mm, gup: ensure real head page is ref-counted when using hugepages
[linux-2.6-block.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3 16#include <linux/hashtable.h>
174cd4b1 17#include <linux/sched/signal.h>
6e84f315 18#include <linux/sched/mm.h>
86039bd3
AA
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
86039bd3 44struct userfaultfd_ctx {
15b726ef
AA
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
86039bd3
AA
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
9cd75c3c
PE
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
2c5b7e1b
AA
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
3004ec9c
AA
55 /* pseudo fd refcounting */
56 atomic_t refcount;
86039bd3
AA
57 /* userfaultfd syscall flags */
58 unsigned int flags;
9cd75c3c
PE
59 /* features requested from the userspace */
60 unsigned int features;
86039bd3
AA
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67};
68
893e26e6
PE
69struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73};
74
897ab3e0
MR
75struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80};
81
86039bd3 82struct userfaultfd_wait_queue {
a9b85f94 83 struct uffd_msg msg;
ac6424b9 84 wait_queue_entry_t wq;
86039bd3 85 struct userfaultfd_ctx *ctx;
15a77c6f 86 bool waken;
86039bd3
AA
87};
88
89struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92};
93
ac6424b9 94static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
95 int wake_flags, void *key)
96{
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
86039bd3
AA
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
a9b85f94
AA
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 109 goto out;
15a77c6f
AA
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 * renders uwq->waken visible to other CPUs before the task is
114 * waken.
115 */
86039bd3
AA
116 ret = wake_up_state(wq->private, mode);
117 if (ret)
118 /*
119 * Wake only once, autoremove behavior.
120 *
121 * After the effect of list_del_init is visible to the
122 * other CPUs, the waitqueue may disappear from under
123 * us, see the !list_empty_careful() in
124 * handle_userfault(). try_to_wake_up() has an
125 * implicit smp_mb__before_spinlock, and the
126 * wq->private is read before calling the extern
127 * function "wake_up_state" (which in turns calls
128 * try_to_wake_up). While the spin_lock;spin_unlock;
129 * wouldn't be enough, the smp_mb__before_spinlock is
130 * enough to avoid an explicit smp_mb() here.
131 */
2055da97 132 list_del_init(&wq->entry);
86039bd3
AA
133out:
134 return ret;
135}
136
137/**
138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * context.
140 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
141 */
142static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
143{
144 if (!atomic_inc_not_zero(&ctx->refcount))
145 BUG();
146}
147
148/**
149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150 * context.
151 * @ctx: [in] Pointer to userfaultfd context.
152 *
153 * The userfaultfd context reference must have been previously acquired either
154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155 */
156static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157{
158 if (atomic_dec_and_test(&ctx->refcount)) {
159 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
160 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
161 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
162 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
163 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
164 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
165 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
166 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 167 mmdrop(ctx->mm);
3004ec9c 168 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
169 }
170}
171
a9b85f94 172static inline void msg_init(struct uffd_msg *msg)
86039bd3 173{
a9b85f94
AA
174 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175 /*
176 * Must use memset to zero out the paddings or kernel data is
177 * leaked to userland.
178 */
179 memset(msg, 0, sizeof(struct uffd_msg));
180}
181
182static inline struct uffd_msg userfault_msg(unsigned long address,
183 unsigned int flags,
184 unsigned long reason)
185{
186 struct uffd_msg msg;
187 msg_init(&msg);
188 msg.event = UFFD_EVENT_PAGEFAULT;
189 msg.arg.pagefault.address = address;
86039bd3
AA
190 if (flags & FAULT_FLAG_WRITE)
191 /*
a4605a61 192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
196 * a write fault.
86039bd3 197 */
a9b85f94 198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
199 if (reason & VM_UFFD_WP)
200 /*
a9b85f94
AA
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
86039bd3 206 */
a9b85f94
AA
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 return msg;
86039bd3
AA
209}
210
369cd212
MK
211#ifdef CONFIG_HUGETLB_PAGE
212/*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 unsigned long address,
218 unsigned long flags,
219 unsigned long reason)
220{
221 struct mm_struct *mm = ctx->mm;
222 pte_t *pte;
223 bool ret = true;
224
225 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
226
227 pte = huge_pte_offset(mm, address);
228 if (!pte)
229 goto out;
230
231 ret = false;
232
233 /*
234 * Lockless access: we're in a wait_event so it's ok if it
235 * changes under us.
236 */
237 if (huge_pte_none(*pte))
238 ret = true;
239 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
240 ret = true;
241out:
242 return ret;
243}
244#else
245static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246 unsigned long address,
247 unsigned long flags,
248 unsigned long reason)
249{
250 return false; /* should never get here */
251}
252#endif /* CONFIG_HUGETLB_PAGE */
253
8d2afd96
AA
254/*
255 * Verify the pagetables are still not ok after having reigstered into
256 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
257 * userfault that has already been resolved, if userfaultfd_read and
258 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
259 * threads.
260 */
261static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
265{
266 struct mm_struct *mm = ctx->mm;
267 pgd_t *pgd;
c2febafc 268 p4d_t *p4d;
8d2afd96
AA
269 pud_t *pud;
270 pmd_t *pmd, _pmd;
271 pte_t *pte;
272 bool ret = true;
273
274 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
275
276 pgd = pgd_offset(mm, address);
277 if (!pgd_present(*pgd))
278 goto out;
c2febafc
KS
279 p4d = p4d_offset(pgd, address);
280 if (!p4d_present(*p4d))
281 goto out;
282 pud = pud_offset(p4d, address);
8d2afd96
AA
283 if (!pud_present(*pud))
284 goto out;
285 pmd = pmd_offset(pud, address);
286 /*
287 * READ_ONCE must function as a barrier with narrower scope
288 * and it must be equivalent to:
289 * _pmd = *pmd; barrier();
290 *
291 * This is to deal with the instability (as in
292 * pmd_trans_unstable) of the pmd.
293 */
294 _pmd = READ_ONCE(*pmd);
295 if (!pmd_present(_pmd))
296 goto out;
297
298 ret = false;
299 if (pmd_trans_huge(_pmd))
300 goto out;
301
302 /*
303 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
304 * and use the standard pte_offset_map() instead of parsing _pmd.
305 */
306 pte = pte_offset_map(pmd, address);
307 /*
308 * Lockless access: we're in a wait_event so it's ok if it
309 * changes under us.
310 */
311 if (pte_none(*pte))
312 ret = true;
313 pte_unmap(pte);
314
315out:
316 return ret;
317}
318
86039bd3
AA
319/*
320 * The locking rules involved in returning VM_FAULT_RETRY depending on
321 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
322 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
323 * recommendation in __lock_page_or_retry is not an understatement.
324 *
325 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
326 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
327 * not set.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
330 * set, VM_FAULT_RETRY can still be returned if and only if there are
331 * fatal_signal_pending()s, and the mmap_sem must be released before
332 * returning it.
