userfaultfd: change mmap_changing to atomic
[linux-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
6dfeaff9 18#include <linux/mmu_notifier.h>
86039bd3
AA
19#include <linux/poll.h>
20#include <linux/slab.h>
21#include <linux/seq_file.h>
22#include <linux/file.h>
23#include <linux/bug.h>
24#include <linux/anon_inodes.h>
25#include <linux/syscalls.h>
26#include <linux/userfaultfd_k.h>
27#include <linux/mempolicy.h>
28#include <linux/ioctl.h>
29#include <linux/security.h>
cab350af 30#include <linux/hugetlb.h>
86039bd3 31
d0d4730a 32int sysctl_unprivileged_userfaultfd __read_mostly;
cefdca0a 33
3004ec9c
AA
34static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
86039bd3
AA
36enum userfaultfd_state {
37 UFFD_STATE_WAIT_API,
38 UFFD_STATE_RUNNING,
39};
40
3004ec9c
AA
41/*
42 * Start with fault_pending_wqh and fault_wqh so they're more likely
43 * to be in the same cacheline.
cbcfa130
EB
44 *
45 * Locking order:
46 * fd_wqh.lock
47 * fault_pending_wqh.lock
48 * fault_wqh.lock
49 * event_wqh.lock
50 *
51 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
52 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
53 * also taken in IRQ context.
3004ec9c 54 */
86039bd3 55struct userfaultfd_ctx {
15b726ef
AA
56 /* waitqueue head for the pending (i.e. not read) userfaults */
57 wait_queue_head_t fault_pending_wqh;
58 /* waitqueue head for the userfaults */
86039bd3
AA
59 wait_queue_head_t fault_wqh;
60 /* waitqueue head for the pseudo fd to wakeup poll/read */
61 wait_queue_head_t fd_wqh;
9cd75c3c
PE
62 /* waitqueue head for events */
63 wait_queue_head_t event_wqh;
2c5b7e1b 64 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 65 seqcount_spinlock_t refile_seq;
3004ec9c 66 /* pseudo fd refcounting */
ca880420 67 refcount_t refcount;
86039bd3
AA
68 /* userfaultfd syscall flags */
69 unsigned int flags;
9cd75c3c
PE
70 /* features requested from the userspace */
71 unsigned int features;
86039bd3
AA
72 /* state machine */
73 enum userfaultfd_state state;
74 /* released */
75 bool released;
df2cc96e 76 /* memory mappings are changing because of non-cooperative event */
a759a909 77 atomic_t mmap_changing;
86039bd3
AA
78 /* mm with one ore more vmas attached to this userfaultfd_ctx */
79 struct mm_struct *mm;
80};
81
893e26e6
PE
82struct userfaultfd_fork_ctx {
83 struct userfaultfd_ctx *orig;
84 struct userfaultfd_ctx *new;
85 struct list_head list;
86};
87
897ab3e0
MR
88struct userfaultfd_unmap_ctx {
89 struct userfaultfd_ctx *ctx;
90 unsigned long start;
91 unsigned long end;
92 struct list_head list;
93};
94
86039bd3 95struct userfaultfd_wait_queue {
a9b85f94 96 struct uffd_msg msg;
ac6424b9 97 wait_queue_entry_t wq;
86039bd3 98 struct userfaultfd_ctx *ctx;
15a77c6f 99 bool waken;
86039bd3
AA
100};
101
102struct userfaultfd_wake_range {
103 unsigned long start;
104 unsigned long len;
105};
106
ac6424b9 107static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
108 int wake_flags, void *key)
109{
110 struct userfaultfd_wake_range *range = key;
111 int ret;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
114
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 ret = 0;
86039bd3
AA
117 /* len == 0 means wake all */
118 start = range->start;
119 len = range->len;
a9b85f94
AA
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 122 goto out;
15a77c6f
AA
123 WRITE_ONCE(uwq->waken, true);
124 /*
a9668cd6
PZ
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
15a77c6f 127 */
86039bd3 128 ret = wake_up_state(wq->private, mode);
a9668cd6 129 if (ret) {
86039bd3
AA
130 /*
131 * Wake only once, autoremove behavior.
132 *
a9668cd6
PZ
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
136 *
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 140 */
2055da97 141 list_del_init(&wq->entry);
a9668cd6 142 }
86039bd3
AA
143out:
144 return ret;
145}
146
147/**
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
151 */
152static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153{
ca880420 154 refcount_inc(&ctx->refcount);
86039bd3
AA
155}
156
157/**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
165static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166{
ca880420 167 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 176 mmdrop(ctx->mm);
3004ec9c 177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
178 }
179}
180
a9b85f94 181static inline void msg_init(struct uffd_msg *msg)
86039bd3 182{
a9b85f94
AA
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189}
190
191static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
9d4ac934
AP
193 unsigned long reason,
194 unsigned int features)
a9b85f94
AA
195{
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
7677f7fd
AR
200 /*
201 * These flags indicate why the userfault occurred:
202 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
203 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
204 * - Neither of these flags being set indicates a MISSING fault.
205 *
206 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
207 * fault. Otherwise, it was a read fault.
208 */
86039bd3 209 if (flags & FAULT_FLAG_WRITE)
a9b85f94 210 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 211 if (reason & VM_UFFD_WP)
a9b85f94 212 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
213 if (reason & VM_UFFD_MINOR)
214 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 215 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 216 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 217 return msg;
86039bd3
AA
218}
219
369cd212
MK
220#ifdef CONFIG_HUGETLB_PAGE
221/*
222 * Same functionality as userfaultfd_must_wait below with modifications for
223 * hugepmd ranges.
224 */
225static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 226 struct vm_area_struct *vma,
369cd212
MK
227 unsigned long address,
228 unsigned long flags,
229 unsigned long reason)
230{
231 struct mm_struct *mm = ctx->mm;
1e2c0436 232 pte_t *ptep, pte;
369cd212
MK
233 bool ret = true;
234
42fc5414 235 mmap_assert_locked(mm);
369cd212 236
1e2c0436
JF
237 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
238
239 if (!ptep)
369cd212
MK
240 goto out;
241
242 ret = false;
1e2c0436 243 pte = huge_ptep_get(ptep);
369cd212
MK
244
245 /*
246 * Lockless access: we're in a wait_event so it's ok if it
247 * changes under us.
248 */
1e2c0436 249 if (huge_pte_none(pte))
369cd212 250 ret = true;
1e2c0436 251 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
252 ret = true;
253out:
254 return ret;
255}
256#else
257static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 258 struct vm_area_struct *vma,
369cd212
MK
259 unsigned long address,
260 unsigned long flags,
261 unsigned long reason)
262{
263 return false; /* should never get here */
264}
265#endif /* CONFIG_HUGETLB_PAGE */
266
8d2afd96
AA
267/*
268 * Verify the pagetables are still not ok after having reigstered into
269 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
270 * userfault that has already been resolved, if userfaultfd_read and
271 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
272 * threads.
273 */
274static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
275 unsigned long address,
276 unsigned long flags,
277 unsigned long reason)
278{
279 struct mm_struct *mm = ctx->mm;
280 pgd_t *pgd;
c2febafc 281 p4d_t *p4d;
8d2afd96
AA
282 pud_t *pud;
283 pmd_t *pmd, _pmd;
284 pte_t *pte;
285 bool ret = true;
286
42fc5414 287 mmap_assert_locked(mm);
8d2afd96
AA
288
289 pgd = pgd_offset(mm, address);
290 if (!pgd_present(*pgd))
291 goto out;
c2febafc
KS
292 p4d = p4d_offset(pgd, address);
293 if (!p4d_present(*p4d))
294 goto out;
295 pud = pud_offset(p4d, address);
8d2afd96
AA
296 if (!pud_present(*pud))
297 goto out;
298 pmd = pmd_offset(pud, address);
299 /*
300 * READ_ONCE must function as a barrier with narrower scope
301 * and it must be equivalent to:
302 * _pmd = *pmd; barrier();
303 *
304 * This is to deal with the instability (as in
305 * pmd_trans_unstable) of the pmd.
