mm: introduce PTE_MARKER swap entry
[linux-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
17fca131 18#include <linux/mm_inline.h>
6dfeaff9 19#include <linux/mmu_notifier.h>
86039bd3
AA
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
d0d4730a 33int sysctl_unprivileged_userfaultfd __read_mostly;
cefdca0a 34
3004ec9c
AA
35static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
36
3004ec9c
AA
37/*
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
cbcfa130
EB
40 *
41 * Locking order:
42 * fd_wqh.lock
43 * fault_pending_wqh.lock
44 * fault_wqh.lock
45 * event_wqh.lock
46 *
47 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
48 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
49 * also taken in IRQ context.
3004ec9c 50 */
86039bd3 51struct userfaultfd_ctx {
15b726ef
AA
52 /* waitqueue head for the pending (i.e. not read) userfaults */
53 wait_queue_head_t fault_pending_wqh;
54 /* waitqueue head for the userfaults */
86039bd3
AA
55 wait_queue_head_t fault_wqh;
56 /* waitqueue head for the pseudo fd to wakeup poll/read */
57 wait_queue_head_t fd_wqh;
9cd75c3c
PE
58 /* waitqueue head for events */
59 wait_queue_head_t event_wqh;
2c5b7e1b 60 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 61 seqcount_spinlock_t refile_seq;
3004ec9c 62 /* pseudo fd refcounting */
ca880420 63 refcount_t refcount;
86039bd3
AA
64 /* userfaultfd syscall flags */
65 unsigned int flags;
9cd75c3c
PE
66 /* features requested from the userspace */
67 unsigned int features;
86039bd3
AA
68 /* released */
69 bool released;
df2cc96e 70 /* memory mappings are changing because of non-cooperative event */
a759a909 71 atomic_t mmap_changing;
86039bd3
AA
72 /* mm with one ore more vmas attached to this userfaultfd_ctx */
73 struct mm_struct *mm;
74};
75
893e26e6
PE
76struct userfaultfd_fork_ctx {
77 struct userfaultfd_ctx *orig;
78 struct userfaultfd_ctx *new;
79 struct list_head list;
80};
81
897ab3e0
MR
82struct userfaultfd_unmap_ctx {
83 struct userfaultfd_ctx *ctx;
84 unsigned long start;
85 unsigned long end;
86 struct list_head list;
87};
88
86039bd3 89struct userfaultfd_wait_queue {
a9b85f94 90 struct uffd_msg msg;
ac6424b9 91 wait_queue_entry_t wq;
86039bd3 92 struct userfaultfd_ctx *ctx;
15a77c6f 93 bool waken;
86039bd3
AA
94};
95
96struct userfaultfd_wake_range {
97 unsigned long start;
98 unsigned long len;
99};
100
22e5fe2a
NA
101/* internal indication that UFFD_API ioctl was successfully executed */
102#define UFFD_FEATURE_INITIALIZED (1u << 31)
103
104static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
105{
106 return ctx->features & UFFD_FEATURE_INITIALIZED;
107}
108
ac6424b9 109static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
110 int wake_flags, void *key)
111{
112 struct userfaultfd_wake_range *range = key;
113 int ret;
114 struct userfaultfd_wait_queue *uwq;
115 unsigned long start, len;
116
117 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
118 ret = 0;
86039bd3
AA
119 /* len == 0 means wake all */
120 start = range->start;
121 len = range->len;
a9b85f94
AA
122 if (len && (start > uwq->msg.arg.pagefault.address ||
123 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 124 goto out;
15a77c6f
AA
125 WRITE_ONCE(uwq->waken, true);
126 /*
a9668cd6
PZ
127 * The Program-Order guarantees provided by the scheduler
128 * ensure uwq->waken is visible before the task is woken.
15a77c6f 129 */
86039bd3 130 ret = wake_up_state(wq->private, mode);
a9668cd6 131 if (ret) {
86039bd3
AA
132 /*
133 * Wake only once, autoremove behavior.
134 *
a9668cd6
PZ
135 * After the effect of list_del_init is visible to the other
136 * CPUs, the waitqueue may disappear from under us, see the
137 * !list_empty_careful() in handle_userfault().
138 *
139 * try_to_wake_up() has an implicit smp_mb(), and the
140 * wq->private is read before calling the extern function
141 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 142 */
2055da97 143 list_del_init(&wq->entry);
a9668cd6 144 }
86039bd3
AA
145out:
146 return ret;
147}
148
149/**
150 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
151 * context.
152 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
153 */
154static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
155{
ca880420 156 refcount_inc(&ctx->refcount);
86039bd3
AA
157}
158
159/**
160 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
161 * context.
162 * @ctx: [in] Pointer to userfaultfd context.
163 *
164 * The userfaultfd context reference must have been previously acquired either
165 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
166 */
167static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
168{
ca880420 169 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
170 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
174 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
176 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
177 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 178 mmdrop(ctx->mm);
3004ec9c 179 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
180 }
181}
182
a9b85f94 183static inline void msg_init(struct uffd_msg *msg)
86039bd3 184{
a9b85f94
AA
185 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
186 /*
187 * Must use memset to zero out the paddings or kernel data is
188 * leaked to userland.
189 */
190 memset(msg, 0, sizeof(struct uffd_msg));
191}
192
193static inline struct uffd_msg userfault_msg(unsigned long address,
194 unsigned int flags,
9d4ac934
AP
195 unsigned long reason,
196 unsigned int features)
a9b85f94
AA
197{
198 struct uffd_msg msg;
199 msg_init(&msg);
200 msg.event = UFFD_EVENT_PAGEFAULT;
824ddc60
NA
201
202 if (!(features & UFFD_FEATURE_EXACT_ADDRESS))
203 address &= PAGE_MASK;
a9b85f94 204 msg.arg.pagefault.address = address;
7677f7fd
AR
205 /*
206 * These flags indicate why the userfault occurred:
207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 * - Neither of these flags being set indicates a MISSING fault.
210 *
211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 * fault. Otherwise, it was a read fault.
213 */
86039bd3 214 if (flags & FAULT_FLAG_WRITE)
a9b85f94 215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 216 if (reason & VM_UFFD_WP)
a9b85f94 217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
218 if (reason & VM_UFFD_MINOR)
219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 220 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 222 return msg;
86039bd3
AA
223}
224
369cd212
MK
225#ifdef CONFIG_HUGETLB_PAGE
226/*
227 * Same functionality as userfaultfd_must_wait below with modifications for
228 * hugepmd ranges.
229 */
230static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 231 struct vm_area_struct *vma,
369cd212
MK
232 unsigned long address,
233 unsigned long flags,
234 unsigned long reason)
235{
236 struct mm_struct *mm = ctx->mm;
1e2c0436 237 pte_t *ptep, pte;
369cd212
MK
238 bool ret = true;
239
42fc5414 240 mmap_assert_locked(mm);
369cd212 241
1e2c0436
JF
242 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
243
244 if (!ptep)
369cd212
MK
245 goto out;
246
247 ret = false;
1e2c0436 248 pte = huge_ptep_get(ptep);
369cd212
MK
249
250 /*
251 * Lockless access: we're in a wait_event so it's ok if it
252 * changes under us.
253 */
1e2c0436 254 if (huge_pte_none(pte))
369cd212 255 ret = true;
1e2c0436 256 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
257 ret = true;
258out:
259 return ret;
260}
261#else
262static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 263 struct vm_area_struct *vma,
369cd212
MK
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267{
268 return false; /* should never get here */
269}
270#endif /* CONFIG_HUGETLB_PAGE */
271
8d2afd96
AA
272/*
273 * Verify the pagetables are still not ok after having reigstered into
274 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
275 * userfault that has already been resolved, if userfaultfd_read and
276 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
277 * threads.
