mm: remove useless vma parameter to offset_il_node
[linux-2.6-block.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3 16#include <linux/hashtable.h>
174cd4b1 17#include <linux/sched/signal.h>
6e84f315 18#include <linux/sched/mm.h>
86039bd3
AA
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
86039bd3 44struct userfaultfd_ctx {
15b726ef
AA
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
86039bd3
AA
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
9cd75c3c
PE
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
2c5b7e1b
AA
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
3004ec9c
AA
55 /* pseudo fd refcounting */
56 atomic_t refcount;
86039bd3
AA
57 /* userfaultfd syscall flags */
58 unsigned int flags;
9cd75c3c
PE
59 /* features requested from the userspace */
60 unsigned int features;
86039bd3
AA
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67};
68
893e26e6
PE
69struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73};
74
897ab3e0
MR
75struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80};
81
86039bd3 82struct userfaultfd_wait_queue {
a9b85f94 83 struct uffd_msg msg;
ac6424b9 84 wait_queue_entry_t wq;
86039bd3 85 struct userfaultfd_ctx *ctx;
15a77c6f 86 bool waken;
86039bd3
AA
87};
88
89struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92};
93
ac6424b9 94static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
95 int wake_flags, void *key)
96{
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
86039bd3
AA
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
a9b85f94
AA
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 109 goto out;
15a77c6f
AA
110 WRITE_ONCE(uwq->waken, true);
111 /*
a9668cd6
PZ
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
15a77c6f 114 */
86039bd3 115 ret = wake_up_state(wq->private, mode);
a9668cd6 116 if (ret) {
86039bd3
AA
117 /*
118 * Wake only once, autoremove behavior.
119 *
a9668cd6
PZ
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 127 */
2055da97 128 list_del_init(&wq->entry);
a9668cd6 129 }
86039bd3
AA
130out:
131 return ret;
132}
133
134/**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
138 */
139static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140{
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143}
144
145/**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154{
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 164 mmdrop(ctx->mm);
3004ec9c 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
166 }
167}
168
a9b85f94 169static inline void msg_init(struct uffd_msg *msg)
86039bd3 170{
a9b85f94
AA
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177}
178
179static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
9d4ac934
AP
181 unsigned long reason,
182 unsigned int features)
a9b85f94
AA
183{
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
86039bd3
AA
188 if (flags & FAULT_FLAG_WRITE)
189 /*
a4605a61 190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
86039bd3 195 */
a9b85f94 196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
197 if (reason & VM_UFFD_WP)
198 /*
a9b85f94
AA
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
86039bd3 204 */
a9b85f94 205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 206 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 208 return msg;
86039bd3
AA
209}
210
369cd212
MK
211#ifdef CONFIG_HUGETLB_PAGE
212/*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 217 struct vm_area_struct *vma,
369cd212
MK
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221{
222 struct mm_struct *mm = ctx->mm;
223 pte_t *pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
7868a208 228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
369cd212
MK
229 if (!pte)
230 goto out;
231
232 ret = false;
233
234 /*
235 * Lockless access: we're in a wait_event so it's ok if it
236 * changes under us.
237 */
238 if (huge_pte_none(*pte))
239 ret = true;
240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 ret = true;
242out:
243 return ret;
244}
245#else
246static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 247 struct vm_area_struct *vma,
369cd212
MK
248 unsigned long address,
249 unsigned long flags,
250 unsigned long reason)
251{
252 return false; /* should never get here */
253}
254#endif /* CONFIG_HUGETLB_PAGE */
255
8d2afd96
AA
256/*
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 * threads.
262 */
263static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267{
268 struct mm_struct *mm = ctx->mm;
269 pgd_t *pgd;
c2febafc 270 p4d_t *p4d;
8d2afd96
AA
271 pud_t *pud;
272 pmd_t *pmd, _pmd;
273 pte_t *pte;
274 bool ret = true;
275
276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278 pgd = pgd_offset(mm, address);
279 if (!pgd_present(*pgd))
280 goto out;
c2febafc
KS
281 p4d = p4d_offset(pgd, address);
282 if (!p4d_present(*p4d))
283 goto out;
284 pud = pud_offset(p4d, address);
8d2afd96
AA
285 if (!pud_present(*pud))
286 goto out;
287 pmd = pmd_offset(pud, address);
288 /*
289 * READ_ONCE must function as a barrier with narrower scope
290 * and it must be equivalent to:
291 * _pmd = *pmd; barrier();
292 *
293 * This is to deal with the instability (as in
294 * pmd_trans_unstable) of the pmd.
295 */
296 _pmd = READ_ONCE(*pmd);
297 if (!pmd_present(_pmd))
298 goto out;
299
300 ret = false;
301 if (pmd_trans_huge(_pmd))
302 goto out;
303
304 /*
305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 * and use the standard pte_offset_map() instead of parsing _pmd.
307 */
308 pte = pte_offset_map(pmd, address);
309 /*
310 * Lockless access: we're in a wait_event so it's ok if it
311 * changes under us.
312 */
313 if (pte_none(*pte))
314 ret = true;
315 pte_unmap(pte);
316
317out:
318 return ret;
319}
320
86039bd3
AA
321/*
322 * The locking rules involved in returning VM_FAULT_RETRY depending on
323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325 * recommendation in __lock_page_or_retry is not an understatement.
326 *
327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329 * not set.
330 *
331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332 * set, VM_FAULT_RETRY can still be returned if and only if there are
333 * fatal_signal_pending()s, and the mmap_sem must be released before
334 * returning it.
335 */
82b0f8c3 336int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 337{
82b0f8c3 338 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
339 struct userfaultfd_ctx *ctx;
340 struct userfaultfd_wait_queue uwq;
ba85c702 341 int ret;
dfa37dc3 342 bool must_wait, return_to_userland;
15a77c6f 343 long blocking_state;
86039bd3 344
ba85c702 345 ret = VM_FAULT_SIGBUS;
64c2b203
AA
346
347 /*
348 * We don't do userfault handling for the final child pid update.
349 *
350 * We also don't do userfault handling during
351 * coredumping. hugetlbfs has the special
352 * follow_hugetlb_page() to skip missing pages in the
353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 * the no_page_table() helper in follow_page_mask(), but the
355 * shmem_vm_ops->fault method is invoked even during
356 * coredumping without mmap_sem and it ends up here.
357 */
358 if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 goto out;
360
361 /*
362 * Coredumping runs without mmap_sem so we can only check that
363 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 */
365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366
82b0f8c3 367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 368 if (!ctx)
ba85c702 369 goto out;
86039bd3
AA
370
371 BUG_ON(ctx->mm != mm);
372
373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375
2d6d6f5a
PS
376 if (ctx->features & UFFD_FEATURE_SIGBUS)
377 goto out;
378
86039bd3
AA
379 /*
380 * If it's already released don't get it. This avoids to loop
381 * in __get_user_pages if userfaultfd_release waits on the
382 * caller of handle_userfault to release the mmap_sem.
