mm: remove unneeded local variable follflags
[linux-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
17fca131 18#include <linux/mm_inline.h>
6dfeaff9 19#include <linux/mmu_notifier.h>
86039bd3
AA
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
d0d4730a 33int sysctl_unprivileged_userfaultfd __read_mostly;
cefdca0a 34
3004ec9c
AA
35static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
36
3004ec9c
AA
37/*
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
cbcfa130
EB
40 *
41 * Locking order:
42 * fd_wqh.lock
43 * fault_pending_wqh.lock
44 * fault_wqh.lock
45 * event_wqh.lock
46 *
47 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
48 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
49 * also taken in IRQ context.
3004ec9c 50 */
86039bd3 51struct userfaultfd_ctx {
15b726ef
AA
52 /* waitqueue head for the pending (i.e. not read) userfaults */
53 wait_queue_head_t fault_pending_wqh;
54 /* waitqueue head for the userfaults */
86039bd3
AA
55 wait_queue_head_t fault_wqh;
56 /* waitqueue head for the pseudo fd to wakeup poll/read */
57 wait_queue_head_t fd_wqh;
9cd75c3c
PE
58 /* waitqueue head for events */
59 wait_queue_head_t event_wqh;
2c5b7e1b 60 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 61 seqcount_spinlock_t refile_seq;
3004ec9c 62 /* pseudo fd refcounting */
ca880420 63 refcount_t refcount;
86039bd3
AA
64 /* userfaultfd syscall flags */
65 unsigned int flags;
9cd75c3c
PE
66 /* features requested from the userspace */
67 unsigned int features;
86039bd3
AA
68 /* released */
69 bool released;
df2cc96e 70 /* memory mappings are changing because of non-cooperative event */
a759a909 71 atomic_t mmap_changing;
86039bd3
AA
72 /* mm with one ore more vmas attached to this userfaultfd_ctx */
73 struct mm_struct *mm;
74};
75
893e26e6
PE
76struct userfaultfd_fork_ctx {
77 struct userfaultfd_ctx *orig;
78 struct userfaultfd_ctx *new;
79 struct list_head list;
80};
81
897ab3e0
MR
82struct userfaultfd_unmap_ctx {
83 struct userfaultfd_ctx *ctx;
84 unsigned long start;
85 unsigned long end;
86 struct list_head list;
87};
88
86039bd3 89struct userfaultfd_wait_queue {
a9b85f94 90 struct uffd_msg msg;
ac6424b9 91 wait_queue_entry_t wq;
86039bd3 92 struct userfaultfd_ctx *ctx;
15a77c6f 93 bool waken;
86039bd3
AA
94};
95
96struct userfaultfd_wake_range {
97 unsigned long start;
98 unsigned long len;
99};
100
22e5fe2a
NA
101/* internal indication that UFFD_API ioctl was successfully executed */
102#define UFFD_FEATURE_INITIALIZED (1u << 31)
103
104static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
105{
106 return ctx->features & UFFD_FEATURE_INITIALIZED;
107}
108
ac6424b9 109static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
110 int wake_flags, void *key)
111{
112 struct userfaultfd_wake_range *range = key;
113 int ret;
114 struct userfaultfd_wait_queue *uwq;
115 unsigned long start, len;
116
117 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
118 ret = 0;
86039bd3
AA
119 /* len == 0 means wake all */
120 start = range->start;
121 len = range->len;
a9b85f94
AA
122 if (len && (start > uwq->msg.arg.pagefault.address ||
123 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 124 goto out;
15a77c6f
AA
125 WRITE_ONCE(uwq->waken, true);
126 /*
a9668cd6
PZ
127 * The Program-Order guarantees provided by the scheduler
128 * ensure uwq->waken is visible before the task is woken.
15a77c6f 129 */
86039bd3 130 ret = wake_up_state(wq->private, mode);
a9668cd6 131 if (ret) {
86039bd3
AA
132 /*
133 * Wake only once, autoremove behavior.
134 *
a9668cd6
PZ
135 * After the effect of list_del_init is visible to the other
136 * CPUs, the waitqueue may disappear from under us, see the
137 * !list_empty_careful() in handle_userfault().
138 *
139 * try_to_wake_up() has an implicit smp_mb(), and the
140 * wq->private is read before calling the extern function
141 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 142 */
2055da97 143 list_del_init(&wq->entry);
a9668cd6 144 }
86039bd3
AA
145out:
146 return ret;
147}
148
149/**
150 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
151 * context.
152 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
153 */
154static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
155{
ca880420 156 refcount_inc(&ctx->refcount);
86039bd3
AA
157}
158
159/**
160 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
161 * context.
162 * @ctx: [in] Pointer to userfaultfd context.
163 *
164 * The userfaultfd context reference must have been previously acquired either
165 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
166 */
167static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
168{
ca880420 169 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
170 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
174 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
176 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
177 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 178 mmdrop(ctx->mm);
3004ec9c 179 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
180 }
181}
182
a9b85f94 183static inline void msg_init(struct uffd_msg *msg)
86039bd3 184{
a9b85f94
AA
185 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
186 /*
187 * Must use memset to zero out the paddings or kernel data is
188 * leaked to userland.
189 */
190 memset(msg, 0, sizeof(struct uffd_msg));
191}
192
193static inline struct uffd_msg userfault_msg(unsigned long address,
194 unsigned int flags,
9d4ac934
AP
195 unsigned long reason,
196 unsigned int features)
a9b85f94
AA
197{
198 struct uffd_msg msg;
199 msg_init(&msg);
200 msg.event = UFFD_EVENT_PAGEFAULT;
201 msg.arg.pagefault.address = address;
7677f7fd
AR
202 /*
203 * These flags indicate why the userfault occurred:
204 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
205 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
206 * - Neither of these flags being set indicates a MISSING fault.
207 *
208 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
209 * fault. Otherwise, it was a read fault.
210 */
86039bd3 211 if (flags & FAULT_FLAG_WRITE)
a9b85f94 212 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 213 if (reason & VM_UFFD_WP)
a9b85f94 214 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
215 if (reason & VM_UFFD_MINOR)
216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 217 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 219 return msg;
86039bd3
AA
220}
221
369cd212
MK
222#ifdef CONFIG_HUGETLB_PAGE
223/*
224 * Same functionality as userfaultfd_must_wait below with modifications for
225 * hugepmd ranges.
226 */
227static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 228 struct vm_area_struct *vma,
369cd212
MK
229 unsigned long address,
230 unsigned long flags,
231 unsigned long reason)
232{
233 struct mm_struct *mm = ctx->mm;
1e2c0436 234 pte_t *ptep, pte;
369cd212
MK
235 bool ret = true;
236
42fc5414 237 mmap_assert_locked(mm);
369cd212 238
1e2c0436
JF
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241 if (!ptep)
369cd212
MK
242 goto out;
243
244 ret = false;
1e2c0436 245 pte = huge_ptep_get(ptep);
369cd212
MK
246
247 /*
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us.
250 */
1e2c0436 251 if (huge_pte_none(pte))
369cd212 252 ret = true;
1e2c0436 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
254 ret = true;
255out:
256 return ret;
257}
258#else
259static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 260 struct vm_area_struct *vma,
369cd212
MK
261 unsigned long address,
262 unsigned long flags,
263 unsigned long reason)
264{
265 return false; /* should never get here */
266}
267#endif /* CONFIG_HUGETLB_PAGE */
268
8d2afd96
AA
269/*
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 * threads.
275 */
276static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
278 unsigned long flags,
279 unsigned long reason)
280{
281 struct mm_struct *mm = ctx->mm;
282 pgd_t *pgd;
c2febafc 283 p4d_t *p4d;
8d2afd96
AA
284 pud_t *pud;
285 pmd_t *pmd, _pmd;
286 pte_t *pte;
287 bool ret = true;
288
42fc5414 289 mmap_assert_locked(mm);
8d2afd96
AA
290
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
c2febafc
KS
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
8d2afd96
AA
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
301 /*
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
305 *
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
308 */
309 _pmd = READ_ONCE(*pmd);
a365ac09 310 if (pmd_none(_pmd))
8d2afd96
AA
311 goto out;
312
313 ret = false;
a365ac09
HY
314 if (!pmd_present(_pmd))
315 goto out;
316
63b2d417
AA
317 if (pmd_trans_huge(_pmd)) {
318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319 ret = true;
8d2afd96 320 goto out;
63b2d417 321 }
8d2afd96
AA
322
323 /*
324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325 * and use the standard pte_offset_map() instead of parsing _pmd.