278 */
279static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
280 unsigned long address,
281 unsigned long flags,
282 unsigned long reason)
283{
284 struct mm_struct *mm = ctx->mm;
285 pgd_t *pgd;
c2febafc 286 p4d_t *p4d;
8d2afd96
AA
287 pud_t *pud;
288 pmd_t *pmd, _pmd;
289 pte_t *pte;
290 bool ret = true;
291
42fc5414 292 mmap_assert_locked(mm);
8d2afd96
AA
293
294 pgd = pgd_offset(mm, address);
295 if (!pgd_present(*pgd))
296 goto out;
c2febafc
KS
297 p4d = p4d_offset(pgd, address);
298 if (!p4d_present(*p4d))
299 goto out;
300 pud = pud_offset(p4d, address);
8d2afd96
AA
301 if (!pud_present(*pud))
302 goto out;
303 pmd = pmd_offset(pud, address);
304 /*
305 * READ_ONCE must function as a barrier with narrower scope
306 * and it must be equivalent to:
307 * _pmd = *pmd; barrier();
308 *
309 * This is to deal with the instability (as in
310 * pmd_trans_unstable) of the pmd.
311 */
312 _pmd = READ_ONCE(*pmd);
a365ac09 313 if (pmd_none(_pmd))
8d2afd96
AA
314 goto out;
315
316 ret = false;
a365ac09
HY
317 if (!pmd_present(_pmd))
318 goto out;
319
63b2d417
AA
320 if (pmd_trans_huge(_pmd)) {
321 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
322 ret = true;
8d2afd96 323 goto out;
63b2d417 324 }
8d2afd96
AA
325
326 /*
327 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
328 * and use the standard pte_offset_map() instead of parsing _pmd.
329 */
330 pte = pte_offset_map(pmd, address);
331 /*
332 * Lockless access: we're in a wait_event so it's ok if it
333 * changes under us.
334 */
335 if (pte_none(*pte))
336 ret = true;
63b2d417
AA
337 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
338 ret = true;
8d2afd96
AA
339 pte_unmap(pte);
340
341out:
342 return ret;
343}
344
2f064a59 345static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
346{
347 if (flags & FAULT_FLAG_INTERRUPTIBLE)
348 return TASK_INTERRUPTIBLE;
349
350 if (flags & FAULT_FLAG_KILLABLE)
351 return TASK_KILLABLE;
352
353 return TASK_UNINTERRUPTIBLE;
354}
355
86039bd3
AA
356/*
357 * The locking rules involved in returning VM_FAULT_RETRY depending on
358 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
359 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
360 * recommendation in __lock_page_or_retry is not an understatement.
361 *
c1e8d7c6 362 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
363 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
364 * not set.
365 *
366 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
367 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 368 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
369 * returning it.
370 */
2b740303 371vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 372{
82b0f8c3 373 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
374 struct userfaultfd_ctx *ctx;
375 struct userfaultfd_wait_queue uwq;
2b740303 376 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 377 bool must_wait;
2f064a59 378 unsigned int blocking_state;
86039bd3 379
64c2b203
AA
380 /*
381 * We don't do userfault handling for the final child pid update.
382 *
383 * We also don't do userfault handling during
384 * coredumping. hugetlbfs has the special
385 * follow_hugetlb_page() to skip missing pages in the
386 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
387 * the no_page_table() helper in follow_page_mask(), but the
388 * shmem_vm_ops->fault method is invoked even during
c1e8d7c6 389 * coredumping without mmap_lock and it ends up here.
64c2b203
AA
390 */
391 if (current->flags & (PF_EXITING|PF_DUMPCORE))
392 goto out;
393
394 /*
c1e8d7c6
ML
395 * Coredumping runs without mmap_lock so we can only check that
396 * the mmap_lock is held, if PF_DUMPCORE was not set.
64c2b203 397 */
42fc5414 398 mmap_assert_locked(mm);
64c2b203 399
82b0f8c3 400 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 401 if (!ctx)
ba85c702 402 goto out;
86039bd3
AA
403
404 BUG_ON(ctx->mm != mm);
405
7677f7fd
AR
406 /* Any unrecognized flag is a bug. */
407 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
408 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
409 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 410
2d6d6f5a
PS
411 if (ctx->features & UFFD_FEATURE_SIGBUS)
412 goto out;
37cd0575
LG
413 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
414 ctx->flags & UFFD_USER_MODE_ONLY) {
415 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
416 "sysctl knob to 1 if kernel faults must be handled "
417 "without obtaining CAP_SYS_PTRACE capability\n");
418 goto out;
419 }
2d6d6f5a 420
86039bd3
AA
421 /*
422 * If it's already released don't get it. This avoids to loop
423 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 424 * caller of handle_userfault to release the mmap_lock.
86039bd3 425 */
6aa7de05 426 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
427 /*
428 * Don't return VM_FAULT_SIGBUS in this case, so a non
429 * cooperative manager can close the uffd after the
430 * last UFFDIO_COPY, without risking to trigger an
431 * involuntary SIGBUS if the process was starting the
432 * userfaultfd while the userfaultfd was still armed
433 * (but after the last UFFDIO_COPY). If the uffd
434 * wasn't already closed when the userfault reached
435 * this point, that would normally be solved by
436 * userfaultfd_must_wait returning 'false'.
437 *
438 * If we were to return VM_FAULT_SIGBUS here, the non
439 * cooperative manager would be instead forced to
440 * always call UFFDIO_UNREGISTER before it can safely
441 * close the uffd.
442 */
443 ret = VM_FAULT_NOPAGE;
ba85c702 444 goto out;
656710a6 445 }
86039bd3
AA
446
447 /*
448 * Check that we can return VM_FAULT_RETRY.
449 *
450 * NOTE: it should become possible to return VM_FAULT_RETRY
451 * even if FAULT_FLAG_TRIED is set without leading to gup()
452 * -EBUSY failures, if the userfaultfd is to be extended for
453 * VM_UFFD_WP tracking and we intend to arm the userfault
454 * without first stopping userland access to the memory. For
455 * VM_UFFD_MISSING userfaults this is enough for now.
456 */
82b0f8c3 457 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
458 /*
459 * Validate the invariant that nowait must allow retry
460 * to be sure not to return SIGBUS erroneously on
461 * nowait invocations.
462 */
82b0f8c3 463 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
464#ifdef CONFIG_DEBUG_VM
465 if (printk_ratelimit()) {
466 printk(KERN_WARNING
82b0f8c3
JK
467 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
468 vmf->flags);
86039bd3
AA
469 dump_stack();
470 }
471#endif
ba85c702 472 goto out;
86039bd3
AA
473 }
474
475 /*
476 * Handle nowait, not much to do other than tell it to retry
477 * and wait.
478 */
ba85c702 479 ret = VM_FAULT_RETRY;
82b0f8c3 480 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 481 goto out;
86039bd3 482
c1e8d7c6 483 /* take the reference before dropping the mmap_lock */
86039bd3
AA
484 userfaultfd_ctx_get(ctx);
485
86039bd3
AA
486 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
487 uwq.wq.private = current;
824ddc60 488 uwq.msg = userfault_msg(vmf->real_address, vmf->flags, reason,
9d4ac934 489 ctx->features);
86039bd3 490 uwq.ctx = ctx;
15a77c6f 491 uwq.waken = false;
86039bd3 492
3e69ad08 493 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 494
cbcfa130 495 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
496 /*
497 * After the __add_wait_queue the uwq is visible to userland
498 * through poll/read().
499 */
15b726ef
AA
500 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
501 /*
502 * The smp_mb() after __set_current_state prevents the reads
503 * following the spin_unlock to happen before the list_add in
504 * __add_wait_queue.