383 */
384 if (unlikely(ACCESS_ONCE(ctx->released)))
ba85c702 385 goto out;
86039bd3
AA
386
387 /*
388 * Check that we can return VM_FAULT_RETRY.
389 *
390 * NOTE: it should become possible to return VM_FAULT_RETRY
391 * even if FAULT_FLAG_TRIED is set without leading to gup()
392 * -EBUSY failures, if the userfaultfd is to be extended for
393 * VM_UFFD_WP tracking and we intend to arm the userfault
394 * without first stopping userland access to the memory. For
395 * VM_UFFD_MISSING userfaults this is enough for now.
396 */
82b0f8c3 397 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
398 /*
399 * Validate the invariant that nowait must allow retry
400 * to be sure not to return SIGBUS erroneously on
401 * nowait invocations.
402 */
82b0f8c3 403 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
404#ifdef CONFIG_DEBUG_VM
405 if (printk_ratelimit()) {
406 printk(KERN_WARNING
82b0f8c3
JK
407 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
408 vmf->flags);
86039bd3
AA
409 dump_stack();
410 }
411#endif
ba85c702 412 goto out;
86039bd3
AA
413 }
414
415 /*
416 * Handle nowait, not much to do other than tell it to retry
417 * and wait.
418 */
ba85c702 419 ret = VM_FAULT_RETRY;
82b0f8c3 420 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 421 goto out;
86039bd3
AA
422
423 /* take the reference before dropping the mmap_sem */
424 userfaultfd_ctx_get(ctx);
425
86039bd3
AA
426 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
427 uwq.wq.private = current;
9d4ac934
AP
428 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
429 ctx->features);
86039bd3 430 uwq.ctx = ctx;
15a77c6f 431 uwq.waken = false;
86039bd3 432
bae473a4 433 return_to_userland =
82b0f8c3 434 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 435 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
436 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
437 TASK_KILLABLE;
dfa37dc3 438
15b726ef 439 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
440 /*
441 * After the __add_wait_queue the uwq is visible to userland
442 * through poll/read().
443 */
15b726ef
AA
444 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
445 /*
446 * The smp_mb() after __set_current_state prevents the reads
447 * following the spin_unlock to happen before the list_add in
448 * __add_wait_queue.
449 */
15a77c6f 450 set_current_state(blocking_state);
15b726ef 451 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 452
369cd212
MK
453 if (!is_vm_hugetlb_page(vmf->vma))
454 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
455 reason);
456 else
7868a208
PA
457 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
458 vmf->address,
369cd212 459 vmf->flags, reason);
8d2afd96
AA
460 up_read(&mm->mmap_sem);
461
462 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
dfa37dc3
AA
463 (return_to_userland ? !signal_pending(current) :
464 !fatal_signal_pending(current)))) {
86039bd3
AA
465 wake_up_poll(&ctx->fd_wqh, POLLIN);
466 schedule();
ba85c702 467 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
468
469 /*
470 * False wakeups can orginate even from rwsem before
471 * up_read() however userfaults will wait either for a
472 * targeted wakeup on the specific uwq waitqueue from
473 * wake_userfault() or for signals or for uffd
474 * release.
475 */
476 while (!READ_ONCE(uwq.waken)) {
477 /*
478 * This needs the full smp_store_mb()
479 * guarantee as the state write must be
480 * visible to other CPUs before reading
481 * uwq.waken from other CPUs.
482 */
483 set_current_state(blocking_state);
484 if (READ_ONCE(uwq.waken) ||
485 READ_ONCE(ctx->released) ||
486 (return_to_userland ? signal_pending(current) :
487 fatal_signal_pending(current)))
488 break;
489 schedule();
490 }
ba85c702 491 }
86039bd3 492
ba85c702 493 __set_current_state(TASK_RUNNING);
15b726ef 494
dfa37dc3
AA
495 if (return_to_userland) {
496 if (signal_pending(current) &&
497 !fatal_signal_pending(current)) {
498 /*
499 * If we got a SIGSTOP or SIGCONT and this is
500 * a normal userland page fault, just let
501 * userland return so the signal will be
502 * handled and gdb debugging works. The page
503 * fault code immediately after we return from
504 * this function is going to release the
505 * mmap_sem and it's not depending on it
506 * (unlike gup would if we were not to return
507 * VM_FAULT_RETRY).
508 *
509 * If a fatal signal is pending we still take
510 * the streamlined VM_FAULT_RETRY failure path
511 * and there's no need to retake the mmap_sem
512 * in such case.
513 */
514 down_read(&mm->mmap_sem);
6bbc4a41 515 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
516 }
517 }
518
15b726ef
AA
519 /*
520 * Here we race with the list_del; list_add in
521 * userfaultfd_ctx_read(), however because we don't ever run
522 * list_del_init() to refile across the two lists, the prev
523 * and next pointers will never point to self. list_add also
524 * would never let any of the two pointers to point to
525 * self. So list_empty_careful won't risk to see both pointers
526 * pointing to self at any time during the list refile. The
527 * only case where list_del_init() is called is the full
528 * removal in the wake function and there we don't re-list_add
529 * and it's fine not to block on the spinlock. The uwq on this
530 * kernel stack can be released after the list_del_init.
531 */
2055da97 532 if (!list_empty_careful(&uwq.wq.entry)) {
15b726ef
AA
533 spin_lock(&ctx->fault_pending_wqh.lock);
534 /*
535 * No need of list_del_init(), the uwq on the stack
536 * will be freed shortly anyway.
537 */
2055da97 538 list_del(&uwq.wq.entry);
15b726ef 539 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 540 }
86039bd3
AA
541
542 /*
543 * ctx may go away after this if the userfault pseudo fd is
544 * already released.
545 */
546 userfaultfd_ctx_put(ctx);
547
ba85c702
AA
548out:
549 return ret;
86039bd3
AA
550}
551
8c9e7bb7
AA
552static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
553 struct userfaultfd_wait_queue *ewq)
9cd75c3c 554{
9a69a829
AA
555 if (WARN_ON_ONCE(current->flags & PF_EXITING))
556 goto out;
9cd75c3c
PE
557
558 ewq->ctx = ctx;
559 init_waitqueue_entry(&ewq->wq, current);
560
561 spin_lock(&ctx->event_wqh.lock);
562 /*
563 * After the __add_wait_queue the uwq is visible to userland
564 * through poll/read().