326 */
327 pte = pte_offset_map(pmd, address);
328 /*
329 * Lockless access: we're in a wait_event so it's ok if it
330 * changes under us.
331 */
332 if (pte_none(*pte))
333 ret = true;
63b2d417
AA
334 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335 ret = true;
8d2afd96
AA
336 pte_unmap(pte);
337
338out:
339 return ret;
340}
341
2f064a59 342static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
343{
344 if (flags & FAULT_FLAG_INTERRUPTIBLE)
345 return TASK_INTERRUPTIBLE;
346
347 if (flags & FAULT_FLAG_KILLABLE)
348 return TASK_KILLABLE;
349
350 return TASK_UNINTERRUPTIBLE;
351}
352
86039bd3
AA
353/*
354 * The locking rules involved in returning VM_FAULT_RETRY depending on
355 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357 * recommendation in __lock_page_or_retry is not an understatement.
358 *
c1e8d7c6 359 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
360 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361 * not set.
362 *
363 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 365 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
366 * returning it.
367 */
2b740303 368vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 369{
82b0f8c3 370 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
371 struct userfaultfd_ctx *ctx;
372 struct userfaultfd_wait_queue uwq;
2b740303 373 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 374 bool must_wait;
2f064a59 375 unsigned int blocking_state;
86039bd3 376
64c2b203
AA
377 /*
378 * We don't do userfault handling for the final child pid update.
379 *
380 * We also don't do userfault handling during
381 * coredumping. hugetlbfs has the special
382 * follow_hugetlb_page() to skip missing pages in the
383 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384 * the no_page_table() helper in follow_page_mask(), but the
385 * shmem_vm_ops->fault method is invoked even during
c1e8d7c6 386 * coredumping without mmap_lock and it ends up here.
64c2b203
AA
387 */
388 if (current->flags & (PF_EXITING|PF_DUMPCORE))
389 goto out;
390
391 /*
c1e8d7c6
ML
392 * Coredumping runs without mmap_lock so we can only check that
393 * the mmap_lock is held, if PF_DUMPCORE was not set.
64c2b203 394 */
42fc5414 395 mmap_assert_locked(mm);
64c2b203 396
82b0f8c3 397 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 398 if (!ctx)
ba85c702 399 goto out;
86039bd3
AA
400
401 BUG_ON(ctx->mm != mm);
402
7677f7fd
AR
403 /* Any unrecognized flag is a bug. */
404 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
405 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
406 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 407
2d6d6f5a
PS
408 if (ctx->features & UFFD_FEATURE_SIGBUS)
409 goto out;
37cd0575
LG
410 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
411 ctx->flags & UFFD_USER_MODE_ONLY) {
412 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
413 "sysctl knob to 1 if kernel faults must be handled "
414 "without obtaining CAP_SYS_PTRACE capability\n");
415 goto out;
416 }
2d6d6f5a 417
86039bd3
AA
418 /*
419 * If it's already released don't get it. This avoids to loop
420 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 421 * caller of handle_userfault to release the mmap_lock.
86039bd3 422 */
6aa7de05 423 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
424 /*
425 * Don't return VM_FAULT_SIGBUS in this case, so a non
426 * cooperative manager can close the uffd after the
427 * last UFFDIO_COPY, without risking to trigger an
428 * involuntary SIGBUS if the process was starting the
429 * userfaultfd while the userfaultfd was still armed
430 * (but after the last UFFDIO_COPY). If the uffd
431 * wasn't already closed when the userfault reached
432 * this point, that would normally be solved by
433 * userfaultfd_must_wait returning 'false'.
434 *
435 * If we were to return VM_FAULT_SIGBUS here, the non
436 * cooperative manager would be instead forced to
437 * always call UFFDIO_UNREGISTER before it can safely
438 * close the uffd.
439 */
440 ret = VM_FAULT_NOPAGE;
ba85c702 441 goto out;
656710a6 442 }
86039bd3
AA
443
444 /*
445 * Check that we can return VM_FAULT_RETRY.
446 *
447 * NOTE: it should become possible to return VM_FAULT_RETRY
448 * even if FAULT_FLAG_TRIED is set without leading to gup()
449 * -EBUSY failures, if the userfaultfd is to be extended for
450 * VM_UFFD_WP tracking and we intend to arm the userfault
451 * without first stopping userland access to the memory. For
452 * VM_UFFD_MISSING userfaults this is enough for now.
453 */
82b0f8c3 454 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
455 /*
456 * Validate the invariant that nowait must allow retry
457 * to be sure not to return SIGBUS erroneously on
458 * nowait invocations.
459 */
82b0f8c3 460 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
461#ifdef CONFIG_DEBUG_VM
462 if (printk_ratelimit()) {
463 printk(KERN_WARNING
82b0f8c3
JK
464 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
465 vmf->flags);
86039bd3
AA
466 dump_stack();
467 }
468#endif
ba85c702 469 goto out;
86039bd3
AA
470 }
471
472 /*
473 * Handle nowait, not much to do other than tell it to retry
474 * and wait.
475 */
ba85c702 476 ret = VM_FAULT_RETRY;
82b0f8c3 477 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 478 goto out;
86039bd3 479
c1e8d7c6 480 /* take the reference before dropping the mmap_lock */
86039bd3
AA
481 userfaultfd_ctx_get(ctx);
482
86039bd3
AA
483 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
484 uwq.wq.private = current;
9d4ac934
AP
485 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
486 ctx->features);
86039bd3 487 uwq.ctx = ctx;
15a77c6f 488 uwq.waken = false;
86039bd3 489
3e69ad08 490 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 491
cbcfa130 492 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
493 /*
494 * After the __add_wait_queue the uwq is visible to userland
495 * through poll/read().
496 */
15b726ef
AA
497 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
498 /*
499 * The smp_mb() after __set_current_state prevents the reads
500 * following the spin_unlock to happen before the list_add in
501 * __add_wait_queue.
502 */
15a77c6f 503 set_current_state(blocking_state);
cbcfa130 504 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 505
369cd212
MK
506 if (!is_vm_hugetlb_page(vmf->vma))
507 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
508 reason);
509 else
7868a208
PA
510 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
511 vmf->address,
369cd212 512 vmf->flags, reason);
d8ed45c5 513 mmap_read_unlock(mm);
8d2afd96 514
f9bf3522 515 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 516 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 517 schedule();
ba85c702 518 }
86039bd3 519
ba85c702 520 __set_current_state(TASK_RUNNING);
15b726ef
AA
521
522 /*
523 * Here we race with the list_del; list_add in
524 * userfaultfd_ctx_read(), however because we don't ever run
525 * list_del_init() to refile across the two lists, the prev
526 * and next pointers will never point to self. list_add also
527 * would never let any of the two pointers to point to
528 * self. So list_empty_careful won't risk to see both pointers
529 * pointing to self at any time during the list refile. The
530 * only case where list_del_init() is called is the full
531 * removal in the wake function and there we don't re-list_add
532 * and it's fine not to block on the spinlock. The uwq on this
533 * kernel stack can be released after the list_del_init.
534 */
2055da97 535 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 536 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
537 /*
538 * No need of list_del_init(), the uwq on the stack
539 * will be freed shortly anyway.
540 */
2055da97 541 list_del(&uwq.wq.entry);
cbcfa130 542 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 543 }
86039bd3
AA
544
545 /*
546 * ctx may go away after this if the userfault pseudo fd is
547 * already released.