505 */
15a77c6f 506 set_current_state(blocking_state);
cbcfa130 507 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 508
369cd212
MK
509 if (!is_vm_hugetlb_page(vmf->vma))
510 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
511 reason);
512 else
7868a208
PA
513 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
514 vmf->address,
369cd212 515 vmf->flags, reason);
d8ed45c5 516 mmap_read_unlock(mm);
8d2afd96 517
f9bf3522 518 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 519 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 520 schedule();
ba85c702 521 }
86039bd3 522
ba85c702 523 __set_current_state(TASK_RUNNING);
15b726ef
AA
524
525 /*
526 * Here we race with the list_del; list_add in
527 * userfaultfd_ctx_read(), however because we don't ever run
528 * list_del_init() to refile across the two lists, the prev
529 * and next pointers will never point to self. list_add also
530 * would never let any of the two pointers to point to
531 * self. So list_empty_careful won't risk to see both pointers
532 * pointing to self at any time during the list refile. The
533 * only case where list_del_init() is called is the full
534 * removal in the wake function and there we don't re-list_add
535 * and it's fine not to block on the spinlock. The uwq on this
536 * kernel stack can be released after the list_del_init.
537 */
2055da97 538 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 539 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
540 /*
541 * No need of list_del_init(), the uwq on the stack
542 * will be freed shortly anyway.
543 */
2055da97 544 list_del(&uwq.wq.entry);
cbcfa130 545 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 546 }
86039bd3
AA
547
548 /*
549 * ctx may go away after this if the userfault pseudo fd is
550 * already released.
551 */
552 userfaultfd_ctx_put(ctx);
553
ba85c702
AA
554out:
555 return ret;
86039bd3
AA
556}
557
8c9e7bb7
AA
558static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
559 struct userfaultfd_wait_queue *ewq)
9cd75c3c 560{
0cbb4b4f
AA
561 struct userfaultfd_ctx *release_new_ctx;
562
9a69a829
AA
563 if (WARN_ON_ONCE(current->flags & PF_EXITING))
564 goto out;
9cd75c3c
PE
565
566 ewq->ctx = ctx;
567 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 568 release_new_ctx = NULL;
9cd75c3c 569
cbcfa130 570 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
571 /*
572 * After the __add_wait_queue the uwq is visible to userland
573 * through poll/read().
574 */
575 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
576 for (;;) {
577 set_current_state(TASK_KILLABLE);
578 if (ewq->msg.event == 0)
579 break;
6aa7de05 580 if (READ_ONCE(ctx->released) ||
9cd75c3c 581 fatal_signal_pending(current)) {
384632e6
AA
582 /*
583 * &ewq->wq may be queued in fork_event, but
584 * __remove_wait_queue ignores the head
585 * parameter. It would be a problem if it
586 * didn't.
587 */
9cd75c3c 588 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
589 if (ewq->msg.event == UFFD_EVENT_FORK) {
590 struct userfaultfd_ctx *new;
591
592 new = (struct userfaultfd_ctx *)
593 (unsigned long)
594 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 595 release_new_ctx = new;
7eb76d45 596 }
9cd75c3c
PE
597 break;
598 }
599
cbcfa130 600 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 601
a9a08845 602 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
603 schedule();
604
cbcfa130 605 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
606 }
607 __set_current_state(TASK_RUNNING);
cbcfa130 608 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 609
0cbb4b4f
AA
610 if (release_new_ctx) {
611 struct vm_area_struct *vma;
612 struct mm_struct *mm = release_new_ctx->mm;
613
614 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 615 mmap_write_lock(mm);
0cbb4b4f 616 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 617 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 618 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 619 vma->vm_flags &= ~__VM_UFFD_FLAGS;
31e810aa 620 }
d8ed45c5 621 mmap_write_unlock(mm);
0cbb4b4f
AA
622
623 userfaultfd_ctx_put(release_new_ctx);
624 }
625
9cd75c3c
PE
626 /*
627 * ctx may go away after this if the userfault pseudo fd is
628 * already released.
629 */
9a69a829 630out:
a759a909
NA
631 atomic_dec(&ctx->mmap_changing);
632 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
9cd75c3c 633 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
634}
635
636static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
637 struct userfaultfd_wait_queue *ewq)
638{
639 ewq->msg.event = 0;
640 wake_up_locked(&ctx->event_wqh);
641 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
642}
643
893e26e6
PE
644int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
645{
646 struct userfaultfd_ctx *ctx = NULL, *octx;
647 struct userfaultfd_fork_ctx *fctx;
648
649 octx = vma->vm_userfaultfd_ctx.ctx;
650 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
651 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 652 vma->vm_flags &= ~__VM_UFFD_FLAGS;
893e26e6
PE
653 return 0;
654 }
655
656 list_for_each_entry(fctx, fcs, list)
657 if (fctx->orig == octx) {
658 ctx = fctx->new;
659 break;
660 }
661
662 if (!ctx) {
663 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
664 if (!fctx)
665 return -ENOMEM;
666
667 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
668 if (!ctx) {
669 kfree(fctx);
670 return -ENOMEM;
671 }
672
ca880420 673 refcount_set(&ctx->refcount, 1);
893e26e6 674 ctx->flags = octx->flags;
893e26e6
PE
675 ctx->features = octx->features;
676 ctx->released = false;
a759a909 677 atomic_set(&ctx->mmap_changing, 0);
893e26e6 678 ctx->mm = vma->vm_mm;
00bb31fa 679 mmgrab(ctx->mm);
893e26e6
PE
680
681 userfaultfd_ctx_get(octx);
a759a909 682 atomic_inc(&octx->mmap_changing);
893e26e6
PE
683 fctx->orig = octx;
684 fctx->new = ctx;
685 list_add_tail(&fctx->list, fcs);
686 }
687
688 vma->vm_userfaultfd_ctx.ctx = ctx;
689 return 0;
690}
691
8c9e7bb7 692static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
693{
694 struct userfaultfd_ctx *ctx = fctx->orig;
695 struct userfaultfd_wait_queue ewq;
696
697 msg_init(&ewq.msg);
698
699 ewq.msg.event = UFFD_EVENT_FORK;
700 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
701
8c9e7bb7 702 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
703}
704
705void dup_userfaultfd_complete(struct list_head *fcs)
706{
893e26e6
PE
707 struct userfaultfd_fork_ctx *fctx, *n;
708
709 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 710 dup_fctx(fctx);
893e26e6
PE
711 list_del(&fctx->list);
712 kfree(fctx);
713 }
714}
715
72f87654
PE
716void mremap_userfaultfd_prep(struct vm_area_struct *vma,
717 struct vm_userfaultfd_ctx *vm_ctx)
718{
719 struct userfaultfd_ctx *ctx;
720
721 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
722
723 if (!ctx)
724 return;
725
726 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
727 vm_ctx->ctx = ctx;
728 userfaultfd_ctx_get(ctx);
a759a909 729 atomic_inc(&ctx->mmap_changing);
3cfd22be
PX
730 } else {
731 /* Drop uffd context if remap feature not enabled */
732 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 733 vma->vm_flags &= ~__VM_UFFD_FLAGS;
72f87654
PE
734 }
735}
736
90794bf1 737void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
738 unsigned long from, unsigned long to,
739 unsigned long len)
740{
90794bf1 741 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
742 struct userfaultfd_wait_queue ewq;
743
744 if (!ctx)
745 return;
746
747 if (to & ~PAGE_MASK) {
748 userfaultfd_ctx_put(ctx);
749 return;
750 }
751
752 msg_init(&ewq.msg);
753
754 ewq.msg.event = UFFD_EVENT_REMAP;
755 ewq.msg.arg.remap.from = from;
756 ewq.msg.arg.remap.to = to;
757 ewq.msg.arg.remap.len = len;
758
759 userfaultfd_event_wait_completion(ctx, &ewq);
760}
761
70ccb92f 762bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 763 unsigned long start, unsigned long end)