333 */
82b0f8c3 334int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 335{
82b0f8c3 336 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
337 struct userfaultfd_ctx *ctx;
338 struct userfaultfd_wait_queue uwq;
ba85c702 339 int ret;
dfa37dc3 340 bool must_wait, return_to_userland;
15a77c6f 341 long blocking_state;
86039bd3 342
ba85c702 343 ret = VM_FAULT_SIGBUS;
64c2b203
AA
344
345 /*
346 * We don't do userfault handling for the final child pid update.
347 *
348 * We also don't do userfault handling during
349 * coredumping. hugetlbfs has the special
350 * follow_hugetlb_page() to skip missing pages in the
351 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
352 * the no_page_table() helper in follow_page_mask(), but the
353 * shmem_vm_ops->fault method is invoked even during
354 * coredumping without mmap_sem and it ends up here.
355 */
356 if (current->flags & (PF_EXITING|PF_DUMPCORE))
357 goto out;
358
359 /*
360 * Coredumping runs without mmap_sem so we can only check that
361 * the mmap_sem is held, if PF_DUMPCORE was not set.
362 */
363 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
364
82b0f8c3 365 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 366 if (!ctx)
ba85c702 367 goto out;
86039bd3
AA
368
369 BUG_ON(ctx->mm != mm);
370
371 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
372 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
373
374 /*
375 * If it's already released don't get it. This avoids to loop
376 * in __get_user_pages if userfaultfd_release waits on the
377 * caller of handle_userfault to release the mmap_sem.
378 */
379 if (unlikely(ACCESS_ONCE(ctx->released)))
ba85c702 380 goto out;
86039bd3
AA
381
382 /*
383 * Check that we can return VM_FAULT_RETRY.
384 *
385 * NOTE: it should become possible to return VM_FAULT_RETRY
386 * even if FAULT_FLAG_TRIED is set without leading to gup()
387 * -EBUSY failures, if the userfaultfd is to be extended for
388 * VM_UFFD_WP tracking and we intend to arm the userfault
389 * without first stopping userland access to the memory. For
390 * VM_UFFD_MISSING userfaults this is enough for now.
391 */
82b0f8c3 392 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
393 /*
394 * Validate the invariant that nowait must allow retry
395 * to be sure not to return SIGBUS erroneously on
396 * nowait invocations.
397 */
82b0f8c3 398 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
399#ifdef CONFIG_DEBUG_VM
400 if (printk_ratelimit()) {
401 printk(KERN_WARNING
82b0f8c3
JK
402 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
403 vmf->flags);
86039bd3
AA
404 dump_stack();
405 }
406#endif
ba85c702 407 goto out;
86039bd3
AA
408 }
409
410 /*
411 * Handle nowait, not much to do other than tell it to retry
412 * and wait.
413 */
ba85c702 414 ret = VM_FAULT_RETRY;
82b0f8c3 415 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 416 goto out;
86039bd3
AA
417
418 /* take the reference before dropping the mmap_sem */
419 userfaultfd_ctx_get(ctx);
420
86039bd3
AA
421 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
422 uwq.wq.private = current;
82b0f8c3 423 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
86039bd3 424 uwq.ctx = ctx;
15a77c6f 425 uwq.waken = false;
86039bd3 426
bae473a4 427 return_to_userland =
82b0f8c3 428 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 429 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
430 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
431 TASK_KILLABLE;
dfa37dc3 432
15b726ef 433 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
434 /*
435 * After the __add_wait_queue the uwq is visible to userland
436 * through poll/read().
437 */
15b726ef
AA
438 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
439 /*
440 * The smp_mb() after __set_current_state prevents the reads
441 * following the spin_unlock to happen before the list_add in
442 * __add_wait_queue.
443 */
15a77c6f 444 set_current_state(blocking_state);
15b726ef 445 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 446
369cd212
MK
447 if (!is_vm_hugetlb_page(vmf->vma))
448 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
449 reason);
450 else
451 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
452 vmf->flags, reason);
8d2afd96
AA
453 up_read(&mm->mmap_sem);
454
455 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
dfa37dc3
AA
456 (return_to_userland ? !signal_pending(current) :
457 !fatal_signal_pending(current)))) {
86039bd3
AA
458 wake_up_poll(&ctx->fd_wqh, POLLIN);
459 schedule();
ba85c702 460 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
461
462 /*
463 * False wakeups can orginate even from rwsem before
464 * up_read() however userfaults will wait either for a
465 * targeted wakeup on the specific uwq waitqueue from
466 * wake_userfault() or for signals or for uffd
467 * release.
468 */
469 while (!READ_ONCE(uwq.waken)) {
470 /*
471 * This needs the full smp_store_mb()
472 * guarantee as the state write must be
473 * visible to other CPUs before reading
474 * uwq.waken from other CPUs.
475 */
476 set_current_state(blocking_state);
477 if (READ_ONCE(uwq.waken) ||
478 READ_ONCE(ctx->released) ||
479 (return_to_userland ? signal_pending(current) :
480 fatal_signal_pending(current)))
481 break;
482 schedule();
483 }
ba85c702 484 }
86039bd3 485
ba85c702 486 __set_current_state(TASK_RUNNING);
15b726ef 487
dfa37dc3
AA
488 if (return_to_userland) {
489 if (signal_pending(current) &&
490 !fatal_signal_pending(current)) {
491 /*
492 * If we got a SIGSTOP or SIGCONT and this is
493 * a normal userland page fault, just let
494 * userland return so the signal will be
495 * handled and gdb debugging works. The page
496 * fault code immediately after we return from
497 * this function is going to release the
498 * mmap_sem and it's not depending on it
499 * (unlike gup would if we were not to return
500 * VM_FAULT_RETRY).
501 *
502 * If a fatal signal is pending we still take
503 * the streamlined VM_FAULT_RETRY failure path
504 * and there's no need to retake the mmap_sem
505 * in such case.
506 */
507 down_read(&mm->mmap_sem);
6bbc4a41 508 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
509 }
510 }
511
15b726ef
AA
512 /*
513 * Here we race with the list_del; list_add in
514 * userfaultfd_ctx_read(), however because we don't ever run
515 * list_del_init() to refile across the two lists, the prev
516 * and next pointers will never point to self. list_add also
517 * would never let any of the two pointers to point to
518 * self. So list_empty_careful won't risk to see both pointers
519 * pointing to self at any time during the list refile. The
520 * only case where list_del_init() is called is the full
521 * removal in the wake function and there we don't re-list_add
522 * and it's fine not to block on the spinlock. The uwq on this
523 * kernel stack can be released after the list_del_init.
524 */
2055da97 525 if (!list_empty_careful(&uwq.wq.entry)) {
15b726ef
AA
526 spin_lock(&ctx->fault_pending_wqh.lock);
527 /*
528 * No need of list_del_init(), the uwq on the stack
529 * will be freed shortly anyway.
