigned int features;
86039bd3
AA
72 /* state machine */
73 enum userfaultfd_state state;
74 /* released */
75 bool released;
df2cc96e
MR
76 /* memory mappings are changing because of non-cooperative event */
77 bool mmap_changing;
86039bd3
AA
78 /* mm with one ore more vmas attached to this userfaultfd_ctx */
79 struct mm_struct *mm;
80};
81
893e26e6
PE
82struct userfaultfd_fork_ctx {
83 struct userfaultfd_ctx *orig;
84 struct userfaultfd_ctx *new;
85 struct list_head list;
86};
87
897ab3e0
MR
88struct userfaultfd_unmap_ctx {
89 struct userfaultfd_ctx *ctx;
90 unsigned long start;
91 unsigned long end;
92 struct list_head list;
93};
94
86039bd3 95struct userfaultfd_wait_queue {
a9b85f94 96 struct uffd_msg msg;
ac6424b9 97 wait_queue_entry_t wq;
86039bd3 98 struct userfaultfd_ctx *ctx;
15a77c6f 99 bool waken;
86039bd3
AA
100};
101
102struct userfaultfd_wake_range {
103 unsigned long start;
104 unsigned long len;
105};
106
ac6424b9 107static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
108 int wake_flags, void *key)
109{
110 struct userfaultfd_wake_range *range = key;
111 int ret;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
114
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 ret = 0;
86039bd3
AA
117 /* len == 0 means wake all */
118 start = range->start;
119 len = range->len;
a9b85f94
AA
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 122 goto out;
15a77c6f
AA
123 WRITE_ONCE(uwq->waken, true);
124 /*
a9668cd6
PZ
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
15a77c6f 127 */
86039bd3 128 ret = wake_up_state(wq->private, mode);
a9668cd6 129 if (ret) {
86039bd3
AA
130 /*
131 * Wake only once, autoremove behavior.
132 *
a9668cd6
PZ
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
136 *
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 140 */
2055da97 141 list_del_init(&wq->entry);
a9668cd6 142 }
86039bd3
AA
143out:
144 return ret;
145}
146
147/**
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
151 */
152static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153{
ca880420 154 refcount_inc(&ctx->refcount);
86039bd3
AA
155}
156
157/**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
165static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166{
ca880420 167 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 176 mmdrop(ctx->mm);
3004ec9c 177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
178 }
179}
180
a9b85f94 181static inline void msg_init(struct uffd_msg *msg)
86039bd3 182{
a9b85f94
AA
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189}
190
191static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
9d4ac934
AP
193 unsigned long reason,
194 unsigned int features)
a9b85f94
AA
195{
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
86039bd3
AA
200 if (flags & FAULT_FLAG_WRITE)
201 /*
a4605a61 202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205 * was a read fault, otherwise if set it means it's
206 * a write fault.
86039bd3 207 */
a9b85f94 208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
209 if (reason & VM_UFFD_WP)
210 /*
a9b85f94
AA
211 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214 * a missing fault, otherwise if set it means it's a
215 * write protect fault.
86039bd3 216 */
a9b85f94 217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 218 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 219 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 220 return msg;
86039bd3
AA
221}
222
369cd212
MK
223#ifdef CONFIG_HUGETLB_PAGE
224/*
225 * Same functionality as userfaultfd_must_wait below with modifications for
226 * hugepmd ranges.
227 */
228static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 229 struct vm_area_struct *vma,
369cd212
MK
230 unsigned long address,
231 unsigned long flags,
232 unsigned long reason)
233{
234 struct mm_struct *mm = ctx->mm;
1e2c0436 235 pte_t *ptep, pte;
369cd212
MK
236 bool ret = true;
237
42fc5414 238 mmap_assert_locked(mm);
369cd212 239
1e2c0436
JF
240 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
241
242 if (!ptep)
369cd212
MK
243 goto out;
244
245 ret = false;
1e2c0436 246 pte = huge_ptep_get(ptep);
369cd212
MK
247
248 /*
249 * Lockless access: we're in a wait_event so it's ok if it
250 * changes under us.
251 */
1e2c0436 252 if (huge_pte_none(pte))
369cd212 253 ret = true;
1e2c0436 254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
255 ret = true;
256out:
257 return ret;
258}
259#else
260static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 261 struct vm_area_struct *vma,
369cd212
MK
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
265{
266 return false; /* should never get here */
267}
268#endif /* CONFIG_HUGETLB_PAGE */
269
8d2afd96
AA
270/*
271 * Verify the pagetables are still not ok after having reigstered into
272 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273 * userfault that has already been resolved, if userfaultfd_read and
274 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 * threads.
276 */
277static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278 unsigned long address,
279 unsigned long flags,
280 unsigned long reason)
281{
282 struct mm_struct *mm = ctx->mm;
283 pgd_t *pgd;
c2febafc 284 p4d_t *p4d;
8d2afd96
AA
285 pud_t *pud;
286 pmd_t *pmd, _pmd;
287 pte_t *pte;
288 bool ret = true;
289
42fc5414 290 mmap_assert_locked(mm);
8d2afd96
AA
291
292 pgd = pgd_offset(mm, address);
293 if (!pgd_present(*pgd))
294 goto out;
c2febafc
KS
295 p4d = p4d_offset(pgd, address);
296 if (!p4d_present(*p4d))
297 goto out;
298 pud = pud_offset(p4d, address);
8d2afd96
AA
299 if (!pud_present(*pud))
300 goto out;
301 pmd = pmd_offset(pud, address);
302 /*
303 * READ_ONCE must function as a barrier with narrower scope
304 * and it must be equivalent to:
305 * _pmd = *pmd; barrier();
306 *
307 * This is to deal with the instability (as in
308 * pmd_trans_unstable) of the pmd.
309 */
310 _pmd = READ_ONCE(*pmd);
a365ac09 311 if (pmd_none(_pmd))
8d2afd96
AA
312 goto out;
313
314 ret = false;
a365ac09
HY
315 if (!pmd_present(_pmd))
316 goto out;
317
63b2d417
AA
318 if (pmd_trans_huge(_pmd)) {
319 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
320 ret = true;
8d2afd96 321 goto out;
63b2d417 322 }
8d2afd96
AA
323
324 /*
325 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
326 * and use the standard pte_offset_map() instead of parsing _pmd.
327 */
328 pte = pte_offset_map(pmd, address);
329 /*
330 * Lockless access: we're in a wait_event so it's ok if it
331 * changes under us.
332 */
333 if (pte_none(*pte))
334 ret = true;
63b2d417
AA
335 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
336 ret = true;
8d2afd96
AA
337 pte_unmap(pte);
338
339out:
340 return ret;
341}
342
3e69ad08
PX
343static inline long userfaultfd_get_blocking_state(unsigned int flags)
344{
345 if (flags & FAULT_FLAG_INTERRUPTIBLE)
346 return TASK_INTERRUPTIBLE;
347
348 if (flags & FAULT_FLAG_KILLABLE)
349 return TASK_KILLABLE;
350
351 return TASK_UNINTERRUPTIBLE;
352}
353
86039bd3
AA
354/*
355 * The locking rules involved in returning VM_FAULT_RETRY depending on
356 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
357 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
358 * recommendation in __lock_page_or_retry is not an understatement.
359 *
c1e8d7c6 360 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
361 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
362 * not set.
363 *
364 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
365 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 366 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
367 * returning it.