306 */
307 _pmd = READ_ONCE(*pmd);
a365ac09 308 if (pmd_none(_pmd))
8d2afd96
AA
309 goto out;
310
311 ret = false;
a365ac09
HY
312 if (!pmd_present(_pmd))
313 goto out;
314
63b2d417
AA
315 if (pmd_trans_huge(_pmd)) {
316 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
317 ret = true;
8d2afd96 318 goto out;
63b2d417 319 }
8d2afd96
AA
320
321 /*
322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 * and use the standard pte_offset_map() instead of parsing _pmd.
324 */
325 pte = pte_offset_map(pmd, address);
326 /*
327 * Lockless access: we're in a wait_event so it's ok if it
328 * changes under us.
329 */
330 if (pte_none(*pte))
331 ret = true;
63b2d417
AA
332 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
333 ret = true;
8d2afd96
AA
334 pte_unmap(pte);
335
336out:
337 return ret;
338}
339
2f064a59 340static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
341{
342 if (flags & FAULT_FLAG_INTERRUPTIBLE)
343 return TASK_INTERRUPTIBLE;
344
345 if (flags & FAULT_FLAG_KILLABLE)
346 return TASK_KILLABLE;
347
348 return TASK_UNINTERRUPTIBLE;
349}
350
86039bd3
AA
351/*
352 * The locking rules involved in returning VM_FAULT_RETRY depending on
353 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
354 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
355 * recommendation in __lock_page_or_retry is not an understatement.
356 *
c1e8d7c6 357 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
358 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
359 * not set.
360 *
361 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
362 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 363 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
364 * returning it.
365 */
2b740303 366vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 367{
82b0f8c3 368 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
369 struct userfaultfd_ctx *ctx;
370 struct userfaultfd_wait_queue uwq;
2b740303 371 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 372 bool must_wait;
2f064a59 373 unsigned int blocking_state;
86039bd3 374
64c2b203
AA
375 /*
376 * We don't do userfault handling for the final child pid update.
377 *
378 * We also don't do userfault handling during
379 * coredumping. hugetlbfs has the special
380 * follow_hugetlb_page() to skip missing pages in the
381 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
382 * the no_page_table() helper in follow_page_mask(), but the
383 * shmem_vm_ops->fault method is invoked even during
c1e8d7c6 384 * coredumping without mmap_lock and it ends up here.
64c2b203
AA
385 */
386 if (current->flags & (PF_EXITING|PF_DUMPCORE))
387 goto out;
388
389 /*
c1e8d7c6
ML
390 * Coredumping runs without mmap_lock so we can only check that
391 * the mmap_lock is held, if PF_DUMPCORE was not set.
64c2b203 392 */
42fc5414 393 mmap_assert_locked(mm);
64c2b203 394
82b0f8c3 395 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 396 if (!ctx)
ba85c702 397 goto out;
86039bd3
AA
398
399 BUG_ON(ctx->mm != mm);
400
7677f7fd
AR
401 /* Any unrecognized flag is a bug. */
402 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
403 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
404 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 405
2d6d6f5a
PS
406 if (ctx->features & UFFD_FEATURE_SIGBUS)
407 goto out;
37cd0575
LG
408 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
409 ctx->flags & UFFD_USER_MODE_ONLY) {
410 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
411 "sysctl knob to 1 if kernel faults must be handled "
412 "without obtaining CAP_SYS_PTRACE capability\n");
413 goto out;
414 }
2d6d6f5a 415
86039bd3
AA
416 /*
417 * If it's already released don't get it. This avoids to loop
418 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 419 * caller of handle_userfault to release the mmap_lock.
86039bd3 420 */
6aa7de05 421 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
422 /*
423 * Don't return VM_FAULT_SIGBUS in this case, so a non
424 * cooperative manager can close the uffd after the
425 * last UFFDIO_COPY, without risking to trigger an
426 * involuntary SIGBUS if the process was starting the
427 * userfaultfd while the userfaultfd was still armed
428 * (but after the last UFFDIO_COPY). If the uffd
429 * wasn't already closed when the userfault reached
430 * this point, that would normally be solved by
431 * userfaultfd_must_wait returning 'false'.
432 *
433 * If we were to return VM_FAULT_SIGBUS here, the non
434 * cooperative manager would be instead forced to
435 * always call UFFDIO_UNREGISTER before it can safely
436 * close the uffd.
437 */
438 ret = VM_FAULT_NOPAGE;
ba85c702 439 goto out;
656710a6 440 }
86039bd3
AA
441
442 /*
443 * Check that we can return VM_FAULT_RETRY.
444 *
445 * NOTE: it should become possible to return VM_FAULT_RETRY
446 * even if FAULT_FLAG_TRIED is set without leading to gup()
447 * -EBUSY failures, if the userfaultfd is to be extended for
448 * VM_UFFD_WP tracking and we intend to arm the userfault
449 * without first stopping userland access to the memory. For
450 * VM_UFFD_MISSING userfaults this is enough for now.
451 */
82b0f8c3 452 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
453 /*
454 * Validate the invariant that nowait must allow retry
455 * to be sure not to return SIGBUS erroneously on
456 * nowait invocations.
457 */
82b0f8c3 458 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
459#ifdef CONFIG_DEBUG_VM
460 if (printk_ratelimit()) {
461 printk(KERN_WARNING
82b0f8c3
JK
462 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
463 vmf->flags);
86039bd3
AA
464 dump_stack();
465 }
466#endif
ba85c702 467 goto out;
86039bd3
AA
468 }
469
470 /*
471 * Handle nowait, not much to do other than tell it to retry
472 * and wait.
473 */
ba85c702 474 ret = VM_FAULT_RETRY;
82b0f8c3 475 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 476 goto out;
86039bd3 477
c1e8d7c6 478 /* take the reference before dropping the mmap_lock */
86039bd3
AA
479 userfaultfd_ctx_get(ctx);
480
86039bd3
AA
481 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
482 uwq.wq.private = current;
9d4ac934
AP
483 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
484 ctx->features);
86039bd3 485 uwq.ctx = ctx;
15a77c6f 486 uwq.waken = false;
86039bd3 487
3e69ad08 488 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 489
cbcfa130 490 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
491 /*
492 * After the __add_wait_queue the uwq is visible to userland
493 * through poll/read().
494 */
15b726ef
AA
495 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
496 /*
497 * The smp_mb() after __set_current_state prevents the reads
498 * following the spin_unlock to happen before the list_add in
499 * __add_wait_queue.
500 */
15a77c6f 501 set_current_state(blocking_state);
cbcfa130 502 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 503
369cd212
MK
504 if (!is_vm_hugetlb_page(vmf->vma))
505 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
506 reason);
507 else
7868a208
PA
508 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
509 vmf->address,
369cd212 510 vmf->flags, reason);
d8ed45c5 511 mmap_read_unlock(mm);
8d2afd96 512
f9bf3522 513 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 514 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 515 schedule();
ba85c702 516 }
86039bd3 517
ba85c702 518 __set_current_state(TASK_RUNNING);
15b726ef
AA
519
520 /*
521 * Here we race with the list_del; list_add in
522 * userfaultfd_ctx_read(), however because we don't ever run
523 * list_del_init() to refile across the two lists, the prev
524 * and next pointers will never point to self. list_add also
525 * would never let any of the two pointers to point to
526 * self. So list_empty_careful won't risk to see both pointers
527 * pointing to self at any time during the list refile. The
528 * only case where list_del_init() is called is the full
529 * removal in the wake function and there we don't re-list_add
530 * and it's fine not to block on the spinlock. The uwq on this
531 * kernel stack can be released after the list_del_init.
532 */
2055da97 533 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 534 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
535 /*
536 * No need of list_del_init(), the uwq on the stack
537 * will be freed shortly anyway.
538 */
2055da97 539 list_del(&uwq.wq.entry);
cbcfa130 540 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 541 }
86039bd3
AA
542
543 /*
544 * ctx may go away after this if the userfault pseudo fd is
545 * already released.
