mm/gup: allow to react to fatal signals
[linux-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3
AA
17#include <linux/mm.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/seq_file.h>
21#include <linux/file.h>
22#include <linux/bug.h>
23#include <linux/anon_inodes.h>
24#include <linux/syscalls.h>
25#include <linux/userfaultfd_k.h>
26#include <linux/mempolicy.h>
27#include <linux/ioctl.h>
28#include <linux/security.h>
cab350af 29#include <linux/hugetlb.h>
86039bd3 30
cefdca0a
PX
31int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
cbcfa130
EB
43 *
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
49 *
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
3004ec9c 53 */
86039bd3 54struct userfaultfd_ctx {
15b726ef
AA
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
86039bd3
AA
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
9cd75c3c
PE
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
2c5b7e1b
AA
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
3004ec9c 65 /* pseudo fd refcounting */
ca880420 66 refcount_t refcount;
86039bd3
AA
67 /* userfaultfd syscall flags */
68 unsigned int flags;
9cd75c3c
PE
69 /* features requested from the userspace */
70 unsigned int features;
86039bd3
AA
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
df2cc96e
MR
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
86039bd3
AA
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
79};
80
893e26e6
PE
81struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
85};
86
897ab3e0
MR
87struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
92};
93
86039bd3 94struct userfaultfd_wait_queue {
a9b85f94 95 struct uffd_msg msg;
ac6424b9 96 wait_queue_entry_t wq;
86039bd3 97 struct userfaultfd_ctx *ctx;
15a77c6f 98 bool waken;
86039bd3
AA
99};
100
101struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
104};
105
ac6424b9 106static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
107 int wake_flags, void *key)
108{
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
113
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
86039bd3
AA
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
a9b85f94
AA
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 121 goto out;
15a77c6f
AA
122 WRITE_ONCE(uwq->waken, true);
123 /*
a9668cd6
PZ
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
15a77c6f 126 */
86039bd3 127 ret = wake_up_state(wq->private, mode);
a9668cd6 128 if (ret) {
86039bd3
AA
129 /*
130 * Wake only once, autoremove behavior.
131 *
a9668cd6
PZ
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
135 *
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 139 */
2055da97 140 list_del_init(&wq->entry);
a9668cd6 141 }
86039bd3
AA
142out:
143 return ret;
144}
145
146/**
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
150 */
151static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152{
ca880420 153 refcount_inc(&ctx->refcount);
86039bd3
AA
154}
155
156/**
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158 * context.
159 * @ctx: [in] Pointer to userfaultfd context.
160 *
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163 */
164static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165{
ca880420 166 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 175 mmdrop(ctx->mm);
3004ec9c 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
177 }
178}
179
a9b85f94 180static inline void msg_init(struct uffd_msg *msg)
86039bd3 181{
a9b85f94
AA
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 /*
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
186 */
187 memset(msg, 0, sizeof(struct uffd_msg));
188}
189
190static inline struct uffd_msg userfault_msg(unsigned long address,
191 unsigned int flags,
9d4ac934
AP
192 unsigned long reason,
193 unsigned int features)
a9b85f94
AA
194{
195 struct uffd_msg msg;
196 msg_init(&msg);
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
86039bd3
AA
199 if (flags & FAULT_FLAG_WRITE)
200 /*
a4605a61 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
205 * a write fault.
86039bd3 206 */
a9b85f94 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
208 if (reason & VM_UFFD_WP)
209 /*
a9b85f94
AA
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
86039bd3 215 */
a9b85f94 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 217 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 219 return msg;
86039bd3
AA
220}
221
369cd212
MK
222#ifdef CONFIG_HUGETLB_PAGE
223/*
224 * Same functionality as userfaultfd_must_wait below with modifications for
225 * hugepmd ranges.
226 */
227static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 228 struct vm_area_struct *vma,
369cd212
MK
229 unsigned long address,
230 unsigned long flags,
231 unsigned long reason)
232{
233 struct mm_struct *mm = ctx->mm;
1e2c0436 234 pte_t *ptep, pte;
369cd212
MK
235 bool ret = true;
236
237 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
238
1e2c0436
JF
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241 if (!ptep)
369cd212
MK
242 goto out;
243
244 ret = false;
1e2c0436 245 pte = huge_ptep_get(ptep);
369cd212
MK
246
247 /*
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us.
250 */
1e2c0436 251 if (huge_pte_none(pte))
369cd212 252 ret = true;
1e2c0436 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
254 ret = true;
255out:
256 return ret;
257}
258#else
259static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 260 struct vm_area_struct *vma,
369cd212
MK
261 unsigned long address,
262 unsigned long flags,
263 unsigned long reason)
264{
265 return false; /* should never get here */
266}
267#endif /* CONFIG_HUGETLB_PAGE */
268
8d2afd96
AA
269/*
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 * threads.
275 */
276static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
278 unsigned long flags,
279 unsigned long reason)
280{
281 struct mm_struct *mm = ctx->mm;
282 pgd_t *pgd;
c2febafc 283 p4d_t *p4d;
8d2afd96
AA
284 pud_t *pud;
285 pmd_t *pmd, _pmd;
286 pte_t *pte;
287 bool ret = true;
288
289 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
c2febafc
KS
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
8d2afd96
AA
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
301 /*
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
305 *
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
308 */
309 _pmd = READ_ONCE(*pmd);
a365ac09 310 if (pmd_none(_pmd))
8d2afd96
AA
311 goto out;
312
313 ret = false;
a365ac09
HY
314 if (!pmd_present(_pmd))
315 goto out;
316
8d2afd96
AA
317 if (pmd_trans_huge(_pmd))
318 goto out;
319
320 /*
321 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322 * and use the standard pte_offset_map() instead of parsing _pmd.
323 */
324 pte = pte_offset_map(pmd, address);
325 /*
326 * Lockless access: we're in a wait_event so it's ok if it
327 * changes under us.
328 */
329 if (pte_none(*pte))
330 ret = true;
331 pte_unmap(pte);
332
333out:
334 return ret;
335}
336
86039bd3
AA
337/*
338 * The locking rules involved in returning VM_FAULT_RETRY depending on
339 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
340 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
341 * recommendation in __lock_page_or_retry is not an understatement.
342 *
343 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
344 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
345 * not set.
346 *
347 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
348 * set, VM_FAULT_RETRY can still be returned if and only if there are
349 * fatal_signal_pending()s, and the mmap_sem must be released before
350 * returning it.
351 */
2b740303 352vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 353{
82b0f8c3 354 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
355 struct userfaultfd_ctx *ctx;
356 struct userfaultfd_wait_queue uwq;
2b740303 357 vm_fault_t ret = VM_FAULT_SIGBUS;
dfa37dc3 358 bool must_wait, return_to_userland;
15a77c6f 359 long blocking_state;
86039bd3 360
64c2b203
AA
361 /*
362 * We don't do userfault handling for the final child pid update.
363 *
364 * We also don't do userfault handling during
365 * coredumping. hugetlbfs has the special
366 * follow_hugetlb_page() to skip missing pages in the
367 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
368 * the no_page_table() helper in follow_page_mask(), but the
369 * shmem_vm_ops->fault method is invoked even during
370 * coredumping without mmap_sem and it ends up here.