05ce7724
PE
764{
765 struct mm_struct *mm = vma->vm_mm;
766 struct userfaultfd_ctx *ctx;
767 struct userfaultfd_wait_queue ewq;
768
769 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 770 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 771 return true;
05ce7724
PE
772
773 userfaultfd_ctx_get(ctx);
a759a909 774 atomic_inc(&ctx->mmap_changing);
d8ed45c5 775 mmap_read_unlock(mm);
05ce7724 776
05ce7724
PE
777 msg_init(&ewq.msg);
778
d811914d
MR
779 ewq.msg.event = UFFD_EVENT_REMOVE;
780 ewq.msg.arg.remove.start = start;
781 ewq.msg.arg.remove.end = end;
05ce7724
PE
782
783 userfaultfd_event_wait_completion(ctx, &ewq);
784
70ccb92f 785 return false;
05ce7724
PE
786}
787
897ab3e0
MR
788static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
789 unsigned long start, unsigned long end)
790{
791 struct userfaultfd_unmap_ctx *unmap_ctx;
792
793 list_for_each_entry(unmap_ctx, unmaps, list)
794 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
795 unmap_ctx->end == end)
796 return true;
797
798 return false;
799}
800
801int userfaultfd_unmap_prep(struct vm_area_struct *vma,
802 unsigned long start, unsigned long end,
803 struct list_head *unmaps)
804{
805 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
806 struct userfaultfd_unmap_ctx *unmap_ctx;
807 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
808
809 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
810 has_unmap_ctx(ctx, unmaps, start, end))
811 continue;
812
813 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
814 if (!unmap_ctx)
815 return -ENOMEM;
816
817 userfaultfd_ctx_get(ctx);
a759a909 818 atomic_inc(&ctx->mmap_changing);
897ab3e0
MR
819 unmap_ctx->ctx = ctx;
820 unmap_ctx->start = start;
821 unmap_ctx->end = end;
822 list_add_tail(&unmap_ctx->list, unmaps);
823 }
824
825 return 0;
826}
827
828void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
829{
830 struct userfaultfd_unmap_ctx *ctx, *n;
831 struct userfaultfd_wait_queue ewq;
832
833 list_for_each_entry_safe(ctx, n, uf, list) {
834 msg_init(&ewq.msg);
835
836 ewq.msg.event = UFFD_EVENT_UNMAP;
837 ewq.msg.arg.remove.start = ctx->start;
838 ewq.msg.arg.remove.end = ctx->end;
839
840 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
841
842 list_del(&ctx->list);
843 kfree(ctx);
844 }
845}
846
86039bd3
AA
847static int userfaultfd_release(struct inode *inode, struct file *file)
848{
849 struct userfaultfd_ctx *ctx = file->private_data;
850 struct mm_struct *mm = ctx->mm;
851 struct vm_area_struct *vma, *prev;
852 /* len == 0 means wake all */
853 struct userfaultfd_wake_range range = { .len = 0, };
854 unsigned long new_flags;
855
6aa7de05 856 WRITE_ONCE(ctx->released, true);
86039bd3 857
d2005e3f
ON
858 if (!mmget_not_zero(mm))
859 goto wakeup;
860
86039bd3
AA
861 /*
862 * Flush page faults out of all CPUs. NOTE: all page faults
863 * must be retried without returning VM_FAULT_SIGBUS if
864 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 865 * changes while handle_userfault released the mmap_lock. So
86039bd3 866 * it's critical that released is set to true (above), before
c1e8d7c6 867 * taking the mmap_lock for writing.
86039bd3 868 */
d8ed45c5 869 mmap_write_lock(mm);
86039bd3
AA
870 prev = NULL;
871 for (vma = mm->mmap; vma; vma = vma->vm_next) {
872 cond_resched();
873 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 874 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
875 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
876 prev = vma;
877 continue;
878 }
7677f7fd 879 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
4d45e75a
JH
880 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
881 new_flags, vma->anon_vma,
882 vma->vm_file, vma->vm_pgoff,
883 vma_policy(vma),
5c26f6ac 884 NULL_VM_UFFD_CTX, anon_vma_name(vma));
4d45e75a
JH
885 if (prev)
886 vma = prev;
887 else
888 prev = vma;
86039bd3
AA
889 vma->vm_flags = new_flags;
890 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
891 }
d8ed45c5 892 mmap_write_unlock(mm);
d2005e3f
ON
893 mmput(mm);
894wakeup:
86039bd3 895 /*
15b726ef 896 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 897 * the last page faults that may have been already waiting on
15b726ef 898 * the fault_*wqh.
86039bd3 899 */
cbcfa130 900 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 901 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 902 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 903 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 904
5a18b64e
MR
905 /* Flush pending events that may still wait on event_wqh */
906 wake_up_all(&ctx->event_wqh);
907
a9a08845 908 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
909 userfaultfd_ctx_put(ctx);
910 return 0;
911}
912
15b726ef 913/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
914static inline struct userfaultfd_wait_queue *find_userfault_in(
915 wait_queue_head_t *wqh)
86039bd3 916{
ac6424b9 917 wait_queue_entry_t *wq;
15b726ef 918 struct userfaultfd_wait_queue *uwq;
86039bd3 919
456a7378 920 lockdep_assert_held(&wqh->lock);
86039bd3 921
15b726ef 922 uwq = NULL;
6dcc27fd 923 if (!waitqueue_active(wqh))
15b726ef
AA
924 goto out;
925 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 926 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
927 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
928out:
929 return uwq;
86039bd3 930}
6dcc27fd
PE
931
932static inline struct userfaultfd_wait_queue *find_userfault(
933 struct userfaultfd_ctx *ctx)
934{
935 return find_userfault_in(&ctx->fault_pending_wqh);
936}
86039bd3 937
9cd75c3c
PE
938static inline struct userfaultfd_wait_queue *find_userfault_evt(
939 struct userfaultfd_ctx *ctx)
940{
941 return find_userfault_in(&ctx->event_wqh);
942}
943
076ccb76 944static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
945{
946 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 947 __poll_t ret;
86039bd3
AA
948
949 poll_wait(file, &ctx->fd_wqh, wait);
950
22e5fe2a 951 if (!userfaultfd_is_initialized(ctx))
a9a08845 952 return EPOLLERR;
9cd75c3c 953
22e5fe2a
NA
954 /*
955 * poll() never guarantees that read won't block.
956 * userfaults can be waken before they're read().
957 */
958 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 959 return EPOLLERR;
22e5fe2a
NA
960 /*
961 * lockless access to see if there are pending faults
962 * __pollwait last action is the add_wait_queue but
963 * the spin_unlock would allow the waitqueue_active to
964 * pass above the actual list_add inside
965 * add_wait_queue critical section. So use a full
966 * memory barrier to serialize the list_add write of
967 * add_wait_queue() with the waitqueue_active read
968 * below.
969 */
970 ret = 0;
971 smp_mb();
972 if (waitqueue_active(&ctx->fault_pending_wqh))
973 ret = EPOLLIN;
974 else if (waitqueue_active(&ctx->event_wqh))
975 ret = EPOLLIN;
976
977 return ret;
86039bd3
AA
978}
979
893e26e6
PE
980static const struct file_operations userfaultfd_fops;
981
b537900f
DC
982static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983 struct inode *inode,
893e26e6
PE
984 struct uffd_msg *msg)
985{
986 int fd;
893e26e6 987
b537900f
DC
988 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
990 if (fd < 0)
991 return fd;
992
893e26e6
PE
993 msg->arg.reserved.reserved1 = 0;
994 msg->arg.fork.ufd = fd;
893e26e6
PE
995 return 0;
996}
997
86039bd3 998static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 999 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1000{
1001 ssize_t ret;
1002 DECLARE_WAITQUEUE(wait, current);
15b726ef 1003 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1004 /*
1005 * Handling fork event requires sleeping operations, so
1006 * we drop the event_wqh lock, then do these ops, then
1007 * lock it back and wake up the waiter. While the lock is
1008 * dropped the ewq may go away so we keep track of it
1009 * carefully.