546 */
547 userfaultfd_ctx_put(ctx);
548
ba85c702
AA
549out:
550 return ret;
86039bd3
AA
551}
552
8c9e7bb7
AA
553static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
554 struct userfaultfd_wait_queue *ewq)
9cd75c3c 555{
0cbb4b4f
AA
556 struct userfaultfd_ctx *release_new_ctx;
557
9a69a829
AA
558 if (WARN_ON_ONCE(current->flags & PF_EXITING))
559 goto out;
9cd75c3c
PE
560
561 ewq->ctx = ctx;
562 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 563 release_new_ctx = NULL;
9cd75c3c 564
cbcfa130 565 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
566 /*
567 * After the __add_wait_queue the uwq is visible to userland
568 * through poll/read().
569 */
570 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
571 for (;;) {
572 set_current_state(TASK_KILLABLE);
573 if (ewq->msg.event == 0)
574 break;
6aa7de05 575 if (READ_ONCE(ctx->released) ||
9cd75c3c 576 fatal_signal_pending(current)) {
384632e6
AA
577 /*
578 * &ewq->wq may be queued in fork_event, but
579 * __remove_wait_queue ignores the head
580 * parameter. It would be a problem if it
581 * didn't.
582 */
9cd75c3c 583 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
584 if (ewq->msg.event == UFFD_EVENT_FORK) {
585 struct userfaultfd_ctx *new;
586
587 new = (struct userfaultfd_ctx *)
588 (unsigned long)
589 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 590 release_new_ctx = new;
7eb76d45 591 }
9cd75c3c
PE
592 break;
593 }
594
cbcfa130 595 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 596
a9a08845 597 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
598 schedule();
599
cbcfa130 600 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
601 }
602 __set_current_state(TASK_RUNNING);
cbcfa130 603 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 604
0cbb4b4f
AA
605 if (release_new_ctx) {
606 struct vm_area_struct *vma;
607 struct mm_struct *mm = release_new_ctx->mm;
608
609 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 610 mmap_write_lock(mm);
0cbb4b4f 611 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 612 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 613 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 614 vma->vm_flags &= ~__VM_UFFD_FLAGS;
31e810aa 615 }
d8ed45c5 616 mmap_write_unlock(mm);
0cbb4b4f
AA
617
618 userfaultfd_ctx_put(release_new_ctx);
619 }
620
9cd75c3c
PE
621 /*
622 * ctx may go away after this if the userfault pseudo fd is
623 * already released.
624 */
9a69a829 625out:
a759a909
NA
626 atomic_dec(&ctx->mmap_changing);
627 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
9cd75c3c 628 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
629}
630
631static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
632 struct userfaultfd_wait_queue *ewq)
633{
634 ewq->msg.event = 0;
635 wake_up_locked(&ctx->event_wqh);
636 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
637}
638
893e26e6
PE
639int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
640{
641 struct userfaultfd_ctx *ctx = NULL, *octx;
642 struct userfaultfd_fork_ctx *fctx;
643
644 octx = vma->vm_userfaultfd_ctx.ctx;
645 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 647 vma->vm_flags &= ~__VM_UFFD_FLAGS;
893e26e6
PE
648 return 0;
649 }
650
651 list_for_each_entry(fctx, fcs, list)
652 if (fctx->orig == octx) {
653 ctx = fctx->new;
654 break;
655 }
656
657 if (!ctx) {
658 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
659 if (!fctx)
660 return -ENOMEM;
661
662 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
663 if (!ctx) {
664 kfree(fctx);
665 return -ENOMEM;
666 }
667
ca880420 668 refcount_set(&ctx->refcount, 1);
893e26e6
PE
669 ctx->flags = octx->flags;
670 ctx->state = UFFD_STATE_RUNNING;
671 ctx->features = octx->features;
672 ctx->released = false;
a759a909 673 atomic_set(&ctx->mmap_changing, 0);
893e26e6 674 ctx->mm = vma->vm_mm;
00bb31fa 675 mmgrab(ctx->mm);
893e26e6
PE
676
677 userfaultfd_ctx_get(octx);
a759a909 678 atomic_inc(&octx->mmap_changing);
893e26e6
PE
679 fctx->orig = octx;
680 fctx->new = ctx;
681 list_add_tail(&fctx->list, fcs);
682 }
683
684 vma->vm_userfaultfd_ctx.ctx = ctx;
685 return 0;
686}
687
8c9e7bb7 688static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
689{
690 struct userfaultfd_ctx *ctx = fctx->orig;
691 struct userfaultfd_wait_queue ewq;
692
693 msg_init(&ewq.msg);
694
695 ewq.msg.event = UFFD_EVENT_FORK;
696 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
697
8c9e7bb7 698 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
699}
700
701void dup_userfaultfd_complete(struct list_head *fcs)
702{
893e26e6
PE
703 struct userfaultfd_fork_ctx *fctx, *n;
704
705 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 706 dup_fctx(fctx);
893e26e6
PE
707 list_del(&fctx->list);
708 kfree(fctx);
709 }
710}
711
72f87654
PE
712void mremap_userfaultfd_prep(struct vm_area_struct *vma,
713 struct vm_userfaultfd_ctx *vm_ctx)
714{
715 struct userfaultfd_ctx *ctx;
716
717 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
718
719 if (!ctx)
720 return;
721
722 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
723 vm_ctx->ctx = ctx;
724 userfaultfd_ctx_get(ctx);
a759a909 725 atomic_inc(&ctx->mmap_changing);
3cfd22be
PX
726 } else {
727 /* Drop uffd context if remap feature not enabled */
728 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 729 vma->vm_flags &= ~__VM_UFFD_FLAGS;
72f87654
PE
730 }
731}
732
90794bf1 733void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
734 unsigned long from, unsigned long to,
735 unsigned long len)
736{
90794bf1 737 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
738 struct userfaultfd_wait_queue ewq;
739
740 if (!ctx)
741 return;
742
743 if (to & ~PAGE_MASK) {
744 userfaultfd_ctx_put(ctx);
745 return;
746 }
747
748 msg_init(&ewq.msg);
749
750 ewq.msg.event = UFFD_EVENT_REMAP;
751 ewq.msg.arg.remap.from = from;
752 ewq.msg.arg.remap.to = to;
753 ewq.msg.arg.remap.len = len;
754
755 userfaultfd_event_wait_completion(ctx, &ewq);
756}
757
70ccb92f 758bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 759 unsigned long start, unsigned long end)
05ce7724
PE
760{
761 struct mm_struct *mm = vma->vm_mm;
762 struct userfaultfd_ctx *ctx;
763 struct userfaultfd_wait_queue ewq;
764
765 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 766 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 767 return true;
05ce7724
PE
768
769 userfaultfd_ctx_get(ctx);
a759a909 770 atomic_inc(&ctx->mmap_changing);
d8ed45c5 771 mmap_read_unlock(mm);
05ce7724 772
05ce7724
PE
773 msg_init(&ewq.msg);
774
d811914d
MR
775 ewq.msg.event = UFFD_EVENT_REMOVE;
776 ewq.msg.arg.remove.start = start;
777 ewq.msg.arg.remove.end = end;
05ce7724
PE
778
779 userfaultfd_event_wait_completion(ctx, &ewq);
780
70ccb92f 781 return false;
05ce7724
PE
782}
783
897ab3e0
MR
784static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
785 unsigned long start, unsigned long end)
786{
787 struct userfaultfd_unmap_ctx *unmap_ctx;
788
789 list_for_each_entry(unmap_ctx, unmaps, list)
790 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
791 unmap_ctx->end == end)
792 return true;
793
794 return false;
795}
796
797int userfaultfd_unmap_prep(struct vm_area_struct *vma,
798 unsigned long start, unsigned long end,
799 struct list_head *unmaps)
800{
801 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
802 struct userfaultfd_unmap_ctx *unmap_ctx;
803 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
804
805 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
806 has_unmap_ctx(ctx, unmaps, start, end))
807 continue;
808
809 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
810 if (!unmap_ctx)
811 return -ENOMEM;
812
813 userfaultfd_ctx_get(ctx);
a759a909 814 atomic_inc(&ctx->mmap_changing);
897ab3e0
MR
815 unmap_ctx->ctx = ctx;
816 unmap_ctx->start = start;
817 unmap_ctx->end = end;
818 list_add_tail(&unmap_ctx->list, unmaps);
819 }
820
821 return 0;
822}
823
824void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
825{
826 struct userfaultfd_unmap_ctx *ctx, *n;
827 struct userfaultfd_wait_queue ewq;
828
829 list_for_each_entry_safe(ctx, n, uf, list) {
830 msg_init(&ewq.msg);
831
832 ewq.msg.event = UFFD_EVENT_UNMAP;
833 ewq.msg.arg.remove.start = ctx->start;
834 ewq.msg.arg.remove.end = ctx->end;
835
836 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
837
838 list_del(&ctx->list);
839 kfree(ctx);
840 }
841}
842
86039bd3
AA
843static int userfaultfd_release(struct inode *inode, struct file *file)
844{
845 struct userfaultfd_ctx *ctx = file->private_data;
846 struct mm_struct *mm = ctx->mm;
847 struct vm_area_struct *vma, *prev;
848 /* len == 0 means wake all */
849 struct userfaultfd_wake_range range = { .len = 0, };
850 unsigned long new_flags;
851
6aa7de05 852 WRITE_ONCE(ctx->released, true);
86039bd3 853
d2005e3f
ON
854 if (!mmget_not_zero(mm))
855 goto wakeup;
856
86039bd3
AA
857 /*
858 * Flush page faults out of all CPUs. NOTE: all page faults
859 * must be retried without returning VM_FAULT_SIGBUS if
860 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 861 * changes while handle_userfault released the mmap_lock. So
86039bd3 862 * it's critical that released is set to true (above), before
c1e8d7c6 863 * taking the mmap_lock for writing.