371 */
372 if (current->flags & (PF_EXITING|PF_DUMPCORE))
373 goto out;
374
375 /*
376 * Coredumping runs without mmap_sem so we can only check that
377 * the mmap_sem is held, if PF_DUMPCORE was not set.
378 */
379 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
380
82b0f8c3 381 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 382 if (!ctx)
ba85c702 383 goto out;
86039bd3
AA
384
385 BUG_ON(ctx->mm != mm);
386
387 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
388 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
389
2d6d6f5a
PS
390 if (ctx->features & UFFD_FEATURE_SIGBUS)
391 goto out;
392
86039bd3
AA
393 /*
394 * If it's already released don't get it. This avoids to loop
395 * in __get_user_pages if userfaultfd_release waits on the
396 * caller of handle_userfault to release the mmap_sem.
397 */
6aa7de05 398 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
399 /*
400 * Don't return VM_FAULT_SIGBUS in this case, so a non
401 * cooperative manager can close the uffd after the
402 * last UFFDIO_COPY, without risking to trigger an
403 * involuntary SIGBUS if the process was starting the
404 * userfaultfd while the userfaultfd was still armed
405 * (but after the last UFFDIO_COPY). If the uffd
406 * wasn't already closed when the userfault reached
407 * this point, that would normally be solved by
408 * userfaultfd_must_wait returning 'false'.
409 *
410 * If we were to return VM_FAULT_SIGBUS here, the non
411 * cooperative manager would be instead forced to
412 * always call UFFDIO_UNREGISTER before it can safely
413 * close the uffd.
414 */
415 ret = VM_FAULT_NOPAGE;
ba85c702 416 goto out;
656710a6 417 }
86039bd3
AA
418
419 /*
420 * Check that we can return VM_FAULT_RETRY.
421 *
422 * NOTE: it should become possible to return VM_FAULT_RETRY
423 * even if FAULT_FLAG_TRIED is set without leading to gup()
424 * -EBUSY failures, if the userfaultfd is to be extended for
425 * VM_UFFD_WP tracking and we intend to arm the userfault
426 * without first stopping userland access to the memory. For
427 * VM_UFFD_MISSING userfaults this is enough for now.
428 */
82b0f8c3 429 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
430 /*
431 * Validate the invariant that nowait must allow retry
432 * to be sure not to return SIGBUS erroneously on
433 * nowait invocations.
434 */
82b0f8c3 435 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
436#ifdef CONFIG_DEBUG_VM
437 if (printk_ratelimit()) {
438 printk(KERN_WARNING
82b0f8c3
JK
439 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
440 vmf->flags);
86039bd3
AA
441 dump_stack();
442 }
443#endif
ba85c702 444 goto out;
86039bd3
AA
445 }
446
447 /*
448 * Handle nowait, not much to do other than tell it to retry
449 * and wait.
450 */
ba85c702 451 ret = VM_FAULT_RETRY;
82b0f8c3 452 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 453 goto out;
86039bd3
AA
454
455 /* take the reference before dropping the mmap_sem */
456 userfaultfd_ctx_get(ctx);
457
86039bd3
AA
458 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
459 uwq.wq.private = current;
9d4ac934
AP
460 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
461 ctx->features);
86039bd3 462 uwq.ctx = ctx;
15a77c6f 463 uwq.waken = false;
86039bd3 464
c270a7ee 465 return_to_userland = vmf->flags & FAULT_FLAG_INTERRUPTIBLE;
15a77c6f
AA
466 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
467 TASK_KILLABLE;
dfa37dc3 468
cbcfa130 469 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
470 /*
471 * After the __add_wait_queue the uwq is visible to userland
472 * through poll/read().
473 */
15b726ef
AA
474 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
475 /*
476 * The smp_mb() after __set_current_state prevents the reads
477 * following the spin_unlock to happen before the list_add in
478 * __add_wait_queue.
479 */
15a77c6f 480 set_current_state(blocking_state);
cbcfa130 481 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 482
369cd212
MK
483 if (!is_vm_hugetlb_page(vmf->vma))
484 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
485 reason);
486 else
7868a208
PA
487 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
488 vmf->address,
369cd212 489 vmf->flags, reason);
8d2afd96
AA
490 up_read(&mm->mmap_sem);
491
6aa7de05 492 if (likely(must_wait && !READ_ONCE(ctx->released) &&
dfa37dc3
AA
493 (return_to_userland ? !signal_pending(current) :
494 !fatal_signal_pending(current)))) {
a9a08845 495 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 496 schedule();
ba85c702 497 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
498
499 /*
500 * False wakeups can orginate even from rwsem before
501 * up_read() however userfaults will wait either for a
502 * targeted wakeup on the specific uwq waitqueue from
503 * wake_userfault() or for signals or for uffd
504 * release.
505 */
506 while (!READ_ONCE(uwq.waken)) {
507 /*
508 * This needs the full smp_store_mb()
509 * guarantee as the state write must be
510 * visible to other CPUs before reading
511 * uwq.waken from other CPUs.
512 */
513 set_current_state(blocking_state);
514 if (READ_ONCE(uwq.waken) ||
515 READ_ONCE(ctx->released) ||
516 (return_to_userland ? signal_pending(current) :
517 fatal_signal_pending(current)))
518 break;
519 schedule();
520 }
ba85c702 521 }
86039bd3 522
ba85c702 523 __set_current_state(TASK_RUNNING);
15b726ef
AA
524
525 /*
526 * Here we race with the list_del; list_add in
527 * userfaultfd_ctx_read(), however because we don't ever run
528 * list_del_init() to refile across the two lists, the prev
529 * and next pointers will never point to self. list_add also
530 * would never let any of the two pointers to point to
531 * self. So list_empty_careful won't risk to see both pointers
532 * pointing to self at any time during the list refile. The
533 * only case where list_del_init() is called is the full
534 * removal in the wake function and there we don't re-list_add
535 * and it's fine not to block on the spinlock. The uwq on this
536 * kernel stack can be released after the list_del_init.
537 */
2055da97 538 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 539 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
540 /*
541 * No need of list_del_init(), the uwq on the stack
542 * will be freed shortly anyway.
543 */
2055da97 544 list_del(&uwq.wq.entry);
cbcfa130 545 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 546 }
86039bd3
AA
547
548 /*
549 * ctx may go away after this if the userfault pseudo fd is
550 * already released.
551 */
552 userfaultfd_ctx_put(ctx);
553
ba85c702
AA
554out:
555 return ret;
86039bd3
AA
556}
557
8c9e7bb7
AA
558static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
559 struct userfaultfd_wait_queue *ewq)
9cd75c3c 560{
0cbb4b4f
AA
561 struct userfaultfd_ctx *release_new_ctx;
562
9a69a829
AA
563 if (WARN_ON_ONCE(current->flags & PF_EXITING))
564 goto out;
9cd75c3c
PE
565
566 ewq->ctx = ctx;
567 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 568 release_new_ctx = NULL;
9cd75c3c 569
cbcfa130 570 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
571 /*
572 * After the __add_wait_queue the uwq is visible to userland
573 * through poll/read().
574 */
575 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
576 for (;;) {
577 set_current_state(TASK_KILLABLE);
578 if (ewq->msg.event == 0)
579 break;
6aa7de05 580 if (READ_ONCE(ctx->released) ||
9cd75c3c 581 fatal_signal_pending(current)) {
384632e6
AA
582 /*
583 * &ewq->wq may be queued in fork_event, but
584 * __remove_wait_queue ignores the head
585 * parameter. It would be a problem if it
586 * didn't.