1010 */
1011 LIST_HEAD(fork_event);
1012 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1013
15b726ef 1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1015 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1016 __add_wait_queue(&ctx->fd_wqh, &wait);
1017 for (;;) {
1018 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1019 spin_lock(&ctx->fault_pending_wqh.lock);
1020 uwq = find_userfault(ctx);
1021 if (uwq) {
2c5b7e1b
AA
1022 /*
1023 * Use a seqcount to repeat the lockless check
1024 * in wake_userfault() to avoid missing
1025 * wakeups because during the refile both
1026 * waitqueue could become empty if this is the
1027 * only userfault.
1028 */
1029 write_seqcount_begin(&ctx->refile_seq);
1030
86039bd3 1031 /*
15b726ef
AA
1032 * The fault_pending_wqh.lock prevents the uwq
1033 * to disappear from under us.
1034 *
1035 * Refile this userfault from
1036 * fault_pending_wqh to fault_wqh, it's not
1037 * pending anymore after we read it.
1038 *
1039 * Use list_del() by hand (as
1040 * userfaultfd_wake_function also uses
1041 * list_del_init() by hand) to be sure nobody
1042 * changes __remove_wait_queue() to use
1043 * list_del_init() in turn breaking the
1044 * !list_empty_careful() check in
2055da97 1045 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1046 * must never be empty at any time during the
1047 * refile, or the waitqueue could disappear
1048 * from under us. The "wait_queue_head_t"
1049 * parameter of __remove_wait_queue() is unused
1050 * anyway.
86039bd3 1051 */
2055da97 1052 list_del(&uwq->wq.entry);
c430d1e8 1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1054
2c5b7e1b
AA
1055 write_seqcount_end(&ctx->refile_seq);
1056
a9b85f94
AA
1057 /* careful to always initialize msg if ret == 0 */
1058 *msg = uwq->msg;
15b726ef 1059 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1060 ret = 0;
1061 break;
1062 }
15b726ef 1063 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1064
1065 spin_lock(&ctx->event_wqh.lock);
1066 uwq = find_userfault_evt(ctx);
1067 if (uwq) {
1068 *msg = uwq->msg;
1069
893e26e6
PE
1070 if (uwq->msg.event == UFFD_EVENT_FORK) {
1071 fork_nctx = (struct userfaultfd_ctx *)
1072 (unsigned long)
1073 uwq->msg.arg.reserved.reserved1;
2055da97 1074 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1075 /*
1076 * fork_nctx can be freed as soon as
1077 * we drop the lock, unless we take a
1078 * reference on it.
1079 */
1080 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1081 spin_unlock(&ctx->event_wqh.lock);
1082 ret = 0;
1083 break;
1084 }
1085
9cd75c3c
PE
1086 userfaultfd_event_complete(ctx, uwq);
1087 spin_unlock(&ctx->event_wqh.lock);
1088 ret = 0;
1089 break;
1090 }
1091 spin_unlock(&ctx->event_wqh.lock);
1092
86039bd3
AA
1093 if (signal_pending(current)) {
1094 ret = -ERESTARTSYS;
1095 break;
1096 }
1097 if (no_wait) {
1098 ret = -EAGAIN;
1099 break;
1100 }
ae62c16e 1101 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1102 schedule();
ae62c16e 1103 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1104 }
1105 __remove_wait_queue(&ctx->fd_wqh, &wait);
1106 __set_current_state(TASK_RUNNING);
ae62c16e 1107 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1108
893e26e6 1109 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1110 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1111 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1112 if (!list_empty(&fork_event)) {
1113 /*
1114 * The fork thread didn't abort, so we can
1115 * drop the temporary refcount.
1116 */
1117 userfaultfd_ctx_put(fork_nctx);
1118
1119 uwq = list_first_entry(&fork_event,
1120 typeof(*uwq),
1121 wq.entry);
1122 /*
1123 * If fork_event list wasn't empty and in turn
1124 * the event wasn't already released by fork
1125 * (the event is allocated on fork kernel
1126 * stack), put the event back to its place in
1127 * the event_wq. fork_event head will be freed
1128 * as soon as we return so the event cannot
1129 * stay queued there no matter the current
1130 * "ret" value.
1131 */
1132 list_del(&uwq->wq.entry);
1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1134
384632e6
AA
1135 /*
1136 * Leave the event in the waitqueue and report
1137 * error to userland if we failed to resolve
1138 * the userfault fork.
1139 */
1140 if (likely(!ret))
893e26e6 1141 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1142 } else {
1143 /*
1144 * Here the fork thread aborted and the
1145 * refcount from the fork thread on fork_nctx
1146 * has already been released. We still hold
1147 * the reference we took before releasing the
1148 * lock above. If resolve_userfault_fork
1149 * failed we've to drop it because the
1150 * fork_nctx has to be freed in such case. If
1151 * it succeeded we'll hold it because the new
1152 * uffd references it.
1153 */
1154 if (ret)
1155 userfaultfd_ctx_put(fork_nctx);
893e26e6 1156 }
cbcfa130 1157 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1158 }
1159
86039bd3
AA
1160 return ret;
1161}
1162
1163static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164 size_t count, loff_t *ppos)
1165{
1166 struct userfaultfd_ctx *ctx = file->private_data;
1167 ssize_t _ret, ret = 0;
a9b85f94 1168 struct uffd_msg msg;
86039bd3 1169 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1170 struct inode *inode = file_inode(file);
86039bd3 1171
22e5fe2a 1172 if (!userfaultfd_is_initialized(ctx))
86039bd3 1173 return -EINVAL;
86039bd3
AA
1174
1175 for (;;) {
a9b85f94 1176 if (count < sizeof(msg))
86039bd3 1177 return ret ? ret : -EINVAL;
b537900f 1178 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1179 if (_ret < 0)
1180 return ret ? ret : _ret;
a9b85f94 1181 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1182 return ret ? ret : -EFAULT;
a9b85f94
AA
1183 ret += sizeof(msg);
1184 buf += sizeof(msg);
1185 count -= sizeof(msg);
86039bd3
AA
1186 /*
1187 * Allow to read more than one fault at time but only
1188 * block if waiting for the very first one.
1189 */
1190 no_wait = O_NONBLOCK;
1191 }
1192}
1193
1194static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195 struct userfaultfd_wake_range *range)
1196{
cbcfa130 1197 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1198 /* wake all in the range and autoremove */
15b726ef 1199 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1200 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1201 range);
1202 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1203 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1204 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1205}
1206
1207static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208 struct userfaultfd_wake_range *range)
1209{
2c5b7e1b
AA
1210 unsigned seq;
1211 bool need_wakeup;
1212
86039bd3
AA
1213 /*
1214 * To be sure waitqueue_active() is not reordered by the CPU
1215 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1216 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1217 * have release semantics that can allow the
1218 * waitqueue_active() to be reordered before the pte update.
1219 */
1220 smp_mb();
1221
1222 /*
1223 * Use waitqueue_active because it's very frequent to
1224 * change the address space atomically even if there are no
1225 * userfaults yet. So we take the spinlock only when we're
1226 * sure we've userfaults to wake.