548 */
549 userfaultfd_ctx_put(ctx);
550
ba85c702
AA
551out:
552 return ret;
86039bd3
AA
553}
554
8c9e7bb7
AA
555static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
556 struct userfaultfd_wait_queue *ewq)
9cd75c3c 557{
0cbb4b4f
AA
558 struct userfaultfd_ctx *release_new_ctx;
559
9a69a829
AA
560 if (WARN_ON_ONCE(current->flags & PF_EXITING))
561 goto out;
9cd75c3c
PE
562
563 ewq->ctx = ctx;
564 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 565 release_new_ctx = NULL;
9cd75c3c 566
cbcfa130 567 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
568 /*
569 * After the __add_wait_queue the uwq is visible to userland
570 * through poll/read().
571 */
572 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
573 for (;;) {
574 set_current_state(TASK_KILLABLE);
575 if (ewq->msg.event == 0)
576 break;
6aa7de05 577 if (READ_ONCE(ctx->released) ||
9cd75c3c 578 fatal_signal_pending(current)) {
384632e6
AA
579 /*
580 * &ewq->wq may be queued in fork_event, but
581 * __remove_wait_queue ignores the head
582 * parameter. It would be a problem if it
583 * didn't.
584 */
9cd75c3c 585 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
586 if (ewq->msg.event == UFFD_EVENT_FORK) {
587 struct userfaultfd_ctx *new;
588
589 new = (struct userfaultfd_ctx *)
590 (unsigned long)
591 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 592 release_new_ctx = new;
7eb76d45 593 }
9cd75c3c
PE
594 break;
595 }
596
cbcfa130 597 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 598
a9a08845 599 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
600 schedule();
601
cbcfa130 602 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
603 }
604 __set_current_state(TASK_RUNNING);
cbcfa130 605 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 606
0cbb4b4f
AA
607 if (release_new_ctx) {
608 struct vm_area_struct *vma;
609 struct mm_struct *mm = release_new_ctx->mm;
610
611 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 612 mmap_write_lock(mm);
0cbb4b4f 613 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 614 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 615 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 616 vma->vm_flags &= ~__VM_UFFD_FLAGS;
31e810aa 617 }
d8ed45c5 618 mmap_write_unlock(mm);
0cbb4b4f
AA
619
620 userfaultfd_ctx_put(release_new_ctx);
621 }
622
9cd75c3c
PE
623 /*
624 * ctx may go away after this if the userfault pseudo fd is
625 * already released.
626 */
9a69a829 627out:
a759a909
NA
628 atomic_dec(&ctx->mmap_changing);
629 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
9cd75c3c 630 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
631}
632
633static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
634 struct userfaultfd_wait_queue *ewq)
635{
636 ewq->msg.event = 0;
637 wake_up_locked(&ctx->event_wqh);
638 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
639}
640
893e26e6
PE
641int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
642{
643 struct userfaultfd_ctx *ctx = NULL, *octx;
644 struct userfaultfd_fork_ctx *fctx;
645
646 octx = vma->vm_userfaultfd_ctx.ctx;
647 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
648 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 649 vma->vm_flags &= ~__VM_UFFD_FLAGS;
893e26e6
PE
650 return 0;
651 }
652
653 list_for_each_entry(fctx, fcs, list)
654 if (fctx->orig == octx) {
655 ctx = fctx->new;
656 break;
657 }
658
659 if (!ctx) {
660 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
661 if (!fctx)
662 return -ENOMEM;
663
664 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
665 if (!ctx) {
666 kfree(fctx);
667 return -ENOMEM;
668 }
669
ca880420 670 refcount_set(&ctx->refcount, 1);
893e26e6 671 ctx->flags = octx->flags;
893e26e6
PE
672 ctx->features = octx->features;
673 ctx->released = false;
a759a909 674 atomic_set(&ctx->mmap_changing, 0);
893e26e6 675 ctx->mm = vma->vm_mm;
00bb31fa 676 mmgrab(ctx->mm);
893e26e6
PE
677
678 userfaultfd_ctx_get(octx);
a759a909 679 atomic_inc(&octx->mmap_changing);
893e26e6
PE
680 fctx->orig = octx;
681 fctx->new = ctx;
682 list_add_tail(&fctx->list, fcs);
683 }
684
685 vma->vm_userfaultfd_ctx.ctx = ctx;
686 return 0;
687}
688
8c9e7bb7 689static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
690{
691 struct userfaultfd_ctx *ctx = fctx->orig;
692 struct userfaultfd_wait_queue ewq;
693
694 msg_init(&ewq.msg);
695
696 ewq.msg.event = UFFD_EVENT_FORK;
697 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
698
8c9e7bb7 699 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
700}
701
702void dup_userfaultfd_complete(struct list_head *fcs)
703{
893e26e6
PE
704 struct userfaultfd_fork_ctx *fctx, *n;
705
706 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 707 dup_fctx(fctx);
893e26e6
PE
708 list_del(&fctx->list);
709 kfree(fctx);
710 }
711}
712
72f87654
PE
713void mremap_userfaultfd_prep(struct vm_area_struct *vma,
714 struct vm_userfaultfd_ctx *vm_ctx)
715{
716 struct userfaultfd_ctx *ctx;
717
718 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
719
720 if (!ctx)
721 return;
722
723 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
724 vm_ctx->ctx = ctx;
725 userfaultfd_ctx_get(ctx);
a759a909 726 atomic_inc(&ctx->mmap_changing);
3cfd22be
PX
727 } else {
728 /* Drop uffd context if remap feature not enabled */
729 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 730 vma->vm_flags &= ~__VM_UFFD_FLAGS;
72f87654
PE
731 }
732}
733
90794bf1 734void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
735 unsigned long from, unsigned long to,
736 unsigned long len)
737{
90794bf1 738 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
739 struct userfaultfd_wait_queue ewq;
740
741 if (!ctx)
742 return;
743
744 if (to & ~PAGE_MASK) {
745 userfaultfd_ctx_put(ctx);
746 return;
747 }
748
749 msg_init(&ewq.msg);
750
751 ewq.msg.event = UFFD_EVENT_REMAP;
752 ewq.msg.arg.remap.from = from;
753 ewq.msg.arg.remap.to = to;
754 ewq.msg.arg.remap.len = len;
755
756 userfaultfd_event_wait_completion(ctx, &ewq);
757}
758
70ccb92f 759bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 760 unsigned long start, unsigned long end)
05ce7724
PE
761{
762 struct mm_struct *mm = vma->vm_mm;
763 struct userfaultfd_ctx *ctx;
764 struct userfaultfd_wait_queue ewq;
765
766 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 767 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 768 return true;
05ce7724
PE
769
770 userfaultfd_ctx_get(ctx);
a759a909 771 atomic_inc(&ctx->mmap_changing);
d8ed45c5 772 mmap_read_unlock(mm);
05ce7724 773
05ce7724
PE
774 msg_init(&ewq.msg);
775
d811914d
MR
776 ewq.msg.event = UFFD_EVENT_REMOVE;
777 ewq.msg.arg.remove.start = start;
778 ewq.msg.arg.remove.end = end;
05ce7724
PE
779
780 userfaultfd_event_wait_completion(ctx, &ewq);
781
70ccb92f 782 return false;
05ce7724
PE
783}
784
897ab3e0
MR
785static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
786 unsigned long start, unsigned long end)
787{
788 struct userfaultfd_unmap_ctx *unmap_ctx;
789
790 list_for_each_entry(unmap_ctx, unmaps, list)
791 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
792 unmap_ctx->end == end)
793 return true;
794
795 return false;
796}
797
798int userfaultfd_unmap_prep(struct vm_area_struct *vma,
799 unsigned long start, unsigned long end,
800 struct list_head *unmaps)
801{
802 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
803 struct userfaultfd_unmap_ctx *unmap_ctx;
804 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
805
806 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
807 has_unmap_ctx(ctx, unmaps, start, end))
808 continue;
809
810 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
811 if (!unmap_ctx)
812 return -ENOMEM;
813
814 userfaultfd_ctx_get(ctx);
a759a909 815 atomic_inc(&ctx->mmap_changing);
897ab3e0
MR
816 unmap_ctx->ctx = ctx;
817 unmap_ctx->start = start;
818 unmap_ctx->end = end;
819 list_add_tail(&unmap_ctx->list, unmaps);
820 }
821
822 return 0;
823}
824
825void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
826{
827 struct userfaultfd_unmap_ctx *ctx, *n;
828 struct userfaultfd_wait_queue ewq;
829
830 list_for_each_entry_safe(ctx, n, uf, list) {
831 msg_init(&ewq.msg);
832
833 ewq.msg.event = UFFD_EVENT_UNMAP;
834 ewq.msg.arg.remove.start = ctx->start;
835 ewq.msg.arg.remove.end = ctx->end;
836
837 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
838
839 list_del(&ctx->list);
840 kfree(ctx);
841 }
842}
843
86039bd3
AA
844static int userfaultfd_release(struct inode *inode, struct file *file)
845{
846 struct userfaultfd_ctx *ctx = file->private_data;
847 struct mm_struct *mm = ctx->mm;
848 struct vm_area_struct *vma, *prev;
849 /* len == 0 means wake all */
850 struct userfaultfd_wake_range range = { .len = 0, };
851 unsigned long new_flags;
852
6aa7de05 853 WRITE_ONCE(ctx->released, true);
86039bd3 854
d2005e3f
ON
855 if (!mmget_not_zero(mm))
856 goto wakeup;
857
86039bd3
AA
858 /*
859 * Flush page faults out of all CPUs. NOTE: all page faults
860 * must be retried without returning VM_FAULT_SIGBUS if
861 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 862 * changes while handle_userfault released the mmap_lock. So
86039bd3 863 * it's critical that released is set to true (above), before
c1e8d7c6 864 * taking the mmap_lock for writing.