565 */
566 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
567 for (;;) {
568 set_current_state(TASK_KILLABLE);
569 if (ewq->msg.event == 0)
570 break;
571 if (ACCESS_ONCE(ctx->released) ||
572 fatal_signal_pending(current)) {
9cd75c3c 573 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
574 if (ewq->msg.event == UFFD_EVENT_FORK) {
575 struct userfaultfd_ctx *new;
576
577 new = (struct userfaultfd_ctx *)
578 (unsigned long)
579 ewq->msg.arg.reserved.reserved1;
580
581 userfaultfd_ctx_put(new);
582 }
9cd75c3c
PE
583 break;
584 }
585
586 spin_unlock(&ctx->event_wqh.lock);
587
588 wake_up_poll(&ctx->fd_wqh, POLLIN);
589 schedule();
590
591 spin_lock(&ctx->event_wqh.lock);
592 }
593 __set_current_state(TASK_RUNNING);
594 spin_unlock(&ctx->event_wqh.lock);
595
596 /*
597 * ctx may go away after this if the userfault pseudo fd is
598 * already released.
599 */
9a69a829 600out:
9cd75c3c 601 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
602}
603
604static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
605 struct userfaultfd_wait_queue *ewq)
606{
607 ewq->msg.event = 0;
608 wake_up_locked(&ctx->event_wqh);
609 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
610}
611
893e26e6
PE
612int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
613{
614 struct userfaultfd_ctx *ctx = NULL, *octx;
615 struct userfaultfd_fork_ctx *fctx;
616
617 octx = vma->vm_userfaultfd_ctx.ctx;
618 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
619 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
620 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
621 return 0;
622 }
623
624 list_for_each_entry(fctx, fcs, list)
625 if (fctx->orig == octx) {
626 ctx = fctx->new;
627 break;
628 }
629
630 if (!ctx) {
631 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
632 if (!fctx)
633 return -ENOMEM;
634
635 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
636 if (!ctx) {
637 kfree(fctx);
638 return -ENOMEM;
639 }
640
641 atomic_set(&ctx->refcount, 1);
642 ctx->flags = octx->flags;
643 ctx->state = UFFD_STATE_RUNNING;
644 ctx->features = octx->features;
645 ctx->released = false;
646 ctx->mm = vma->vm_mm;
d3aadc8e 647 atomic_inc(&ctx->mm->mm_count);
893e26e6
PE
648
649 userfaultfd_ctx_get(octx);
650 fctx->orig = octx;
651 fctx->new = ctx;
652 list_add_tail(&fctx->list, fcs);
653 }
654
655 vma->vm_userfaultfd_ctx.ctx = ctx;
656 return 0;
657}
658
8c9e7bb7 659static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
660{
661 struct userfaultfd_ctx *ctx = fctx->orig;
662 struct userfaultfd_wait_queue ewq;
663
664 msg_init(&ewq.msg);
665
666 ewq.msg.event = UFFD_EVENT_FORK;
667 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
668
8c9e7bb7 669 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
670}
671
672void dup_userfaultfd_complete(struct list_head *fcs)
673{
893e26e6
PE
674 struct userfaultfd_fork_ctx *fctx, *n;
675
676 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 677 dup_fctx(fctx);
893e26e6
PE
678 list_del(&fctx->list);
679 kfree(fctx);
680 }
681}
682
72f87654
PE
683void mremap_userfaultfd_prep(struct vm_area_struct *vma,
684 struct vm_userfaultfd_ctx *vm_ctx)
685{
686 struct userfaultfd_ctx *ctx;
687
688 ctx = vma->vm_userfaultfd_ctx.ctx;
689 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
690 vm_ctx->ctx = ctx;
691 userfaultfd_ctx_get(ctx);
692 }
693}
694
90794bf1 695void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
696 unsigned long from, unsigned long to,
697 unsigned long len)
698{
90794bf1 699 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
700 struct userfaultfd_wait_queue ewq;
701
702 if (!ctx)
703 return;
704
705 if (to & ~PAGE_MASK) {
706 userfaultfd_ctx_put(ctx);
707 return;
708 }
709
710 msg_init(&ewq.msg);
711
712 ewq.msg.event = UFFD_EVENT_REMAP;
713 ewq.msg.arg.remap.from = from;
714 ewq.msg.arg.remap.to = to;
715 ewq.msg.arg.remap.len = len;
716
717 userfaultfd_event_wait_completion(ctx, &ewq);
718}
719
70ccb92f 720bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 721 unsigned long start, unsigned long end)
05ce7724
PE
722{
723 struct mm_struct *mm = vma->vm_mm;
724 struct userfaultfd_ctx *ctx;
725 struct userfaultfd_wait_queue ewq;
726
727 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 728 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 729 return true;
05ce7724
PE
730
731 userfaultfd_ctx_get(ctx);
732 up_read(&mm->mmap_sem);
733
05ce7724
PE
734 msg_init(&ewq.msg);
735
d811914d
MR
736 ewq.msg.event = UFFD_EVENT_REMOVE;
737 ewq.msg.arg.remove.start = start;
738 ewq.msg.arg.remove.end = end;
05ce7724
PE
739
740 userfaultfd_event_wait_completion(ctx, &ewq);
741
70ccb92f 742 return false;
05ce7724
PE
743}
744
897ab3e0
MR
745static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
746 unsigned long start, unsigned long end)
747{
748 struct userfaultfd_unmap_ctx *unmap_ctx;
749
750 list_for_each_entry(unmap_ctx, unmaps, list)
751 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
752 unmap_ctx->end == end)
753 return true;
754
755 return false;
756}
757
758int userfaultfd_unmap_prep(struct vm_area_struct *vma,
759 unsigned long start, unsigned long end,
760 struct list_head *unmaps)
761{
762 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
763 struct userfaultfd_unmap_ctx *unmap_ctx;
764 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
765
766 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
767 has_unmap_ctx(ctx, unmaps, start, end))
768 continue;
769
770 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
771 if (!unmap_ctx)
772 return -ENOMEM;
773
774 userfaultfd_ctx_get(ctx);
775 unmap_ctx->ctx = ctx;
776 unmap_ctx->start = start;
777 unmap_ctx->end = end;
778 list_add_tail(&unmap_ctx->list, unmaps);
779 }
780
781 return 0;
782}
783
784void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
785{
786 struct userfaultfd_unmap_ctx *ctx, *n;
787 struct userfaultfd_wait_queue ewq;
788
789 list_for_each_entry_safe(ctx, n, uf, list) {
790 msg_init(&ewq.msg);
791
792 ewq.msg.event = UFFD_EVENT_UNMAP;
793 ewq.msg.arg.remove.start = ctx->start;
794 ewq.msg.arg.remove.end = ctx->end;
795
796 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
797
798 list_del(&ctx->list);
799 kfree(ctx);
800 }
801}
802
86039bd3
AA
803static int userfaultfd_release(struct inode *inode, struct file *file)
804{
805 struct userfaultfd_ctx *ctx = file->private_data;
806 struct mm_struct *mm = ctx->mm;
807 struct vm_area_struct *vma, *prev;
808 /* len == 0 means wake all */
809 struct userfaultfd_wake_range range = { .len = 0, };
810 unsigned long new_flags;
811
812 ACCESS_ONCE(ctx->released) = true;
813
d2005e3f
ON
814 if (!mmget_not_zero(mm))
815 goto wakeup;
816
86039bd3
AA
817 /*
818 * Flush page faults out of all CPUs. NOTE: all page faults
819 * must be retried without returning VM_FAULT_SIGBUS if
820 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
821 * changes while handle_userfault released the mmap_sem. So
822 * it's critical that released is set to true (above), before
823 * taking the mmap_sem for writing.