1227 */
2c5b7e1b
AA
1228 do {
1229 seq = read_seqcount_begin(&ctx->refile_seq);
1230 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231 waitqueue_active(&ctx->fault_wqh);
1232 cond_resched();
1233 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1234 if (need_wakeup)
86039bd3
AA
1235 __wake_userfault(ctx, range);
1236}
1237
1238static __always_inline int validate_range(struct mm_struct *mm,
e71e2ace 1239 __u64 start, __u64 len)
86039bd3
AA
1240{
1241 __u64 task_size = mm->task_size;
1242
e71e2ace 1243 if (start & ~PAGE_MASK)
86039bd3
AA
1244 return -EINVAL;
1245 if (len & ~PAGE_MASK)
1246 return -EINVAL;
1247 if (!len)
1248 return -EINVAL;
e71e2ace 1249 if (start < mmap_min_addr)
86039bd3 1250 return -EINVAL;
e71e2ace 1251 if (start >= task_size)
86039bd3 1252 return -EINVAL;
e71e2ace 1253 if (len > task_size - start)
86039bd3
AA
1254 return -EINVAL;
1255 return 0;
1256}
1257
63b2d417
AA
1258static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259 unsigned long vm_flags)
ba6907db 1260{
63b2d417 1261 /* FIXME: add WP support to hugetlbfs and shmem */
7677f7fd
AR
1262 if (vm_flags & VM_UFFD_WP) {
1263 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1264 return false;
1265 }
1266
1267 if (vm_flags & VM_UFFD_MINOR) {
c949b097 1268 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
7677f7fd
AR
1269 return false;
1270 }
1271
1272 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1273 vma_is_shmem(vma);
ba6907db
MR
1274}
1275
86039bd3
AA
1276static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1277 unsigned long arg)
1278{
1279 struct mm_struct *mm = ctx->mm;
1280 struct vm_area_struct *vma, *prev, *cur;
1281 int ret;
1282 struct uffdio_register uffdio_register;
1283 struct uffdio_register __user *user_uffdio_register;
1284 unsigned long vm_flags, new_flags;
1285 bool found;
ce53e8e6 1286 bool basic_ioctls;
86039bd3
AA
1287 unsigned long start, end, vma_end;
1288
1289 user_uffdio_register = (struct uffdio_register __user *) arg;
1290
1291 ret = -EFAULT;
1292 if (copy_from_user(&uffdio_register, user_uffdio_register,
1293 sizeof(uffdio_register)-sizeof(__u64)))
1294 goto out;
1295
1296 ret = -EINVAL;
1297 if (!uffdio_register.mode)
1298 goto out;
7677f7fd 1299 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1300 goto out;
1301 vm_flags = 0;
1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1306 goto out;
1307#endif
86039bd3 1308 vm_flags |= VM_UFFD_WP;
00b151f2 1309 }
7677f7fd
AR
1310 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1311#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1312 goto out;
1313#endif
1314 vm_flags |= VM_UFFD_MINOR;
1315 }
86039bd3 1316
e71e2ace 1317 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1318 uffdio_register.range.len);
1319 if (ret)
1320 goto out;
1321
1322 start = uffdio_register.range.start;
1323 end = start + uffdio_register.range.len;
1324
d2005e3f
ON
1325 ret = -ENOMEM;
1326 if (!mmget_not_zero(mm))
1327 goto out;
1328
d8ed45c5 1329 mmap_write_lock(mm);
86039bd3 1330 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1331 if (!vma)
1332 goto out_unlock;
1333
1334 /* check that there's at least one vma in the range */
1335 ret = -EINVAL;
1336 if (vma->vm_start >= end)
1337 goto out_unlock;
1338
cab350af
MK
1339 /*
1340 * If the first vma contains huge pages, make sure start address
1341 * is aligned to huge page size.
1342 */
1343 if (is_vm_hugetlb_page(vma)) {
1344 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1345
1346 if (start & (vma_hpagesize - 1))
1347 goto out_unlock;
1348 }
1349
86039bd3
AA
1350 /*
1351 * Search for not compatible vmas.
86039bd3
AA
1352 */
1353 found = false;
ce53e8e6 1354 basic_ioctls = false;
86039bd3
AA
1355 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1356 cond_resched();
1357
1358 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1359 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1360
1361 /* check not compatible vmas */
1362 ret = -EINVAL;
63b2d417 1363 if (!vma_can_userfault(cur, vm_flags))
86039bd3 1364 goto out_unlock;
29ec9066
AA
1365
1366 /*
1367 * UFFDIO_COPY will fill file holes even without
1368 * PROT_WRITE. This check enforces that if this is a
1369 * MAP_SHARED, the process has write permission to the backing
1370 * file. If VM_MAYWRITE is set it also enforces that on a
1371 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372 * F_WRITE_SEAL can be taken until the vma is destroyed.
1373 */
1374 ret = -EPERM;
1375 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1376 goto out_unlock;
1377
cab350af
MK
1378 /*
1379 * If this vma contains ending address, and huge pages
1380 * check alignment.
1381 */
1382 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383 end > cur->vm_start) {
1384 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1385
1386 ret = -EINVAL;
1387
1388 if (end & (vma_hpagesize - 1))
1389 goto out_unlock;
1390 }
63b2d417
AA
1391 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1392 goto out_unlock;
86039bd3
AA
1393
1394 /*
1395 * Check that this vma isn't already owned by a
1396 * different userfaultfd. We can't allow more than one
1397 * userfaultfd to own a single vma simultaneously or we
1398 * wouldn't know which one to deliver the userfaults to.
1399 */
1400 ret = -EBUSY;
1401 if (cur->vm_userfaultfd_ctx.ctx &&
1402 cur->vm_userfaultfd_ctx.ctx != ctx)
1403 goto out_unlock;
1404
cab350af
MK
1405 /*
1406 * Note vmas containing huge pages
1407 */
ce53e8e6
MR
1408 if (is_vm_hugetlb_page(cur))
1409 basic_ioctls = true;
cab350af 1410
86039bd3
AA
1411 found = true;
1412 }
1413 BUG_ON(!found);
1414
1415 if (vma->vm_start < start)
1416 prev = vma;
1417
1418 ret = 0;
1419 do {
1420 cond_resched();
1421
63b2d417 1422 BUG_ON(!vma_can_userfault(vma, vm_flags));
86039bd3
AA
1423 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1424 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1425 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1426
1427 /*
1428 * Nothing to do: this vma is already registered into this
1429 * userfaultfd and with the right tracking mode too.
1430 */
1431 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1432 (vma->vm_flags & vm_flags) == vm_flags)
1433 goto skip;
1434
1435 if (vma->vm_start > start)
1436 start = vma->vm_start;
1437 vma_end = min(end, vma->vm_end);
1438
7677f7fd 1439 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
86039bd3
AA
1440 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1441 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1442 vma_policy(vma),
9a10064f 1443 ((struct vm_userfaultfd_ctx){ ctx }),
5c26f6ac 1444 anon_vma_name(vma));
86039bd3
AA
1445 if (prev) {
1446 vma = prev;
1447 goto next;
1448 }
1449 if (vma->vm_start < start) {
1450 ret = split_vma(mm, vma, start, 1);
1451 if (ret)
1452 break;
1453 }
1454 if (vma->vm_end > end) {
1455 ret = split_vma(mm, vma, end, 0);
1456 if (ret)
1457 break;
1458 }
1459 next:
1460 /*
1461 * In the vma_merge() successful mprotect-like case 8:
1462 * the next vma was merged into the current one and
1463 * the current one has not been updated yet.
1464 */
1465 vma->vm_flags = new_flags;
1466 vma->vm_userfaultfd_ctx.ctx = ctx;
1467
6dfeaff9
PX
1468 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1469 hugetlb_unshare_all_pmds(vma);
1470
86039bd3
AA
1471 skip:
1472 prev = vma;
1473 start = vma->vm_end;
1474 vma = vma->vm_next;
1475 } while (vma && vma->vm_start < end);
1476out_unlock:
d8ed45c5 1477 mmap_write_unlock(mm);
d2005e3f 1478 mmput(mm);
86039bd3 1479 if (!ret) {
14819305
PX
1480 __u64 ioctls_out;
1481
1482 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1483 UFFD_API_RANGE_IOCTLS;
1484
1485 /*
1486 * Declare the WP ioctl only if the WP mode is
1487 * specified and all checks passed with the range
1488 */
1489 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1490 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1491
f6191471
AR
1492 /* CONTINUE ioctl is only supported for MINOR ranges. */
1493 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1494 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1495
86039bd3
AA
1496 /*
1497 * Now that we scanned all vmas we can already tell
1498 * userland which ioctls methods are guaranteed to
1499 * succeed on this range.