368 */
2b740303 369vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 370{
82b0f8c3 371 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
372 struct userfaultfd_ctx *ctx;
373 struct userfaultfd_wait_queue uwq;
2b740303 374 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 375 bool must_wait;
15a77c6f 376 long blocking_state;
86039bd3 377
64c2b203
AA
378 /*
379 * We don't do userfault handling for the final child pid update.
380 *
381 * We also don't do userfault handling during
382 * coredumping. hugetlbfs has the special
383 * follow_hugetlb_page() to skip missing pages in the
384 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
385 * the no_page_table() helper in follow_page_mask(), but the
386 * shmem_vm_ops->fault method is invoked even during
c1e8d7c6 387 * coredumping without mmap_lock and it ends up here.
64c2b203
AA
388 */
389 if (current->flags & (PF_EXITING|PF_DUMPCORE))
390 goto out;
391
392 /*
c1e8d7c6
ML
393 * Coredumping runs without mmap_lock so we can only check that
394 * the mmap_lock is held, if PF_DUMPCORE was not set.
64c2b203 395 */
42fc5414 396 mmap_assert_locked(mm);
64c2b203 397
82b0f8c3 398 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 399 if (!ctx)
ba85c702 400 goto out;
86039bd3
AA
401
402 BUG_ON(ctx->mm != mm);
403
404 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
405 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
406
2d6d6f5a
PS
407 if (ctx->features & UFFD_FEATURE_SIGBUS)
408 goto out;
37cd0575
LG
409 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
410 ctx->flags & UFFD_USER_MODE_ONLY) {
411 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
412 "sysctl knob to 1 if kernel faults must be handled "
413 "without obtaining CAP_SYS_PTRACE capability\n");
414 goto out;
415 }
2d6d6f5a 416
86039bd3
AA
417 /*
418 * If it's already released don't get it. This avoids to loop
419 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 420 * caller of handle_userfault to release the mmap_lock.
86039bd3 421 */
6aa7de05 422 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
423 /*
424 * Don't return VM_FAULT_SIGBUS in this case, so a non
425 * cooperative manager can close the uffd after the
426 * last UFFDIO_COPY, without risking to trigger an
427 * involuntary SIGBUS if the process was starting the
428 * userfaultfd while the userfaultfd was still armed
429 * (but after the last UFFDIO_COPY). If the uffd
430 * wasn't already closed when the userfault reached
431 * this point, that would normally be solved by
432 * userfaultfd_must_wait returning 'false'.
433 *
434 * If we were to return VM_FAULT_SIGBUS here, the non
435 * cooperative manager would be instead forced to
436 * always call UFFDIO_UNREGISTER before it can safely
437 * close the uffd.
438 */
439 ret = VM_FAULT_NOPAGE;
ba85c702 440 goto out;
656710a6 441 }
86039bd3
AA
442
443 /*
444 * Check that we can return VM_FAULT_RETRY.
445 *
446 * NOTE: it should become possible to return VM_FAULT_RETRY
447 * even if FAULT_FLAG_TRIED is set without leading to gup()
448 * -EBUSY failures, if the userfaultfd is to be extended for
449 * VM_UFFD_WP tracking and we intend to arm the userfault
450 * without first stopping userland access to the memory. For
451 * VM_UFFD_MISSING userfaults this is enough for now.
452 */
82b0f8c3 453 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
454 /*
455 * Validate the invariant that nowait must allow retry
456 * to be sure not to return SIGBUS erroneously on
457 * nowait invocations.
458 */
82b0f8c3 459 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
460#ifdef CONFIG_DEBUG_VM
461 if (printk_ratelimit()) {
462 printk(KERN_WARNING
82b0f8c3
JK
463 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464 vmf->flags);
86039bd3
AA
465 dump_stack();
466 }
467#endif
ba85c702 468 goto out;
86039bd3
AA
469 }
470
471 /*
472 * Handle nowait, not much to do other than tell it to retry
473 * and wait.
474 */
ba85c702 475 ret = VM_FAULT_RETRY;
82b0f8c3 476 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 477 goto out;
86039bd3 478
c1e8d7c6 479 /* take the reference before dropping the mmap_lock */
86039bd3
AA
480 userfaultfd_ctx_get(ctx);
481
86039bd3
AA
482 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483 uwq.wq.private = current;
9d4ac934
AP
484 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485 ctx->features);
86039bd3 486 uwq.ctx = ctx;
15a77c6f 487 uwq.waken = false;
86039bd3 488
3e69ad08 489 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 490
cbcfa130 491 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
492 /*
493 * After the __add_wait_queue the uwq is visible to userland
494 * through poll/read().
495 */
15b726ef
AA
496 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497 /*
498 * The smp_mb() after __set_current_state prevents the reads
499 * following the spin_unlock to happen before the list_add in
500 * __add_wait_queue.
501 */
15a77c6f 502 set_current_state(blocking_state);
cbcfa130 503 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 504
369cd212
MK
505 if (!is_vm_hugetlb_page(vmf->vma))
506 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507 reason);
508 else
7868a208
PA
509 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510 vmf->address,
369cd212 511 vmf->flags, reason);
d8ed45c5 512 mmap_read_unlock(mm);
8d2afd96 513
f9bf3522 514 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 515 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 516 schedule();
ba85c702 517 }
86039bd3 518
ba85c702 519 __set_current_state(TASK_RUNNING);
15b726ef
AA
520
521 /*
522 * Here we race with the list_del; list_add in
523 * userfaultfd_ctx_read(), however because we don't ever run
524 * list_del_init() to refile across the two lists, the prev
525 * and next pointers will never point to self. list_add also
526 * would never let any of the two pointers to point to
527 * self. So list_empty_careful won't risk to see both pointers
528 * pointing to self at any time during the list refile. The
529 * only case where list_del_init() is called is the full
530 * removal in the wake function and there we don't re-list_add
531 * and it's fine not to block on the spinlock. The uwq on this
532 * kernel stack can be released after the list_del_init.
533 */
2055da97 534 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 535 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
536 /*
537 * No need of list_del_init(), the uwq on the stack
538 * will be freed shortly anyway.
539 */
2055da97 540 list_del(&uwq.wq.entry);
cbcfa130 541 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 542 }
86039bd3
AA
543
544 /*
545 * ctx may go away after this if the userfault pseudo fd is
546 * already released.
547 */
548 userfaultfd_ctx_put(ctx);
549
ba85c702
AA
550out:
551 return ret;
86039bd3
AA
552}
553
8c9e7bb7
AA
554static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
555 struct userfaultfd_wait_queue *ewq)
9cd75c3c 556{
0cbb4b4f
AA
557 struct userfaultfd_ctx *release_new_ctx;
558
9a69a829
AA
559 if (WARN_ON_ONCE(current->flags & PF_EXITING))
560 goto out;
9cd75c3c
PE
561
562 ewq->ctx = ctx;
563 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 564 release_new_ctx = NULL;
9cd75c3c 565
cbcfa130 566 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
567 /*
568 * After the __add_wait_queue the uwq is visible to userland
569 * through poll/read().
570 */
571 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
572 for (;;) {
573 set_current_state(TASK_KILLABLE);
574 if (ewq->msg.event == 0)
575 break;
6aa7de05 576 if (READ_ONCE(ctx->released) ||
9cd75c3c 577 fatal_signal_pending(current)) {
384632e6
AA
578 /*
579 * &ewq->wq may be queued in fork_event, but
580 * __remove_wait_queue ignores the head
581 * parameter. It would be a problem if it
582 * didn't.