86039bd3 864 */
d8ed45c5 865 mmap_write_lock(mm);
86039bd3
AA
866 prev = NULL;
867 for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 cond_resched();
869 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 870 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
871 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
872 prev = vma;
873 continue;
874 }
7677f7fd 875 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
4d45e75a
JH
876 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
877 new_flags, vma->anon_vma,
878 vma->vm_file, vma->vm_pgoff,
879 vma_policy(vma),
880 NULL_VM_UFFD_CTX);
881 if (prev)
882 vma = prev;
883 else
884 prev = vma;
86039bd3
AA
885 vma->vm_flags = new_flags;
886 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
887 }
d8ed45c5 888 mmap_write_unlock(mm);
d2005e3f
ON
889 mmput(mm);
890wakeup:
86039bd3 891 /*
15b726ef 892 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 893 * the last page faults that may have been already waiting on
15b726ef 894 * the fault_*wqh.
86039bd3 895 */
cbcfa130 896 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 897 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 898 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 899 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 900
5a18b64e
MR
901 /* Flush pending events that may still wait on event_wqh */
902 wake_up_all(&ctx->event_wqh);
903
a9a08845 904 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
905 userfaultfd_ctx_put(ctx);
906 return 0;
907}
908
15b726ef 909/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
910static inline struct userfaultfd_wait_queue *find_userfault_in(
911 wait_queue_head_t *wqh)
86039bd3 912{
ac6424b9 913 wait_queue_entry_t *wq;
15b726ef 914 struct userfaultfd_wait_queue *uwq;
86039bd3 915
456a7378 916 lockdep_assert_held(&wqh->lock);
86039bd3 917
15b726ef 918 uwq = NULL;
6dcc27fd 919 if (!waitqueue_active(wqh))
15b726ef
AA
920 goto out;
921 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 922 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
923 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
924out:
925 return uwq;
86039bd3 926}
6dcc27fd
PE
927
928static inline struct userfaultfd_wait_queue *find_userfault(
929 struct userfaultfd_ctx *ctx)
930{
931 return find_userfault_in(&ctx->fault_pending_wqh);
932}
86039bd3 933
9cd75c3c
PE
934static inline struct userfaultfd_wait_queue *find_userfault_evt(
935 struct userfaultfd_ctx *ctx)
936{
937 return find_userfault_in(&ctx->event_wqh);
938}
939
076ccb76 940static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
941{
942 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 943 __poll_t ret;
86039bd3
AA
944
945 poll_wait(file, &ctx->fd_wqh, wait);
946
947 switch (ctx->state) {
948 case UFFD_STATE_WAIT_API:
a9a08845 949 return EPOLLERR;
86039bd3 950 case UFFD_STATE_RUNNING:
ba85c702
AA
951 /*
952 * poll() never guarantees that read won't block.
953 * userfaults can be waken before they're read().
954 */
955 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 956 return EPOLLERR;
15b726ef
AA
957 /*
958 * lockless access to see if there are pending faults
959 * __pollwait last action is the add_wait_queue but
960 * the spin_unlock would allow the waitqueue_active to
961 * pass above the actual list_add inside
962 * add_wait_queue critical section. So use a full
963 * memory barrier to serialize the list_add write of
964 * add_wait_queue() with the waitqueue_active read
965 * below.
966 */
967 ret = 0;
968 smp_mb();
969 if (waitqueue_active(&ctx->fault_pending_wqh))
a9a08845 970 ret = EPOLLIN;
9cd75c3c 971 else if (waitqueue_active(&ctx->event_wqh))
a9a08845 972 ret = EPOLLIN;
9cd75c3c 973
86039bd3
AA
974 return ret;
975 default:
8474901a 976 WARN_ON_ONCE(1);
a9a08845 977 return EPOLLERR;
86039bd3
AA
978 }
979}
980
893e26e6
PE
981static const struct file_operations userfaultfd_fops;
982
b537900f
DC
983static int resolve_userfault_fork(struct userfaultfd_ctx *new,
984 struct inode *inode,
893e26e6
PE
985 struct uffd_msg *msg)
986{
987 int fd;
893e26e6 988
b537900f
DC
989 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
990 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
991 if (fd < 0)
992 return fd;
993
893e26e6
PE
994 msg->arg.reserved.reserved1 = 0;
995 msg->arg.fork.ufd = fd;
893e26e6
PE
996 return 0;
997}
998
86039bd3 999static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 1000 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1001{
1002 ssize_t ret;
1003 DECLARE_WAITQUEUE(wait, current);
15b726ef 1004 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1005 /*
1006 * Handling fork event requires sleeping operations, so
1007 * we drop the event_wqh lock, then do these ops, then
1008 * lock it back and wake up the waiter. While the lock is
1009 * dropped the ewq may go away so we keep track of it
1010 * carefully.
1011 */
1012 LIST_HEAD(fork_event);
1013 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1014
15b726ef 1015 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1016 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1017 __add_wait_queue(&ctx->fd_wqh, &wait);
1018 for (;;) {
1019 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1020 spin_lock(&ctx->fault_pending_wqh.lock);
1021 uwq = find_userfault(ctx);
1022 if (uwq) {
2c5b7e1b
AA
1023 /*
1024 * Use a seqcount to repeat the lockless check
1025 * in wake_userfault() to avoid missing
1026 * wakeups because during the refile both
1027 * waitqueue could become empty if this is the
1028 * only userfault.
1029 */
1030 write_seqcount_begin(&ctx->refile_seq);
1031
86039bd3 1032 /*
15b726ef
AA
1033 * The fault_pending_wqh.lock prevents the uwq
1034 * to disappear from under us.
1035 *
1036 * Refile this userfault from
1037 * fault_pending_wqh to fault_wqh, it's not
1038 * pending anymore after we read it.
1039 *
1040 * Use list_del() by hand (as
1041 * userfaultfd_wake_function also uses
1042 * list_del_init() by hand) to be sure nobody
1043 * changes __remove_wait_queue() to use
1044 * list_del_init() in turn breaking the
1045 * !list_empty_careful() check in
2055da97 1046 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1047 * must never be empty at any time during the
1048 * refile, or the waitqueue could disappear
1049 * from under us. The "wait_queue_head_t"
1050 * parameter of __remove_wait_queue() is unused
1051 * anyway.