1500 */
14819305 1501 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1502 ret = -EFAULT;
1503 }
1504out:
1505 return ret;
1506}
1507
1508static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1509 unsigned long arg)
1510{
1511 struct mm_struct *mm = ctx->mm;
1512 struct vm_area_struct *vma, *prev, *cur;
1513 int ret;
1514 struct uffdio_range uffdio_unregister;
1515 unsigned long new_flags;
1516 bool found;
1517 unsigned long start, end, vma_end;
1518 const void __user *buf = (void __user *)arg;
1519
1520 ret = -EFAULT;
1521 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1522 goto out;
1523
e71e2ace 1524 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1525 uffdio_unregister.len);
1526 if (ret)
1527 goto out;
1528
1529 start = uffdio_unregister.start;
1530 end = start + uffdio_unregister.len;
1531
d2005e3f
ON
1532 ret = -ENOMEM;
1533 if (!mmget_not_zero(mm))
1534 goto out;
1535
d8ed45c5 1536 mmap_write_lock(mm);
86039bd3 1537 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1538 if (!vma)
1539 goto out_unlock;
1540
1541 /* check that there's at least one vma in the range */
1542 ret = -EINVAL;
1543 if (vma->vm_start >= end)
1544 goto out_unlock;
1545
cab350af
MK
1546 /*
1547 * If the first vma contains huge pages, make sure start address
1548 * is aligned to huge page size.
1549 */
1550 if (is_vm_hugetlb_page(vma)) {
1551 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1552
1553 if (start & (vma_hpagesize - 1))
1554 goto out_unlock;
1555 }
1556
86039bd3
AA
1557 /*
1558 * Search for not compatible vmas.
86039bd3
AA
1559 */
1560 found = false;
1561 ret = -EINVAL;
1562 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1563 cond_resched();
1564
1565 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1566 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1567
1568 /*
1569 * Check not compatible vmas, not strictly required
1570 * here as not compatible vmas cannot have an
1571 * userfaultfd_ctx registered on them, but this
1572 * provides for more strict behavior to notice
1573 * unregistration errors.
1574 */
63b2d417 1575 if (!vma_can_userfault(cur, cur->vm_flags))
86039bd3
AA
1576 goto out_unlock;
1577
1578 found = true;
1579 }
1580 BUG_ON(!found);
1581
1582 if (vma->vm_start < start)
1583 prev = vma;
1584
1585 ret = 0;
1586 do {
1587 cond_resched();
1588
63b2d417 1589 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
86039bd3
AA
1590
1591 /*
1592 * Nothing to do: this vma is already registered into this
1593 * userfaultfd and with the right tracking mode too.
1594 */
1595 if (!vma->vm_userfaultfd_ctx.ctx)
1596 goto skip;
1597
01e881f5
AA
1598 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1599
86039bd3
AA
1600 if (vma->vm_start > start)
1601 start = vma->vm_start;
1602 vma_end = min(end, vma->vm_end);
1603
09fa5296
AA
1604 if (userfaultfd_missing(vma)) {
1605 /*
1606 * Wake any concurrent pending userfault while
1607 * we unregister, so they will not hang
1608 * permanently and it avoids userland to call
1609 * UFFDIO_WAKE explicitly.
1610 */
1611 struct userfaultfd_wake_range range;
1612 range.start = start;
1613 range.len = vma_end - start;
1614 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1615 }
1616
7677f7fd 1617 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
86039bd3
AA
1618 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1619 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1620 vma_policy(vma),
5c26f6ac 1621 NULL_VM_UFFD_CTX, anon_vma_name(vma));
86039bd3
AA
1622 if (prev) {
1623 vma = prev;
1624 goto next;
1625 }
1626 if (vma->vm_start < start) {
1627 ret = split_vma(mm, vma, start, 1);
1628 if (ret)
1629 break;
1630 }
1631 if (vma->vm_end > end) {
1632 ret = split_vma(mm, vma, end, 0);
1633 if (ret)
1634 break;
1635 }
1636 next:
1637 /*
1638 * In the vma_merge() successful mprotect-like case 8:
1639 * the next vma was merged into the current one and
1640 * the current one has not been updated yet.
1641 */
1642 vma->vm_flags = new_flags;
1643 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1644
1645 skip:
1646 prev = vma;
1647 start = vma->vm_end;
1648 vma = vma->vm_next;
1649 } while (vma && vma->vm_start < end);
1650out_unlock:
d8ed45c5 1651 mmap_write_unlock(mm);
d2005e3f 1652 mmput(mm);
86039bd3
AA
1653out:
1654 return ret;
1655}
1656
1657/*
ba85c702
AA
1658 * userfaultfd_wake may be used in combination with the
1659 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1660 */
1661static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1662 unsigned long arg)
1663{
1664 int ret;
1665 struct uffdio_range uffdio_wake;
1666 struct userfaultfd_wake_range range;
1667 const void __user *buf = (void __user *)arg;
1668
1669 ret = -EFAULT;
1670 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1671 goto out;
1672
e71e2ace 1673 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1674 if (ret)
1675 goto out;
1676
1677 range.start = uffdio_wake.start;
1678 range.len = uffdio_wake.len;
1679
1680 /*
1681 * len == 0 means wake all and we don't want to wake all here,
1682 * so check it again to be sure.
1683 */
1684 VM_BUG_ON(!range.len);
1685
1686 wake_userfault(ctx, &range);
1687 ret = 0;
1688
1689out:
1690 return ret;
1691}
1692
ad465cae
AA
1693static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1694 unsigned long arg)
1695{
1696 __s64 ret;
1697 struct uffdio_copy uffdio_copy;
1698 struct uffdio_copy __user *user_uffdio_copy;
1699 struct userfaultfd_wake_range range;
1700
1701 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1702
df2cc96e 1703 ret = -EAGAIN;
a759a909 1704 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1705 goto out;
1706
ad465cae
AA
1707 ret = -EFAULT;
1708 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1709 /* don't copy "copy" last field */
1710 sizeof(uffdio_copy)-sizeof(__s64)))
1711 goto out;
1712
e71e2ace 1713 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1714 if (ret)
1715 goto out;
1716 /*
1717 * double check for wraparound just in case. copy_from_user()
1718 * will later check uffdio_copy.src + uffdio_copy.len to fit
1719 * in the userland range.