86039bd3 865 */
d8ed45c5 866 mmap_write_lock(mm);
86039bd3
AA
867 prev = NULL;
868 for (vma = mm->mmap; vma; vma = vma->vm_next) {
869 cond_resched();
870 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 871 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
872 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
873 prev = vma;
874 continue;
875 }
7677f7fd 876 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
4d45e75a
JH
877 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
878 new_flags, vma->anon_vma,
879 vma->vm_file, vma->vm_pgoff,
880 vma_policy(vma),
5c26f6ac 881 NULL_VM_UFFD_CTX, anon_vma_name(vma));
4d45e75a
JH
882 if (prev)
883 vma = prev;
884 else
885 prev = vma;
86039bd3
AA
886 vma->vm_flags = new_flags;
887 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
888 }
d8ed45c5 889 mmap_write_unlock(mm);
d2005e3f
ON
890 mmput(mm);
891wakeup:
86039bd3 892 /*
15b726ef 893 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 894 * the last page faults that may have been already waiting on
15b726ef 895 * the fault_*wqh.
86039bd3 896 */
cbcfa130 897 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 898 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 899 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 900 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 901
5a18b64e
MR
902 /* Flush pending events that may still wait on event_wqh */
903 wake_up_all(&ctx->event_wqh);
904
a9a08845 905 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
906 userfaultfd_ctx_put(ctx);
907 return 0;
908}
909
15b726ef 910/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
911static inline struct userfaultfd_wait_queue *find_userfault_in(
912 wait_queue_head_t *wqh)
86039bd3 913{
ac6424b9 914 wait_queue_entry_t *wq;
15b726ef 915 struct userfaultfd_wait_queue *uwq;
86039bd3 916
456a7378 917 lockdep_assert_held(&wqh->lock);
86039bd3 918
15b726ef 919 uwq = NULL;
6dcc27fd 920 if (!waitqueue_active(wqh))
15b726ef
AA
921 goto out;
922 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 923 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
924 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
925out:
926 return uwq;
86039bd3 927}
6dcc27fd
PE
928
929static inline struct userfaultfd_wait_queue *find_userfault(
930 struct userfaultfd_ctx *ctx)
931{
932 return find_userfault_in(&ctx->fault_pending_wqh);
933}
86039bd3 934
9cd75c3c
PE
935static inline struct userfaultfd_wait_queue *find_userfault_evt(
936 struct userfaultfd_ctx *ctx)
937{
938 return find_userfault_in(&ctx->event_wqh);
939}
940
076ccb76 941static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
942{
943 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 944 __poll_t ret;
86039bd3
AA
945
946 poll_wait(file, &ctx->fd_wqh, wait);
947
22e5fe2a 948 if (!userfaultfd_is_initialized(ctx))
a9a08845 949 return EPOLLERR;
9cd75c3c 950
22e5fe2a
NA
951 /*
952 * poll() never guarantees that read won't block.
953 * userfaults can be waken before they're read().
954 */
955 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 956 return EPOLLERR;
22e5fe2a
NA
957 /*
958 * lockless access to see if there are pending faults
959 * __pollwait last action is the add_wait_queue but
960 * the spin_unlock would allow the waitqueue_active to
961 * pass above the actual list_add inside
962 * add_wait_queue critical section. So use a full
963 * memory barrier to serialize the list_add write of
964 * add_wait_queue() with the waitqueue_active read
965 * below.
966 */
967 ret = 0;
968 smp_mb();
969 if (waitqueue_active(&ctx->fault_pending_wqh))
970 ret = EPOLLIN;
971 else if (waitqueue_active(&ctx->event_wqh))
972 ret = EPOLLIN;
973
974 return ret;
86039bd3
AA
975}
976
893e26e6
PE
977static const struct file_operations userfaultfd_fops;
978
b537900f
DC
979static int resolve_userfault_fork(struct userfaultfd_ctx *new,
980 struct inode *inode,
893e26e6
PE
981 struct uffd_msg *msg)
982{
983 int fd;
893e26e6 984
b537900f
DC
985 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
986 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
987 if (fd < 0)
988 return fd;
989
893e26e6
PE
990 msg->arg.reserved.reserved1 = 0;
991 msg->arg.fork.ufd = fd;
893e26e6
PE
992 return 0;
993}
994
86039bd3 995static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 996 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
997{
998 ssize_t ret;
999 DECLARE_WAITQUEUE(wait, current);
15b726ef 1000 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1001 /*
1002 * Handling fork event requires sleeping operations, so
1003 * we drop the event_wqh lock, then do these ops, then
1004 * lock it back and wake up the waiter. While the lock is
1005 * dropped the ewq may go away so we keep track of it
1006 * carefully.
1007 */
1008 LIST_HEAD(fork_event);
1009 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1010
15b726ef 1011 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1012 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1013 __add_wait_queue(&ctx->fd_wqh, &wait);
1014 for (;;) {
1015 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1016 spin_lock(&ctx->fault_pending_wqh.lock);
1017 uwq = find_userfault(ctx);
1018 if (uwq) {
2c5b7e1b
AA
1019 /*
1020 * Use a seqcount to repeat the lockless check
1021 * in wake_userfault() to avoid missing
1022 * wakeups because during the refile both
1023 * waitqueue could become empty if this is the
1024 * only userfault.
1025 */
1026 write_seqcount_begin(&ctx->refile_seq);
1027
86039bd3 1028 /*
15b726ef
AA
1029 * The fault_pending_wqh.lock prevents the uwq
1030 * to disappear from under us.
1031 *
1032 * Refile this userfault from
1033 * fault_pending_wqh to fault_wqh, it's not
1034 * pending anymore after we read it.
1035 *
1036 * Use list_del() by hand (as
1037 * userfaultfd_wake_function also uses
1038 * list_del_init() by hand) to be sure nobody
1039 * changes __remove_wait_queue() to use
1040 * list_del_init() in turn breaking the
1041 * !list_empty_careful() check in
2055da97 1042 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1043 * must never be empty at any time during the
1044 * refile, or the waitqueue could disappear
1045 * from under us. The "wait_queue_head_t"
1046 * parameter of __remove_wait_queue() is unused
1047 * anyway.