824 */
825 down_write(&mm->mmap_sem);
826 prev = NULL;
827 for (vma = mm->mmap; vma; vma = vma->vm_next) {
828 cond_resched();
829 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
830 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
831 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
832 prev = vma;
833 continue;
834 }
835 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
836 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
837 new_flags, vma->anon_vma,
838 vma->vm_file, vma->vm_pgoff,
839 vma_policy(vma),
840 NULL_VM_UFFD_CTX);
841 if (prev)
842 vma = prev;
843 else
844 prev = vma;
845 vma->vm_flags = new_flags;
846 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
847 }
848 up_write(&mm->mmap_sem);
d2005e3f
ON
849 mmput(mm);
850wakeup:
86039bd3 851 /*
15b726ef 852 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 853 * the last page faults that may have been already waiting on
15b726ef 854 * the fault_*wqh.
86039bd3 855 */
15b726ef 856 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
857 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
858 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 859 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 860
5a18b64e
MR
861 /* Flush pending events that may still wait on event_wqh */
862 wake_up_all(&ctx->event_wqh);
863
86039bd3
AA
864 wake_up_poll(&ctx->fd_wqh, POLLHUP);
865 userfaultfd_ctx_put(ctx);
866 return 0;
867}
868
15b726ef 869/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
870static inline struct userfaultfd_wait_queue *find_userfault_in(
871 wait_queue_head_t *wqh)
86039bd3 872{
ac6424b9 873 wait_queue_entry_t *wq;
15b726ef 874 struct userfaultfd_wait_queue *uwq;
86039bd3 875
6dcc27fd 876 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 877
15b726ef 878 uwq = NULL;
6dcc27fd 879 if (!waitqueue_active(wqh))
15b726ef
AA
880 goto out;
881 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 882 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
883 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
884out:
885 return uwq;
86039bd3 886}
6dcc27fd
PE
887
888static inline struct userfaultfd_wait_queue *find_userfault(
889 struct userfaultfd_ctx *ctx)
890{
891 return find_userfault_in(&ctx->fault_pending_wqh);
892}
86039bd3 893
9cd75c3c
PE
894static inline struct userfaultfd_wait_queue *find_userfault_evt(
895 struct userfaultfd_ctx *ctx)
896{
897 return find_userfault_in(&ctx->event_wqh);
898}
899
86039bd3
AA
900static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
901{
902 struct userfaultfd_ctx *ctx = file->private_data;
903 unsigned int ret;
904
905 poll_wait(file, &ctx->fd_wqh, wait);
906
907 switch (ctx->state) {
908 case UFFD_STATE_WAIT_API:
909 return POLLERR;
910 case UFFD_STATE_RUNNING:
ba85c702
AA
911 /*
912 * poll() never guarantees that read won't block.
913 * userfaults can be waken before they're read().
914 */
915 if (unlikely(!(file->f_flags & O_NONBLOCK)))
916 return POLLERR;
15b726ef
AA
917 /*
918 * lockless access to see if there are pending faults
919 * __pollwait last action is the add_wait_queue but
920 * the spin_unlock would allow the waitqueue_active to
921 * pass above the actual list_add inside
922 * add_wait_queue critical section. So use a full
923 * memory barrier to serialize the list_add write of
924 * add_wait_queue() with the waitqueue_active read
925 * below.
926 */
927 ret = 0;
928 smp_mb();
929 if (waitqueue_active(&ctx->fault_pending_wqh))
930 ret = POLLIN;
9cd75c3c
PE
931 else if (waitqueue_active(&ctx->event_wqh))
932 ret = POLLIN;
933
86039bd3
AA
934 return ret;
935 default:
8474901a
AA
936 WARN_ON_ONCE(1);
937 return POLLERR;
86039bd3
AA
938 }
939}
940
893e26e6
PE
941static const struct file_operations userfaultfd_fops;
942
943static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
944 struct userfaultfd_ctx *new,
945 struct uffd_msg *msg)
946{
947 int fd;
948 struct file *file;
949 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
950
951 fd = get_unused_fd_flags(flags);
952 if (fd < 0)
953 return fd;
954
955 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
956 O_RDWR | flags);
957 if (IS_ERR(file)) {
958 put_unused_fd(fd);
959 return PTR_ERR(file);
960 }
961
962 fd_install(fd, file);
963 msg->arg.reserved.reserved1 = 0;
964 msg->arg.fork.ufd = fd;
965
966 return 0;
967}
968
86039bd3 969static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 970 struct uffd_msg *msg)
86039bd3
AA
971{
972 ssize_t ret;
973 DECLARE_WAITQUEUE(wait, current);
15b726ef 974 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
975 /*
976 * Handling fork event requires sleeping operations, so
977 * we drop the event_wqh lock, then do these ops, then
978 * lock it back and wake up the waiter. While the lock is
979 * dropped the ewq may go away so we keep track of it
980 * carefully.
981 */
982 LIST_HEAD(fork_event);
983 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 984
15b726ef 985 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
986 spin_lock(&ctx->fd_wqh.lock);
987 __add_wait_queue(&ctx->fd_wqh, &wait);
988 for (;;) {
989 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
990 spin_lock(&ctx->fault_pending_wqh.lock);
991 uwq = find_userfault(ctx);
992 if (uwq) {
2c5b7e1b
AA
993 /*
994 * Use a seqcount to repeat the lockless check
995 * in wake_userfault() to avoid missing
996 * wakeups because during the refile both
997 * waitqueue could become empty if this is the
998 * only userfault.
999 */
1000 write_seqcount_begin(&ctx->refile_seq);
1001
86039bd3 1002 /*
15b726ef
AA
1003 * The fault_pending_wqh.lock prevents the uwq
1004 * to disappear from under us.
1005 *
1006 * Refile this userfault from
1007 * fault_pending_wqh to fault_wqh, it's not
1008 * pending anymore after we read it.
1009 *
1010 * Use list_del() by hand (as
1011 * userfaultfd_wake_function also uses
1012 * list_del_init() by hand) to be sure nobody
1013 * changes __remove_wait_queue() to use
1014 * list_del_init() in turn breaking the
1015 * !list_empty_careful() check in
2055da97 1016 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1017 * must never be empty at any time during the
1018 * refile, or the waitqueue could disappear
1019 * from under us. The "wait_queue_head_t"
1020 * parameter of __remove_wait_queue() is unused
1021 * anyway.