530 */
2055da97 531 list_del(&uwq.wq.entry);
15b726ef 532 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 533 }
86039bd3
AA
534
535 /*
536 * ctx may go away after this if the userfault pseudo fd is
537 * already released.
538 */
539 userfaultfd_ctx_put(ctx);
540
ba85c702
AA
541out:
542 return ret;
86039bd3
AA
543}
544
8c9e7bb7
AA
545static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
546 struct userfaultfd_wait_queue *ewq)
9cd75c3c 547{
9a69a829
AA
548 if (WARN_ON_ONCE(current->flags & PF_EXITING))
549 goto out;
9cd75c3c
PE
550
551 ewq->ctx = ctx;
552 init_waitqueue_entry(&ewq->wq, current);
553
554 spin_lock(&ctx->event_wqh.lock);
555 /*
556 * After the __add_wait_queue the uwq is visible to userland
557 * through poll/read().
558 */
559 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
560 for (;;) {
561 set_current_state(TASK_KILLABLE);
562 if (ewq->msg.event == 0)
563 break;
564 if (ACCESS_ONCE(ctx->released) ||
565 fatal_signal_pending(current)) {
9cd75c3c 566 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
567 if (ewq->msg.event == UFFD_EVENT_FORK) {
568 struct userfaultfd_ctx *new;
569
570 new = (struct userfaultfd_ctx *)
571 (unsigned long)
572 ewq->msg.arg.reserved.reserved1;
573
574 userfaultfd_ctx_put(new);
575 }
9cd75c3c
PE
576 break;
577 }
578
579 spin_unlock(&ctx->event_wqh.lock);
580
581 wake_up_poll(&ctx->fd_wqh, POLLIN);
582 schedule();
583
584 spin_lock(&ctx->event_wqh.lock);
585 }
586 __set_current_state(TASK_RUNNING);
587 spin_unlock(&ctx->event_wqh.lock);
588
589 /*
590 * ctx may go away after this if the userfault pseudo fd is
591 * already released.
592 */
9a69a829 593out:
9cd75c3c 594 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
595}
596
597static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
598 struct userfaultfd_wait_queue *ewq)
599{
600 ewq->msg.event = 0;
601 wake_up_locked(&ctx->event_wqh);
602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
603}
604
893e26e6
PE
605int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
606{
607 struct userfaultfd_ctx *ctx = NULL, *octx;
608 struct userfaultfd_fork_ctx *fctx;
609
610 octx = vma->vm_userfaultfd_ctx.ctx;
611 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
612 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
613 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
614 return 0;
615 }
616
617 list_for_each_entry(fctx, fcs, list)
618 if (fctx->orig == octx) {
619 ctx = fctx->new;
620 break;
621 }
622
623 if (!ctx) {
624 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
625 if (!fctx)
626 return -ENOMEM;
627
628 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
629 if (!ctx) {
630 kfree(fctx);
631 return -ENOMEM;
632 }
633
634 atomic_set(&ctx->refcount, 1);
635 ctx->flags = octx->flags;
636 ctx->state = UFFD_STATE_RUNNING;
637 ctx->features = octx->features;
638 ctx->released = false;
639 ctx->mm = vma->vm_mm;
d3aadc8e 640 atomic_inc(&ctx->mm->mm_count);
893e26e6
PE
641
642 userfaultfd_ctx_get(octx);
643 fctx->orig = octx;
644 fctx->new = ctx;
645 list_add_tail(&fctx->list, fcs);
646 }
647
648 vma->vm_userfaultfd_ctx.ctx = ctx;
649 return 0;
650}
651
8c9e7bb7 652static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
653{
654 struct userfaultfd_ctx *ctx = fctx->orig;
655 struct userfaultfd_wait_queue ewq;
656
657 msg_init(&ewq.msg);
658
659 ewq.msg.event = UFFD_EVENT_FORK;
660 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
661
8c9e7bb7 662 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
663}
664
665void dup_userfaultfd_complete(struct list_head *fcs)
666{
893e26e6
PE
667 struct userfaultfd_fork_ctx *fctx, *n;
668
669 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 670 dup_fctx(fctx);
893e26e6
PE
671 list_del(&fctx->list);
672 kfree(fctx);
673 }
674}
675
72f87654
PE
676void mremap_userfaultfd_prep(struct vm_area_struct *vma,
677 struct vm_userfaultfd_ctx *vm_ctx)
678{
679 struct userfaultfd_ctx *ctx;
680
681 ctx = vma->vm_userfaultfd_ctx.ctx;
682 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
683 vm_ctx->ctx = ctx;
684 userfaultfd_ctx_get(ctx);
685 }
686}
687
90794bf1 688void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
689 unsigned long from, unsigned long to,
690 unsigned long len)
691{
90794bf1 692 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
693 struct userfaultfd_wait_queue ewq;
694
695 if (!ctx)
696 return;
697
698 if (to & ~PAGE_MASK) {
699 userfaultfd_ctx_put(ctx);
700 return;
701 }
702
703 msg_init(&ewq.msg);
704
705 ewq.msg.event = UFFD_EVENT_REMAP;
706 ewq.msg.arg.remap.from = from;
707 ewq.msg.arg.remap.to = to;
708 ewq.msg.arg.remap.len = len;
709
710 userfaultfd_event_wait_completion(ctx, &ewq);
711}
712
70ccb92f 713bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 714 unsigned long start, unsigned long end)
05ce7724
PE
715{
716 struct mm_struct *mm = vma->vm_mm;
717 struct userfaultfd_ctx *ctx;
718 struct userfaultfd_wait_queue ewq;
719
720 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 721 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 722 return true;
05ce7724
PE
723
724 userfaultfd_ctx_get(ctx);
725 up_read(&mm->mmap_sem);
726
05ce7724
PE
727 msg_init(&ewq.msg);
728
d811914d
MR
729 ewq.msg.event = UFFD_EVENT_REMOVE;
730 ewq.msg.arg.remove.start = start;
731 ewq.msg.arg.remove.end = end;
05ce7724
PE
732
733 userfaultfd_event_wait_completion(ctx, &ewq);
734
70ccb92f 735 return false;
05ce7724
PE
736}
737
897ab3e0
MR
738static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
739 unsigned long start, unsigned long end)
740{
741 struct userfaultfd_unmap_ctx *unmap_ctx;
742
743 list_for_each_entry(unmap_ctx, unmaps, list)
744 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
745 unmap_ctx->end == end)
746 return true;
747
748 return false;
749}
750
751int userfaultfd_unmap_prep(struct vm_area_struct *vma,
752 unsigned long start, unsigned long end,
753 struct list_head *unmaps)
754{
755 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
756 struct userfaultfd_unmap_ctx *unmap_ctx;
757 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
758
759 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
760 has_unmap_ctx(ctx, unmaps, start, end))
761 continue;
762
763 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
764 if (!unmap_ctx)
765 return -ENOMEM;
766
767 userfaultfd_ctx_get(ctx);
768 unmap_ctx->ctx = ctx;
769 unmap_ctx->start = start;
770 unmap_ctx->end = end;
771 list_add_tail(&unmap_ctx->list, unmaps);
772 }
773
774 return 0;
775}
776
777void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
778{
779 struct userfaultfd_unmap_ctx *ctx, *n;
780 struct userfaultfd_wait_queue ewq;
781
782 list_for_each_entry_safe(ctx, n, uf, list) {
783 msg_init(&ewq.msg);
784
785 ewq.msg.event = UFFD_EVENT_UNMAP;
786 ewq.msg.arg.remove.start = ctx->start;
787 ewq.msg.arg.remove.end = ctx->end;
788
789 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
790
791 list_del(&ctx->list);
792 kfree(ctx);
793 }
794}
795
86039bd3
AA
796static int userfaultfd_release(struct inode *inode, struct file *file)
797{
798 struct userfaultfd_ctx *ctx = file->private_data;
799 struct mm_struct *mm = ctx->mm;
800 struct vm_area_struct *vma, *prev;
801 /* len == 0 means wake all */
802 struct userfaultfd_wake_range range = { .len = 0, };
803 unsigned long new_flags;
804
805 ACCESS_ONCE(ctx->released) = true;
806
d2005e3f
ON
807 if (!mmget_not_zero(mm))
808 goto wakeup;
809
86039bd3
AA
810 /*
811 * Flush page faults out of all CPUs. NOTE: all page faults
812 * must be retried without returning VM_FAULT_SIGBUS if
813 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
814 * changes while handle_userfault released the mmap_sem. So
815 * it's critical that released is set to true (above), before
816 * taking the mmap_sem for writing.