587 */
9cd75c3c 588 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
589 if (ewq->msg.event == UFFD_EVENT_FORK) {
590 struct userfaultfd_ctx *new;
591
592 new = (struct userfaultfd_ctx *)
593 (unsigned long)
594 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 595 release_new_ctx = new;
7eb76d45 596 }
9cd75c3c
PE
597 break;
598 }
599
cbcfa130 600 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 601
a9a08845 602 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
603 schedule();
604
cbcfa130 605 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
606 }
607 __set_current_state(TASK_RUNNING);
cbcfa130 608 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 609
0cbb4b4f
AA
610 if (release_new_ctx) {
611 struct vm_area_struct *vma;
612 struct mm_struct *mm = release_new_ctx->mm;
613
614 /* the various vma->vm_userfaultfd_ctx still points to it */
615 down_write(&mm->mmap_sem);
04f5866e
AA
616 /* no task can run (and in turn coredump) yet */
617 VM_WARN_ON(!mmget_still_valid(mm));
0cbb4b4f 618 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 619 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 620 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
31e810aa
MR
621 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
622 }
0cbb4b4f
AA
623 up_write(&mm->mmap_sem);
624
625 userfaultfd_ctx_put(release_new_ctx);
626 }
627
9cd75c3c
PE
628 /*
629 * ctx may go away after this if the userfault pseudo fd is
630 * already released.
631 */
9a69a829 632out:
df2cc96e 633 WRITE_ONCE(ctx->mmap_changing, false);
9cd75c3c 634 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
635}
636
637static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
638 struct userfaultfd_wait_queue *ewq)
639{
640 ewq->msg.event = 0;
641 wake_up_locked(&ctx->event_wqh);
642 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
643}
644
893e26e6
PE
645int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
646{
647 struct userfaultfd_ctx *ctx = NULL, *octx;
648 struct userfaultfd_fork_ctx *fctx;
649
650 octx = vma->vm_userfaultfd_ctx.ctx;
651 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
652 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
653 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
654 return 0;
655 }
656
657 list_for_each_entry(fctx, fcs, list)
658 if (fctx->orig == octx) {
659 ctx = fctx->new;
660 break;
661 }
662
663 if (!ctx) {
664 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
665 if (!fctx)
666 return -ENOMEM;
667
668 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
669 if (!ctx) {
670 kfree(fctx);
671 return -ENOMEM;
672 }
673
ca880420 674 refcount_set(&ctx->refcount, 1);
893e26e6
PE
675 ctx->flags = octx->flags;
676 ctx->state = UFFD_STATE_RUNNING;
677 ctx->features = octx->features;
678 ctx->released = false;
df2cc96e 679 ctx->mmap_changing = false;
893e26e6 680 ctx->mm = vma->vm_mm;
00bb31fa 681 mmgrab(ctx->mm);
893e26e6
PE
682
683 userfaultfd_ctx_get(octx);
df2cc96e 684 WRITE_ONCE(octx->mmap_changing, true);
893e26e6
PE
685 fctx->orig = octx;
686 fctx->new = ctx;
687 list_add_tail(&fctx->list, fcs);
688 }
689
690 vma->vm_userfaultfd_ctx.ctx = ctx;
691 return 0;
692}
693
8c9e7bb7 694static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
695{
696 struct userfaultfd_ctx *ctx = fctx->orig;
697 struct userfaultfd_wait_queue ewq;
698
699 msg_init(&ewq.msg);
700
701 ewq.msg.event = UFFD_EVENT_FORK;
702 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
703
8c9e7bb7 704 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
705}
706
707void dup_userfaultfd_complete(struct list_head *fcs)
708{
893e26e6
PE
709 struct userfaultfd_fork_ctx *fctx, *n;
710
711 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 712 dup_fctx(fctx);
893e26e6
PE
713 list_del(&fctx->list);
714 kfree(fctx);
715 }
716}
717
72f87654
PE
718void mremap_userfaultfd_prep(struct vm_area_struct *vma,
719 struct vm_userfaultfd_ctx *vm_ctx)
720{
721 struct userfaultfd_ctx *ctx;
722
723 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
724
725 if (!ctx)
726 return;
727
728 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
729 vm_ctx->ctx = ctx;
730 userfaultfd_ctx_get(ctx);
df2cc96e 731 WRITE_ONCE(ctx->mmap_changing, true);
3cfd22be
PX
732 } else {
733 /* Drop uffd context if remap feature not enabled */
734 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
735 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
72f87654
PE
736 }
737}
738
90794bf1 739void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
740 unsigned long from, unsigned long to,
741 unsigned long len)
742{
90794bf1 743 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
744 struct userfaultfd_wait_queue ewq;
745
746 if (!ctx)
747 return;
748
749 if (to & ~PAGE_MASK) {
750 userfaultfd_ctx_put(ctx);
751 return;
752 }
753
754 msg_init(&ewq.msg);
755
756 ewq.msg.event = UFFD_EVENT_REMAP;
757 ewq.msg.arg.remap.from = from;
758 ewq.msg.arg.remap.to = to;
759 ewq.msg.arg.remap.len = len;
760
761 userfaultfd_event_wait_completion(ctx, &ewq);
762}
763
70ccb92f 764bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 765 unsigned long start, unsigned long end)
05ce7724
PE
766{
767 struct mm_struct *mm = vma->vm_mm;
768 struct userfaultfd_ctx *ctx;
769 struct userfaultfd_wait_queue ewq;
770
771 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 772 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 773 return true;
05ce7724
PE
774
775 userfaultfd_ctx_get(ctx);
df2cc96e 776 WRITE_ONCE(ctx->mmap_changing, true);
05ce7724
PE
777 up_read(&mm->mmap_sem);
778
05ce7724
PE
779 msg_init(&ewq.msg);
780
d811914d
MR
781 ewq.msg.event = UFFD_EVENT_REMOVE;
782 ewq.msg.arg.remove.start = start;
783 ewq.msg.arg.remove.end = end;
05ce7724
PE
784
785 userfaultfd_event_wait_completion(ctx, &ewq);
786
70ccb92f 787 return false;
05ce7724
PE
788}
789
897ab3e0
MR
790static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
791 unsigned long start, unsigned long end)
792{
793 struct userfaultfd_unmap_ctx *unmap_ctx;
794
795 list_for_each_entry(unmap_ctx, unmaps, list)
796 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
797 unmap_ctx->end == end)
798 return true;
799
800 return false;
801}
802
803int userfaultfd_unmap_prep(struct vm_area_struct *vma,
804 unsigned long start, unsigned long end,
805 struct list_head *unmaps)
806{
807 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
808 struct userfaultfd_unmap_ctx *unmap_ctx;
809 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
810
811 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
812 has_unmap_ctx(ctx, unmaps, start, end))
813 continue;
814
815 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
816 if (!unmap_ctx)
817 return -ENOMEM;
818
819 userfaultfd_ctx_get(ctx);
df2cc96e 820 WRITE_ONCE(ctx->mmap_changing, true);
897ab3e0
MR
821 unmap_ctx->ctx = ctx;
822 unmap_ctx->start = start;
823 unmap_ctx->end = end;
824 list_add_tail(&unmap_ctx->list, unmaps);
825 }
826
827 return 0;
828}
829
830void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
831{
832 struct userfaultfd_unmap_ctx *ctx, *n;
833 struct userfaultfd_wait_queue ewq;
834
835 list_for_each_entry_safe(ctx, n, uf, list) {
836 msg_init(&ewq.msg);
837
838 ewq.msg.event = UFFD_EVENT_UNMAP;
839 ewq.msg.arg.remove.start = ctx->start;
840 ewq.msg.arg.remove.end = ctx->end;
841
842 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
843
844 list_del(&ctx->list);
845 kfree(ctx);
846 }
847}
848
86039bd3
AA
849static int userfaultfd_release(struct inode *inode, struct file *file)
850{
851 struct userfaultfd_ctx *ctx = file->private_data;
852 struct mm_struct *mm = ctx->mm;
853 struct vm_area_struct *vma, *prev;
854 /* len == 0 means wake all */
855 struct userfaultfd_wake_range range = { .len = 0, };
856 unsigned long new_flags;
46d0b24c 857 bool still_valid;
86039bd3 858
6aa7de05 859 WRITE_ONCE(ctx->released, true);
86039bd3 860
d2005e3f
ON
861 if (!mmget_not_zero(mm))
862 goto wakeup;
863
86039bd3
AA
864 /*
865 * Flush page faults out of all CPUs. NOTE: all page faults
866 * must be retried without returning VM_FAULT_SIGBUS if
867 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
868 * changes while handle_userfault released the mmap_sem. So
869 * it's critical that released is set to true (above), before
870 * taking the mmap_sem for writing.