86039bd3 1022 */
2055da97 1023 list_del(&uwq->wq.entry);
15b726ef
AA
1024 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1025
2c5b7e1b
AA
1026 write_seqcount_end(&ctx->refile_seq);
1027
a9b85f94
AA
1028 /* careful to always initialize msg if ret == 0 */
1029 *msg = uwq->msg;
15b726ef 1030 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1031 ret = 0;
1032 break;
1033 }
15b726ef 1034 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1035
1036 spin_lock(&ctx->event_wqh.lock);
1037 uwq = find_userfault_evt(ctx);
1038 if (uwq) {
1039 *msg = uwq->msg;
1040
893e26e6
PE
1041 if (uwq->msg.event == UFFD_EVENT_FORK) {
1042 fork_nctx = (struct userfaultfd_ctx *)
1043 (unsigned long)
1044 uwq->msg.arg.reserved.reserved1;
2055da97 1045 list_move(&uwq->wq.entry, &fork_event);
893e26e6
PE
1046 spin_unlock(&ctx->event_wqh.lock);
1047 ret = 0;
1048 break;
1049 }
1050
9cd75c3c
PE
1051 userfaultfd_event_complete(ctx, uwq);
1052 spin_unlock(&ctx->event_wqh.lock);
1053 ret = 0;
1054 break;
1055 }
1056 spin_unlock(&ctx->event_wqh.lock);
1057
86039bd3
AA
1058 if (signal_pending(current)) {
1059 ret = -ERESTARTSYS;
1060 break;
1061 }
1062 if (no_wait) {
1063 ret = -EAGAIN;
1064 break;
1065 }
1066 spin_unlock(&ctx->fd_wqh.lock);
1067 schedule();
1068 spin_lock(&ctx->fd_wqh.lock);
1069 }
1070 __remove_wait_queue(&ctx->fd_wqh, &wait);
1071 __set_current_state(TASK_RUNNING);
1072 spin_unlock(&ctx->fd_wqh.lock);
1073
893e26e6
PE
1074 if (!ret && msg->event == UFFD_EVENT_FORK) {
1075 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1076
1077 if (!ret) {
1078 spin_lock(&ctx->event_wqh.lock);
1079 if (!list_empty(&fork_event)) {
1080 uwq = list_first_entry(&fork_event,
1081 typeof(*uwq),
2055da97
IM
1082 wq.entry);
1083 list_del(&uwq->wq.entry);
893e26e6
PE
1084 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1085 userfaultfd_event_complete(ctx, uwq);
1086 }
1087 spin_unlock(&ctx->event_wqh.lock);
1088 }
1089 }
1090
86039bd3
AA
1091 return ret;
1092}
1093
1094static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1095 size_t count, loff_t *ppos)
1096{
1097 struct userfaultfd_ctx *ctx = file->private_data;
1098 ssize_t _ret, ret = 0;
a9b85f94 1099 struct uffd_msg msg;
86039bd3
AA
1100 int no_wait = file->f_flags & O_NONBLOCK;
1101
1102 if (ctx->state == UFFD_STATE_WAIT_API)
1103 return -EINVAL;
86039bd3
AA
1104
1105 for (;;) {
a9b85f94 1106 if (count < sizeof(msg))
86039bd3 1107 return ret ? ret : -EINVAL;
a9b85f94 1108 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1109 if (_ret < 0)
1110 return ret ? ret : _ret;
a9b85f94 1111 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1112 return ret ? ret : -EFAULT;
a9b85f94
AA
1113 ret += sizeof(msg);
1114 buf += sizeof(msg);
1115 count -= sizeof(msg);
86039bd3
AA
1116 /*
1117 * Allow to read more than one fault at time but only
1118 * block if waiting for the very first one.
1119 */
1120 no_wait = O_NONBLOCK;
1121 }
1122}
1123
1124static void __wake_userfault(struct userfaultfd_ctx *ctx,
1125 struct userfaultfd_wake_range *range)
1126{
15b726ef 1127 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 1128 /* wake all in the range and autoremove */
15b726ef 1129 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1130 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1131 range);
1132 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 1133 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 1134 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1135}
1136
1137static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1138 struct userfaultfd_wake_range *range)
1139{
2c5b7e1b
AA
1140 unsigned seq;
1141 bool need_wakeup;
1142
86039bd3
AA
1143 /*
1144 * To be sure waitqueue_active() is not reordered by the CPU
1145 * before the pagetable update, use an explicit SMP memory
1146 * barrier here. PT lock release or up_read(mmap_sem) still
1147 * have release semantics that can allow the
1148 * waitqueue_active() to be reordered before the pte update.
1149 */
1150 smp_mb();
1151
1152 /*
1153 * Use waitqueue_active because it's very frequent to
1154 * change the address space atomically even if there are no
1155 * userfaults yet. So we take the spinlock only when we're
1156 * sure we've userfaults to wake.
1157 */
2c5b7e1b
AA
1158 do {
1159 seq = read_seqcount_begin(&ctx->refile_seq);
1160 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1161 waitqueue_active(&ctx->fault_wqh);
1162 cond_resched();
1163 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1164 if (need_wakeup)
86039bd3
AA
1165 __wake_userfault(ctx, range);
1166}
1167
1168static __always_inline int validate_range(struct mm_struct *mm,
1169 __u64 start, __u64 len)
1170{
1171 __u64 task_size = mm->task_size;
1172
1173 if (start & ~PAGE_MASK)
1174 return -EINVAL;
1175 if (len & ~PAGE_MASK)
1176 return -EINVAL;
1177 if (!len)
1178 return -EINVAL;
1179 if (start < mmap_min_addr)
1180 return -EINVAL;
1181 if (start >= task_size)
1182 return -EINVAL;
1183 if (len > task_size - start)
1184 return -EINVAL;
1185 return 0;
1186}
1187
ba6907db
MR
1188static inline bool vma_can_userfault(struct vm_area_struct *vma)
1189{
cac67329
MR
1190 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1191 vma_is_shmem(vma);
ba6907db
MR
1192}
1193
86039bd3
AA
1194static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1195 unsigned long arg)
1196{
1197 struct mm_struct *mm = ctx->mm;
1198 struct vm_area_struct *vma, *prev, *cur;
1199 int ret;
1200 struct uffdio_register uffdio_register;
1201 struct uffdio_register __user *user_uffdio_register;
1202 unsigned long vm_flags, new_flags;
1203 bool found;
ce53e8e6 1204 bool basic_ioctls;
86039bd3
AA
1205 unsigned long start, end, vma_end;
1206
1207 user_uffdio_register = (struct uffdio_register __user *) arg;
1208
1209 ret = -EFAULT;
1210 if (copy_from_user(&uffdio_register, user_uffdio_register,
1211 sizeof(uffdio_register)-sizeof(__u64)))
1212 goto out;
1213
1214 ret = -EINVAL;
1215 if (!uffdio_register.mode)
1216 goto out;
1217 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1218 UFFDIO_REGISTER_MODE_WP))
1219 goto out;
1220 vm_flags = 0;
1221 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1222 vm_flags |= VM_UFFD_MISSING;
1223 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1224 vm_flags |= VM_UFFD_WP;
1225 /*
1226 * FIXME: remove the below error constraint by
1227 * implementing the wprotect tracking mode.