817 */
818 down_write(&mm->mmap_sem);
819 prev = NULL;
820 for (vma = mm->mmap; vma; vma = vma->vm_next) {
821 cond_resched();
822 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
823 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
824 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
825 prev = vma;
826 continue;
827 }
828 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
829 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
830 new_flags, vma->anon_vma,
831 vma->vm_file, vma->vm_pgoff,
832 vma_policy(vma),
833 NULL_VM_UFFD_CTX);
834 if (prev)
835 vma = prev;
836 else
837 prev = vma;
838 vma->vm_flags = new_flags;
839 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
840 }
841 up_write(&mm->mmap_sem);
d2005e3f
ON
842 mmput(mm);
843wakeup:
86039bd3 844 /*
15b726ef 845 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 846 * the last page faults that may have been already waiting on
15b726ef 847 * the fault_*wqh.
86039bd3 848 */
15b726ef 849 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
850 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
851 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 852 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
853
854 wake_up_poll(&ctx->fd_wqh, POLLHUP);
855 userfaultfd_ctx_put(ctx);
856 return 0;
857}
858
15b726ef 859/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
860static inline struct userfaultfd_wait_queue *find_userfault_in(
861 wait_queue_head_t *wqh)
86039bd3 862{
ac6424b9 863 wait_queue_entry_t *wq;
15b726ef 864 struct userfaultfd_wait_queue *uwq;
86039bd3 865
6dcc27fd 866 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 867
15b726ef 868 uwq = NULL;
6dcc27fd 869 if (!waitqueue_active(wqh))
15b726ef
AA
870 goto out;
871 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 872 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
873 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
874out:
875 return uwq;
86039bd3 876}
6dcc27fd
PE
877
878static inline struct userfaultfd_wait_queue *find_userfault(
879 struct userfaultfd_ctx *ctx)
880{
881 return find_userfault_in(&ctx->fault_pending_wqh);
882}
86039bd3 883
9cd75c3c
PE
884static inline struct userfaultfd_wait_queue *find_userfault_evt(
885 struct userfaultfd_ctx *ctx)
886{
887 return find_userfault_in(&ctx->event_wqh);
888}
889
86039bd3
AA
890static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
891{
892 struct userfaultfd_ctx *ctx = file->private_data;
893 unsigned int ret;
894
895 poll_wait(file, &ctx->fd_wqh, wait);
896
897 switch (ctx->state) {
898 case UFFD_STATE_WAIT_API:
899 return POLLERR;
900 case UFFD_STATE_RUNNING:
ba85c702
AA
901 /*
902 * poll() never guarantees that read won't block.
903 * userfaults can be waken before they're read().
904 */
905 if (unlikely(!(file->f_flags & O_NONBLOCK)))
906 return POLLERR;
15b726ef
AA
907 /*
908 * lockless access to see if there are pending faults
909 * __pollwait last action is the add_wait_queue but
910 * the spin_unlock would allow the waitqueue_active to
911 * pass above the actual list_add inside
912 * add_wait_queue critical section. So use a full
913 * memory barrier to serialize the list_add write of
914 * add_wait_queue() with the waitqueue_active read
915 * below.
916 */
917 ret = 0;
918 smp_mb();
919 if (waitqueue_active(&ctx->fault_pending_wqh))
920 ret = POLLIN;
9cd75c3c
PE
921 else if (waitqueue_active(&ctx->event_wqh))
922 ret = POLLIN;
923
86039bd3
AA
924 return ret;
925 default:
8474901a
AA
926 WARN_ON_ONCE(1);
927 return POLLERR;
86039bd3
AA
928 }
929}
930
893e26e6
PE
931static const struct file_operations userfaultfd_fops;
932
933static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
934 struct userfaultfd_ctx *new,
935 struct uffd_msg *msg)
936{
937 int fd;
938 struct file *file;
939 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
940
941 fd = get_unused_fd_flags(flags);
942 if (fd < 0)
943 return fd;
944
945 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
946 O_RDWR | flags);
947 if (IS_ERR(file)) {
948 put_unused_fd(fd);
949 return PTR_ERR(file);
950 }
951
952 fd_install(fd, file);
953 msg->arg.reserved.reserved1 = 0;
954 msg->arg.fork.ufd = fd;
955
956 return 0;
957}
958
86039bd3 959static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 960 struct uffd_msg *msg)
86039bd3
AA
961{
962 ssize_t ret;
963 DECLARE_WAITQUEUE(wait, current);
15b726ef 964 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
965 /*
966 * Handling fork event requires sleeping operations, so
967 * we drop the event_wqh lock, then do these ops, then
968 * lock it back and wake up the waiter. While the lock is
969 * dropped the ewq may go away so we keep track of it
970 * carefully.
971 */
972 LIST_HEAD(fork_event);
973 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 974
15b726ef 975 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
976 spin_lock(&ctx->fd_wqh.lock);
977 __add_wait_queue(&ctx->fd_wqh, &wait);
978 for (;;) {
979 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
980 spin_lock(&ctx->fault_pending_wqh.lock);
981 uwq = find_userfault(ctx);
982 if (uwq) {
2c5b7e1b
AA
983 /*
984 * Use a seqcount to repeat the lockless check
985 * in wake_userfault() to avoid missing
986 * wakeups because during the refile both
987 * waitqueue could become empty if this is the
988 * only userfault.