871 */
872 down_write(&mm->mmap_sem);
46d0b24c 873 still_valid = mmget_still_valid(mm);
86039bd3
AA
874 prev = NULL;
875 for (vma = mm->mmap; vma; vma = vma->vm_next) {
876 cond_resched();
877 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
878 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
879 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
880 prev = vma;
881 continue;
882 }
883 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
46d0b24c
ON
884 if (still_valid) {
885 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
886 new_flags, vma->anon_vma,
887 vma->vm_file, vma->vm_pgoff,
888 vma_policy(vma),
889 NULL_VM_UFFD_CTX);
890 if (prev)
891 vma = prev;
892 else
893 prev = vma;
894 }
86039bd3
AA
895 vma->vm_flags = new_flags;
896 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
897 }
898 up_write(&mm->mmap_sem);
d2005e3f
ON
899 mmput(mm);
900wakeup:
86039bd3 901 /*
15b726ef 902 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 903 * the last page faults that may have been already waiting on
15b726ef 904 * the fault_*wqh.
86039bd3 905 */
cbcfa130 906 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 907 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 908 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 909 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 910
5a18b64e
MR
911 /* Flush pending events that may still wait on event_wqh */
912 wake_up_all(&ctx->event_wqh);
913
a9a08845 914 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
915 userfaultfd_ctx_put(ctx);
916 return 0;
917}
918
15b726ef 919/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
920static inline struct userfaultfd_wait_queue *find_userfault_in(
921 wait_queue_head_t *wqh)
86039bd3 922{
ac6424b9 923 wait_queue_entry_t *wq;
15b726ef 924 struct userfaultfd_wait_queue *uwq;
86039bd3 925
456a7378 926 lockdep_assert_held(&wqh->lock);
86039bd3 927
15b726ef 928 uwq = NULL;
6dcc27fd 929 if (!waitqueue_active(wqh))
15b726ef
AA
930 goto out;
931 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 932 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
933 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
934out:
935 return uwq;
86039bd3 936}
6dcc27fd
PE
937
938static inline struct userfaultfd_wait_queue *find_userfault(
939 struct userfaultfd_ctx *ctx)
940{
941 return find_userfault_in(&ctx->fault_pending_wqh);
942}
86039bd3 943
9cd75c3c
PE
944static inline struct userfaultfd_wait_queue *find_userfault_evt(
945 struct userfaultfd_ctx *ctx)
946{
947 return find_userfault_in(&ctx->event_wqh);
948}
949
076ccb76 950static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
951{
952 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 953 __poll_t ret;
86039bd3
AA
954
955 poll_wait(file, &ctx->fd_wqh, wait);
956
957 switch (ctx->state) {
958 case UFFD_STATE_WAIT_API:
a9a08845 959 return EPOLLERR;
86039bd3 960 case UFFD_STATE_RUNNING:
ba85c702
AA
961 /*
962 * poll() never guarantees that read won't block.
963 * userfaults can be waken before they're read().
964 */
965 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 966 return EPOLLERR;
15b726ef
AA
967 /*
968 * lockless access to see if there are pending faults
969 * __pollwait last action is the add_wait_queue but
970 * the spin_unlock would allow the waitqueue_active to
971 * pass above the actual list_add inside
972 * add_wait_queue critical section. So use a full
973 * memory barrier to serialize the list_add write of
974 * add_wait_queue() with the waitqueue_active read
975 * below.
976 */
977 ret = 0;
978 smp_mb();
979 if (waitqueue_active(&ctx->fault_pending_wqh))
a9a08845 980 ret = EPOLLIN;
9cd75c3c 981 else if (waitqueue_active(&ctx->event_wqh))
a9a08845 982 ret = EPOLLIN;
9cd75c3c 983
86039bd3
AA
984 return ret;
985 default:
8474901a 986 WARN_ON_ONCE(1);
a9a08845 987 return EPOLLERR;
86039bd3
AA
988 }
989}
990
893e26e6
PE
991static const struct file_operations userfaultfd_fops;
992
993static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
994 struct userfaultfd_ctx *new,
995 struct uffd_msg *msg)
996{
997 int fd;
893e26e6 998
284cd241
EB
999 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1000 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
893e26e6
PE
1001 if (fd < 0)
1002 return fd;
1003
893e26e6
PE
1004 msg->arg.reserved.reserved1 = 0;
1005 msg->arg.fork.ufd = fd;
893e26e6
PE
1006 return 0;
1007}
1008
86039bd3 1009static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 1010 struct uffd_msg *msg)
86039bd3
AA
1011{
1012 ssize_t ret;
1013 DECLARE_WAITQUEUE(wait, current);
15b726ef 1014 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1015 /*
1016 * Handling fork event requires sleeping operations, so
1017 * we drop the event_wqh lock, then do these ops, then
1018 * lock it back and wake up the waiter. While the lock is
1019 * dropped the ewq may go away so we keep track of it
1020 * carefully.
1021 */
1022 LIST_HEAD(fork_event);
1023 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1024
15b726ef 1025 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1026 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1027 __add_wait_queue(&ctx->fd_wqh, &wait);
1028 for (;;) {
1029 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1030 spin_lock(&ctx->fault_pending_wqh.lock);
1031 uwq = find_userfault(ctx);
1032 if (uwq) {
2c5b7e1b
AA
1033 /*
1034 * Use a seqcount to repeat the lockless check
1035 * in wake_userfault() to avoid missing
1036 * wakeups because during the refile both
1037 * waitqueue could become empty if this is the
1038 * only userfault.