86039bd3 1052 */
2055da97 1053 list_del(&uwq->wq.entry);
c430d1e8 1054 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1055
2c5b7e1b
AA
1056 write_seqcount_end(&ctx->refile_seq);
1057
a9b85f94
AA
1058 /* careful to always initialize msg if ret == 0 */
1059 *msg = uwq->msg;
15b726ef 1060 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1061 ret = 0;
1062 break;
1063 }
15b726ef 1064 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1065
1066 spin_lock(&ctx->event_wqh.lock);
1067 uwq = find_userfault_evt(ctx);
1068 if (uwq) {
1069 *msg = uwq->msg;
1070
893e26e6
PE
1071 if (uwq->msg.event == UFFD_EVENT_FORK) {
1072 fork_nctx = (struct userfaultfd_ctx *)
1073 (unsigned long)
1074 uwq->msg.arg.reserved.reserved1;
2055da97 1075 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1076 /*
1077 * fork_nctx can be freed as soon as
1078 * we drop the lock, unless we take a
1079 * reference on it.
1080 */
1081 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1082 spin_unlock(&ctx->event_wqh.lock);
1083 ret = 0;
1084 break;
1085 }
1086
9cd75c3c
PE
1087 userfaultfd_event_complete(ctx, uwq);
1088 spin_unlock(&ctx->event_wqh.lock);
1089 ret = 0;
1090 break;
1091 }
1092 spin_unlock(&ctx->event_wqh.lock);
1093
86039bd3
AA
1094 if (signal_pending(current)) {
1095 ret = -ERESTARTSYS;
1096 break;
1097 }
1098 if (no_wait) {
1099 ret = -EAGAIN;
1100 break;
1101 }
ae62c16e 1102 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1103 schedule();
ae62c16e 1104 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1105 }
1106 __remove_wait_queue(&ctx->fd_wqh, &wait);
1107 __set_current_state(TASK_RUNNING);
ae62c16e 1108 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1109
893e26e6 1110 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1111 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1112 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1113 if (!list_empty(&fork_event)) {
1114 /*
1115 * The fork thread didn't abort, so we can
1116 * drop the temporary refcount.
1117 */
1118 userfaultfd_ctx_put(fork_nctx);
1119
1120 uwq = list_first_entry(&fork_event,
1121 typeof(*uwq),
1122 wq.entry);
1123 /*
1124 * If fork_event list wasn't empty and in turn
1125 * the event wasn't already released by fork
1126 * (the event is allocated on fork kernel
1127 * stack), put the event back to its place in
1128 * the event_wq. fork_event head will be freed
1129 * as soon as we return so the event cannot
1130 * stay queued there no matter the current
1131 * "ret" value.
1132 */
1133 list_del(&uwq->wq.entry);
1134 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1135
384632e6
AA
1136 /*
1137 * Leave the event in the waitqueue and report
1138 * error to userland if we failed to resolve
1139 * the userfault fork.
1140 */
1141 if (likely(!ret))
893e26e6 1142 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1143 } else {
1144 /*
1145 * Here the fork thread aborted and the
1146 * refcount from the fork thread on fork_nctx
1147 * has already been released. We still hold
1148 * the reference we took before releasing the
1149 * lock above. If resolve_userfault_fork
1150 * failed we've to drop it because the
1151 * fork_nctx has to be freed in such case. If
1152 * it succeeded we'll hold it because the new
1153 * uffd references it.
1154 */
1155 if (ret)
1156 userfaultfd_ctx_put(fork_nctx);
893e26e6 1157 }
cbcfa130 1158 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1159 }
1160
86039bd3
AA
1161 return ret;
1162}
1163
1164static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1165 size_t count, loff_t *ppos)
1166{
1167 struct userfaultfd_ctx *ctx = file->private_data;
1168 ssize_t _ret, ret = 0;
a9b85f94 1169 struct uffd_msg msg;
86039bd3 1170 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1171 struct inode *inode = file_inode(file);
86039bd3
AA
1172
1173 if (ctx->state == UFFD_STATE_WAIT_API)
1174 return -EINVAL;
86039bd3
AA
1175
1176 for (;;) {
a9b85f94 1177 if (count < sizeof(msg))
86039bd3 1178 return ret ? ret : -EINVAL;
b537900f 1179 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1180 if (_ret < 0)
1181 return ret ? ret : _ret;
a9b85f94 1182 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1183 return ret ? ret : -EFAULT;
a9b85f94
AA
1184 ret += sizeof(msg);
1185 buf += sizeof(msg);
1186 count -= sizeof(msg);
86039bd3
AA
1187 /*
1188 * Allow to read more than one fault at time but only
1189 * block if waiting for the very first one.
1190 */
1191 no_wait = O_NONBLOCK;
1192 }
1193}
1194
1195static void __wake_userfault(struct userfaultfd_ctx *ctx,
1196 struct userfaultfd_wake_range *range)
1197{
cbcfa130 1198 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1199 /* wake all in the range and autoremove */
15b726ef 1200 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1201 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1202 range);
1203 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1204 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1205 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1206}
1207
1208static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1209 struct userfaultfd_wake_range *range)
1210{
2c5b7e1b
AA
1211 unsigned seq;
1212 bool need_wakeup;
1213
86039bd3
AA
1214 /*
1215 * To be sure waitqueue_active() is not reordered by the CPU
1216 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1217 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1218 * have release semantics that can allow the
1219 * waitqueue_active() to be reordered before the pte update.
1220 */
1221 smp_mb();
1222
1223 /*
1224 * Use waitqueue_active because it's very frequent to
1225 * change the address space atomically even if there are no
1226 * userfaults yet. So we take the spinlock only when we're
1227 * sure we've userfaults to wake.
1228 */
2c5b7e1b
AA
1229 do {
1230 seq = read_seqcount_begin(&ctx->refile_seq);
1231 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1232 waitqueue_active(&ctx->fault_wqh);
1233 cond_resched();
1234 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1235 if (need_wakeup)
86039bd3
AA
1236 __wake_userfault(ctx, range);
1237}
1238
1239static __always_inline int validate_range(struct mm_struct *mm,
e71e2ace 1240 __u64 start, __u64 len)
86039bd3
AA
1241{
1242 __u64 task_size = mm->task_size;
1243
e71e2ace 1244 if (start & ~PAGE_MASK)
86039bd3
AA
1245 return -EINVAL;
1246 if (len & ~PAGE_MASK)
1247 return -EINVAL;
1248 if (!len)
1249 return -EINVAL;
e71e2ace 1250 if (start < mmap_min_addr)
86039bd3 1251 return -EINVAL;
e71e2ace 1252 if (start >= task_size)
86039bd3 1253 return -EINVAL;
e71e2ace 1254 if (len > task_size - start)
86039bd3
AA
1255 return -EINVAL;
1256 return 0;
1257}
1258
63b2d417
AA
1259static inline bool vma_can_userfault(struct vm_area_struct *vma,
1260 unsigned long vm_flags)
ba6907db 1261{
63b2d417 1262 /* FIXME: add WP support to hugetlbfs and shmem */
7677f7fd
AR
1263 if (vm_flags & VM_UFFD_WP) {
1264 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1265 return false;
1266 }
1267
1268 if (vm_flags & VM_UFFD_MINOR) {
c949b097 1269 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
7677f7fd
AR
1270 return false;
1271 }
1272
1273 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1274 vma_is_shmem(vma);
ba6907db
MR
1275}
1276
86039bd3
AA
1277static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1278 unsigned long arg)
1279{
1280 struct mm_struct *mm = ctx->mm;
1281 struct vm_area_struct *vma, *prev, *cur;
1282 int ret;
1283 struct uffdio_register uffdio_register;
1284 struct uffdio_register __user *user_uffdio_register;
1285 unsigned long vm_flags, new_flags;
1286 bool found;
ce53e8e6 1287 bool basic_ioctls;
86039bd3
AA
1288 unsigned long start, end, vma_end;
1289
1290 user_uffdio_register = (struct uffdio_register __user *) arg;
1291
1292 ret = -EFAULT;
1293 if (copy_from_user(&uffdio_register, user_uffdio_register,
1294 sizeof(uffdio_register)-sizeof(__u64)))
1295 goto out;
1296
1297 ret = -EINVAL;
1298 if (!uffdio_register.mode)
1299 goto out;
7677f7fd 1300 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1301 goto out;
1302 vm_flags = 0;
1303 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1304 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1305 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1306#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1307 goto out;
1308#endif
86039bd3 1309 vm_flags |= VM_UFFD_WP;
00b151f2 1310 }
7677f7fd
AR
1311 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1312#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1313 goto out;
1314#endif
1315 vm_flags |= VM_UFFD_MINOR;
1316 }
86039bd3 1317
e71e2ace 1318 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1319 uffdio_register.range.len);
1320 if (ret)
1321 goto out;
1322
1323 start = uffdio_register.range.start;
1324 end = start + uffdio_register.range.len;
1325
d2005e3f
ON
1326 ret = -ENOMEM;
1327 if (!mmget_not_zero(mm))
1328 goto out;
1329
d8ed45c5 1330 mmap_write_lock(mm);
86039bd3 1331 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1332 if (!vma)
1333 goto out_unlock;
1334
1335 /* check that there's at least one vma in the range */
1336 ret = -EINVAL;
1337 if (vma->vm_start >= end)
1338 goto out_unlock;
1339
cab350af
MK
1340 /*
1341 * If the first vma contains huge pages, make sure start address
1342 * is aligned to huge page size.