989 */
990 write_seqcount_begin(&ctx->refile_seq);
991
86039bd3 992 /*
15b726ef
AA
993 * The fault_pending_wqh.lock prevents the uwq
994 * to disappear from under us.
995 *
996 * Refile this userfault from
997 * fault_pending_wqh to fault_wqh, it's not
998 * pending anymore after we read it.
999 *
1000 * Use list_del() by hand (as
1001 * userfaultfd_wake_function also uses
1002 * list_del_init() by hand) to be sure nobody
1003 * changes __remove_wait_queue() to use
1004 * list_del_init() in turn breaking the
1005 * !list_empty_careful() check in
2055da97 1006 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1007 * must never be empty at any time during the
1008 * refile, or the waitqueue could disappear
1009 * from under us. The "wait_queue_head_t"
1010 * parameter of __remove_wait_queue() is unused
1011 * anyway.
86039bd3 1012 */
2055da97 1013 list_del(&uwq->wq.entry);
15b726ef
AA
1014 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1015
2c5b7e1b
AA
1016 write_seqcount_end(&ctx->refile_seq);
1017
a9b85f94
AA
1018 /* careful to always initialize msg if ret == 0 */
1019 *msg = uwq->msg;
15b726ef 1020 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1021 ret = 0;
1022 break;
1023 }
15b726ef 1024 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1025
1026 spin_lock(&ctx->event_wqh.lock);
1027 uwq = find_userfault_evt(ctx);
1028 if (uwq) {
1029 *msg = uwq->msg;
1030
893e26e6
PE
1031 if (uwq->msg.event == UFFD_EVENT_FORK) {
1032 fork_nctx = (struct userfaultfd_ctx *)
1033 (unsigned long)
1034 uwq->msg.arg.reserved.reserved1;
2055da97 1035 list_move(&uwq->wq.entry, &fork_event);
893e26e6
PE
1036 spin_unlock(&ctx->event_wqh.lock);
1037 ret = 0;
1038 break;
1039 }
1040
9cd75c3c
PE
1041 userfaultfd_event_complete(ctx, uwq);
1042 spin_unlock(&ctx->event_wqh.lock);
1043 ret = 0;
1044 break;
1045 }
1046 spin_unlock(&ctx->event_wqh.lock);
1047
86039bd3
AA
1048 if (signal_pending(current)) {
1049 ret = -ERESTARTSYS;
1050 break;
1051 }
1052 if (no_wait) {
1053 ret = -EAGAIN;
1054 break;
1055 }
1056 spin_unlock(&ctx->fd_wqh.lock);
1057 schedule();
1058 spin_lock(&ctx->fd_wqh.lock);
1059 }
1060 __remove_wait_queue(&ctx->fd_wqh, &wait);
1061 __set_current_state(TASK_RUNNING);
1062 spin_unlock(&ctx->fd_wqh.lock);
1063
893e26e6
PE
1064 if (!ret && msg->event == UFFD_EVENT_FORK) {
1065 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1066
1067 if (!ret) {
1068 spin_lock(&ctx->event_wqh.lock);
1069 if (!list_empty(&fork_event)) {
1070 uwq = list_first_entry(&fork_event,
1071 typeof(*uwq),
2055da97
IM
1072 wq.entry);
1073 list_del(&uwq->wq.entry);
893e26e6
PE
1074 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1075 userfaultfd_event_complete(ctx, uwq);
1076 }
1077 spin_unlock(&ctx->event_wqh.lock);
1078 }
1079 }
1080
86039bd3
AA
1081 return ret;
1082}
1083
1084static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1085 size_t count, loff_t *ppos)
1086{
1087 struct userfaultfd_ctx *ctx = file->private_data;
1088 ssize_t _ret, ret = 0;
a9b85f94 1089 struct uffd_msg msg;
86039bd3
AA
1090 int no_wait = file->f_flags & O_NONBLOCK;
1091
1092 if (ctx->state == UFFD_STATE_WAIT_API)
1093 return -EINVAL;
86039bd3
AA
1094
1095 for (;;) {
a9b85f94 1096 if (count < sizeof(msg))
86039bd3 1097 return ret ? ret : -EINVAL;
a9b85f94 1098 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1099 if (_ret < 0)
1100 return ret ? ret : _ret;
a9b85f94 1101 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1102 return ret ? ret : -EFAULT;
a9b85f94
AA
1103 ret += sizeof(msg);
1104 buf += sizeof(msg);
1105 count -= sizeof(msg);
86039bd3
AA
1106 /*
1107 * Allow to read more than one fault at time but only
1108 * block if waiting for the very first one.
1109 */
1110 no_wait = O_NONBLOCK;
1111 }
1112}
1113
1114static void __wake_userfault(struct userfaultfd_ctx *ctx,
1115 struct userfaultfd_wake_range *range)
1116{
15b726ef 1117 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 1118 /* wake all in the range and autoremove */
15b726ef 1119 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1120 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1121 range);
1122 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 1123 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 1124 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1125}
1126
1127static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1128 struct userfaultfd_wake_range *range)
1129{
2c5b7e1b
AA
1130 unsigned seq;
1131 bool need_wakeup;
1132
86039bd3
AA
1133 /*
1134 * To be sure waitqueue_active() is not reordered by the CPU
1135 * before the pagetable update, use an explicit SMP memory
1136 * barrier here. PT lock release or up_read(mmap_sem) still
1137 * have release semantics that can allow the
1138 * waitqueue_active() to be reordered before the pte update.
1139 */
1140 smp_mb();
1141
1142 /*
1143 * Use waitqueue_active because it's very frequent to
1144 * change the address space atomically even if there are no
1145 * userfaults yet. So we take the spinlock only when we're
1146 * sure we've userfaults to wake.