1039 */
1040 write_seqcount_begin(&ctx->refile_seq);
1041
86039bd3 1042 /*
15b726ef
AA
1043 * The fault_pending_wqh.lock prevents the uwq
1044 * to disappear from under us.
1045 *
1046 * Refile this userfault from
1047 * fault_pending_wqh to fault_wqh, it's not
1048 * pending anymore after we read it.
1049 *
1050 * Use list_del() by hand (as
1051 * userfaultfd_wake_function also uses
1052 * list_del_init() by hand) to be sure nobody
1053 * changes __remove_wait_queue() to use
1054 * list_del_init() in turn breaking the
1055 * !list_empty_careful() check in
2055da97 1056 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1057 * must never be empty at any time during the
1058 * refile, or the waitqueue could disappear
1059 * from under us. The "wait_queue_head_t"
1060 * parameter of __remove_wait_queue() is unused
1061 * anyway.
86039bd3 1062 */
2055da97 1063 list_del(&uwq->wq.entry);
c430d1e8 1064 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1065
2c5b7e1b
AA
1066 write_seqcount_end(&ctx->refile_seq);
1067
a9b85f94
AA
1068 /* careful to always initialize msg if ret == 0 */
1069 *msg = uwq->msg;
15b726ef 1070 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1071 ret = 0;
1072 break;
1073 }
15b726ef 1074 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1075
1076 spin_lock(&ctx->event_wqh.lock);
1077 uwq = find_userfault_evt(ctx);
1078 if (uwq) {
1079 *msg = uwq->msg;
1080
893e26e6
PE
1081 if (uwq->msg.event == UFFD_EVENT_FORK) {
1082 fork_nctx = (struct userfaultfd_ctx *)
1083 (unsigned long)
1084 uwq->msg.arg.reserved.reserved1;
2055da97 1085 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1086 /*
1087 * fork_nctx can be freed as soon as
1088 * we drop the lock, unless we take a
1089 * reference on it.
1090 */
1091 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1092 spin_unlock(&ctx->event_wqh.lock);
1093 ret = 0;
1094 break;
1095 }
1096
9cd75c3c
PE
1097 userfaultfd_event_complete(ctx, uwq);
1098 spin_unlock(&ctx->event_wqh.lock);
1099 ret = 0;
1100 break;
1101 }
1102 spin_unlock(&ctx->event_wqh.lock);
1103
86039bd3
AA
1104 if (signal_pending(current)) {
1105 ret = -ERESTARTSYS;
1106 break;
1107 }
1108 if (no_wait) {
1109 ret = -EAGAIN;
1110 break;
1111 }
ae62c16e 1112 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1113 schedule();
ae62c16e 1114 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1115 }
1116 __remove_wait_queue(&ctx->fd_wqh, &wait);
1117 __set_current_state(TASK_RUNNING);
ae62c16e 1118 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1119
893e26e6
PE
1120 if (!ret && msg->event == UFFD_EVENT_FORK) {
1121 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
cbcfa130 1122 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1123 if (!list_empty(&fork_event)) {
1124 /*
1125 * The fork thread didn't abort, so we can
1126 * drop the temporary refcount.
1127 */
1128 userfaultfd_ctx_put(fork_nctx);
1129
1130 uwq = list_first_entry(&fork_event,
1131 typeof(*uwq),
1132 wq.entry);
1133 /*
1134 * If fork_event list wasn't empty and in turn
1135 * the event wasn't already released by fork
1136 * (the event is allocated on fork kernel
1137 * stack), put the event back to its place in
1138 * the event_wq. fork_event head will be freed
1139 * as soon as we return so the event cannot
1140 * stay queued there no matter the current
1141 * "ret" value.
1142 */
1143 list_del(&uwq->wq.entry);
1144 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1145
384632e6
AA
1146 /*
1147 * Leave the event in the waitqueue and report
1148 * error to userland if we failed to resolve
1149 * the userfault fork.
1150 */
1151 if (likely(!ret))
893e26e6 1152 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1153 } else {
1154 /*
1155 * Here the fork thread aborted and the
1156 * refcount from the fork thread on fork_nctx
1157 * has already been released. We still hold
1158 * the reference we took before releasing the
1159 * lock above. If resolve_userfault_fork
1160 * failed we've to drop it because the
1161 * fork_nctx has to be freed in such case. If
1162 * it succeeded we'll hold it because the new
1163 * uffd references it.
1164 */
1165 if (ret)
1166 userfaultfd_ctx_put(fork_nctx);
893e26e6 1167 }
cbcfa130 1168 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1169 }
1170
86039bd3
AA
1171 return ret;
1172}
1173
1174static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1175 size_t count, loff_t *ppos)
1176{
1177 struct userfaultfd_ctx *ctx = file->private_data;
1178 ssize_t _ret, ret = 0;
a9b85f94 1179 struct uffd_msg msg;
86039bd3
AA
1180 int no_wait = file->f_flags & O_NONBLOCK;
1181
1182 if (ctx->state == UFFD_STATE_WAIT_API)
1183 return -EINVAL;
86039bd3
AA
1184
1185 for (;;) {
a9b85f94 1186 if (count < sizeof(msg))
86039bd3 1187 return ret ? ret : -EINVAL;
a9b85f94 1188 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1189 if (_ret < 0)
1190 return ret ? ret : _ret;
a9b85f94 1191 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1192 return ret ? ret : -EFAULT;
a9b85f94
AA
1193 ret += sizeof(msg);
1194 buf += sizeof(msg);
1195 count -= sizeof(msg);
86039bd3
AA
1196 /*
1197 * Allow to read more than one fault at time but only
1198 * block if waiting for the very first one.
1199 */
1200 no_wait = O_NONBLOCK;
1201 }
1202}
1203
1204static void __wake_userfault(struct userfaultfd_ctx *ctx,
1205 struct userfaultfd_wake_range *range)
1206{
cbcfa130 1207 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1208 /* wake all in the range and autoremove */
15b726ef 1209 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1210 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1211 range);
1212 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1213 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1214 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1215}
1216
1217static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1218 struct userfaultfd_wake_range *range)
1219{
2c5b7e1b
AA
1220 unsigned seq;
1221 bool need_wakeup;
1222
86039bd3
AA
1223 /*
1224 * To be sure waitqueue_active() is not reordered by the CPU
1225 * before the pagetable update, use an explicit SMP memory
1226 * barrier here. PT lock release or up_read(mmap_sem) still
1227 * have release semantics that can allow the
1228 * waitqueue_active() to be reordered before the pte update.
1229 */
1230 smp_mb();
1231
1232 /*
1233 * Use waitqueue_active because it's very frequent to
1234 * change the address space atomically even if there are no
1235 * userfaults yet. So we take the spinlock only when we're
1236 * sure we've userfaults to wake.