583 */
9cd75c3c 584 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
585 if (ewq->msg.event == UFFD_EVENT_FORK) {
586 struct userfaultfd_ctx *new;
587
588 new = (struct userfaultfd_ctx *)
589 (unsigned long)
590 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 591 release_new_ctx = new;
7eb76d45 592 }
9cd75c3c
PE
593 break;
594 }
595
cbcfa130 596 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 597
a9a08845 598 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
599 schedule();
600
cbcfa130 601 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
602 }
603 __set_current_state(TASK_RUNNING);
cbcfa130 604 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 605
0cbb4b4f
AA
606 if (release_new_ctx) {
607 struct vm_area_struct *vma;
608 struct mm_struct *mm = release_new_ctx->mm;
609
610 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 611 mmap_write_lock(mm);
0cbb4b4f 612 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 613 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 614 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
31e810aa
MR
615 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
616 }
d8ed45c5 617 mmap_write_unlock(mm);
0cbb4b4f
AA
618
619 userfaultfd_ctx_put(release_new_ctx);
620 }
621
9cd75c3c
PE
622 /*
623 * ctx may go away after this if the userfault pseudo fd is
624 * already released.
625 */
9a69a829 626out:
df2cc96e 627 WRITE_ONCE(ctx->mmap_changing, false);
9cd75c3c 628 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
629}
630
631static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
632 struct userfaultfd_wait_queue *ewq)
633{
634 ewq->msg.event = 0;
635 wake_up_locked(&ctx->event_wqh);
636 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
637}
638
893e26e6
PE
639int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
640{
641 struct userfaultfd_ctx *ctx = NULL, *octx;
642 struct userfaultfd_fork_ctx *fctx;
643
644 octx = vma->vm_userfaultfd_ctx.ctx;
645 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
647 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
648 return 0;
649 }
650
651 list_for_each_entry(fctx, fcs, list)
652 if (fctx->orig == octx) {
653 ctx = fctx->new;
654 break;
655 }
656
657 if (!ctx) {
658 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
659 if (!fctx)
660 return -ENOMEM;
661
662 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
663 if (!ctx) {
664 kfree(fctx);
665 return -ENOMEM;
666 }
667
ca880420 668 refcount_set(&ctx->refcount, 1);
893e26e6
PE
669 ctx->flags = octx->flags;
670 ctx->state = UFFD_STATE_RUNNING;
671 ctx->features = octx->features;
672 ctx->released = false;
df2cc96e 673 ctx->mmap_changing = false;
893e26e6 674 ctx->mm = vma->vm_mm;
00bb31fa 675 mmgrab(ctx->mm);
893e26e6
PE
676
677 userfaultfd_ctx_get(octx);
df2cc96e 678 WRITE_ONCE(octx->mmap_changing, true);
893e26e6
PE
679 fctx->orig = octx;
680 fctx->new = ctx;
681 list_add_tail(&fctx->list, fcs);
682 }
683
684 vma->vm_userfaultfd_ctx.ctx = ctx;
685 return 0;
686}
687
8c9e7bb7 688static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
689{
690 struct userfaultfd_ctx *ctx = fctx->orig;
691 struct userfaultfd_wait_queue ewq;
692
693 msg_init(&ewq.msg);
694
695 ewq.msg.event = UFFD_EVENT_FORK;
696 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
697
8c9e7bb7 698 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
699}
700
701void dup_userfaultfd_complete(struct list_head *fcs)
702{
893e26e6
PE
703 struct userfaultfd_fork_ctx *fctx, *n;
704
705 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 706 dup_fctx(fctx);
893e26e6
PE
707 list_del(&fctx->list);
708 kfree(fctx);
709 }
710}
711
72f87654
PE
712void mremap_userfaultfd_prep(struct vm_area_struct *vma,
713 struct vm_userfaultfd_ctx *vm_ctx)
714{
715 struct userfaultfd_ctx *ctx;
716
717 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
718
719 if (!ctx)
720 return;
721
722 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
723 vm_ctx->ctx = ctx;
724 userfaultfd_ctx_get(ctx);
df2cc96e 725 WRITE_ONCE(ctx->mmap_changing, true);
3cfd22be
PX
726 } else {
727 /* Drop uffd context if remap feature not enabled */
728 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
729 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
72f87654
PE
730 }
731}
732
90794bf1 733void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
734 unsigned long from, unsigned long to,
735 unsigned long len)
736{
90794bf1 737 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
738 struct userfaultfd_wait_queue ewq;
739
740 if (!ctx)
741 return;
742
743 if (to & ~PAGE_MASK) {
744 userfaultfd_ctx_put(ctx);
745 return;
746 }
747
748 msg_init(&ewq.msg);
749
750 ewq.msg.event = UFFD_EVENT_REMAP;
751 ewq.msg.arg.remap.from = from;
752 ewq.msg.arg.remap.to = to;
753 ewq.msg.arg.remap.len = len;
754
755 userfaultfd_event_wait_completion(ctx, &ewq);
756}
757
70ccb92f 758bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 759 unsigned long start, unsigned long end)
05ce7724
PE
760{
761 struct mm_struct *mm = vma->vm_mm;
762 struct userfaultfd_ctx *ctx;
763 struct userfaultfd_wait_queue ewq;
764
765 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 766 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 767 return true;
05ce7724
PE
768
769 userfaultfd_ctx_get(ctx);
df2cc96e 770 WRITE_ONCE(ctx->mmap_changing, true);
d8ed45c5 771 mmap_read_unlock(mm);
05ce7724 772
05ce7724
PE
773 msg_init(&ewq.msg);
774
d811914d
MR
775 ewq.msg.event = UFFD_EVENT_REMOVE;
776 ewq.msg.arg.remove.start = start;
777 ewq.msg.arg.remove.end = end;
05ce7724
PE
778
779 userfaultfd_event_wait_completion(ctx, &ewq);
780
70ccb92f 781 return false;
05ce7724
PE
782}
783
897ab3e0
MR
784static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
785 unsigned long start, unsigned long end)
786{
787 struct userfaultfd_unmap_ctx *unmap_ctx;
788
789 list_for_each_entry(unmap_ctx, unmaps, list)
790 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
791 unmap_ctx->end == end)
792 return true;
793
794 return false;
795}
796
797int userfaultfd_unmap_prep(struct vm_area_struct *vma,
798 unsigned long start, unsigned long end,
799 struct list_head *unmaps)
800{
801 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
802 struct userfaultfd_unmap_ctx *unmap_ctx;
803 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
804
805 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
806 has_unmap_ctx(ctx, unmaps, start, end))
807 continue;
808
809 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
810 if (!unmap_ctx)
811 return -ENOMEM;
812
813 userfaultfd_ctx_get(ctx);
df2cc96e 814 WRITE_ONCE(ctx->mmap_changing, true);
897ab3e0
MR
815 unmap_ctx->ctx = ctx;
816 unmap_ctx->start = start;
817 unmap_ctx->end = end;
818 list_add_tail(&unmap_ctx->list, unmaps);
819 }
820
821 return 0;
822}
823
824void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
825{
826 struct userfaultfd_unmap_ctx *ctx, *n;
827 struct userfaultfd_wait_queue ewq;
828
829 list_for_each_entry_safe(ctx, n, uf, list) {
830 msg_init(&ewq.msg);
831
832 ewq.msg.event = UFFD_EVENT_UNMAP;
833 ewq.msg.arg.remove.start = ctx->start;
834 ewq.msg.arg.remove.end = ctx->end;
835
836 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
837
838 list_del(&ctx->list);
839 kfree(ctx);
840 }
841}
842
86039bd3
AA
843static int userfaultfd_release(struct inode *inode, struct file *file)
844{
845 struct userfaultfd_ctx *ctx = file->private_data;
846 struct mm_struct *mm = ctx->mm;
847 struct vm_area_struct *vma, *prev;
848 /* len == 0 means wake all */
849 struct userfaultfd_wake_range range = { .len = 0, };
850 unsigned long new_flags;
851
6aa7de05 852 WRITE_ONCE(ctx->released, true);
86039bd3 853
d2005e3f
ON
854 if (!mmget_not_zero(mm))
855 goto wakeup;
856
86039bd3
AA
857 /*
858 * Flush page faults out of all CPUs. NOTE: all page faults
859 * must be retried without returning VM_FAULT_SIGBUS if
860 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 861 * changes while handle_userfault released the mmap_lock. So
86039bd3 862 * it's critical that released is set to true (above), before
c1e8d7c6 863 * taking the mmap_lock for writing.