1147 */
2c5b7e1b
AA
1148 do {
1149 seq = read_seqcount_begin(&ctx->refile_seq);
1150 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1151 waitqueue_active(&ctx->fault_wqh);
1152 cond_resched();
1153 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1154 if (need_wakeup)
86039bd3
AA
1155 __wake_userfault(ctx, range);
1156}
1157
1158static __always_inline int validate_range(struct mm_struct *mm,
1159 __u64 start, __u64 len)
1160{
1161 __u64 task_size = mm->task_size;
1162
1163 if (start & ~PAGE_MASK)
1164 return -EINVAL;
1165 if (len & ~PAGE_MASK)
1166 return -EINVAL;
1167 if (!len)
1168 return -EINVAL;
1169 if (start < mmap_min_addr)
1170 return -EINVAL;
1171 if (start >= task_size)
1172 return -EINVAL;
1173 if (len > task_size - start)
1174 return -EINVAL;
1175 return 0;
1176}
1177
ba6907db
MR
1178static inline bool vma_can_userfault(struct vm_area_struct *vma)
1179{
cac67329
MR
1180 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1181 vma_is_shmem(vma);
ba6907db
MR
1182}
1183
86039bd3
AA
1184static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1185 unsigned long arg)
1186{
1187 struct mm_struct *mm = ctx->mm;
1188 struct vm_area_struct *vma, *prev, *cur;
1189 int ret;
1190 struct uffdio_register uffdio_register;
1191 struct uffdio_register __user *user_uffdio_register;
1192 unsigned long vm_flags, new_flags;
1193 bool found;
cac67329 1194 bool non_anon_pages;
86039bd3
AA
1195 unsigned long start, end, vma_end;
1196
1197 user_uffdio_register = (struct uffdio_register __user *) arg;
1198
1199 ret = -EFAULT;
1200 if (copy_from_user(&uffdio_register, user_uffdio_register,
1201 sizeof(uffdio_register)-sizeof(__u64)))
1202 goto out;
1203
1204 ret = -EINVAL;
1205 if (!uffdio_register.mode)
1206 goto out;
1207 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1208 UFFDIO_REGISTER_MODE_WP))
1209 goto out;
1210 vm_flags = 0;
1211 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1212 vm_flags |= VM_UFFD_MISSING;
1213 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1214 vm_flags |= VM_UFFD_WP;
1215 /*
1216 * FIXME: remove the below error constraint by
1217 * implementing the wprotect tracking mode.
1218 */
1219 ret = -EINVAL;
1220 goto out;
1221 }
1222
1223 ret = validate_range(mm, uffdio_register.range.start,
1224 uffdio_register.range.len);
1225 if (ret)
1226 goto out;
1227
1228 start = uffdio_register.range.start;
1229 end = start + uffdio_register.range.len;
1230
d2005e3f
ON
1231 ret = -ENOMEM;
1232 if (!mmget_not_zero(mm))
1233 goto out;
1234
86039bd3
AA
1235 down_write(&mm->mmap_sem);
1236 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1237 if (!vma)
1238 goto out_unlock;
1239
1240 /* check that there's at least one vma in the range */
1241 ret = -EINVAL;
1242 if (vma->vm_start >= end)
1243 goto out_unlock;
1244
cab350af
MK
1245 /*
1246 * If the first vma contains huge pages, make sure start address
1247 * is aligned to huge page size.
1248 */
1249 if (is_vm_hugetlb_page(vma)) {
1250 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1251
1252 if (start & (vma_hpagesize - 1))
1253 goto out_unlock;
1254 }
1255
86039bd3
AA
1256 /*
1257 * Search for not compatible vmas.
86039bd3
AA
1258 */
1259 found = false;
cac67329 1260 non_anon_pages = false;
86039bd3
AA
1261 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1262 cond_resched();
1263
1264 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1265 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1266
1267 /* check not compatible vmas */
1268 ret = -EINVAL;
ba6907db 1269 if (!vma_can_userfault(cur))
86039bd3 1270 goto out_unlock;
cab350af
MK
1271 /*
1272 * If this vma contains ending address, and huge pages
1273 * check alignment.
1274 */
1275 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1276 end > cur->vm_start) {
1277 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1278
1279 ret = -EINVAL;
1280
1281 if (end & (vma_hpagesize - 1))
1282 goto out_unlock;
1283 }
86039bd3
AA
1284
1285 /*
1286 * Check that this vma isn't already owned by a
1287 * different userfaultfd. We can't allow more than one
1288 * userfaultfd to own a single vma simultaneously or we
1289 * wouldn't know which one to deliver the userfaults to.
1290 */
1291 ret = -EBUSY;
1292 if (cur->vm_userfaultfd_ctx.ctx &&
1293 cur->vm_userfaultfd_ctx.ctx != ctx)
1294 goto out_unlock;
1295
cab350af
MK
1296 /*
1297 * Note vmas containing huge pages
1298 */
cac67329
MR
1299 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1300 non_anon_pages = true;
cab350af 1301
86039bd3
AA
1302 found = true;
1303 }
1304 BUG_ON(!found);
1305
1306 if (vma->vm_start < start)
1307 prev = vma;
1308
1309 ret = 0;
1310 do {
1311 cond_resched();
1312
ba6907db 1313 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1314 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1315 vma->vm_userfaultfd_ctx.ctx != ctx);
1316
1317 /*
1318 * Nothing to do: this vma is already registered into this
1319 * userfaultfd and with the right tracking mode too.
1320 */
1321 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1322 (vma->vm_flags & vm_flags) == vm_flags)
1323 goto skip;
1324
1325 if (vma->vm_start > start)
1326 start = vma->vm_start;
1327 vma_end = min(end, vma->vm_end);
1328
1329 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1330 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1331 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1332 vma_policy(vma),
1333 ((struct vm_userfaultfd_ctx){ ctx }));
1334 if (prev) {
1335 vma = prev;
1336 goto next;
1337 }
1338 if (vma->vm_start < start) {
1339 ret = split_vma(mm, vma, start, 1);
1340 if (ret)
1341 break;
1342 }
1343 if (vma->vm_end > end) {
1344 ret = split_vma(mm, vma, end, 0);
1345 if (ret)
1346 break;
1347 }
1348 next:
1349 /*
1350 * In the vma_merge() successful mprotect-like case 8:
1351 * the next vma was merged into the current one and
1352 * the current one has not been updated yet.
1353 */
1354 vma->vm_flags = new_flags;
1355 vma->vm_userfaultfd_ctx.ctx = ctx;
1356
1357 skip:
1358 prev = vma;
1359 start = vma->vm_end;
1360 vma = vma->vm_next;
1361 } while (vma && vma->vm_start < end);
1362out_unlock:
1363 up_write(&mm->mmap_sem);
d2005e3f 1364 mmput(mm);
86039bd3
AA
1365 if (!ret) {
1366 /*
1367 * Now that we scanned all vmas we can already tell
1368 * userland which ioctls methods are guaranteed to
1369 * succeed on this range.
1370 */
cac67329 1371 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1372 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1373 &user_uffdio_register->ioctls))
1374 ret = -EFAULT;
1375 }
1376out:
1377 return ret;
1378}
1379
1380static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1381 unsigned long arg)
1382{
1383 struct mm_struct *mm = ctx->mm;
1384 struct vm_area_struct *vma, *prev, *cur;
1385 int ret;
1386 struct uffdio_range uffdio_unregister;
1387 unsigned long new_flags;
1388 bool found;
1389 unsigned long start, end, vma_end;
1390 const void __user *buf = (void __user *)arg;
1391
1392 ret = -EFAULT;
1393 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1394 goto out;
1395
1396 ret = validate_range(mm, uffdio_unregister.start,
1397 uffdio_unregister.len);
1398 if (ret)
1399 goto out;
1400
1401 start = uffdio_unregister.start;
1402 end = start + uffdio_unregister.len;
1403
d2005e3f
ON
1404 ret = -ENOMEM;
1405 if (!mmget_not_zero(mm))
1406 goto out;
1407
86039bd3
AA
1408 down_write(&mm->mmap_sem);
1409 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1410 if (!vma)
1411 goto out_unlock;
1412
1413 /* check that there's at least one vma in the range */
1414 ret = -EINVAL;
1415 if (vma->vm_start >= end)
1416 goto out_unlock;
1417
cab350af
MK
1418 /*
1419 * If the first vma contains huge pages, make sure start address
1420 * is aligned to huge page size.