86039bd3 1048 */
2055da97 1049 list_del(&uwq->wq.entry);
c430d1e8 1050 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1051
2c5b7e1b
AA
1052 write_seqcount_end(&ctx->refile_seq);
1053
a9b85f94
AA
1054 /* careful to always initialize msg if ret == 0 */
1055 *msg = uwq->msg;
15b726ef 1056 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1057 ret = 0;
1058 break;
1059 }
15b726ef 1060 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1061
1062 spin_lock(&ctx->event_wqh.lock);
1063 uwq = find_userfault_evt(ctx);
1064 if (uwq) {
1065 *msg = uwq->msg;
1066
893e26e6
PE
1067 if (uwq->msg.event == UFFD_EVENT_FORK) {
1068 fork_nctx = (struct userfaultfd_ctx *)
1069 (unsigned long)
1070 uwq->msg.arg.reserved.reserved1;
2055da97 1071 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1072 /*
1073 * fork_nctx can be freed as soon as
1074 * we drop the lock, unless we take a
1075 * reference on it.
1076 */
1077 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1078 spin_unlock(&ctx->event_wqh.lock);
1079 ret = 0;
1080 break;
1081 }
1082
9cd75c3c
PE
1083 userfaultfd_event_complete(ctx, uwq);
1084 spin_unlock(&ctx->event_wqh.lock);
1085 ret = 0;
1086 break;
1087 }
1088 spin_unlock(&ctx->event_wqh.lock);
1089
86039bd3
AA
1090 if (signal_pending(current)) {
1091 ret = -ERESTARTSYS;
1092 break;
1093 }
1094 if (no_wait) {
1095 ret = -EAGAIN;
1096 break;
1097 }
ae62c16e 1098 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1099 schedule();
ae62c16e 1100 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1101 }
1102 __remove_wait_queue(&ctx->fd_wqh, &wait);
1103 __set_current_state(TASK_RUNNING);
ae62c16e 1104 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1105
893e26e6 1106 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1107 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1108 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1109 if (!list_empty(&fork_event)) {
1110 /*
1111 * The fork thread didn't abort, so we can
1112 * drop the temporary refcount.
1113 */
1114 userfaultfd_ctx_put(fork_nctx);
1115
1116 uwq = list_first_entry(&fork_event,
1117 typeof(*uwq),
1118 wq.entry);
1119 /*
1120 * If fork_event list wasn't empty and in turn
1121 * the event wasn't already released by fork
1122 * (the event is allocated on fork kernel
1123 * stack), put the event back to its place in
1124 * the event_wq. fork_event head will be freed
1125 * as soon as we return so the event cannot
1126 * stay queued there no matter the current
1127 * "ret" value.
1128 */
1129 list_del(&uwq->wq.entry);
1130 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1131
384632e6
AA
1132 /*
1133 * Leave the event in the waitqueue and report
1134 * error to userland if we failed to resolve
1135 * the userfault fork.
1136 */
1137 if (likely(!ret))
893e26e6 1138 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1139 } else {
1140 /*
1141 * Here the fork thread aborted and the
1142 * refcount from the fork thread on fork_nctx
1143 * has already been released. We still hold
1144 * the reference we took before releasing the
1145 * lock above. If resolve_userfault_fork
1146 * failed we've to drop it because the
1147 * fork_nctx has to be freed in such case. If
1148 * it succeeded we'll hold it because the new
1149 * uffd references it.
1150 */
1151 if (ret)
1152 userfaultfd_ctx_put(fork_nctx);
893e26e6 1153 }
cbcfa130 1154 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1155 }
1156
86039bd3
AA
1157 return ret;
1158}
1159
1160static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1161 size_t count, loff_t *ppos)
1162{
1163 struct userfaultfd_ctx *ctx = file->private_data;
1164 ssize_t _ret, ret = 0;
a9b85f94 1165 struct uffd_msg msg;
86039bd3 1166 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1167 struct inode *inode = file_inode(file);
86039bd3 1168
22e5fe2a 1169 if (!userfaultfd_is_initialized(ctx))
86039bd3 1170 return -EINVAL;
86039bd3
AA
1171
1172 for (;;) {
a9b85f94 1173 if (count < sizeof(msg))
86039bd3 1174 return ret ? ret : -EINVAL;
b537900f 1175 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1176 if (_ret < 0)
1177 return ret ? ret : _ret;
a9b85f94 1178 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1179 return ret ? ret : -EFAULT;
a9b85f94
AA
1180 ret += sizeof(msg);
1181 buf += sizeof(msg);
1182 count -= sizeof(msg);
86039bd3
AA
1183 /*
1184 * Allow to read more than one fault at time but only
1185 * block if waiting for the very first one.
1186 */
1187 no_wait = O_NONBLOCK;
1188 }
1189}
1190
1191static void __wake_userfault(struct userfaultfd_ctx *ctx,
1192 struct userfaultfd_wake_range *range)
1193{
cbcfa130 1194 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1195 /* wake all in the range and autoremove */
15b726ef 1196 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1197 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1198 range);
1199 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1200 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1201 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1202}
1203
1204static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1205 struct userfaultfd_wake_range *range)
1206{
2c5b7e1b
AA
1207 unsigned seq;
1208 bool need_wakeup;
1209
86039bd3
AA
1210 /*
1211 * To be sure waitqueue_active() is not reordered by the CPU
1212 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1213 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1214 * have release semantics that can allow the
1215 * waitqueue_active() to be reordered before the pte update.
1216 */
1217 smp_mb();
1218
1219 /*
1220 * Use waitqueue_active because it's very frequent to
1221 * change the address space atomically even if there are no
1222 * userfaults yet. So we take the spinlock only when we're
1223 * sure we've userfaults to wake.
1224 */
2c5b7e1b
AA
1225 do {
1226 seq = read_seqcount_begin(&ctx->refile_seq);
1227 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1228 waitqueue_active(&ctx->fault_wqh);
1229 cond_resched();
1230 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1231 if (need_wakeup)
86039bd3
AA
1232 __wake_userfault(ctx, range);
1233}
1234
1235static __always_inline int validate_range(struct mm_struct *mm,
e71e2ace 1236 __u64 start, __u64 len)
86039bd3
AA
1237{
1238 __u64 task_size = mm->task_size;
1239
e71e2ace 1240 if (start & ~PAGE_MASK)
86039bd3
AA
1241 return -EINVAL;
1242 if (len & ~PAGE_MASK)
1243 return -EINVAL;
1244 if (!len)
1245 return -EINVAL;
e71e2ace 1246 if (start < mmap_min_addr)
86039bd3 1247 return -EINVAL;
e71e2ace 1248 if (start >= task_size)
86039bd3 1249 return -EINVAL;
e71e2ace 1250 if (len > task_size - start)
86039bd3
AA
1251 return -EINVAL;
1252 return 0;
1253}
1254
63b2d417
AA
1255static inline bool vma_can_userfault(struct vm_area_struct *vma,
1256 unsigned long vm_flags)
ba6907db 1257{
63b2d417 1258 /* FIXME: add WP support to hugetlbfs and shmem */
7677f7fd
AR
1259 if (vm_flags & VM_UFFD_WP) {
1260 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1261 return false;
1262 }
1263
1264 if (vm_flags & VM_UFFD_MINOR) {
c949b097 1265 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
7677f7fd
AR
1266 return false;
1267 }
1268
1269 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1270 vma_is_shmem(vma);
ba6907db
MR
1271}
1272
86039bd3
AA
1273static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1274 unsigned long arg)
1275{
1276 struct mm_struct *mm = ctx->mm;
1277 struct vm_area_struct *vma, *prev, *cur;
1278 int ret;
1279 struct uffdio_register uffdio_register;
1280 struct uffdio_register __user *user_uffdio_register;
1281 unsigned long vm_flags, new_flags;
1282 bool found;
ce53e8e6 1283 bool basic_ioctls;
86039bd3
AA
1284 unsigned long start, end, vma_end;
1285
1286 user_uffdio_register = (struct uffdio_register __user *) arg;
1287
1288 ret = -EFAULT;
1289 if (copy_from_user(&uffdio_register, user_uffdio_register,
1290 sizeof(uffdio_register)-sizeof(__u64)))
1291 goto out;
1292
1293 ret = -EINVAL;
1294 if (!uffdio_register.mode)
1295 goto out;
7677f7fd 1296 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1297 goto out;
1298 vm_flags = 0;
1299 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1300 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1301 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1302#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1303 goto out;
1304#endif
86039bd3 1305 vm_flags |= VM_UFFD_WP;
00b151f2 1306 }
7677f7fd
AR
1307 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1308#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1309 goto out;
1310#endif
1311 vm_flags |= VM_UFFD_MINOR;
1312 }
86039bd3 1313
e71e2ace 1314 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1315 uffdio_register.range.len);
1316 if (ret)
1317 goto out;
1318
1319 start = uffdio_register.range.start;
1320 end = start + uffdio_register.range.len;
1321
d2005e3f
ON
1322 ret = -ENOMEM;
1323 if (!mmget_not_zero(mm))
1324 goto out;
1325
d8ed45c5 1326 mmap_write_lock(mm);
86039bd3 1327 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1328 if (!vma)
1329 goto out_unlock;
1330
1331 /* check that there's at least one vma in the range */
1332 ret = -EINVAL;
1333 if (vma->vm_start >= end)
1334 goto out_unlock;
1335
cab350af
MK
1336 /*
1337 * If the first vma contains huge pages, make sure start address
1338 * is aligned to huge page size.