1228 */
1229 ret = -EINVAL;
1230 goto out;
1231 }
1232
1233 ret = validate_range(mm, uffdio_register.range.start,
1234 uffdio_register.range.len);
1235 if (ret)
1236 goto out;
1237
1238 start = uffdio_register.range.start;
1239 end = start + uffdio_register.range.len;
1240
d2005e3f
ON
1241 ret = -ENOMEM;
1242 if (!mmget_not_zero(mm))
1243 goto out;
1244
86039bd3
AA
1245 down_write(&mm->mmap_sem);
1246 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1247 if (!vma)
1248 goto out_unlock;
1249
1250 /* check that there's at least one vma in the range */
1251 ret = -EINVAL;
1252 if (vma->vm_start >= end)
1253 goto out_unlock;
1254
cab350af
MK
1255 /*
1256 * If the first vma contains huge pages, make sure start address
1257 * is aligned to huge page size.
1258 */
1259 if (is_vm_hugetlb_page(vma)) {
1260 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1261
1262 if (start & (vma_hpagesize - 1))
1263 goto out_unlock;
1264 }
1265
86039bd3
AA
1266 /*
1267 * Search for not compatible vmas.
86039bd3
AA
1268 */
1269 found = false;
ce53e8e6 1270 basic_ioctls = false;
86039bd3
AA
1271 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1272 cond_resched();
1273
1274 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1275 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1276
1277 /* check not compatible vmas */
1278 ret = -EINVAL;
ba6907db 1279 if (!vma_can_userfault(cur))
86039bd3 1280 goto out_unlock;
cab350af
MK
1281 /*
1282 * If this vma contains ending address, and huge pages
1283 * check alignment.
1284 */
1285 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1286 end > cur->vm_start) {
1287 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1288
1289 ret = -EINVAL;
1290
1291 if (end & (vma_hpagesize - 1))
1292 goto out_unlock;
1293 }
86039bd3
AA
1294
1295 /*
1296 * Check that this vma isn't already owned by a
1297 * different userfaultfd. We can't allow more than one
1298 * userfaultfd to own a single vma simultaneously or we
1299 * wouldn't know which one to deliver the userfaults to.
1300 */
1301 ret = -EBUSY;
1302 if (cur->vm_userfaultfd_ctx.ctx &&
1303 cur->vm_userfaultfd_ctx.ctx != ctx)
1304 goto out_unlock;
1305
cab350af
MK
1306 /*
1307 * Note vmas containing huge pages
1308 */
ce53e8e6
MR
1309 if (is_vm_hugetlb_page(cur))
1310 basic_ioctls = true;
cab350af 1311
86039bd3
AA
1312 found = true;
1313 }
1314 BUG_ON(!found);
1315
1316 if (vma->vm_start < start)
1317 prev = vma;
1318
1319 ret = 0;
1320 do {
1321 cond_resched();
1322
ba6907db 1323 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1324 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1325 vma->vm_userfaultfd_ctx.ctx != ctx);
1326
1327 /*
1328 * Nothing to do: this vma is already registered into this
1329 * userfaultfd and with the right tracking mode too.
1330 */
1331 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1332 (vma->vm_flags & vm_flags) == vm_flags)
1333 goto skip;
1334
1335 if (vma->vm_start > start)
1336 start = vma->vm_start;
1337 vma_end = min(end, vma->vm_end);
1338
1339 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1340 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1341 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1342 vma_policy(vma),
1343 ((struct vm_userfaultfd_ctx){ ctx }));
1344 if (prev) {
1345 vma = prev;
1346 goto next;
1347 }
1348 if (vma->vm_start < start) {
1349 ret = split_vma(mm, vma, start, 1);
1350 if (ret)
1351 break;
1352 }
1353 if (vma->vm_end > end) {
1354 ret = split_vma(mm, vma, end, 0);
1355 if (ret)
1356 break;
1357 }
1358 next:
1359 /*
1360 * In the vma_merge() successful mprotect-like case 8:
1361 * the next vma was merged into the current one and
1362 * the current one has not been updated yet.
1363 */
1364 vma->vm_flags = new_flags;
1365 vma->vm_userfaultfd_ctx.ctx = ctx;
1366
1367 skip:
1368 prev = vma;
1369 start = vma->vm_end;
1370 vma = vma->vm_next;
1371 } while (vma && vma->vm_start < end);
1372out_unlock:
1373 up_write(&mm->mmap_sem);
d2005e3f 1374 mmput(mm);
86039bd3
AA
1375 if (!ret) {
1376 /*
1377 * Now that we scanned all vmas we can already tell
1378 * userland which ioctls methods are guaranteed to
1379 * succeed on this range.
1380 */
ce53e8e6 1381 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1382 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1383 &user_uffdio_register->ioctls))
1384 ret = -EFAULT;
1385 }
1386out:
1387 return ret;
1388}
1389
1390static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1391 unsigned long arg)
1392{
1393 struct mm_struct *mm = ctx->mm;
1394 struct vm_area_struct *vma, *prev, *cur;
1395 int ret;
1396 struct uffdio_range uffdio_unregister;
1397 unsigned long new_flags;
1398 bool found;
1399 unsigned long start, end, vma_end;
1400 const void __user *buf = (void __user *)arg;
1401
1402 ret = -EFAULT;
1403 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1404 goto out;
1405
1406 ret = validate_range(mm, uffdio_unregister.start,
1407 uffdio_unregister.len);
1408 if (ret)
1409 goto out;
1410
1411 start = uffdio_unregister.start;
1412 end = start + uffdio_unregister.len;
1413
d2005e3f
ON
1414 ret = -ENOMEM;
1415 if (!mmget_not_zero(mm))
1416 goto out;
1417
86039bd3
AA
1418 down_write(&mm->mmap_sem);
1419 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1420 if (!vma)
1421 goto out_unlock;
1422
1423 /* check that there's at least one vma in the range */
1424 ret = -EINVAL;
1425 if (vma->vm_start >= end)
1426 goto out_unlock;
1427
cab350af
MK
1428 /*
1429 * If the first vma contains huge pages, make sure start address
1430 * is aligned to huge page size.