86039bd3 864 */
d8ed45c5 865 mmap_write_lock(mm);
86039bd3
AA
866 prev = NULL;
867 for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 cond_resched();
869 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
870 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
871 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
872 prev = vma;
873 continue;
874 }
875 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
4d45e75a
JH
876 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
877 new_flags, vma->anon_vma,
878 vma->vm_file, vma->vm_pgoff,
879 vma_policy(vma),
880 NULL_VM_UFFD_CTX);
881 if (prev)
882 vma = prev;
883 else
884 prev = vma;
86039bd3
AA
885 vma->vm_flags = new_flags;
886 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
887 }
d8ed45c5 888 mmap_write_unlock(mm);
d2005e3f
ON
889 mmput(mm);
890wakeup:
86039bd3 891 /*
15b726ef 892 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 893 * the last page faults that may have been already waiting on
15b726ef 894 * the fault_*wqh.
86039bd3 895 */
cbcfa130 896 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 897 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 898 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 899 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 900
5a18b64e
MR
901 /* Flush pending events that may still wait on event_wqh */
902 wake_up_all(&ctx->event_wqh);
903
a9a08845 904 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
905 userfaultfd_ctx_put(ctx);
906 return 0;
907}
908
15b726ef 909/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
910static inline struct userfaultfd_wait_queue *find_userfault_in(
911 wait_queue_head_t *wqh)
86039bd3 912{
ac6424b9 913 wait_queue_entry_t *wq;
15b726ef 914 struct userfaultfd_wait_queue *uwq;
86039bd3 915
456a7378 916 lockdep_assert_held(&wqh->lock);
86039bd3 917
15b726ef 918 uwq = NULL;
6dcc27fd 919 if (!waitqueue_active(wqh))
15b726ef
AA
920 goto out;
921 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 922 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
923 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
924out:
925 return uwq;
86039bd3 926}
6dcc27fd
PE
927
928static inline struct userfaultfd_wait_queue *find_userfault(
929 struct userfaultfd_ctx *ctx)
930{
931 return find_userfault_in(&ctx->fault_pending_wqh);
932}
86039bd3 933
9cd75c3c
PE
934static inline struct userfaultfd_wait_queue *find_userfault_evt(
935 struct userfaultfd_ctx *ctx)
936{
937 return find_userfault_in(&ctx->event_wqh);
938}
939
076ccb76 940static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
941{
942 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 943 __poll_t ret;
86039bd3
AA
944
945 poll_wait(file, &ctx->fd_wqh, wait);
946
947 switch (ctx->state) {
948 case UFFD_STATE_WAIT_API:
a9a08845 949 return EPOLLERR;
86039bd3 950 case UFFD_STATE_RUNNING:
ba85c702
AA
951 /*
952 * poll() never guarantees that read won't block.
953 * userfaults can be waken before they're read().
954 */
955 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 956 return EPOLLERR;
15b726ef
AA
957 /*
958 * lockless access to see if there are pending faults
959 * __pollwait last action is the add_wait_queue but
960 * the spin_unlock would allow the waitqueue_active to
961 * pass above the actual list_add inside
962 * add_wait_queue critical section. So use a full
963 * memory barrier to serialize the list_add write of
964 * add_wait_queue() with the waitqueue_active read
965 * below.
966 */
967 ret = 0;
968 smp_mb();
969 if (waitqueue_active(&ctx->fault_pending_wqh))
a9a08845 970 ret = EPOLLIN;
9cd75c3c 971 else if (waitqueue_active(&ctx->event_wqh))
a9a08845 972 ret = EPOLLIN;
9cd75c3c 973
86039bd3
AA
974 return ret;
975 default:
8474901a 976 WARN_ON_ONCE(1);
a9a08845 977 return EPOLLERR;
86039bd3
AA
978 }
979}
980
893e26e6
PE
981static const struct file_operations userfaultfd_fops;
982
b537900f
DC
983static int resolve_userfault_fork(struct userfaultfd_ctx *new,
984 struct inode *inode,
893e26e6
PE
985 struct uffd_msg *msg)
986{
987 int fd;
893e26e6 988
b537900f
DC
989 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
990 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
991 if (fd < 0)
992 return fd;
993
893e26e6
PE
994 msg->arg.reserved.reserved1 = 0;
995 msg->arg.fork.ufd = fd;
893e26e6
PE
996 return 0;
997}
998
86039bd3 999static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 1000 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1001{
1002 ssize_t ret;
1003 DECLARE_WAITQUEUE(wait, current);
15b726ef 1004 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1005 /*
1006 * Handling fork event requires sleeping operations, so
1007 * we drop the event_wqh lock, then do these ops, then
1008 * lock it back and wake up the waiter. While the lock is
1009 * dropped the ewq may go away so we keep track of it
1010 * carefully.
1011 */
1012 LIST_HEAD(fork_event);
1013 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1014
15b726ef 1015 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1016 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1017 __add_wait_queue(&ctx->fd_wqh, &wait);
1018 for (;;) {
1019 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1020 spin_lock(&ctx->fault_pending_wqh.lock);
1021 uwq = find_userfault(ctx);
1022 if (uwq) {
2c5b7e1b
AA
1023 /*
1024 * Use a seqcount to repeat the lockless check
1025 * in wake_userfault() to avoid missing
1026 * wakeups because during the refile both
1027 * waitqueue could become empty if this is the
1028 * only userfault.
1029 */
1030 write_seqcount_begin(&ctx->refile_seq);
1031
86039bd3 1032 /*
15b726ef
AA
1033 * The fault_pending_wqh.lock prevents the uwq
1034 * to disappear from under us.
1035 *
1036 * Refile this userfault from
1037 * fault_pending_wqh to fault_wqh, it's not
1038 * pending anymore after we read it.
1039 *
1040 * Use list_del() by hand (as
1041 * userfaultfd_wake_function also uses
1042 * list_del_init() by hand) to be sure nobody
1043 * changes __remove_wait_queue() to use
1044 * list_del_init() in turn breaking the
1045 * !list_empty_careful() check in
2055da97 1046 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1047 * must never be empty at any time during the
1048 * refile, or the waitqueue could disappear
1049 * from under us. The "wait_queue_head_t"
1050 * parameter of __remove_wait_queue() is unused
1051 * anyway.