1343 */
1344 if (is_vm_hugetlb_page(vma)) {
1345 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1346
1347 if (start & (vma_hpagesize - 1))
1348 goto out_unlock;
1349 }
1350
86039bd3
AA
1351 /*
1352 * Search for not compatible vmas.
86039bd3
AA
1353 */
1354 found = false;
ce53e8e6 1355 basic_ioctls = false;
86039bd3
AA
1356 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1357 cond_resched();
1358
1359 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1360 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1361
1362 /* check not compatible vmas */
1363 ret = -EINVAL;
63b2d417 1364 if (!vma_can_userfault(cur, vm_flags))
86039bd3 1365 goto out_unlock;
29ec9066
AA
1366
1367 /*
1368 * UFFDIO_COPY will fill file holes even without
1369 * PROT_WRITE. This check enforces that if this is a
1370 * MAP_SHARED, the process has write permission to the backing
1371 * file. If VM_MAYWRITE is set it also enforces that on a
1372 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1373 * F_WRITE_SEAL can be taken until the vma is destroyed.
1374 */
1375 ret = -EPERM;
1376 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1377 goto out_unlock;
1378
cab350af
MK
1379 /*
1380 * If this vma contains ending address, and huge pages
1381 * check alignment.
1382 */
1383 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1384 end > cur->vm_start) {
1385 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1386
1387 ret = -EINVAL;
1388
1389 if (end & (vma_hpagesize - 1))
1390 goto out_unlock;
1391 }
63b2d417
AA
1392 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1393 goto out_unlock;
86039bd3
AA
1394
1395 /*
1396 * Check that this vma isn't already owned by a
1397 * different userfaultfd. We can't allow more than one
1398 * userfaultfd to own a single vma simultaneously or we
1399 * wouldn't know which one to deliver the userfaults to.
1400 */
1401 ret = -EBUSY;
1402 if (cur->vm_userfaultfd_ctx.ctx &&
1403 cur->vm_userfaultfd_ctx.ctx != ctx)
1404 goto out_unlock;
1405
cab350af
MK
1406 /*
1407 * Note vmas containing huge pages
1408 */
ce53e8e6
MR
1409 if (is_vm_hugetlb_page(cur))
1410 basic_ioctls = true;
cab350af 1411
86039bd3
AA
1412 found = true;
1413 }
1414 BUG_ON(!found);
1415
1416 if (vma->vm_start < start)
1417 prev = vma;
1418
1419 ret = 0;
1420 do {
1421 cond_resched();
1422
63b2d417 1423 BUG_ON(!vma_can_userfault(vma, vm_flags));
86039bd3
AA
1424 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1425 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1426 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1427
1428 /*
1429 * Nothing to do: this vma is already registered into this
1430 * userfaultfd and with the right tracking mode too.
1431 */
1432 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1433 (vma->vm_flags & vm_flags) == vm_flags)
1434 goto skip;
1435
1436 if (vma->vm_start > start)
1437 start = vma->vm_start;
1438 vma_end = min(end, vma->vm_end);
1439
7677f7fd 1440 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
86039bd3
AA
1441 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1442 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1443 vma_policy(vma),
1444 ((struct vm_userfaultfd_ctx){ ctx }));
1445 if (prev) {
1446 vma = prev;
1447 goto next;
1448 }
1449 if (vma->vm_start < start) {
1450 ret = split_vma(mm, vma, start, 1);
1451 if (ret)
1452 break;
1453 }
1454 if (vma->vm_end > end) {
1455 ret = split_vma(mm, vma, end, 0);
1456 if (ret)
1457 break;
1458 }
1459 next:
1460 /*
1461 * In the vma_merge() successful mprotect-like case 8:
1462 * the next vma was merged into the current one and
1463 * the current one has not been updated yet.
1464 */
1465 vma->vm_flags = new_flags;
1466 vma->vm_userfaultfd_ctx.ctx = ctx;
1467
6dfeaff9
PX
1468 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1469 hugetlb_unshare_all_pmds(vma);
1470
86039bd3
AA
1471 skip:
1472 prev = vma;
1473 start = vma->vm_end;
1474 vma = vma->vm_next;
1475 } while (vma && vma->vm_start < end);
1476out_unlock:
d8ed45c5 1477 mmap_write_unlock(mm);
d2005e3f 1478 mmput(mm);
86039bd3 1479 if (!ret) {
14819305
PX
1480 __u64 ioctls_out;
1481
1482 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1483 UFFD_API_RANGE_IOCTLS;
1484
1485 /*
1486 * Declare the WP ioctl only if the WP mode is
1487 * specified and all checks passed with the range
1488 */
1489 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1490 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1491
f6191471
AR
1492 /* CONTINUE ioctl is only supported for MINOR ranges. */
1493 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1494 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1495
86039bd3
AA
1496 /*
1497 * Now that we scanned all vmas we can already tell
1498 * userland which ioctls methods are guaranteed to
1499 * succeed on this range.
1500 */
14819305 1501 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1502 ret = -EFAULT;
1503 }
1504out:
1505 return ret;
1506}
1507
1508static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1509 unsigned long arg)
1510{
1511 struct mm_struct *mm = ctx->mm;
1512 struct vm_area_struct *vma, *prev, *cur;
1513 int ret;
1514 struct uffdio_range uffdio_unregister;
1515 unsigned long new_flags;
1516 bool found;
1517 unsigned long start, end, vma_end;
1518 const void __user *buf = (void __user *)arg;
1519
1520 ret = -EFAULT;
1521 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1522 goto out;
1523
e71e2ace 1524 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1525 uffdio_unregister.len);
1526 if (ret)
1527 goto out;
1528
1529 start = uffdio_unregister.start;
1530 end = start + uffdio_unregister.len;
1531
d2005e3f
ON
1532 ret = -ENOMEM;
1533 if (!mmget_not_zero(mm))
1534 goto out;
1535
d8ed45c5 1536 mmap_write_lock(mm);
86039bd3 1537 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1538 if (!vma)
1539 goto out_unlock;
1540
1541 /* check that there's at least one vma in the range */
1542 ret = -EINVAL;
1543 if (vma->vm_start >= end)
1544 goto out_unlock;
1545
cab350af
MK
1546 /*
1547 * If the first vma contains huge pages, make sure start address
1548 * is aligned to huge page size.
1549 */
1550 if (is_vm_hugetlb_page(vma)) {
1551 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1552
1553 if (start & (vma_hpagesize - 1))
1554 goto out_unlock;
1555 }
1556
86039bd3
AA
1557 /*
1558 * Search for not compatible vmas.