1431 */
1432 if (is_vm_hugetlb_page(vma)) {
1433 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1434
1435 if (start & (vma_hpagesize - 1))
1436 goto out_unlock;
1437 }
1438
86039bd3
AA
1439 /*
1440 * Search for not compatible vmas.
86039bd3
AA
1441 */
1442 found = false;
1443 ret = -EINVAL;
1444 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1445 cond_resched();
1446
1447 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1448 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1449
1450 /*
1451 * Check not compatible vmas, not strictly required
1452 * here as not compatible vmas cannot have an
1453 * userfaultfd_ctx registered on them, but this
1454 * provides for more strict behavior to notice
1455 * unregistration errors.
1456 */
ba6907db 1457 if (!vma_can_userfault(cur))
86039bd3
AA
1458 goto out_unlock;
1459
1460 found = true;
1461 }
1462 BUG_ON(!found);
1463
1464 if (vma->vm_start < start)
1465 prev = vma;
1466
1467 ret = 0;
1468 do {
1469 cond_resched();
1470
ba6907db 1471 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1472
1473 /*
1474 * Nothing to do: this vma is already registered into this
1475 * userfaultfd and with the right tracking mode too.
1476 */
1477 if (!vma->vm_userfaultfd_ctx.ctx)
1478 goto skip;
1479
1480 if (vma->vm_start > start)
1481 start = vma->vm_start;
1482 vma_end = min(end, vma->vm_end);
1483
09fa5296
AA
1484 if (userfaultfd_missing(vma)) {
1485 /*
1486 * Wake any concurrent pending userfault while
1487 * we unregister, so they will not hang
1488 * permanently and it avoids userland to call
1489 * UFFDIO_WAKE explicitly.
1490 */
1491 struct userfaultfd_wake_range range;
1492 range.start = start;
1493 range.len = vma_end - start;
1494 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1495 }
1496
86039bd3
AA
1497 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1498 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1499 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1500 vma_policy(vma),
1501 NULL_VM_UFFD_CTX);
1502 if (prev) {
1503 vma = prev;
1504 goto next;
1505 }
1506 if (vma->vm_start < start) {
1507 ret = split_vma(mm, vma, start, 1);
1508 if (ret)
1509 break;
1510 }
1511 if (vma->vm_end > end) {
1512 ret = split_vma(mm, vma, end, 0);
1513 if (ret)
1514 break;
1515 }
1516 next:
1517 /*
1518 * In the vma_merge() successful mprotect-like case 8:
1519 * the next vma was merged into the current one and
1520 * the current one has not been updated yet.
1521 */
1522 vma->vm_flags = new_flags;
1523 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1524
1525 skip:
1526 prev = vma;
1527 start = vma->vm_end;
1528 vma = vma->vm_next;
1529 } while (vma && vma->vm_start < end);
1530out_unlock:
1531 up_write(&mm->mmap_sem);
d2005e3f 1532 mmput(mm);
86039bd3
AA
1533out:
1534 return ret;
1535}
1536
1537/*
ba85c702
AA
1538 * userfaultfd_wake may be used in combination with the
1539 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1540 */
1541static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1542 unsigned long arg)
1543{
1544 int ret;
1545 struct uffdio_range uffdio_wake;
1546 struct userfaultfd_wake_range range;
1547 const void __user *buf = (void __user *)arg;
1548
1549 ret = -EFAULT;
1550 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1551 goto out;
1552
1553 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1554 if (ret)
1555 goto out;
1556
1557 range.start = uffdio_wake.start;
1558 range.len = uffdio_wake.len;
1559
1560 /*
1561 * len == 0 means wake all and we don't want to wake all here,
1562 * so check it again to be sure.
1563 */
1564 VM_BUG_ON(!range.len);
1565
1566 wake_userfault(ctx, &range);
1567 ret = 0;
1568
1569out:
1570 return ret;
1571}
1572
ad465cae
AA
1573static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1574 unsigned long arg)
1575{
1576 __s64 ret;
1577 struct uffdio_copy uffdio_copy;
1578 struct uffdio_copy __user *user_uffdio_copy;
1579 struct userfaultfd_wake_range range;
1580
1581 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1582
1583 ret = -EFAULT;
1584 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1585 /* don't copy "copy" last field */
1586 sizeof(uffdio_copy)-sizeof(__s64)))
1587 goto out;
1588
1589 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1590 if (ret)
1591 goto out;
1592 /*
1593 * double check for wraparound just in case. copy_from_user()
1594 * will later check uffdio_copy.src + uffdio_copy.len to fit
1595 * in the userland range.
1596 */
1597 ret = -EINVAL;
1598 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1599 goto out;
1600 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1601 goto out;
d2005e3f
ON
1602 if (mmget_not_zero(ctx->mm)) {
1603 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1604 uffdio_copy.len);
1605 mmput(ctx->mm);
96333187 1606 } else {
e86b298b 1607 return -ESRCH;
d2005e3f 1608 }
ad465cae
AA
1609 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1610 return -EFAULT;
1611 if (ret < 0)
1612 goto out;
1613 BUG_ON(!ret);
1614 /* len == 0 would wake all */
1615 range.len = ret;
1616 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1617 range.start = uffdio_copy.dst;
1618 wake_userfault(ctx, &range);
1619 }
1620 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1621out:
1622 return ret;
1623}
1624
1625static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1626 unsigned long arg)
1627{
1628 __s64 ret;
1629 struct uffdio_zeropage uffdio_zeropage;
1630 struct uffdio_zeropage __user *user_uffdio_zeropage;
1631 struct userfaultfd_wake_range range;
1632
1633 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1634
1635 ret = -EFAULT;
1636 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1637 /* don't copy "zeropage" last field */
1638 sizeof(uffdio_zeropage)-sizeof(__s64)))
1639 goto out;
1640
1641 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1642 uffdio_zeropage.range.len);
1643 if (ret)
1644 goto out;
1645 ret = -EINVAL;
1646 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1647 goto out;
1648
d2005e3f
ON
1649 if (mmget_not_zero(ctx->mm)) {
1650 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1651 uffdio_zeropage.range.len);
1652 mmput(ctx->mm);
9d95aa4b 1653 } else {
e86b298b 1654 return -ESRCH;
d2005e3f 1655 }
ad465cae
AA
1656 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1657 return -EFAULT;
1658 if (ret < 0)
1659 goto out;
1660 /* len == 0 would wake all */
1661 BUG_ON(!ret);
1662 range.len = ret;
1663 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1664 range.start = uffdio_zeropage.range.start;
1665 wake_userfault(ctx, &range);
1666 }
1667 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1668out:
1669 return ret;
1670}
1671
9cd75c3c
PE
1672static inline unsigned int uffd_ctx_features(__u64 user_features)
1673{
1674 /*
1675 * For the current set of features the bits just coincide
1676 */
1677 return (unsigned int)user_features;
1678}
1679
86039bd3
AA
1680/*
1681 * userland asks for a certain API version and we return which bits
1682 * and ioctl commands are implemented in this kernel for such API
1683 * version or -EINVAL if unknown.