1421 */
1422 if (is_vm_hugetlb_page(vma)) {
1423 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1424
1425 if (start & (vma_hpagesize - 1))
1426 goto out_unlock;
1427 }
1428
86039bd3
AA
1429 /*
1430 * Search for not compatible vmas.
86039bd3
AA
1431 */
1432 found = false;
1433 ret = -EINVAL;
1434 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1435 cond_resched();
1436
1437 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1438 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1439
1440 /*
1441 * Check not compatible vmas, not strictly required
1442 * here as not compatible vmas cannot have an
1443 * userfaultfd_ctx registered on them, but this
1444 * provides for more strict behavior to notice
1445 * unregistration errors.
1446 */
ba6907db 1447 if (!vma_can_userfault(cur))
86039bd3
AA
1448 goto out_unlock;
1449
1450 found = true;
1451 }
1452 BUG_ON(!found);
1453
1454 if (vma->vm_start < start)
1455 prev = vma;
1456
1457 ret = 0;
1458 do {
1459 cond_resched();
1460
ba6907db 1461 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1462
1463 /*
1464 * Nothing to do: this vma is already registered into this
1465 * userfaultfd and with the right tracking mode too.
1466 */
1467 if (!vma->vm_userfaultfd_ctx.ctx)
1468 goto skip;
1469
1470 if (vma->vm_start > start)
1471 start = vma->vm_start;
1472 vma_end = min(end, vma->vm_end);
1473
09fa5296
AA
1474 if (userfaultfd_missing(vma)) {
1475 /*
1476 * Wake any concurrent pending userfault while
1477 * we unregister, so they will not hang
1478 * permanently and it avoids userland to call
1479 * UFFDIO_WAKE explicitly.
1480 */
1481 struct userfaultfd_wake_range range;
1482 range.start = start;
1483 range.len = vma_end - start;
1484 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1485 }
1486
86039bd3
AA
1487 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1488 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1489 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1490 vma_policy(vma),
1491 NULL_VM_UFFD_CTX);
1492 if (prev) {
1493 vma = prev;
1494 goto next;
1495 }
1496 if (vma->vm_start < start) {
1497 ret = split_vma(mm, vma, start, 1);
1498 if (ret)
1499 break;
1500 }
1501 if (vma->vm_end > end) {
1502 ret = split_vma(mm, vma, end, 0);
1503 if (ret)
1504 break;
1505 }
1506 next:
1507 /*
1508 * In the vma_merge() successful mprotect-like case 8:
1509 * the next vma was merged into the current one and
1510 * the current one has not been updated yet.
1511 */
1512 vma->vm_flags = new_flags;
1513 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1514
1515 skip:
1516 prev = vma;
1517 start = vma->vm_end;
1518 vma = vma->vm_next;
1519 } while (vma && vma->vm_start < end);
1520out_unlock:
1521 up_write(&mm->mmap_sem);
d2005e3f 1522 mmput(mm);
86039bd3
AA
1523out:
1524 return ret;
1525}
1526
1527/*
ba85c702
AA
1528 * userfaultfd_wake may be used in combination with the
1529 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1530 */
1531static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1532 unsigned long arg)
1533{
1534 int ret;
1535 struct uffdio_range uffdio_wake;
1536 struct userfaultfd_wake_range range;
1537 const void __user *buf = (void __user *)arg;
1538
1539 ret = -EFAULT;
1540 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1541 goto out;
1542
1543 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1544 if (ret)
1545 goto out;
1546
1547 range.start = uffdio_wake.start;
1548 range.len = uffdio_wake.len;
1549
1550 /*
1551 * len == 0 means wake all and we don't want to wake all here,
1552 * so check it again to be sure.
1553 */
1554 VM_BUG_ON(!range.len);
1555
1556 wake_userfault(ctx, &range);
1557 ret = 0;
1558
1559out:
1560 return ret;
1561}
1562
ad465cae
AA
1563static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1564 unsigned long arg)
1565{
1566 __s64 ret;
1567 struct uffdio_copy uffdio_copy;
1568 struct uffdio_copy __user *user_uffdio_copy;
1569 struct userfaultfd_wake_range range;
1570
1571 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1572
1573 ret = -EFAULT;
1574 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1575 /* don't copy "copy" last field */
1576 sizeof(uffdio_copy)-sizeof(__s64)))
1577 goto out;
1578
1579 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1580 if (ret)
1581 goto out;
1582 /*
1583 * double check for wraparound just in case. copy_from_user()
1584 * will later check uffdio_copy.src + uffdio_copy.len to fit
1585 * in the userland range.
1586 */
1587 ret = -EINVAL;
1588 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1589 goto out;
1590 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1591 goto out;
d2005e3f
ON
1592 if (mmget_not_zero(ctx->mm)) {
1593 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1594 uffdio_copy.len);
1595 mmput(ctx->mm);
96333187
MR
1596 } else {
1597 return -ENOSPC;
d2005e3f 1598 }
ad465cae
AA
1599 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1600 return -EFAULT;
1601 if (ret < 0)
1602 goto out;
1603 BUG_ON(!ret);
1604 /* len == 0 would wake all */
1605 range.len = ret;
1606 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1607 range.start = uffdio_copy.dst;
1608 wake_userfault(ctx, &range);
1609 }
1610 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1611out:
1612 return ret;
1613}
1614
1615static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1616 unsigned long arg)
1617{
1618 __s64 ret;
1619 struct uffdio_zeropage uffdio_zeropage;
1620 struct uffdio_zeropage __user *user_uffdio_zeropage;
1621 struct userfaultfd_wake_range range;
1622
1623 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1624
1625 ret = -EFAULT;
1626 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1627 /* don't copy "zeropage" last field */
1628 sizeof(uffdio_zeropage)-sizeof(__s64)))
1629 goto out;
1630
1631 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1632 uffdio_zeropage.range.len);
1633 if (ret)
1634 goto out;
1635 ret = -EINVAL;
1636 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1637 goto out;
1638
d2005e3f
ON
1639 if (mmget_not_zero(ctx->mm)) {
1640 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1641 uffdio_zeropage.range.len);
1642 mmput(ctx->mm);
1643 }
ad465cae
AA
1644 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1645 return -EFAULT;
1646 if (ret < 0)
1647 goto out;
1648 /* len == 0 would wake all */
1649 BUG_ON(!ret);
1650 range.len = ret;
1651 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1652 range.start = uffdio_zeropage.range.start;
1653 wake_userfault(ctx, &range);
1654 }
1655 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1656out:
1657 return ret;
1658}
1659
9cd75c3c
PE
1660static inline unsigned int uffd_ctx_features(__u64 user_features)
1661{
1662 /*
1663 * For the current set of features the bits just coincide
1664 */
1665 return (unsigned int)user_features;
1666}
1667
86039bd3
AA
1668/*
1669 * userland asks for a certain API version and we return which bits
1670 * and ioctl commands are implemented in this kernel for such API
1671 * version or -EINVAL if unknown.