86039bd3 1052 */
2055da97 1053 list_del(&uwq->wq.entry);
c430d1e8 1054 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1055
2c5b7e1b
AA
1056 write_seqcount_end(&ctx->refile_seq);
1057
a9b85f94
AA
1058 /* careful to always initialize msg if ret == 0 */
1059 *msg = uwq->msg;
15b726ef 1060 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1061 ret = 0;
1062 break;
1063 }
15b726ef 1064 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1065
1066 spin_lock(&ctx->event_wqh.lock);
1067 uwq = find_userfault_evt(ctx);
1068 if (uwq) {
1069 *msg = uwq->msg;
1070
893e26e6
PE
1071 if (uwq->msg.event == UFFD_EVENT_FORK) {
1072 fork_nctx = (struct userfaultfd_ctx *)
1073 (unsigned long)
1074 uwq->msg.arg.reserved.reserved1;
2055da97 1075 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1076 /*
1077 * fork_nctx can be freed as soon as
1078 * we drop the lock, unless we take a
1079 * reference on it.
1080 */
1081 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1082 spin_unlock(&ctx->event_wqh.lock);
1083 ret = 0;
1084 break;
1085 }
1086
9cd75c3c
PE
1087 userfaultfd_event_complete(ctx, uwq);
1088 spin_unlock(&ctx->event_wqh.lock);
1089 ret = 0;
1090 break;
1091 }
1092 spin_unlock(&ctx->event_wqh.lock);
1093
86039bd3
AA
1094 if (signal_pending(current)) {
1095 ret = -ERESTARTSYS;
1096 break;
1097 }
1098 if (no_wait) {
1099 ret = -EAGAIN;
1100 break;
1101 }
ae62c16e 1102 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1103 schedule();
ae62c16e 1104 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1105 }
1106 __remove_wait_queue(&ctx->fd_wqh, &wait);
1107 __set_current_state(TASK_RUNNING);
ae62c16e 1108 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1109
893e26e6 1110 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1111 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1112 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1113 if (!list_empty(&fork_event)) {
1114 /*
1115 * The fork thread didn't abort, so we can
1116 * drop the temporary refcount.
1117 */
1118 userfaultfd_ctx_put(fork_nctx);
1119
1120 uwq = list_first_entry(&fork_event,
1121 typeof(*uwq),
1122 wq.entry);
1123 /*
1124 * If fork_event list wasn't empty and in turn
1125 * the event wasn't already released by fork
1126 * (the event is allocated on fork kernel
1127 * stack), put the event back to its place in
1128 * the event_wq. fork_event head will be freed
1129 * as soon as we return so the event cannot
1130 * stay queued there no matter the current
1131 * "ret" value.
1132 */
1133 list_del(&uwq->wq.entry);
1134 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1135
384632e6
AA
1136 /*
1137 * Leave the event in the waitqueue and report
1138 * error to userland if we failed to resolve
1139 * the userfault fork.
1140 */
1141 if (likely(!ret))
893e26e6 1142 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1143 } else {
1144 /*
1145 * Here the fork thread aborted and the
1146 * refcount from the fork thread on fork_nctx
1147 * has already been released. We still hold
1148 * the reference we took before releasing the
1149 * lock above. If resolve_userfault_fork
1150 * failed we've to drop it because the
1151 * fork_nctx has to be freed in such case. If
1152 * it succeeded we'll hold it because the new
1153 * uffd references it.
1154 */
1155 if (ret)
1156 userfaultfd_ctx_put(fork_nctx);
893e26e6 1157 }
cbcfa130 1158 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1159 }
1160
86039bd3
AA
1161 return ret;
1162}
1163
1164static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1165 size_t count, loff_t *ppos)
1166{
1167 struct userfaultfd_ctx *ctx = file->private_data;
1168 ssize_t _ret, ret = 0;
a9b85f94 1169 struct uffd_msg msg;
86039bd3 1170 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1171 struct inode *inode = file_inode(file);
86039bd3
AA
1172
1173 if (ctx->state == UFFD_STATE_WAIT_API)
1174 return -EINVAL;
86039bd3
AA
1175
1176 for (;;) {
a9b85f94 1177 if (count < sizeof(msg))
86039bd3 1178 return ret ? ret : -EINVAL;
b537900f 1179 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1180 if (_ret < 0)
1181 return ret ? ret : _ret;
a9b85f94 1182 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1183 return ret ? ret : -EFAULT;
a9b85f94
AA
1184 ret += sizeof(msg);
1185 buf += sizeof(msg);
1186 count -= sizeof(msg);
86039bd3
AA
1187 /*
1188 * Allow to read more than one fault at time but only
1189 * block if waiting for the very first one.
1190 */
1191 no_wait = O_NONBLOCK;
1192 }
1193}
1194
1195static void __wake_userfault(struct userfaultfd_ctx *ctx,
1196 struct userfaultfd_wake_range *range)
1197{
cbcfa130 1198 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1199 /* wake all in the range and autoremove */
15b726ef 1200 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1201 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1202 range);
1203 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1204 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1205 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1206}
1207
1208static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1209 struct userfaultfd_wake_range *range)
1210{
2c5b7e1b
AA
1211 unsigned seq;
1212 bool need_wakeup;
1213
86039bd3
AA
1214 /*
1215 * To be sure waitqueue_active() is not reordered by the CPU
1216 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1217 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1218 * have release semantics that can allow the
1219 * waitqueue_active() to be reordered before the pte update.
1220 */
1221 smp_mb();
1222
1223 /*
1224 * Use waitqueue_active because it's very frequent to
1225 * change the address space atomically even if there are no
1226 * userfaults yet. So we take the spinlock only when we're
1227 * sure we've userfaults to wake.
1228 */
2c5b7e1b
AA
1229 do {
1230 seq = read_seqcount_begin(&ctx->refile_seq);
1231 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1232 waitqueue_active(&ctx->fault_wqh);
1233 cond_resched();
1234 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1235 if (need_wakeup)
86039bd3
AA
1236 __wake_userfault(ctx, range);
1237}
1238
1239static __always_inline int validate_range(struct mm_struct *mm,
7d032574 1240 __u64 *start, __u64 len)
86039bd3
AA
1241{
1242 __u64 task_size = mm->task_size;
1243
7d032574
AK
1244 *start = untagged_addr(*start);
1245
1246 if (*start & ~PAGE_MASK)
86039bd3
AA
1247 return -EINVAL;
1248 if (len & ~PAGE_MASK)
1249 return -EINVAL;
1250 if (!len)
1251 return -EINVAL;
7d032574 1252 if (*start < mmap_min_addr)
86039bd3 1253 return -EINVAL;
7d032574 1254 if (*start >= task_size)
86039bd3 1255 return -EINVAL;
7d032574 1256 if (len > task_size - *start)
86039bd3
AA
1257 return -EINVAL;
1258 return 0;
1259}
1260
63b2d417
AA
1261static inline bool vma_can_userfault(struct vm_area_struct *vma,
1262 unsigned long vm_flags)
ba6907db 1263{
63b2d417
AA
1264 /* FIXME: add WP support to hugetlbfs and shmem */
1265 return vma_is_anonymous(vma) ||
1266 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1267 !(vm_flags & VM_UFFD_WP));
ba6907db
MR
1268}
1269
86039bd3
AA
1270static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1271 unsigned long arg)
1272{
1273 struct mm_struct *mm = ctx->mm;
1274 struct vm_area_struct *vma, *prev, *cur;
1275 int ret;
1276 struct uffdio_register uffdio_register;
1277 struct uffdio_register __user *user_uffdio_register;
1278 unsigned long vm_flags, new_flags;
1279 bool found;
ce53e8e6 1280 bool basic_ioctls;
86039bd3
AA
1281 unsigned long start, end, vma_end;
1282
1283 user_uffdio_register = (struct uffdio_register __user *) arg;
1284
1285 ret = -EFAULT;
1286 if (copy_from_user(&uffdio_register, user_uffdio_register,
1287 sizeof(uffdio_register)-sizeof(__u64)))
1288 goto out;
1289
1290 ret = -EINVAL;
1291 if (!uffdio_register.mode)
1292 goto out;
1293 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1294 UFFDIO_REGISTER_MODE_WP))
1295 goto out;
1296 vm_flags = 0;
1297 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1298 vm_flags |= VM_UFFD_MISSING;
63b2d417 1299 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
86039bd3 1300 vm_flags |= VM_UFFD_WP;
86039bd3 1301
7d032574 1302 ret = validate_range(mm, &uffdio_register.range.start,
86039bd3
AA
1303 uffdio_register.range.len);
1304 if (ret)
1305 goto out;
1306
1307 start = uffdio_register.range.start;
1308 end = start + uffdio_register.range.len;
1309
d2005e3f
ON
1310 ret = -ENOMEM;
1311 if (!mmget_not_zero(mm))
1312 goto out;
1313
d8ed45c5 1314 mmap_write_lock(mm);
86039bd3 1315 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1316 if (!vma)
1317 goto out_unlock;
1318
1319 /* check that there's at least one vma in the range */
1320 ret = -EINVAL;
1321 if (vma->vm_start >= end)
1322 goto out_unlock;
1323
cab350af
MK
1324 /*
1325 * If the first vma contains huge pages, make sure start address
1326 * is aligned to huge page size.