1339 */
1340 if (is_vm_hugetlb_page(vma)) {
1341 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1342
1343 if (start & (vma_hpagesize - 1))
1344 goto out_unlock;
1345 }
1346
86039bd3
AA
1347 /*
1348 * Search for not compatible vmas.
86039bd3
AA
1349 */
1350 found = false;
ce53e8e6 1351 basic_ioctls = false;
86039bd3
AA
1352 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1353 cond_resched();
1354
1355 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1356 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1357
1358 /* check not compatible vmas */
1359 ret = -EINVAL;
63b2d417 1360 if (!vma_can_userfault(cur, vm_flags))
86039bd3 1361 goto out_unlock;
29ec9066
AA
1362
1363 /*
1364 * UFFDIO_COPY will fill file holes even without
1365 * PROT_WRITE. This check enforces that if this is a
1366 * MAP_SHARED, the process has write permission to the backing
1367 * file. If VM_MAYWRITE is set it also enforces that on a
1368 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1369 * F_WRITE_SEAL can be taken until the vma is destroyed.
1370 */
1371 ret = -EPERM;
1372 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1373 goto out_unlock;
1374
cab350af
MK
1375 /*
1376 * If this vma contains ending address, and huge pages
1377 * check alignment.
1378 */
1379 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1380 end > cur->vm_start) {
1381 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1382
1383 ret = -EINVAL;
1384
1385 if (end & (vma_hpagesize - 1))
1386 goto out_unlock;
1387 }
63b2d417
AA
1388 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1389 goto out_unlock;
86039bd3
AA
1390
1391 /*
1392 * Check that this vma isn't already owned by a
1393 * different userfaultfd. We can't allow more than one
1394 * userfaultfd to own a single vma simultaneously or we
1395 * wouldn't know which one to deliver the userfaults to.
1396 */
1397 ret = -EBUSY;
1398 if (cur->vm_userfaultfd_ctx.ctx &&
1399 cur->vm_userfaultfd_ctx.ctx != ctx)
1400 goto out_unlock;
1401
cab350af
MK
1402 /*
1403 * Note vmas containing huge pages
1404 */
ce53e8e6
MR
1405 if (is_vm_hugetlb_page(cur))
1406 basic_ioctls = true;
cab350af 1407
86039bd3
AA
1408 found = true;
1409 }
1410 BUG_ON(!found);
1411
1412 if (vma->vm_start < start)
1413 prev = vma;
1414
1415 ret = 0;
1416 do {
1417 cond_resched();
1418
63b2d417 1419 BUG_ON(!vma_can_userfault(vma, vm_flags));
86039bd3
AA
1420 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1421 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1422 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1423
1424 /*
1425 * Nothing to do: this vma is already registered into this
1426 * userfaultfd and with the right tracking mode too.
1427 */
1428 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1429 (vma->vm_flags & vm_flags) == vm_flags)
1430 goto skip;
1431
1432 if (vma->vm_start > start)
1433 start = vma->vm_start;
1434 vma_end = min(end, vma->vm_end);
1435
7677f7fd 1436 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
86039bd3
AA
1437 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1438 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1439 vma_policy(vma),
9a10064f 1440 ((struct vm_userfaultfd_ctx){ ctx }),
5c26f6ac 1441 anon_vma_name(vma));
86039bd3
AA
1442 if (prev) {
1443 vma = prev;
1444 goto next;
1445 }
1446 if (vma->vm_start < start) {
1447 ret = split_vma(mm, vma, start, 1);
1448 if (ret)
1449 break;
1450 }
1451 if (vma->vm_end > end) {
1452 ret = split_vma(mm, vma, end, 0);
1453 if (ret)
1454 break;
1455 }
1456 next:
1457 /*
1458 * In the vma_merge() successful mprotect-like case 8:
1459 * the next vma was merged into the current one and
1460 * the current one has not been updated yet.
1461 */
1462 vma->vm_flags = new_flags;
1463 vma->vm_userfaultfd_ctx.ctx = ctx;
1464
6dfeaff9
PX
1465 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1466 hugetlb_unshare_all_pmds(vma);
1467
86039bd3
AA
1468 skip:
1469 prev = vma;
1470 start = vma->vm_end;
1471 vma = vma->vm_next;
1472 } while (vma && vma->vm_start < end);
1473out_unlock:
d8ed45c5 1474 mmap_write_unlock(mm);
d2005e3f 1475 mmput(mm);
86039bd3 1476 if (!ret) {
14819305
PX
1477 __u64 ioctls_out;
1478
1479 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1480 UFFD_API_RANGE_IOCTLS;
1481
1482 /*
1483 * Declare the WP ioctl only if the WP mode is
1484 * specified and all checks passed with the range
1485 */
1486 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1487 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1488
f6191471
AR
1489 /* CONTINUE ioctl is only supported for MINOR ranges. */
1490 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1491 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1492
86039bd3
AA
1493 /*
1494 * Now that we scanned all vmas we can already tell
1495 * userland which ioctls methods are guaranteed to
1496 * succeed on this range.
1497 */
14819305 1498 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1499 ret = -EFAULT;
1500 }
1501out:
1502 return ret;
1503}
1504
1505static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1506 unsigned long arg)
1507{
1508 struct mm_struct *mm = ctx->mm;
1509 struct vm_area_struct *vma, *prev, *cur;
1510 int ret;
1511 struct uffdio_range uffdio_unregister;
1512 unsigned long new_flags;
1513 bool found;
1514 unsigned long start, end, vma_end;
1515 const void __user *buf = (void __user *)arg;
1516
1517 ret = -EFAULT;
1518 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1519 goto out;
1520
e71e2ace 1521 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1522 uffdio_unregister.len);
1523 if (ret)
1524 goto out;
1525
1526 start = uffdio_unregister.start;
1527 end = start + uffdio_unregister.len;
1528
d2005e3f
ON
1529 ret = -ENOMEM;
1530 if (!mmget_not_zero(mm))
1531 goto out;
1532
d8ed45c5 1533 mmap_write_lock(mm);
86039bd3 1534 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1535 if (!vma)
1536 goto out_unlock;
1537
1538 /* check that there's at least one vma in the range */
1539 ret = -EINVAL;
1540 if (vma->vm_start >= end)
1541 goto out_unlock;
1542
cab350af
MK
1543 /*
1544 * If the first vma contains huge pages, make sure start address
1545 * is aligned to huge page size.
1546 */
1547 if (is_vm_hugetlb_page(vma)) {
1548 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1549
1550 if (start & (vma_hpagesize - 1))
1551 goto out_unlock;
1552 }
1553
86039bd3
AA
1554 /*
1555 * Search for not compatible vmas.
86039bd3
AA
1556 */
1557 found = false;
1558 ret = -EINVAL;
1559 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1560 cond_resched();
1561
1562 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1563 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1564
1565 /*
1566 * Check not compatible vmas, not strictly required
1567 * here as not compatible vmas cannot have an
1568 * userfaultfd_ctx registered on them, but this
1569 * provides for more strict behavior to notice
1570 * unregistration errors.