1237 */
2c5b7e1b
AA
1238 do {
1239 seq = read_seqcount_begin(&ctx->refile_seq);
1240 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1241 waitqueue_active(&ctx->fault_wqh);
1242 cond_resched();
1243 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1244 if (need_wakeup)
86039bd3
AA
1245 __wake_userfault(ctx, range);
1246}
1247
1248static __always_inline int validate_range(struct mm_struct *mm,
7d032574 1249 __u64 *start, __u64 len)
86039bd3
AA
1250{
1251 __u64 task_size = mm->task_size;
1252
7d032574
AK
1253 *start = untagged_addr(*start);
1254
1255 if (*start & ~PAGE_MASK)
86039bd3
AA
1256 return -EINVAL;
1257 if (len & ~PAGE_MASK)
1258 return -EINVAL;
1259 if (!len)
1260 return -EINVAL;
7d032574 1261 if (*start < mmap_min_addr)
86039bd3 1262 return -EINVAL;
7d032574 1263 if (*start >= task_size)
86039bd3 1264 return -EINVAL;
7d032574 1265 if (len > task_size - *start)
86039bd3
AA
1266 return -EINVAL;
1267 return 0;
1268}
1269
ba6907db
MR
1270static inline bool vma_can_userfault(struct vm_area_struct *vma)
1271{
cac67329
MR
1272 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1273 vma_is_shmem(vma);
ba6907db
MR
1274}
1275
86039bd3
AA
1276static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1277 unsigned long arg)
1278{
1279 struct mm_struct *mm = ctx->mm;
1280 struct vm_area_struct *vma, *prev, *cur;
1281 int ret;
1282 struct uffdio_register uffdio_register;
1283 struct uffdio_register __user *user_uffdio_register;
1284 unsigned long vm_flags, new_flags;
1285 bool found;
ce53e8e6 1286 bool basic_ioctls;
86039bd3
AA
1287 unsigned long start, end, vma_end;
1288
1289 user_uffdio_register = (struct uffdio_register __user *) arg;
1290
1291 ret = -EFAULT;
1292 if (copy_from_user(&uffdio_register, user_uffdio_register,
1293 sizeof(uffdio_register)-sizeof(__u64)))
1294 goto out;
1295
1296 ret = -EINVAL;
1297 if (!uffdio_register.mode)
1298 goto out;
1299 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1300 UFFDIO_REGISTER_MODE_WP))
1301 goto out;
1302 vm_flags = 0;
1303 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1304 vm_flags |= VM_UFFD_MISSING;
1305 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1306 vm_flags |= VM_UFFD_WP;
1307 /*
1308 * FIXME: remove the below error constraint by
1309 * implementing the wprotect tracking mode.
1310 */
1311 ret = -EINVAL;
1312 goto out;
1313 }
1314
7d032574 1315 ret = validate_range(mm, &uffdio_register.range.start,
86039bd3
AA
1316 uffdio_register.range.len);
1317 if (ret)
1318 goto out;
1319
1320 start = uffdio_register.range.start;
1321 end = start + uffdio_register.range.len;
1322
d2005e3f
ON
1323 ret = -ENOMEM;
1324 if (!mmget_not_zero(mm))
1325 goto out;
1326
86039bd3 1327 down_write(&mm->mmap_sem);
04f5866e
AA
1328 if (!mmget_still_valid(mm))
1329 goto out_unlock;
86039bd3 1330 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1331 if (!vma)
1332 goto out_unlock;
1333
1334 /* check that there's at least one vma in the range */
1335 ret = -EINVAL;
1336 if (vma->vm_start >= end)
1337 goto out_unlock;
1338
cab350af
MK
1339 /*
1340 * If the first vma contains huge pages, make sure start address
1341 * is aligned to huge page size.
1342 */
1343 if (is_vm_hugetlb_page(vma)) {
1344 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1345
1346 if (start & (vma_hpagesize - 1))
1347 goto out_unlock;
1348 }
1349
86039bd3
AA
1350 /*
1351 * Search for not compatible vmas.
86039bd3
AA
1352 */
1353 found = false;
ce53e8e6 1354 basic_ioctls = false;
86039bd3
AA
1355 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1356 cond_resched();
1357
1358 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1359 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1360
1361 /* check not compatible vmas */
1362 ret = -EINVAL;
ba6907db 1363 if (!vma_can_userfault(cur))
86039bd3 1364 goto out_unlock;
29ec9066
AA
1365
1366 /*
1367 * UFFDIO_COPY will fill file holes even without
1368 * PROT_WRITE. This check enforces that if this is a
1369 * MAP_SHARED, the process has write permission to the backing
1370 * file. If VM_MAYWRITE is set it also enforces that on a
1371 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372 * F_WRITE_SEAL can be taken until the vma is destroyed.
1373 */
1374 ret = -EPERM;
1375 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1376 goto out_unlock;
1377
cab350af
MK
1378 /*
1379 * If this vma contains ending address, and huge pages
1380 * check alignment.
1381 */
1382 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383 end > cur->vm_start) {
1384 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1385
1386 ret = -EINVAL;
1387
1388 if (end & (vma_hpagesize - 1))
1389 goto out_unlock;
1390 }
86039bd3
AA
1391
1392 /*
1393 * Check that this vma isn't already owned by a
1394 * different userfaultfd. We can't allow more than one
1395 * userfaultfd to own a single vma simultaneously or we
1396 * wouldn't know which one to deliver the userfaults to.
1397 */
1398 ret = -EBUSY;
1399 if (cur->vm_userfaultfd_ctx.ctx &&
1400 cur->vm_userfaultfd_ctx.ctx != ctx)
1401 goto out_unlock;
1402
cab350af
MK
1403 /*
1404 * Note vmas containing huge pages
1405 */
ce53e8e6
MR
1406 if (is_vm_hugetlb_page(cur))
1407 basic_ioctls = true;
cab350af 1408
86039bd3
AA
1409 found = true;
1410 }
1411 BUG_ON(!found);
1412
1413 if (vma->vm_start < start)
1414 prev = vma;
1415
1416 ret = 0;
1417 do {
1418 cond_resched();
1419
ba6907db 1420 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1421 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1422 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1423 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1424
1425 /*
1426 * Nothing to do: this vma is already registered into this
1427 * userfaultfd and with the right tracking mode too.
1428 */
1429 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1430 (vma->vm_flags & vm_flags) == vm_flags)
1431 goto skip;
1432
1433 if (vma->vm_start > start)
1434 start = vma->vm_start;
1435 vma_end = min(end, vma->vm_end);
1436
9d4678eb
AA
1437 new_flags = (vma->vm_flags &
1438 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
86039bd3
AA
1439 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1440 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1441 vma_policy(vma),
1442 ((struct vm_userfaultfd_ctx){ ctx }));
1443 if (prev) {
1444 vma = prev;
1445 goto next;
1446 }
1447 if (vma->vm_start < start) {
1448 ret = split_vma(mm, vma, start, 1);
1449 if (ret)
1450 break;
1451 }
1452 if (vma->vm_end > end) {
1453 ret = split_vma(mm, vma, end, 0);
1454 if (ret)
1455 break;
1456 }
1457 next:
1458 /*
1459 * In the vma_merge() successful mprotect-like case 8:
1460 * the next vma was merged into the current one and
1461 * the current one has not been updated yet.
1462 */
1463 vma->vm_flags = new_flags;
1464 vma->vm_userfaultfd_ctx.ctx = ctx;
1465
1466 skip:
1467 prev = vma;
1468 start = vma->vm_end;
1469 vma = vma->vm_next;
1470 } while (vma && vma->vm_start < end);
1471out_unlock:
1472 up_write(&mm->mmap_sem);
d2005e3f 1473 mmput(mm);
86039bd3
AA
1474 if (!ret) {
1475 /*
1476 * Now that we scanned all vmas we can already tell
1477 * userland which ioctls methods are guaranteed to
1478 * succeed on this range.