86039bd3
AA
1559 */
1560 found = false;
1561 ret = -EINVAL;
1562 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1563 cond_resched();
1564
1565 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1566 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1567
1568 /*
1569 * Check not compatible vmas, not strictly required
1570 * here as not compatible vmas cannot have an
1571 * userfaultfd_ctx registered on them, but this
1572 * provides for more strict behavior to notice
1573 * unregistration errors.
1574 */
63b2d417 1575 if (!vma_can_userfault(cur, cur->vm_flags))
86039bd3
AA
1576 goto out_unlock;
1577
1578 found = true;
1579 }
1580 BUG_ON(!found);
1581
1582 if (vma->vm_start < start)
1583 prev = vma;
1584
1585 ret = 0;
1586 do {
1587 cond_resched();
1588
63b2d417 1589 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
86039bd3
AA
1590
1591 /*
1592 * Nothing to do: this vma is already registered into this
1593 * userfaultfd and with the right tracking mode too.
1594 */
1595 if (!vma->vm_userfaultfd_ctx.ctx)
1596 goto skip;
1597
01e881f5
AA
1598 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1599
86039bd3
AA
1600 if (vma->vm_start > start)
1601 start = vma->vm_start;
1602 vma_end = min(end, vma->vm_end);
1603
09fa5296
AA
1604 if (userfaultfd_missing(vma)) {
1605 /*
1606 * Wake any concurrent pending userfault while
1607 * we unregister, so they will not hang
1608 * permanently and it avoids userland to call
1609 * UFFDIO_WAKE explicitly.
1610 */
1611 struct userfaultfd_wake_range range;
1612 range.start = start;
1613 range.len = vma_end - start;
1614 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1615 }
1616
7677f7fd 1617 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
86039bd3
AA
1618 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1619 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1620 vma_policy(vma),
1621 NULL_VM_UFFD_CTX);
1622 if (prev) {
1623 vma = prev;
1624 goto next;
1625 }
1626 if (vma->vm_start < start) {
1627 ret = split_vma(mm, vma, start, 1);
1628 if (ret)
1629 break;
1630 }
1631 if (vma->vm_end > end) {
1632 ret = split_vma(mm, vma, end, 0);
1633 if (ret)
1634 break;
1635 }
1636 next:
1637 /*
1638 * In the vma_merge() successful mprotect-like case 8:
1639 * the next vma was merged into the current one and
1640 * the current one has not been updated yet.
1641 */
1642 vma->vm_flags = new_flags;
1643 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1644
1645 skip:
1646 prev = vma;
1647 start = vma->vm_end;
1648 vma = vma->vm_next;
1649 } while (vma && vma->vm_start < end);
1650out_unlock:
d8ed45c5 1651 mmap_write_unlock(mm);
d2005e3f 1652 mmput(mm);
86039bd3
AA
1653out:
1654 return ret;
1655}
1656
1657/*
ba85c702
AA
1658 * userfaultfd_wake may be used in combination with the
1659 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1660 */
1661static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1662 unsigned long arg)
1663{
1664 int ret;
1665 struct uffdio_range uffdio_wake;
1666 struct userfaultfd_wake_range range;
1667 const void __user *buf = (void __user *)arg;
1668
1669 ret = -EFAULT;
1670 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1671 goto out;
1672
e71e2ace 1673 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1674 if (ret)
1675 goto out;
1676
1677 range.start = uffdio_wake.start;
1678 range.len = uffdio_wake.len;
1679
1680 /*
1681 * len == 0 means wake all and we don't want to wake all here,
1682 * so check it again to be sure.
1683 */
1684 VM_BUG_ON(!range.len);
1685
1686 wake_userfault(ctx, &range);
1687 ret = 0;
1688
1689out:
1690 return ret;
1691}
1692
ad465cae
AA
1693static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1694 unsigned long arg)
1695{
1696 __s64 ret;
1697 struct uffdio_copy uffdio_copy;
1698 struct uffdio_copy __user *user_uffdio_copy;
1699 struct userfaultfd_wake_range range;
1700
1701 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1702
df2cc96e 1703 ret = -EAGAIN;
a759a909 1704 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1705 goto out;
1706
ad465cae
AA
1707 ret = -EFAULT;
1708 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1709 /* don't copy "copy" last field */
1710 sizeof(uffdio_copy)-sizeof(__s64)))
1711 goto out;
1712
e71e2ace 1713 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1714 if (ret)
1715 goto out;
1716 /*
1717 * double check for wraparound just in case. copy_from_user()
1718 * will later check uffdio_copy.src + uffdio_copy.len to fit
1719 * in the userland range.
1720 */
1721 ret = -EINVAL;
1722 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1723 goto out;
72981e0e 1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1725 goto out;
d2005e3f
ON
1726 if (mmget_not_zero(ctx->mm)) {
1727 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
72981e0e
AA
1728 uffdio_copy.len, &ctx->mmap_changing,
1729 uffdio_copy.mode);
d2005e3f 1730 mmput(ctx->mm);
96333187 1731 } else {
e86b298b 1732 return -ESRCH;
d2005e3f 1733 }
ad465cae
AA
1734 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1735 return -EFAULT;
1736 if (ret < 0)
1737 goto out;
1738 BUG_ON(!ret);
1739 /* len == 0 would wake all */
1740 range.len = ret;
1741 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1742 range.start = uffdio_copy.dst;
1743 wake_userfault(ctx, &range);
1744 }
1745 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1746out:
1747 return ret;
1748}
1749
1750static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1751 unsigned long arg)
1752{
1753 __s64 ret;
1754 struct uffdio_zeropage uffdio_zeropage;
1755 struct uffdio_zeropage __user *user_uffdio_zeropage;
1756 struct userfaultfd_wake_range range;
1757
1758 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1759
df2cc96e 1760 ret = -EAGAIN;
a759a909 1761 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1762 goto out;
1763
ad465cae
AA
1764 ret = -EFAULT;
1765 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1766 /* don't copy "zeropage" last field */
1767 sizeof(uffdio_zeropage)-sizeof(__s64)))
1768 goto out;
1769
e71e2ace 1770 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1771 uffdio_zeropage.range.len);
1772 if (ret)
1773 goto out;
1774 ret = -EINVAL;
1775 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1776 goto out;
1777
d2005e3f
ON
1778 if (mmget_not_zero(ctx->mm)) {
1779 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1780 uffdio_zeropage.range.len,
1781 &ctx->mmap_changing);
d2005e3f 1782 mmput(ctx->mm);
9d95aa4b 1783 } else {
e86b298b 1784 return -ESRCH;
d2005e3f 1785 }
ad465cae
AA
1786 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787 return -EFAULT;
1788 if (ret < 0)
1789 goto out;
1790 /* len == 0 would wake all */
1791 BUG_ON(!ret);
1792 range.len = ret;
1793 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794 range.start = uffdio_zeropage.range.start;
1795 wake_userfault(ctx, &range);
1796 }
1797 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798out:
1799 return ret;
1800}
1801
63b2d417
AA
1802static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1803 unsigned long arg)
1804{
1805 int ret;
1806 struct uffdio_writeprotect uffdio_wp;
1807 struct uffdio_writeprotect __user *user_uffdio_wp;
1808 struct userfaultfd_wake_range range;
23080e27 1809 bool mode_wp, mode_dontwake;
63b2d417 1810
a759a909 1811 if (atomic_read(&ctx->mmap_changing))
63b2d417
AA
1812 return -EAGAIN;
1813
1814 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1815
1816 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817 sizeof(struct uffdio_writeprotect)))
1818 return -EFAULT;
1819
e71e2ace 1820 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1821 uffdio_wp.range.len);
1822 if (ret)
1823 return ret;
1824
1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826 UFFDIO_WRITEPROTECT_MODE_WP))
1827 return -EINVAL;
23080e27
PX
1828
1829 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1831
1832 if (mode_wp && mode_dontwake)
63b2d417
AA
1833 return -EINVAL;
1834
1835 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
23080e27 1836 uffdio_wp.range.len, mode_wp,
63b2d417
AA
1837 &ctx->mmap_changing);
1838 if (ret)
1839 return ret;
1840
23080e27 1841 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1842 range.start = uffdio_wp.range.start;
1843 range.len = uffdio_wp.range.len;
1844 wake_userfault(ctx, &range);
1845 }
1846 return ret;
1847}
1848
f6191471
AR
1849static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1850{
1851 __s64 ret;
1852 struct uffdio_continue uffdio_continue;
1853 struct uffdio_continue __user *user_uffdio_continue;
1854 struct userfaultfd_wake_range range;
1855
1856 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1857
1858 ret = -EAGAIN;
a759a909 1859 if (atomic_read(&ctx->mmap_changing))
f6191471
AR
1860 goto out;
1861
1862 ret = -EFAULT;
1863 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1864 /* don't copy the output fields */
1865 sizeof(uffdio_continue) - (sizeof(__s64))))
1866 goto out;
1867
e71e2ace 1868 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1869 uffdio_continue.range.len);
1870 if (ret)
1871 goto out;
1872
1873 ret = -EINVAL;
1874 /* double check for wraparound just in case. */
1875 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1876 uffdio_continue.range.start) {
1877 goto out;
1878 }
1879 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1880 goto out;
1881
1882 if (mmget_not_zero(ctx->mm)) {
1883 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1884 uffdio_continue.range.len,
1885 &ctx->mmap_changing);
1886 mmput(ctx->mm);
1887 } else {
1888 return -ESRCH;
1889 }
1890
1891 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1892 return -EFAULT;
1893 if (ret < 0)
1894 goto out;
1895
1896 /* len == 0 would wake all */
1897 BUG_ON(!ret);
1898 range.len = ret;
1899 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1900 range.start = uffdio_continue.range.start;
1901 wake_userfault(ctx, &range);
1902 }
1903 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1904
1905out:
1906 return ret;
1907}
1908
9cd75c3c
PE
1909static inline unsigned int uffd_ctx_features(__u64 user_features)
1910{
1911 /*
1912 * For the current set of features the bits just coincide
1913 */
1914 return (unsigned int)user_features;
1915}
1916
86039bd3
AA
1917/*
1918 * userland asks for a certain API version and we return which bits
1919 * and ioctl commands are implemented in this kernel for such API
1920 * version or -EINVAL if unknown.