1571 */
63b2d417 1572 if (!vma_can_userfault(cur, cur->vm_flags))
86039bd3
AA
1573 goto out_unlock;
1574
1575 found = true;
1576 }
1577 BUG_ON(!found);
1578
1579 if (vma->vm_start < start)
1580 prev = vma;
1581
1582 ret = 0;
1583 do {
1584 cond_resched();
1585
63b2d417 1586 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
86039bd3
AA
1587
1588 /*
1589 * Nothing to do: this vma is already registered into this
1590 * userfaultfd and with the right tracking mode too.
1591 */
1592 if (!vma->vm_userfaultfd_ctx.ctx)
1593 goto skip;
1594
01e881f5
AA
1595 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1596
86039bd3
AA
1597 if (vma->vm_start > start)
1598 start = vma->vm_start;
1599 vma_end = min(end, vma->vm_end);
1600
09fa5296
AA
1601 if (userfaultfd_missing(vma)) {
1602 /*
1603 * Wake any concurrent pending userfault while
1604 * we unregister, so they will not hang
1605 * permanently and it avoids userland to call
1606 * UFFDIO_WAKE explicitly.
1607 */
1608 struct userfaultfd_wake_range range;
1609 range.start = start;
1610 range.len = vma_end - start;
1611 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1612 }
1613
7677f7fd 1614 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
86039bd3
AA
1615 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1616 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1617 vma_policy(vma),
5c26f6ac 1618 NULL_VM_UFFD_CTX, anon_vma_name(vma));
86039bd3
AA
1619 if (prev) {
1620 vma = prev;
1621 goto next;
1622 }
1623 if (vma->vm_start < start) {
1624 ret = split_vma(mm, vma, start, 1);
1625 if (ret)
1626 break;
1627 }
1628 if (vma->vm_end > end) {
1629 ret = split_vma(mm, vma, end, 0);
1630 if (ret)
1631 break;
1632 }
1633 next:
1634 /*
1635 * In the vma_merge() successful mprotect-like case 8:
1636 * the next vma was merged into the current one and
1637 * the current one has not been updated yet.
1638 */
1639 vma->vm_flags = new_flags;
1640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641
1642 skip:
1643 prev = vma;
1644 start = vma->vm_end;
1645 vma = vma->vm_next;
1646 } while (vma && vma->vm_start < end);
1647out_unlock:
d8ed45c5 1648 mmap_write_unlock(mm);
d2005e3f 1649 mmput(mm);
86039bd3
AA
1650out:
1651 return ret;
1652}
1653
1654/*
ba85c702
AA
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1657 */
1658static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 unsigned long arg)
1660{
1661 int ret;
1662 struct uffdio_range uffdio_wake;
1663 struct userfaultfd_wake_range range;
1664 const void __user *buf = (void __user *)arg;
1665
1666 ret = -EFAULT;
1667 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 goto out;
1669
e71e2ace 1670 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1671 if (ret)
1672 goto out;
1673
1674 range.start = uffdio_wake.start;
1675 range.len = uffdio_wake.len;
1676
1677 /*
1678 * len == 0 means wake all and we don't want to wake all here,
1679 * so check it again to be sure.
1680 */
1681 VM_BUG_ON(!range.len);
1682
1683 wake_userfault(ctx, &range);
1684 ret = 0;
1685
1686out:
1687 return ret;
1688}
1689
ad465cae
AA
1690static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 unsigned long arg)
1692{
1693 __s64 ret;
1694 struct uffdio_copy uffdio_copy;
1695 struct uffdio_copy __user *user_uffdio_copy;
1696 struct userfaultfd_wake_range range;
1697
1698 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1699
df2cc96e 1700 ret = -EAGAIN;
a759a909 1701 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1702 goto out;
1703
ad465cae
AA
1704 ret = -EFAULT;
1705 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1706 /* don't copy "copy" last field */
1707 sizeof(uffdio_copy)-sizeof(__s64)))
1708 goto out;
1709
e71e2ace 1710 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1711 if (ret)
1712 goto out;
1713 /*
1714 * double check for wraparound just in case. copy_from_user()
1715 * will later check uffdio_copy.src + uffdio_copy.len to fit
1716 * in the userland range.
1717 */
1718 ret = -EINVAL;
1719 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1720 goto out;
72981e0e 1721 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1722 goto out;
d2005e3f
ON
1723 if (mmget_not_zero(ctx->mm)) {
1724 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
72981e0e
AA
1725 uffdio_copy.len, &ctx->mmap_changing,
1726 uffdio_copy.mode);
d2005e3f 1727 mmput(ctx->mm);
96333187 1728 } else {
e86b298b 1729 return -ESRCH;
d2005e3f 1730 }
ad465cae
AA
1731 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732 return -EFAULT;
1733 if (ret < 0)
1734 goto out;
1735 BUG_ON(!ret);
1736 /* len == 0 would wake all */
1737 range.len = ret;
1738 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1739 range.start = uffdio_copy.dst;
1740 wake_userfault(ctx, &range);
1741 }
1742 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743out:
1744 return ret;
1745}
1746
1747static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1748 unsigned long arg)
1749{
1750 __s64 ret;
1751 struct uffdio_zeropage uffdio_zeropage;
1752 struct uffdio_zeropage __user *user_uffdio_zeropage;
1753 struct userfaultfd_wake_range range;
1754
1755 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756
df2cc96e 1757 ret = -EAGAIN;
a759a909 1758 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1759 goto out;
1760
ad465cae
AA
1761 ret = -EFAULT;
1762 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1763 /* don't copy "zeropage" last field */
1764 sizeof(uffdio_zeropage)-sizeof(__s64)))
1765 goto out;
1766
e71e2ace 1767 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1768 uffdio_zeropage.range.len);
1769 if (ret)
1770 goto out;
1771 ret = -EINVAL;
1772 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1773 goto out;
1774
d2005e3f
ON
1775 if (mmget_not_zero(ctx->mm)) {
1776 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1777 uffdio_zeropage.range.len,
1778 &ctx->mmap_changing);
d2005e3f 1779 mmput(ctx->mm);
9d95aa4b 1780 } else {
e86b298b 1781 return -ESRCH;
d2005e3f 1782 }
ad465cae
AA
1783 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1784 return -EFAULT;
1785 if (ret < 0)
1786 goto out;
1787 /* len == 0 would wake all */
1788 BUG_ON(!ret);
1789 range.len = ret;
1790 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1791 range.start = uffdio_zeropage.range.start;
1792 wake_userfault(ctx, &range);
1793 }
1794 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1795out:
1796 return ret;
1797}
1798
63b2d417
AA
1799static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1800 unsigned long arg)
1801{
1802 int ret;
1803 struct uffdio_writeprotect uffdio_wp;
1804 struct uffdio_writeprotect __user *user_uffdio_wp;
1805 struct userfaultfd_wake_range range;
23080e27 1806 bool mode_wp, mode_dontwake;
63b2d417 1807
a759a909 1808 if (atomic_read(&ctx->mmap_changing))
63b2d417
AA
1809 return -EAGAIN;
1810
1811 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1812
1813 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1814 sizeof(struct uffdio_writeprotect)))
1815 return -EFAULT;
1816
e71e2ace 1817 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1818 uffdio_wp.range.len);
1819 if (ret)
1820 return ret;
1821
1822 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1823 UFFDIO_WRITEPROTECT_MODE_WP))
1824 return -EINVAL;
23080e27
PX
1825
1826 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1827 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1828
1829 if (mode_wp && mode_dontwake)
63b2d417
AA
1830 return -EINVAL;
1831
cb185d5f
NA
1832 if (mmget_not_zero(ctx->mm)) {
1833 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1834 uffdio_wp.range.len, mode_wp,
1835 &ctx->mmap_changing);
1836 mmput(ctx->mm);
1837 } else {
1838 return -ESRCH;
1839 }
1840
63b2d417
AA
1841 if (ret)
1842 return ret;
1843
23080e27 1844 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1845 range.start = uffdio_wp.range.start;
1846 range.len = uffdio_wp.range.len;
1847 wake_userfault(ctx, &range);
1848 }
1849 return ret;
1850}
1851
f6191471
AR
1852static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1853{
1854 __s64 ret;
1855 struct uffdio_continue uffdio_continue;
1856 struct uffdio_continue __user *user_uffdio_continue;
1857 struct userfaultfd_wake_range range;
1858
1859 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1860
1861 ret = -EAGAIN;
a759a909 1862 if (atomic_read(&ctx->mmap_changing))
f6191471
AR
1863 goto out;
1864
1865 ret = -EFAULT;
1866 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1867 /* don't copy the output fields */
1868 sizeof(uffdio_continue) - (sizeof(__s64))))
1869 goto out;
1870
e71e2ace 1871 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1872 uffdio_continue.range.len);
1873 if (ret)
1874 goto out;
1875
1876 ret = -EINVAL;
1877 /* double check for wraparound just in case. */
1878 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1879 uffdio_continue.range.start) {
1880 goto out;
1881 }
1882 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1883 goto out;
1884
1885 if (mmget_not_zero(ctx->mm)) {
1886 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1887 uffdio_continue.range.len,
1888 &ctx->mmap_changing);
1889 mmput(ctx->mm);
1890 } else {
1891 return -ESRCH;
1892 }
1893
1894 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1895 return -EFAULT;
1896 if (ret < 0)
1897 goto out;
1898
1899 /* len == 0 would wake all */
1900 BUG_ON(!ret);
1901 range.len = ret;
1902 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1903 range.start = uffdio_continue.range.start;
1904 wake_userfault(ctx, &range);
1905 }
1906 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1907
1908out:
1909 return ret;
1910}
1911
9cd75c3c
PE
1912static inline unsigned int uffd_ctx_features(__u64 user_features)
1913{
1914 /*
22e5fe2a
NA
1915 * For the current set of features the bits just coincide. Set
1916 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
9cd75c3c 1917 */
22e5fe2a 1918 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
9cd75c3c
PE
1919}
1920
86039bd3
AA
1921/*
1922 * userland asks for a certain API version and we return which bits
1923 * and ioctl commands are implemented in this kernel for such API
1924 * version or -EINVAL if unknown.