1684 */
1685static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1686 unsigned long arg)
1687{
1688 struct uffdio_api uffdio_api;
1689 void __user *buf = (void __user *)arg;
1690 int ret;
65603144 1691 __u64 features;
86039bd3
AA
1692
1693 ret = -EINVAL;
1694 if (ctx->state != UFFD_STATE_WAIT_API)
1695 goto out;
1696 ret = -EFAULT;
a9b85f94 1697 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1698 goto out;
65603144
AA
1699 features = uffdio_api.features;
1700 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1701 memset(&uffdio_api, 0, sizeof(uffdio_api));
1702 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1703 goto out;
1704 ret = -EINVAL;
1705 goto out;
1706 }
65603144
AA
1707 /* report all available features and ioctls to userland */
1708 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1709 uffdio_api.ioctls = UFFD_API_IOCTLS;
1710 ret = -EFAULT;
1711 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1712 goto out;
1713 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1714 /* only enable the requested features for this uffd context */
1715 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1716 ret = 0;
1717out:
1718 return ret;
1719}
1720
1721static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1722 unsigned long arg)
1723{
1724 int ret = -EINVAL;
1725 struct userfaultfd_ctx *ctx = file->private_data;
1726
e6485a47
AA
1727 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1728 return -EINVAL;
1729
86039bd3
AA
1730 switch(cmd) {
1731 case UFFDIO_API:
1732 ret = userfaultfd_api(ctx, arg);
1733 break;
1734 case UFFDIO_REGISTER:
1735 ret = userfaultfd_register(ctx, arg);
1736 break;
1737 case UFFDIO_UNREGISTER:
1738 ret = userfaultfd_unregister(ctx, arg);
1739 break;
1740 case UFFDIO_WAKE:
1741 ret = userfaultfd_wake(ctx, arg);
1742 break;
ad465cae
AA
1743 case UFFDIO_COPY:
1744 ret = userfaultfd_copy(ctx, arg);
1745 break;
1746 case UFFDIO_ZEROPAGE:
1747 ret = userfaultfd_zeropage(ctx, arg);
1748 break;
86039bd3
AA
1749 }
1750 return ret;
1751}
1752
1753#ifdef CONFIG_PROC_FS
1754static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1755{
1756 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1757 wait_queue_entry_t *wq;
86039bd3
AA
1758 struct userfaultfd_wait_queue *uwq;
1759 unsigned long pending = 0, total = 0;
1760
15b726ef 1761 spin_lock(&ctx->fault_pending_wqh.lock);
2055da97 1762 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1763 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1764 pending++;
1765 total++;
1766 }
2055da97 1767 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3 1768 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1769 total++;
1770 }
15b726ef 1771 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1772
1773 /*
1774 * If more protocols will be added, there will be all shown
1775 * separated by a space. Like this:
1776 * protocols: aa:... bb:...
1777 */
1778 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1779 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1780 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1781}
1782#endif
1783
1784static const struct file_operations userfaultfd_fops = {
1785#ifdef CONFIG_PROC_FS
1786 .show_fdinfo = userfaultfd_show_fdinfo,
1787#endif
1788 .release = userfaultfd_release,
1789 .poll = userfaultfd_poll,
1790 .read = userfaultfd_read,
1791 .unlocked_ioctl = userfaultfd_ioctl,
1792 .compat_ioctl = userfaultfd_ioctl,
1793 .llseek = noop_llseek,
1794};
1795
3004ec9c
AA
1796static void init_once_userfaultfd_ctx(void *mem)
1797{
1798 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1799
1800 init_waitqueue_head(&ctx->fault_pending_wqh);
1801 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1802 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1803 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1804 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1805}
1806
86039bd3 1807/**
9332ef9d 1808 * userfaultfd_file_create - Creates a userfaultfd file pointer.
86039bd3
AA
1809 * @flags: Flags for the userfaultfd file.
1810 *
9332ef9d 1811 * This function creates a userfaultfd file pointer, w/out installing
86039bd3
AA
1812 * it into the fd table. This is useful when the userfaultfd file is
1813 * used during the initialization of data structures that require
1814 * extra setup after the userfaultfd creation. So the userfaultfd
1815 * creation is split into the file pointer creation phase, and the
1816 * file descriptor installation phase. In this way races with
1817 * userspace closing the newly installed file descriptor can be
9332ef9d 1818 * avoided. Returns a userfaultfd file pointer, or a proper error
86039bd3
AA
1819 * pointer.
1820 */
1821static struct file *userfaultfd_file_create(int flags)
1822{
1823 struct file *file;
1824 struct userfaultfd_ctx *ctx;
1825
1826 BUG_ON(!current->mm);
1827
1828 /* Check the UFFD_* constants for consistency. */
1829 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1830 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1831
1832 file = ERR_PTR(-EINVAL);
1833 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1834 goto out;
1835
1836 file = ERR_PTR(-ENOMEM);
3004ec9c 1837 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1838 if (!ctx)
1839 goto out;
1840
1841 atomic_set(&ctx->refcount, 1);
86039bd3 1842 ctx->flags = flags;
9cd75c3c 1843 ctx->features = 0;
86039bd3
AA
1844 ctx->state = UFFD_STATE_WAIT_API;
1845 ctx->released = false;
1846 ctx->mm = current->mm;
1847 /* prevent the mm struct to be freed */
f1f10076 1848 mmgrab(ctx->mm);
86039bd3
AA
1849
1850 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1851 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1852 if (IS_ERR(file)) {
d2005e3f 1853 mmdrop(ctx->mm);
3004ec9c 1854 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1855 }
86039bd3
AA
1856out:
1857 return file;
1858}
1859
1860SYSCALL_DEFINE1(userfaultfd, int, flags)
1861{
1862 int fd, error;
1863 struct file *file;
1864
1865 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1866 if (error < 0)
1867 return error;
1868 fd = error;
1869
1870 file = userfaultfd_file_create(flags);
1871 if (IS_ERR(file)) {
1872 error = PTR_ERR(file);
1873 goto err_put_unused_fd;
1874 }
1875 fd_install(fd, file);
1876
1877 return fd;
1878
1879err_put_unused_fd:
1880 put_unused_fd(fd);
1881
1882 return error;
1883}
3004ec9c
AA
1884
1885static int __init userfaultfd_init(void)
1886{
1887 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1888 sizeof(struct userfaultfd_ctx),
1889 0,
1890 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1891 init_once_userfaultfd_ctx);
1892 return 0;
1893}
1894__initcall(userfaultfd_init);