1921 */
1922static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1923 unsigned long arg)
1924{
1925 struct uffdio_api uffdio_api;
1926 void __user *buf = (void __user *)arg;
1927 int ret;
65603144 1928 __u64 features;
86039bd3
AA
1929
1930 ret = -EINVAL;
1931 if (ctx->state != UFFD_STATE_WAIT_API)
1932 goto out;
1933 ret = -EFAULT;
a9b85f94 1934 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1935 goto out;
65603144 1936 features = uffdio_api.features;
3c1c24d9
MR
1937 ret = -EINVAL;
1938 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1939 goto err_out;
1940 ret = -EPERM;
1941 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1942 goto err_out;
65603144
AA
1943 /* report all available features and ioctls to userland */
1944 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 1945#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
1946 uffdio_api.features &=
1947 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
1948#endif
1949#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1950 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
7677f7fd 1951#endif
86039bd3
AA
1952 uffdio_api.ioctls = UFFD_API_IOCTLS;
1953 ret = -EFAULT;
1954 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1955 goto out;
1956 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1957 /* only enable the requested features for this uffd context */
1958 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1959 ret = 0;
1960out:
1961 return ret;
3c1c24d9
MR
1962err_out:
1963 memset(&uffdio_api, 0, sizeof(uffdio_api));
1964 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1965 ret = -EFAULT;
1966 goto out;
86039bd3
AA
1967}
1968
1969static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1970 unsigned long arg)
1971{
1972 int ret = -EINVAL;
1973 struct userfaultfd_ctx *ctx = file->private_data;
1974
e6485a47
AA
1975 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1976 return -EINVAL;
1977
86039bd3
AA
1978 switch(cmd) {
1979 case UFFDIO_API:
1980 ret = userfaultfd_api(ctx, arg);
1981 break;
1982 case UFFDIO_REGISTER:
1983 ret = userfaultfd_register(ctx, arg);
1984 break;
1985 case UFFDIO_UNREGISTER:
1986 ret = userfaultfd_unregister(ctx, arg);
1987 break;
1988 case UFFDIO_WAKE:
1989 ret = userfaultfd_wake(ctx, arg);
1990 break;
ad465cae
AA
1991 case UFFDIO_COPY:
1992 ret = userfaultfd_copy(ctx, arg);
1993 break;
1994 case UFFDIO_ZEROPAGE:
1995 ret = userfaultfd_zeropage(ctx, arg);
1996 break;
63b2d417
AA
1997 case UFFDIO_WRITEPROTECT:
1998 ret = userfaultfd_writeprotect(ctx, arg);
1999 break;
f6191471
AR
2000 case UFFDIO_CONTINUE:
2001 ret = userfaultfd_continue(ctx, arg);
2002 break;
86039bd3
AA
2003 }
2004 return ret;
2005}
2006
2007#ifdef CONFIG_PROC_FS
2008static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2009{
2010 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2011 wait_queue_entry_t *wq;
86039bd3
AA
2012 unsigned long pending = 0, total = 0;
2013
cbcfa130 2014 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2015 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2016 pending++;
2017 total++;
2018 }
2055da97 2019 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2020 total++;
2021 }
cbcfa130 2022 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2023
2024 /*
2025 * If more protocols will be added, there will be all shown
2026 * separated by a space. Like this:
2027 * protocols: aa:... bb:...
2028 */
2029 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2030 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2031 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2032}
2033#endif
2034
2035static const struct file_operations userfaultfd_fops = {
2036#ifdef CONFIG_PROC_FS
2037 .show_fdinfo = userfaultfd_show_fdinfo,
2038#endif
2039 .release = userfaultfd_release,
2040 .poll = userfaultfd_poll,
2041 .read = userfaultfd_read,
2042 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2043 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2044 .llseek = noop_llseek,
2045};
2046
3004ec9c
AA
2047static void init_once_userfaultfd_ctx(void *mem)
2048{
2049 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2050
2051 init_waitqueue_head(&ctx->fault_pending_wqh);
2052 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2053 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2054 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2055 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2056}
2057
284cd241 2058SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 2059{
86039bd3 2060 struct userfaultfd_ctx *ctx;
284cd241 2061 int fd;
86039bd3 2062
d0d4730a
LG
2063 if (!sysctl_unprivileged_userfaultfd &&
2064 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2065 !capable(CAP_SYS_PTRACE)) {
2066 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2067 "sysctl knob to 1 if kernel faults must be handled "
2068 "without obtaining CAP_SYS_PTRACE capability\n");
cefdca0a 2069 return -EPERM;
d0d4730a 2070 }
cefdca0a 2071
86039bd3
AA
2072 BUG_ON(!current->mm);
2073
2074 /* Check the UFFD_* constants for consistency. */
37cd0575 2075 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2076 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2077 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2078
37cd0575 2079 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2080 return -EINVAL;
86039bd3 2081
3004ec9c 2082 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2083 if (!ctx)
284cd241 2084 return -ENOMEM;
86039bd3 2085
ca880420 2086 refcount_set(&ctx->refcount, 1);
86039bd3 2087 ctx->flags = flags;
9cd75c3c 2088 ctx->features = 0;
86039bd3
AA
2089 ctx->state = UFFD_STATE_WAIT_API;
2090 ctx->released = false;
a759a909 2091 atomic_set(&ctx->mmap_changing, 0);
86039bd3
AA
2092 ctx->mm = current->mm;
2093 /* prevent the mm struct to be freed */
f1f10076 2094 mmgrab(ctx->mm);
86039bd3 2095
b537900f
DC
2096 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2097 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2098 if (fd < 0) {
d2005e3f 2099 mmdrop(ctx->mm);
3004ec9c 2100 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2101 }
86039bd3 2102 return fd;
86039bd3 2103}
3004ec9c
AA
2104
2105static int __init userfaultfd_init(void)
2106{
2107 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2108 sizeof(struct userfaultfd_ctx),
2109 0,
2110 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2111 init_once_userfaultfd_ctx);
2112 return 0;
2113}
2114__initcall(userfaultfd_init);