1925 */
1926static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1927 unsigned long arg)
1928{
1929 struct uffdio_api uffdio_api;
1930 void __user *buf = (void __user *)arg;
22e5fe2a 1931 unsigned int ctx_features;
86039bd3 1932 int ret;
65603144 1933 __u64 features;
86039bd3 1934
86039bd3 1935 ret = -EFAULT;
a9b85f94 1936 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1937 goto out;
65603144 1938 features = uffdio_api.features;
3c1c24d9
MR
1939 ret = -EINVAL;
1940 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1941 goto err_out;
1942 ret = -EPERM;
1943 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1944 goto err_out;
65603144
AA
1945 /* report all available features and ioctls to userland */
1946 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 1947#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
1948 uffdio_api.features &=
1949 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
1950#endif
1951#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1952 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
7677f7fd 1953#endif
86039bd3
AA
1954 uffdio_api.ioctls = UFFD_API_IOCTLS;
1955 ret = -EFAULT;
1956 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1957 goto out;
22e5fe2a 1958
65603144 1959 /* only enable the requested features for this uffd context */
22e5fe2a
NA
1960 ctx_features = uffd_ctx_features(features);
1961 ret = -EINVAL;
1962 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1963 goto err_out;
1964
86039bd3
AA
1965 ret = 0;
1966out:
1967 return ret;
3c1c24d9
MR
1968err_out:
1969 memset(&uffdio_api, 0, sizeof(uffdio_api));
1970 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1971 ret = -EFAULT;
1972 goto out;
86039bd3
AA
1973}
1974
1975static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1976 unsigned long arg)
1977{
1978 int ret = -EINVAL;
1979 struct userfaultfd_ctx *ctx = file->private_data;
1980
22e5fe2a 1981 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
e6485a47
AA
1982 return -EINVAL;
1983
86039bd3
AA
1984 switch(cmd) {
1985 case UFFDIO_API:
1986 ret = userfaultfd_api(ctx, arg);
1987 break;
1988 case UFFDIO_REGISTER:
1989 ret = userfaultfd_register(ctx, arg);
1990 break;
1991 case UFFDIO_UNREGISTER:
1992 ret = userfaultfd_unregister(ctx, arg);
1993 break;
1994 case UFFDIO_WAKE:
1995 ret = userfaultfd_wake(ctx, arg);
1996 break;
ad465cae
AA
1997 case UFFDIO_COPY:
1998 ret = userfaultfd_copy(ctx, arg);
1999 break;
2000 case UFFDIO_ZEROPAGE:
2001 ret = userfaultfd_zeropage(ctx, arg);
2002 break;
63b2d417
AA
2003 case UFFDIO_WRITEPROTECT:
2004 ret = userfaultfd_writeprotect(ctx, arg);
2005 break;
f6191471
AR
2006 case UFFDIO_CONTINUE:
2007 ret = userfaultfd_continue(ctx, arg);
2008 break;
86039bd3
AA
2009 }
2010 return ret;
2011}
2012
2013#ifdef CONFIG_PROC_FS
2014static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2015{
2016 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2017 wait_queue_entry_t *wq;
86039bd3
AA
2018 unsigned long pending = 0, total = 0;
2019
cbcfa130 2020 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2021 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2022 pending++;
2023 total++;
2024 }
2055da97 2025 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2026 total++;
2027 }
cbcfa130 2028 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2029
2030 /*
2031 * If more protocols will be added, there will be all shown
2032 * separated by a space. Like this:
2033 * protocols: aa:... bb:...
2034 */
2035 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2036 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2037 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2038}
2039#endif
2040
2041static const struct file_operations userfaultfd_fops = {
2042#ifdef CONFIG_PROC_FS
2043 .show_fdinfo = userfaultfd_show_fdinfo,
2044#endif
2045 .release = userfaultfd_release,
2046 .poll = userfaultfd_poll,
2047 .read = userfaultfd_read,
2048 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2049 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2050 .llseek = noop_llseek,
2051};
2052
3004ec9c
AA
2053static void init_once_userfaultfd_ctx(void *mem)
2054{
2055 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2056
2057 init_waitqueue_head(&ctx->fault_pending_wqh);
2058 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2059 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2060 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2061 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2062}
2063
284cd241 2064SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 2065{
86039bd3 2066 struct userfaultfd_ctx *ctx;
284cd241 2067 int fd;
86039bd3 2068
d0d4730a
LG
2069 if (!sysctl_unprivileged_userfaultfd &&
2070 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2071 !capable(CAP_SYS_PTRACE)) {
2072 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2073 "sysctl knob to 1 if kernel faults must be handled "
2074 "without obtaining CAP_SYS_PTRACE capability\n");
cefdca0a 2075 return -EPERM;
d0d4730a 2076 }
cefdca0a 2077
86039bd3
AA
2078 BUG_ON(!current->mm);
2079
2080 /* Check the UFFD_* constants for consistency. */
37cd0575 2081 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2082 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2083 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2084
37cd0575 2085 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2086 return -EINVAL;
86039bd3 2087
3004ec9c 2088 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2089 if (!ctx)
284cd241 2090 return -ENOMEM;
86039bd3 2091
ca880420 2092 refcount_set(&ctx->refcount, 1);
86039bd3 2093 ctx->flags = flags;
9cd75c3c 2094 ctx->features = 0;
86039bd3 2095 ctx->released = false;
a759a909 2096 atomic_set(&ctx->mmap_changing, 0);
86039bd3
AA
2097 ctx->mm = current->mm;
2098 /* prevent the mm struct to be freed */
f1f10076 2099 mmgrab(ctx->mm);
86039bd3 2100
b537900f
DC
2101 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2102 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2103 if (fd < 0) {
d2005e3f 2104 mmdrop(ctx->mm);
3004ec9c 2105 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2106 }
86039bd3 2107 return fd;
86039bd3 2108}
3004ec9c
AA
2109
2110static int __init userfaultfd_init(void)
2111{
2112 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2113 sizeof(struct userfaultfd_ctx),
2114 0,
2115 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2116 init_once_userfaultfd_ctx);
2117 return 0;
2118}
2119__initcall(userfaultfd_init);