1672 */
1673static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1674 unsigned long arg)
1675{
1676 struct uffdio_api uffdio_api;
1677 void __user *buf = (void __user *)arg;
1678 int ret;
65603144 1679 __u64 features;
86039bd3
AA
1680
1681 ret = -EINVAL;
1682 if (ctx->state != UFFD_STATE_WAIT_API)
1683 goto out;
1684 ret = -EFAULT;
a9b85f94 1685 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1686 goto out;
65603144
AA
1687 features = uffdio_api.features;
1688 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1689 memset(&uffdio_api, 0, sizeof(uffdio_api));
1690 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1691 goto out;
1692 ret = -EINVAL;
1693 goto out;
1694 }
65603144
AA
1695 /* report all available features and ioctls to userland */
1696 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1697 uffdio_api.ioctls = UFFD_API_IOCTLS;
1698 ret = -EFAULT;
1699 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1700 goto out;
1701 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1702 /* only enable the requested features for this uffd context */
1703 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1704 ret = 0;
1705out:
1706 return ret;
1707}
1708
1709static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1710 unsigned long arg)
1711{
1712 int ret = -EINVAL;
1713 struct userfaultfd_ctx *ctx = file->private_data;
1714
e6485a47
AA
1715 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1716 return -EINVAL;
1717
86039bd3
AA
1718 switch(cmd) {
1719 case UFFDIO_API:
1720 ret = userfaultfd_api(ctx, arg);
1721 break;
1722 case UFFDIO_REGISTER:
1723 ret = userfaultfd_register(ctx, arg);
1724 break;
1725 case UFFDIO_UNREGISTER:
1726 ret = userfaultfd_unregister(ctx, arg);
1727 break;
1728 case UFFDIO_WAKE:
1729 ret = userfaultfd_wake(ctx, arg);
1730 break;
ad465cae
AA
1731 case UFFDIO_COPY:
1732 ret = userfaultfd_copy(ctx, arg);
1733 break;
1734 case UFFDIO_ZEROPAGE:
1735 ret = userfaultfd_zeropage(ctx, arg);
1736 break;
86039bd3
AA
1737 }
1738 return ret;
1739}
1740
1741#ifdef CONFIG_PROC_FS
1742static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1743{
1744 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1745 wait_queue_entry_t *wq;
86039bd3
AA
1746 struct userfaultfd_wait_queue *uwq;
1747 unsigned long pending = 0, total = 0;
1748
15b726ef 1749 spin_lock(&ctx->fault_pending_wqh.lock);
2055da97 1750 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1751 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1752 pending++;
1753 total++;
1754 }
2055da97 1755 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3 1756 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1757 total++;
1758 }
15b726ef 1759 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1760
1761 /*
1762 * If more protocols will be added, there will be all shown
1763 * separated by a space. Like this:
1764 * protocols: aa:... bb:...
1765 */
1766 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1767 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1768 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1769}
1770#endif
1771
1772static const struct file_operations userfaultfd_fops = {
1773#ifdef CONFIG_PROC_FS
1774 .show_fdinfo = userfaultfd_show_fdinfo,
1775#endif
1776 .release = userfaultfd_release,
1777 .poll = userfaultfd_poll,
1778 .read = userfaultfd_read,
1779 .unlocked_ioctl = userfaultfd_ioctl,
1780 .compat_ioctl = userfaultfd_ioctl,
1781 .llseek = noop_llseek,
1782};
1783
3004ec9c
AA
1784static void init_once_userfaultfd_ctx(void *mem)
1785{
1786 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1787
1788 init_waitqueue_head(&ctx->fault_pending_wqh);
1789 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1790 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1791 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1792 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1793}
1794
86039bd3 1795/**
9332ef9d 1796 * userfaultfd_file_create - Creates a userfaultfd file pointer.
86039bd3
AA
1797 * @flags: Flags for the userfaultfd file.
1798 *
9332ef9d 1799 * This function creates a userfaultfd file pointer, w/out installing
86039bd3
AA
1800 * it into the fd table. This is useful when the userfaultfd file is
1801 * used during the initialization of data structures that require
1802 * extra setup after the userfaultfd creation. So the userfaultfd
1803 * creation is split into the file pointer creation phase, and the
1804 * file descriptor installation phase. In this way races with
1805 * userspace closing the newly installed file descriptor can be
9332ef9d 1806 * avoided. Returns a userfaultfd file pointer, or a proper error
86039bd3
AA
1807 * pointer.
1808 */
1809static struct file *userfaultfd_file_create(int flags)
1810{
1811 struct file *file;
1812 struct userfaultfd_ctx *ctx;
1813
1814 BUG_ON(!current->mm);
1815
1816 /* Check the UFFD_* constants for consistency. */
1817 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1818 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1819
1820 file = ERR_PTR(-EINVAL);
1821 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1822 goto out;
1823
1824 file = ERR_PTR(-ENOMEM);
3004ec9c 1825 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1826 if (!ctx)
1827 goto out;
1828
1829 atomic_set(&ctx->refcount, 1);
86039bd3 1830 ctx->flags = flags;
9cd75c3c 1831 ctx->features = 0;
86039bd3
AA
1832 ctx->state = UFFD_STATE_WAIT_API;
1833 ctx->released = false;
1834 ctx->mm = current->mm;
1835 /* prevent the mm struct to be freed */
f1f10076 1836 mmgrab(ctx->mm);
86039bd3
AA
1837
1838 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1839 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1840 if (IS_ERR(file)) {
d2005e3f 1841 mmdrop(ctx->mm);
3004ec9c 1842 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1843 }
86039bd3
AA
1844out:
1845 return file;
1846}
1847
1848SYSCALL_DEFINE1(userfaultfd, int, flags)
1849{
1850 int fd, error;
1851 struct file *file;
1852
1853 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1854 if (error < 0)
1855 return error;
1856 fd = error;
1857
1858 file = userfaultfd_file_create(flags);
1859 if (IS_ERR(file)) {
1860 error = PTR_ERR(file);
1861 goto err_put_unused_fd;
1862 }
1863 fd_install(fd, file);
1864
1865 return fd;
1866
1867err_put_unused_fd:
1868 put_unused_fd(fd);
1869
1870 return error;
1871}
3004ec9c
AA
1872
1873static int __init userfaultfd_init(void)
1874{
1875 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1876 sizeof(struct userfaultfd_ctx),
1877 0,
1878 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1879 init_once_userfaultfd_ctx);
1880 return 0;
1881}
1882__initcall(userfaultfd_init);