1327 */
1328 if (is_vm_hugetlb_page(vma)) {
1329 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1330
1331 if (start & (vma_hpagesize - 1))
1332 goto out_unlock;
1333 }
1334
86039bd3
AA
1335 /*
1336 * Search for not compatible vmas.
86039bd3
AA
1337 */
1338 found = false;
ce53e8e6 1339 basic_ioctls = false;
86039bd3
AA
1340 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1341 cond_resched();
1342
1343 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1344 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1345
1346 /* check not compatible vmas */
1347 ret = -EINVAL;
63b2d417 1348 if (!vma_can_userfault(cur, vm_flags))
86039bd3 1349 goto out_unlock;
29ec9066
AA
1350
1351 /*
1352 * UFFDIO_COPY will fill file holes even without
1353 * PROT_WRITE. This check enforces that if this is a
1354 * MAP_SHARED, the process has write permission to the backing
1355 * file. If VM_MAYWRITE is set it also enforces that on a
1356 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1357 * F_WRITE_SEAL can be taken until the vma is destroyed.
1358 */
1359 ret = -EPERM;
1360 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1361 goto out_unlock;
1362
cab350af
MK
1363 /*
1364 * If this vma contains ending address, and huge pages
1365 * check alignment.
1366 */
1367 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1368 end > cur->vm_start) {
1369 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1370
1371 ret = -EINVAL;
1372
1373 if (end & (vma_hpagesize - 1))
1374 goto out_unlock;
1375 }
63b2d417
AA
1376 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1377 goto out_unlock;
86039bd3
AA
1378
1379 /*
1380 * Check that this vma isn't already owned by a
1381 * different userfaultfd. We can't allow more than one
1382 * userfaultfd to own a single vma simultaneously or we
1383 * wouldn't know which one to deliver the userfaults to.
1384 */
1385 ret = -EBUSY;
1386 if (cur->vm_userfaultfd_ctx.ctx &&
1387 cur->vm_userfaultfd_ctx.ctx != ctx)
1388 goto out_unlock;
1389
cab350af
MK
1390 /*
1391 * Note vmas containing huge pages
1392 */
ce53e8e6
MR
1393 if (is_vm_hugetlb_page(cur))
1394 basic_ioctls = true;
cab350af 1395
86039bd3
AA
1396 found = true;
1397 }
1398 BUG_ON(!found);
1399
1400 if (vma->vm_start < start)
1401 prev = vma;
1402
1403 ret = 0;
1404 do {
1405 cond_resched();
1406
63b2d417 1407 BUG_ON(!vma_can_userfault(vma, vm_flags));
86039bd3
AA
1408 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1409 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1410 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1411
1412 /*
1413 * Nothing to do: this vma is already registered into this
1414 * userfaultfd and with the right tracking mode too.
1415 */
1416 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1417 (vma->vm_flags & vm_flags) == vm_flags)
1418 goto skip;
1419
1420 if (vma->vm_start > start)
1421 start = vma->vm_start;
1422 vma_end = min(end, vma->vm_end);
1423
9d4678eb
AA
1424 new_flags = (vma->vm_flags &
1425 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
86039bd3
AA
1426 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1427 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1428 vma_policy(vma),
1429 ((struct vm_userfaultfd_ctx){ ctx }));
1430 if (prev) {
1431 vma = prev;
1432 goto next;
1433 }
1434 if (vma->vm_start < start) {
1435 ret = split_vma(mm, vma, start, 1);
1436 if (ret)
1437 break;
1438 }
1439 if (vma->vm_end > end) {
1440 ret = split_vma(mm, vma, end, 0);
1441 if (ret)
1442 break;
1443 }
1444 next:
1445 /*
1446 * In the vma_merge() successful mprotect-like case 8:
1447 * the next vma was merged into the current one and
1448 * the current one has not been updated yet.
1449 */
1450 vma->vm_flags = new_flags;
1451 vma->vm_userfaultfd_ctx.ctx = ctx;
1452
6dfeaff9
PX
1453 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1454 hugetlb_unshare_all_pmds(vma);
1455
86039bd3
AA
1456 skip:
1457 prev = vma;
1458 start = vma->vm_end;
1459 vma = vma->vm_next;
1460 } while (vma && vma->vm_start < end);
1461out_unlock:
d8ed45c5 1462 mmap_write_unlock(mm);
d2005e3f 1463 mmput(mm);
86039bd3 1464 if (!ret) {
14819305
PX
1465 __u64 ioctls_out;
1466
1467 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1468 UFFD_API_RANGE_IOCTLS;
1469
1470 /*
1471 * Declare the WP ioctl only if the WP mode is
1472 * specified and all checks passed with the range
1473 */
1474 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1475 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1476
86039bd3
AA
1477 /*
1478 * Now that we scanned all vmas we can already tell
1479 * userland which ioctls methods are guaranteed to
1480 * succeed on this range.
1481 */
14819305 1482 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1483 ret = -EFAULT;
1484 }
1485out:
1486 return ret;
1487}
1488
1489static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1490 unsigned long arg)
1491{
1492 struct mm_struct *mm = ctx->mm;
1493 struct vm_area_struct *vma, *prev, *cur;
1494 int ret;
1495 struct uffdio_range uffdio_unregister;
1496 unsigned long new_flags;
1497 bool found;
1498 unsigned long start, end, vma_end;
1499 const void __user *buf = (void __user *)arg;
1500
1501 ret = -EFAULT;
1502 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1503 goto out;
1504
7d032574 1505 ret = validate_range(mm, &uffdio_unregister.start,
86039bd3
AA
1506 uffdio_unregister.len);
1507 if (ret)
1508 goto out;
1509
1510 start = uffdio_unregister.start;
1511 end = start + uffdio_unregister.len;
1512
d2005e3f
ON
1513 ret = -ENOMEM;
1514 if (!mmget_not_zero(mm))
1515 goto out;
1516
d8ed45c5 1517 mmap_write_lock(mm);
86039bd3 1518 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1519 if (!vma)
1520 goto out_unlock;
1521
1522 /* check that there's at least one vma in the range */
1523 ret = -EINVAL;
1524 if (vma->vm_start >= end)
1525 goto out_unlock;
1526
cab350af
MK
1527 /*
1528 * If the first vma contains huge pages, make sure start address
1529 * is aligned to huge page size.