1479 */
ce53e8e6 1480 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1481 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1482 &user_uffdio_register->ioctls))
1483 ret = -EFAULT;
1484 }
1485out:
1486 return ret;
1487}
1488
1489static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1490 unsigned long arg)
1491{
1492 struct mm_struct *mm = ctx->mm;
1493 struct vm_area_struct *vma, *prev, *cur;
1494 int ret;
1495 struct uffdio_range uffdio_unregister;
1496 unsigned long new_flags;
1497 bool found;
1498 unsigned long start, end, vma_end;
1499 const void __user *buf = (void __user *)arg;
1500
1501 ret = -EFAULT;
1502 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1503 goto out;
1504
7d032574 1505 ret = validate_range(mm, &uffdio_unregister.start,
86039bd3
AA
1506 uffdio_unregister.len);
1507 if (ret)
1508 goto out;
1509
1510 start = uffdio_unregister.start;
1511 end = start + uffdio_unregister.len;
1512
d2005e3f
ON
1513 ret = -ENOMEM;
1514 if (!mmget_not_zero(mm))
1515 goto out;
1516
86039bd3 1517 down_write(&mm->mmap_sem);
04f5866e
AA
1518 if (!mmget_still_valid(mm))
1519 goto out_unlock;
86039bd3 1520 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1521 if (!vma)
1522 goto out_unlock;
1523
1524 /* check that there's at least one vma in the range */
1525 ret = -EINVAL;
1526 if (vma->vm_start >= end)
1527 goto out_unlock;
1528
cab350af
MK
1529 /*
1530 * If the first vma contains huge pages, make sure start address
1531 * is aligned to huge page size.
1532 */
1533 if (is_vm_hugetlb_page(vma)) {
1534 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1535
1536 if (start & (vma_hpagesize - 1))
1537 goto out_unlock;
1538 }
1539
86039bd3
AA
1540 /*
1541 * Search for not compatible vmas.
86039bd3
AA
1542 */
1543 found = false;
1544 ret = -EINVAL;
1545 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1546 cond_resched();
1547
1548 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1549 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1550
1551 /*
1552 * Check not compatible vmas, not strictly required
1553 * here as not compatible vmas cannot have an
1554 * userfaultfd_ctx registered on them, but this
1555 * provides for more strict behavior to notice
1556 * unregistration errors.
1557 */
ba6907db 1558 if (!vma_can_userfault(cur))
86039bd3
AA
1559 goto out_unlock;
1560
1561 found = true;
1562 }
1563 BUG_ON(!found);
1564
1565 if (vma->vm_start < start)
1566 prev = vma;
1567
1568 ret = 0;
1569 do {
1570 cond_resched();
1571
ba6907db 1572 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1573
1574 /*
1575 * Nothing to do: this vma is already registered into this
1576 * userfaultfd and with the right tracking mode too.
1577 */
1578 if (!vma->vm_userfaultfd_ctx.ctx)
1579 goto skip;
1580
01e881f5
AA
1581 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1582
86039bd3
AA
1583 if (vma->vm_start > start)
1584 start = vma->vm_start;
1585 vma_end = min(end, vma->vm_end);
1586
09fa5296
AA
1587 if (userfaultfd_missing(vma)) {
1588 /*
1589 * Wake any concurrent pending userfault while
1590 * we unregister, so they will not hang
1591 * permanently and it avoids userland to call
1592 * UFFDIO_WAKE explicitly.
1593 */
1594 struct userfaultfd_wake_range range;
1595 range.start = start;
1596 range.len = vma_end - start;
1597 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1598 }
1599
86039bd3
AA
1600 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1601 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1602 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1603 vma_policy(vma),
1604 NULL_VM_UFFD_CTX);
1605 if (prev) {
1606 vma = prev;
1607 goto next;
1608 }
1609 if (vma->vm_start < start) {
1610 ret = split_vma(mm, vma, start, 1);
1611 if (ret)
1612 break;
1613 }
1614 if (vma->vm_end > end) {
1615 ret = split_vma(mm, vma, end, 0);
1616 if (ret)
1617 break;
1618 }
1619 next:
1620 /*
1621 * In the vma_merge() successful mprotect-like case 8:
1622 * the next vma was merged into the current one and
1623 * the current one has not been updated yet.
1624 */
1625 vma->vm_flags = new_flags;
1626 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1627
1628 skip:
1629 prev = vma;
1630 start = vma->vm_end;
1631 vma = vma->vm_next;
1632 } while (vma && vma->vm_start < end);
1633out_unlock:
1634 up_write(&mm->mmap_sem);
d2005e3f 1635 mmput(mm);
86039bd3
AA
1636out:
1637 return ret;
1638}
1639
1640/*
ba85c702
AA
1641 * userfaultfd_wake may be used in combination with the
1642 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1643 */
1644static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1645 unsigned long arg)
1646{
1647 int ret;
1648 struct uffdio_range uffdio_wake;
1649 struct userfaultfd_wake_range range;
1650 const void __user *buf = (void __user *)arg;
1651
1652 ret = -EFAULT;
1653 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1654 goto out;
1655
7d032574 1656 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1657 if (ret)
1658 goto out;
1659
1660 range.start = uffdio_wake.start;
1661 range.len = uffdio_wake.len;
1662
1663 /*
1664 * len == 0 means wake all and we don't want to wake all here,
1665 * so check it again to be sure.
1666 */
1667 VM_BUG_ON(!range.len);
1668
1669 wake_userfault(ctx, &range);
1670 ret = 0;
1671
1672out:
1673 return ret;
1674}
1675
ad465cae
AA
1676static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1677 unsigned long arg)
1678{
1679 __s64 ret;
1680 struct uffdio_copy uffdio_copy;
1681 struct uffdio_copy __user *user_uffdio_copy;
1682 struct userfaultfd_wake_range range;
1683
1684 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1685
df2cc96e
MR
1686 ret = -EAGAIN;
1687 if (READ_ONCE(ctx->mmap_changing))
1688 goto out;
1689
ad465cae
AA
1690 ret = -EFAULT;
1691 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1692 /* don't copy "copy" last field */
1693 sizeof(uffdio_copy)-sizeof(__s64)))
1694 goto out;
1695
7d032574 1696 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1697 if (ret)
1698 goto out;
1699 /*
1700 * double check for wraparound just in case. copy_from_user()
1701 * will later check uffdio_copy.src + uffdio_copy.len to fit
1702 * in the userland range.