1530 */
1531 if (is_vm_hugetlb_page(vma)) {
1532 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1533
1534 if (start & (vma_hpagesize - 1))
1535 goto out_unlock;
1536 }
1537
86039bd3
AA
1538 /*
1539 * Search for not compatible vmas.
86039bd3
AA
1540 */
1541 found = false;
1542 ret = -EINVAL;
1543 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1544 cond_resched();
1545
1546 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1547 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1548
1549 /*
1550 * Check not compatible vmas, not strictly required
1551 * here as not compatible vmas cannot have an
1552 * userfaultfd_ctx registered on them, but this
1553 * provides for more strict behavior to notice
1554 * unregistration errors.
1555 */
63b2d417 1556 if (!vma_can_userfault(cur, cur->vm_flags))
86039bd3
AA
1557 goto out_unlock;
1558
1559 found = true;
1560 }
1561 BUG_ON(!found);
1562
1563 if (vma->vm_start < start)
1564 prev = vma;
1565
1566 ret = 0;
1567 do {
1568 cond_resched();
1569
63b2d417 1570 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
86039bd3
AA
1571
1572 /*
1573 * Nothing to do: this vma is already registered into this
1574 * userfaultfd and with the right tracking mode too.
1575 */
1576 if (!vma->vm_userfaultfd_ctx.ctx)
1577 goto skip;
1578
01e881f5
AA
1579 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1580
86039bd3
AA
1581 if (vma->vm_start > start)
1582 start = vma->vm_start;
1583 vma_end = min(end, vma->vm_end);
1584
09fa5296
AA
1585 if (userfaultfd_missing(vma)) {
1586 /*
1587 * Wake any concurrent pending userfault while
1588 * we unregister, so they will not hang
1589 * permanently and it avoids userland to call
1590 * UFFDIO_WAKE explicitly.
1591 */
1592 struct userfaultfd_wake_range range;
1593 range.start = start;
1594 range.len = vma_end - start;
1595 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1596 }
1597
86039bd3
AA
1598 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1599 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1600 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1601 vma_policy(vma),
1602 NULL_VM_UFFD_CTX);
1603 if (prev) {
1604 vma = prev;
1605 goto next;
1606 }
1607 if (vma->vm_start < start) {
1608 ret = split_vma(mm, vma, start, 1);
1609 if (ret)
1610 break;
1611 }
1612 if (vma->vm_end > end) {
1613 ret = split_vma(mm, vma, end, 0);
1614 if (ret)
1615 break;
1616 }
1617 next:
1618 /*
1619 * In the vma_merge() successful mprotect-like case 8:
1620 * the next vma was merged into the current one and
1621 * the current one has not been updated yet.
1622 */
1623 vma->vm_flags = new_flags;
1624 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1625
1626 skip:
1627 prev = vma;
1628 start = vma->vm_end;
1629 vma = vma->vm_next;
1630 } while (vma && vma->vm_start < end);
1631out_unlock:
d8ed45c5 1632 mmap_write_unlock(mm);
d2005e3f 1633 mmput(mm);
86039bd3
AA
1634out:
1635 return ret;
1636}
1637
1638/*
ba85c702
AA
1639 * userfaultfd_wake may be used in combination with the
1640 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1641 */
1642static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1643 unsigned long arg)
1644{
1645 int ret;
1646 struct uffdio_range uffdio_wake;
1647 struct userfaultfd_wake_range range;
1648 const void __user *buf = (void __user *)arg;
1649
1650 ret = -EFAULT;
1651 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1652 goto out;
1653
7d032574 1654 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1655 if (ret)
1656 goto out;
1657
1658 range.start = uffdio_wake.start;
1659 range.len = uffdio_wake.len;
1660
1661 /*
1662 * len == 0 means wake all and we don't want to wake all here,
1663 * so check it again to be sure.
1664 */
1665 VM_BUG_ON(!range.len);
1666
1667 wake_userfault(ctx, &range);
1668 ret = 0;
1669
1670out:
1671 return ret;
1672}
1673
ad465cae
AA
1674static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1675 unsigned long arg)
1676{
1677 __s64 ret;
1678 struct uffdio_copy uffdio_copy;
1679 struct uffdio_copy __user *user_uffdio_copy;
1680 struct userfaultfd_wake_range range;
1681
1682 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1683
df2cc96e
MR
1684 ret = -EAGAIN;
1685 if (READ_ONCE(ctx->mmap_changing))
1686 goto out;
1687
ad465cae
AA
1688 ret = -EFAULT;
1689 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1690 /* don't copy "copy" last field */
1691 sizeof(uffdio_copy)-sizeof(__s64)))
1692 goto out;
1693
7d032574 1694 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1695 if (ret)
1696 goto out;
1697 /*
1698 * double check for wraparound just in case. copy_from_user()
1699 * will later check uffdio_copy.src + uffdio_copy.len to fit
1700 * in the userland range.
1701 */
1702 ret = -EINVAL;
1703 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1704 goto out;
72981e0e 1705 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1706 goto out;
d2005e3f
ON
1707 if (mmget_not_zero(ctx->mm)) {
1708 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
72981e0e
AA
1709 uffdio_copy.len, &ctx->mmap_changing,
1710 uffdio_copy.mode);
d2005e3f 1711 mmput(ctx->mm);
96333187 1712 } else {
e86b298b 1713 return -ESRCH;
d2005e3f 1714 }
ad465cae
AA
1715 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1716 return -EFAULT;
1717 if (ret < 0)
1718 goto out;
1719 BUG_ON(!ret);
1720 /* len == 0 would wake all */
1721 range.len = ret;
1722 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1723 range.start = uffdio_copy.dst;
1724 wake_userfault(ctx, &range);
1725 }
1726 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1727out:
1728 return ret;
1729}
1730
1731static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1732 unsigned long arg)
1733{
1734 __s64 ret;
1735 struct uffdio_zeropage uffdio_zeropage;
1736 struct uffdio_zeropage __user *user_uffdio_zeropage;
1737 struct userfaultfd_wake_range range;
1738
1739 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1740
df2cc96e
MR
1741 ret = -EAGAIN;
1742 if (READ_ONCE(ctx->mmap_changing))
1743 goto out;
1744
ad465cae
AA
1745 ret = -EFAULT;
1746 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1747 /* don't copy "zeropage" last field */
1748 sizeof(uffdio_zeropage)-sizeof(__s64)))
1749 goto out;
1750
7d032574 1751 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
ad465cae
AA
1752 uffdio_zeropage.range.len);
1753 if (ret)
1754 goto out;
1755 ret = -EINVAL;
1756 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1757 goto out;
1758
d2005e3f
ON
1759 if (mmget_not_zero(ctx->mm)) {
1760 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1761 uffdio_zeropage.range.len,
1762 &ctx->mmap_changing);
d2005e3f 1763 mmput(ctx->mm);
9d95aa4b 1764 } else {
e86b298b 1765 return -ESRCH;
d2005e3f 1766 }
ad465cae
AA
1767 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1768 return -EFAULT;
1769 if (ret < 0)
1770 goto out;
1771 /* len == 0 would wake all */
1772 BUG_ON(!ret);
1773 range.len = ret;
1774 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1775 range.start = uffdio_zeropage.range.start;
1776 wake_userfault(ctx, &range);
1777 }
1778 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1779out:
1780 return ret;
1781}
1782
63b2d417
AA
1783static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1784 unsigned long arg)
1785{
1786 int ret;
1787 struct uffdio_writeprotect uffdio_wp;
1788 struct uffdio_writeprotect __user *user_uffdio_wp;
1789 struct userfaultfd_wake_range range;
23080e27 1790 bool mode_wp, mode_dontwake;
63b2d417
AA
1791
1792 if (READ_ONCE(ctx->mmap_changing))
1793 return -EAGAIN;
1794
1795 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1796
1797 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1798 sizeof(struct uffdio_writeprotect)))
1799 return -EFAULT;
1800
1801 ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1802 uffdio_wp.range.len);
1803 if (ret)
1804 return ret;
1805
1806 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1807 UFFDIO_WRITEPROTECT_MODE_WP))
1808 return -EINVAL;
23080e27
PX
1809
1810 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1811 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1812
1813 if (mode_wp && mode_dontwake)
63b2d417
AA
1814 return -EINVAL;
1815
1816 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
23080e27 1817 uffdio_wp.range.len, mode_wp,
63b2d417
AA
1818 &ctx->mmap_changing);
1819 if (ret)
1820 return ret;
1821
23080e27 1822 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1823 range.start = uffdio_wp.range.start;
1824 range.len = uffdio_wp.range.len;
1825 wake_userfault(ctx, &range);
1826 }
1827 return ret;
1828}
1829
9cd75c3c
PE
1830static inline unsigned int uffd_ctx_features(__u64 user_features)
1831{
1832 /*
1833 * For the current set of features the bits just coincide
1834 */
1835 return (unsigned int)user_features;
1836}
1837
86039bd3
AA
1838/*
1839 * userland asks for a certain API version and we return which bits
1840 * and ioctl commands are implemented in this kernel for such API
1841 * version or -EINVAL if unknown.