1703 */
1704 ret = -EINVAL;
1705 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1706 goto out;
1707 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1708 goto out;
d2005e3f
ON
1709 if (mmget_not_zero(ctx->mm)) {
1710 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
df2cc96e 1711 uffdio_copy.len, &ctx->mmap_changing);
d2005e3f 1712 mmput(ctx->mm);
96333187 1713 } else {
e86b298b 1714 return -ESRCH;
d2005e3f 1715 }
ad465cae
AA
1716 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1717 return -EFAULT;
1718 if (ret < 0)
1719 goto out;
1720 BUG_ON(!ret);
1721 /* len == 0 would wake all */
1722 range.len = ret;
1723 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1724 range.start = uffdio_copy.dst;
1725 wake_userfault(ctx, &range);
1726 }
1727 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1728out:
1729 return ret;
1730}
1731
1732static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1733 unsigned long arg)
1734{
1735 __s64 ret;
1736 struct uffdio_zeropage uffdio_zeropage;
1737 struct uffdio_zeropage __user *user_uffdio_zeropage;
1738 struct userfaultfd_wake_range range;
1739
1740 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1741
df2cc96e
MR
1742 ret = -EAGAIN;
1743 if (READ_ONCE(ctx->mmap_changing))
1744 goto out;
1745
ad465cae
AA
1746 ret = -EFAULT;
1747 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1748 /* don't copy "zeropage" last field */
1749 sizeof(uffdio_zeropage)-sizeof(__s64)))
1750 goto out;
1751
7d032574 1752 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
ad465cae
AA
1753 uffdio_zeropage.range.len);
1754 if (ret)
1755 goto out;
1756 ret = -EINVAL;
1757 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1758 goto out;
1759
d2005e3f
ON
1760 if (mmget_not_zero(ctx->mm)) {
1761 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1762 uffdio_zeropage.range.len,
1763 &ctx->mmap_changing);
d2005e3f 1764 mmput(ctx->mm);
9d95aa4b 1765 } else {
e86b298b 1766 return -ESRCH;
d2005e3f 1767 }
ad465cae
AA
1768 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1769 return -EFAULT;
1770 if (ret < 0)
1771 goto out;
1772 /* len == 0 would wake all */
1773 BUG_ON(!ret);
1774 range.len = ret;
1775 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1776 range.start = uffdio_zeropage.range.start;
1777 wake_userfault(ctx, &range);
1778 }
1779 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1780out:
1781 return ret;
1782}
1783
9cd75c3c
PE
1784static inline unsigned int uffd_ctx_features(__u64 user_features)
1785{
1786 /*
1787 * For the current set of features the bits just coincide
1788 */
1789 return (unsigned int)user_features;
1790}
1791
86039bd3
AA
1792/*
1793 * userland asks for a certain API version and we return which bits
1794 * and ioctl commands are implemented in this kernel for such API
1795 * version or -EINVAL if unknown.
1796 */
1797static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1798 unsigned long arg)
1799{
1800 struct uffdio_api uffdio_api;
1801 void __user *buf = (void __user *)arg;
1802 int ret;
65603144 1803 __u64 features;
86039bd3
AA
1804
1805 ret = -EINVAL;
1806 if (ctx->state != UFFD_STATE_WAIT_API)
1807 goto out;
1808 ret = -EFAULT;
a9b85f94 1809 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1810 goto out;
65603144 1811 features = uffdio_api.features;
3c1c24d9
MR
1812 ret = -EINVAL;
1813 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1814 goto err_out;
1815 ret = -EPERM;
1816 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1817 goto err_out;
65603144
AA
1818 /* report all available features and ioctls to userland */
1819 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1820 uffdio_api.ioctls = UFFD_API_IOCTLS;
1821 ret = -EFAULT;
1822 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1823 goto out;
1824 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1825 /* only enable the requested features for this uffd context */
1826 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1827 ret = 0;
1828out:
1829 return ret;
3c1c24d9
MR
1830err_out:
1831 memset(&uffdio_api, 0, sizeof(uffdio_api));
1832 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1833 ret = -EFAULT;
1834 goto out;
86039bd3
AA
1835}
1836
1837static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1838 unsigned long arg)
1839{
1840 int ret = -EINVAL;
1841 struct userfaultfd_ctx *ctx = file->private_data;
1842
e6485a47
AA
1843 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1844 return -EINVAL;
1845
86039bd3
AA
1846 switch(cmd) {
1847 case UFFDIO_API:
1848 ret = userfaultfd_api(ctx, arg);
1849 break;
1850 case UFFDIO_REGISTER:
1851 ret = userfaultfd_register(ctx, arg);
1852 break;
1853 case UFFDIO_UNREGISTER:
1854 ret = userfaultfd_unregister(ctx, arg);
1855 break;
1856 case UFFDIO_WAKE:
1857 ret = userfaultfd_wake(ctx, arg);
1858 break;
ad465cae
AA
1859 case UFFDIO_COPY:
1860 ret = userfaultfd_copy(ctx, arg);
1861 break;
1862 case UFFDIO_ZEROPAGE:
1863 ret = userfaultfd_zeropage(ctx, arg);
1864 break;
86039bd3
AA
1865 }
1866 return ret;
1867}
1868
1869#ifdef CONFIG_PROC_FS
1870static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1871{
1872 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1873 wait_queue_entry_t *wq;
86039bd3
AA
1874 unsigned long pending = 0, total = 0;
1875
cbcfa130 1876 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 1877 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1878 pending++;
1879 total++;
1880 }
2055da97 1881 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
1882 total++;
1883 }
cbcfa130 1884 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1885
1886 /*
1887 * If more protocols will be added, there will be all shown
1888 * separated by a space. Like this:
1889 * protocols: aa:... bb:...
1890 */
1891 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1892 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1893 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1894}
1895#endif
1896
1897static const struct file_operations userfaultfd_fops = {
1898#ifdef CONFIG_PROC_FS
1899 .show_fdinfo = userfaultfd_show_fdinfo,
1900#endif
1901 .release = userfaultfd_release,
1902 .poll = userfaultfd_poll,
1903 .read = userfaultfd_read,
1904 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 1905 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
1906 .llseek = noop_llseek,
1907};
1908
3004ec9c
AA
1909static void init_once_userfaultfd_ctx(void *mem)
1910{
1911 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1912
1913 init_waitqueue_head(&ctx->fault_pending_wqh);
1914 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1915 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1916 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1917 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1918}
1919
284cd241 1920SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 1921{
86039bd3 1922 struct userfaultfd_ctx *ctx;
284cd241 1923 int fd;
86039bd3 1924
cefdca0a
PX
1925 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1926 return -EPERM;
1927
86039bd3
AA
1928 BUG_ON(!current->mm);
1929
1930 /* Check the UFFD_* constants for consistency. */
1931 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1932 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1933
86039bd3 1934 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
284cd241 1935 return -EINVAL;
86039bd3 1936
3004ec9c 1937 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 1938 if (!ctx)
284cd241 1939 return -ENOMEM;
86039bd3 1940
ca880420 1941 refcount_set(&ctx->refcount, 1);
86039bd3 1942 ctx->flags = flags;
9cd75c3c 1943 ctx->features = 0;
86039bd3
AA
1944 ctx->state = UFFD_STATE_WAIT_API;
1945 ctx->released = false;
df2cc96e 1946 ctx->mmap_changing = false;
86039bd3
AA
1947 ctx->mm = current->mm;
1948 /* prevent the mm struct to be freed */
f1f10076 1949 mmgrab(ctx->mm);
86039bd3 1950
284cd241
EB
1951 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1952 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1953 if (fd < 0) {
d2005e3f 1954 mmdrop(ctx->mm);
3004ec9c 1955 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1956 }
86039bd3 1957 return fd;
86039bd3 1958}
3004ec9c
AA
1959
1960static int __init userfaultfd_init(void)
1961{
1962 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1963 sizeof(struct userfaultfd_ctx),
1964 0,
1965 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1966 init_once_userfaultfd_ctx);
1967 return 0;
1968}
1969__initcall(userfaultfd_init);