1842 */
1843static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1844 unsigned long arg)
1845{
1846 struct uffdio_api uffdio_api;
1847 void __user *buf = (void __user *)arg;
1848 int ret;
65603144 1849 __u64 features;
86039bd3
AA
1850
1851 ret = -EINVAL;
1852 if (ctx->state != UFFD_STATE_WAIT_API)
1853 goto out;
1854 ret = -EFAULT;
a9b85f94 1855 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1856 goto out;
65603144 1857 features = uffdio_api.features;
3c1c24d9
MR
1858 ret = -EINVAL;
1859 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1860 goto err_out;
1861 ret = -EPERM;
1862 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1863 goto err_out;
65603144
AA
1864 /* report all available features and ioctls to userland */
1865 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1866 uffdio_api.ioctls = UFFD_API_IOCTLS;
1867 ret = -EFAULT;
1868 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1869 goto out;
1870 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1871 /* only enable the requested features for this uffd context */
1872 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1873 ret = 0;
1874out:
1875 return ret;
3c1c24d9
MR
1876err_out:
1877 memset(&uffdio_api, 0, sizeof(uffdio_api));
1878 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1879 ret = -EFAULT;
1880 goto out;
86039bd3
AA
1881}
1882
1883static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1884 unsigned long arg)
1885{
1886 int ret = -EINVAL;
1887 struct userfaultfd_ctx *ctx = file->private_data;
1888
e6485a47
AA
1889 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1890 return -EINVAL;
1891
86039bd3
AA
1892 switch(cmd) {
1893 case UFFDIO_API:
1894 ret = userfaultfd_api(ctx, arg);
1895 break;
1896 case UFFDIO_REGISTER:
1897 ret = userfaultfd_register(ctx, arg);
1898 break;
1899 case UFFDIO_UNREGISTER:
1900 ret = userfaultfd_unregister(ctx, arg);
1901 break;
1902 case UFFDIO_WAKE:
1903 ret = userfaultfd_wake(ctx, arg);
1904 break;
ad465cae
AA
1905 case UFFDIO_COPY:
1906 ret = userfaultfd_copy(ctx, arg);
1907 break;
1908 case UFFDIO_ZEROPAGE:
1909 ret = userfaultfd_zeropage(ctx, arg);
1910 break;
63b2d417
AA
1911 case UFFDIO_WRITEPROTECT:
1912 ret = userfaultfd_writeprotect(ctx, arg);
1913 break;
86039bd3
AA
1914 }
1915 return ret;
1916}
1917
1918#ifdef CONFIG_PROC_FS
1919static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1920{
1921 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1922 wait_queue_entry_t *wq;
86039bd3
AA
1923 unsigned long pending = 0, total = 0;
1924
cbcfa130 1925 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 1926 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1927 pending++;
1928 total++;
1929 }
2055da97 1930 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
1931 total++;
1932 }
cbcfa130 1933 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1934
1935 /*
1936 * If more protocols will be added, there will be all shown
1937 * separated by a space. Like this:
1938 * protocols: aa:... bb:...
1939 */
1940 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1941 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1942 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1943}
1944#endif
1945
1946static const struct file_operations userfaultfd_fops = {
1947#ifdef CONFIG_PROC_FS
1948 .show_fdinfo = userfaultfd_show_fdinfo,
1949#endif
1950 .release = userfaultfd_release,
1951 .poll = userfaultfd_poll,
1952 .read = userfaultfd_read,
1953 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 1954 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
1955 .llseek = noop_llseek,
1956};
1957
3004ec9c
AA
1958static void init_once_userfaultfd_ctx(void *mem)
1959{
1960 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1961
1962 init_waitqueue_head(&ctx->fault_pending_wqh);
1963 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1964 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1965 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 1966 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
1967}
1968
284cd241 1969SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 1970{
86039bd3 1971 struct userfaultfd_ctx *ctx;
284cd241 1972 int fd;
86039bd3 1973
d0d4730a
LG
1974 if (!sysctl_unprivileged_userfaultfd &&
1975 (flags & UFFD_USER_MODE_ONLY) == 0 &&
1976 !capable(CAP_SYS_PTRACE)) {
1977 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
1978 "sysctl knob to 1 if kernel faults must be handled "
1979 "without obtaining CAP_SYS_PTRACE capability\n");
cefdca0a 1980 return -EPERM;
d0d4730a 1981 }
cefdca0a 1982
86039bd3
AA
1983 BUG_ON(!current->mm);
1984
1985 /* Check the UFFD_* constants for consistency. */
37cd0575 1986 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
1987 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1988 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1989
37cd0575 1990 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 1991 return -EINVAL;
86039bd3 1992
3004ec9c 1993 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 1994 if (!ctx)
284cd241 1995 return -ENOMEM;
86039bd3 1996
ca880420 1997 refcount_set(&ctx->refcount, 1);
86039bd3 1998 ctx->flags = flags;
9cd75c3c 1999 ctx->features = 0;
86039bd3
AA
2000 ctx->state = UFFD_STATE_WAIT_API;
2001 ctx->released = false;
df2cc96e 2002 ctx->mmap_changing = false;
86039bd3
AA
2003 ctx->mm = current->mm;
2004 /* prevent the mm struct to be freed */
f1f10076 2005 mmgrab(ctx->mm);
86039bd3 2006
b537900f
DC
2007 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2008 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2009 if (fd < 0) {
d2005e3f 2010 mmdrop(ctx->mm);
3004ec9c 2011 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2012 }
86039bd3 2013 return fd;
86039bd3 2014}
3004ec9c
AA
2015
2016static int __init userfaultfd_init(void)
2017{
2018 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2019 sizeof(struct userfaultfd_ctx),
2020 0,
2021 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2022 init_once_userfaultfd_ctx);
2023 return 0;
2024}
2025__initcall(userfaultfd_init);