1720 */
1721 ret = -EINVAL;
1722 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1723 goto out;
72981e0e 1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1725 goto out;
d2005e3f
ON
1726 if (mmget_not_zero(ctx->mm)) {
1727 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
72981e0e
AA
1728 uffdio_copy.len, &ctx->mmap_changing,
1729 uffdio_copy.mode);
d2005e3f 1730 mmput(ctx->mm);
96333187 1731 } else {
e86b298b 1732 return -ESRCH;
d2005e3f 1733 }
ad465cae
AA
1734 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1735 return -EFAULT;
1736 if (ret < 0)
1737 goto out;
1738 BUG_ON(!ret);
1739 /* len == 0 would wake all */
1740 range.len = ret;
1741 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1742 range.start = uffdio_copy.dst;
1743 wake_userfault(ctx, &range);
1744 }
1745 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1746out:
1747 return ret;
1748}
1749
1750static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1751 unsigned long arg)
1752{
1753 __s64 ret;
1754 struct uffdio_zeropage uffdio_zeropage;
1755 struct uffdio_zeropage __user *user_uffdio_zeropage;
1756 struct userfaultfd_wake_range range;
1757
1758 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1759
df2cc96e 1760 ret = -EAGAIN;
a759a909 1761 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1762 goto out;
1763
ad465cae
AA
1764 ret = -EFAULT;
1765 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1766 /* don't copy "zeropage" last field */
1767 sizeof(uffdio_zeropage)-sizeof(__s64)))
1768 goto out;
1769
e71e2ace 1770 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1771 uffdio_zeropage.range.len);
1772 if (ret)
1773 goto out;
1774 ret = -EINVAL;
1775 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1776 goto out;
1777
d2005e3f
ON
1778 if (mmget_not_zero(ctx->mm)) {
1779 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1780 uffdio_zeropage.range.len,
1781 &ctx->mmap_changing);
d2005e3f 1782 mmput(ctx->mm);
9d95aa4b 1783 } else {
e86b298b 1784 return -ESRCH;
d2005e3f 1785 }
ad465cae
AA
1786 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787 return -EFAULT;
1788 if (ret < 0)
1789 goto out;
1790 /* len == 0 would wake all */
1791 BUG_ON(!ret);
1792 range.len = ret;
1793 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794 range.start = uffdio_zeropage.range.start;
1795 wake_userfault(ctx, &range);
1796 }
1797 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798out:
1799 return ret;
1800}
1801
63b2d417
AA
1802static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1803 unsigned long arg)
1804{
1805 int ret;
1806 struct uffdio_writeprotect uffdio_wp;
1807 struct uffdio_writeprotect __user *user_uffdio_wp;
1808 struct userfaultfd_wake_range range;
23080e27 1809 bool mode_wp, mode_dontwake;
63b2d417 1810
a759a909 1811 if (atomic_read(&ctx->mmap_changing))
63b2d417
AA
1812 return -EAGAIN;
1813
1814 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1815
1816 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817 sizeof(struct uffdio_writeprotect)))
1818 return -EFAULT;
1819
e71e2ace 1820 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1821 uffdio_wp.range.len);
1822 if (ret)
1823 return ret;
1824
1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826 UFFDIO_WRITEPROTECT_MODE_WP))
1827 return -EINVAL;
23080e27
PX
1828
1829 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1831
1832 if (mode_wp && mode_dontwake)
63b2d417
AA
1833 return -EINVAL;
1834
cb185d5f
NA
1835 if (mmget_not_zero(ctx->mm)) {
1836 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1837 uffdio_wp.range.len, mode_wp,
1838 &ctx->mmap_changing);
1839 mmput(ctx->mm);
1840 } else {
1841 return -ESRCH;
1842 }
1843
63b2d417
AA
1844 if (ret)
1845 return ret;
1846
23080e27 1847 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1848 range.start = uffdio_wp.range.start;
1849 range.len = uffdio_wp.range.len;
1850 wake_userfault(ctx, &range);
1851 }
1852 return ret;
1853}
1854
f6191471
AR
1855static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1856{
1857 __s64 ret;
1858 struct uffdio_continue uffdio_continue;
1859 struct uffdio_continue __user *user_uffdio_continue;
1860 struct userfaultfd_wake_range range;
1861
1862 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1863
1864 ret = -EAGAIN;
a759a909 1865 if (atomic_read(&ctx->mmap_changing))
f6191471
AR
1866 goto out;
1867
1868 ret = -EFAULT;
1869 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1870 /* don't copy the output fields */
1871 sizeof(uffdio_continue) - (sizeof(__s64))))
1872 goto out;
1873
e71e2ace 1874 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1875 uffdio_continue.range.len);
1876 if (ret)
1877 goto out;
1878
1879 ret = -EINVAL;
1880 /* double check for wraparound just in case. */
1881 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1882 uffdio_continue.range.start) {
1883 goto out;
1884 }
1885 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1886 goto out;
1887
1888 if (mmget_not_zero(ctx->mm)) {
1889 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1890 uffdio_continue.range.len,
1891 &ctx->mmap_changing);
1892 mmput(ctx->mm);
1893 } else {
1894 return -ESRCH;
1895 }
1896
1897 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1898 return -EFAULT;
1899 if (ret < 0)
1900 goto out;
1901
1902 /* len == 0 would wake all */
1903 BUG_ON(!ret);
1904 range.len = ret;
1905 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1906 range.start = uffdio_continue.range.start;
1907 wake_userfault(ctx, &range);
1908 }
1909 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1910
1911out:
1912 return ret;
1913}
1914
9cd75c3c
PE
1915static inline unsigned int uffd_ctx_features(__u64 user_features)
1916{
1917 /*
22e5fe2a
NA
1918 * For the current set of features the bits just coincide. Set
1919 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
9cd75c3c 1920 */
22e5fe2a 1921 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
9cd75c3c
PE
1922}
1923
86039bd3
AA
1924/*
1925 * userland asks for a certain API version and we return which bits
1926 * and ioctl commands are implemented in this kernel for such API
1927 * version or -EINVAL if unknown.
1928 */
1929static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1930 unsigned long arg)
1931{
1932 struct uffdio_api uffdio_api;
1933 void __user *buf = (void __user *)arg;
22e5fe2a 1934 unsigned int ctx_features;
86039bd3 1935 int ret;
65603144 1936 __u64 features;
86039bd3 1937
86039bd3 1938 ret = -EFAULT;
a9b85f94 1939 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1940 goto out;
65603144 1941 features = uffdio_api.features;
3c1c24d9
MR
1942 ret = -EINVAL;
1943 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1944 goto err_out;
1945 ret = -EPERM;
1946 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1947 goto err_out;
65603144
AA
1948 /* report all available features and ioctls to userland */
1949 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 1950#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
1951 uffdio_api.features &=
1952 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
1953#endif
1954#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1955 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
7677f7fd 1956#endif
86039bd3
AA
1957 uffdio_api.ioctls = UFFD_API_IOCTLS;
1958 ret = -EFAULT;
1959 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1960 goto out;
22e5fe2a 1961
65603144 1962 /* only enable the requested features for this uffd context */
22e5fe2a
NA
1963 ctx_features = uffd_ctx_features(features);
1964 ret = -EINVAL;
1965 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1966 goto err_out;
1967
86039bd3
AA
1968 ret = 0;
1969out:
1970 return ret;
3c1c24d9
MR
1971err_out:
1972 memset(&uffdio_api, 0, sizeof(uffdio_api));
1973 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1974 ret = -EFAULT;
1975 goto out;
86039bd3
AA
1976}
1977
1978static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1979 unsigned long arg)
1980{
1981 int ret = -EINVAL;
1982 struct userfaultfd_ctx *ctx = file->private_data;
1983
22e5fe2a 1984 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
e6485a47
AA
1985 return -EINVAL;
1986
86039bd3
AA
1987 switch(cmd) {
1988 case UFFDIO_API:
1989 ret = userfaultfd_api(ctx, arg);
1990 break;
1991 case UFFDIO_REGISTER:
1992 ret = userfaultfd_register(ctx, arg);
1993 break;
1994 case UFFDIO_UNREGISTER:
1995 ret = userfaultfd_unregister(ctx, arg);
1996 break;
1997 case UFFDIO_WAKE:
1998 ret = userfaultfd_wake(ctx, arg);
1999 break;
ad465cae
AA
2000 case UFFDIO_COPY:
2001 ret = userfaultfd_copy(ctx, arg);
2002 break;
2003 case UFFDIO_ZEROPAGE:
2004 ret = userfaultfd_zeropage(ctx, arg);
2005 break;
63b2d417
AA
2006 case UFFDIO_WRITEPROTECT:
2007 ret = userfaultfd_writeprotect(ctx, arg);
2008 break;
f6191471
AR
2009 case UFFDIO_CONTINUE:
2010 ret = userfaultfd_continue(ctx, arg);
2011 break;
86039bd3
AA
2012 }
2013 return ret;
2014}
2015
2016#ifdef CONFIG_PROC_FS
2017static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2018{
2019 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2020 wait_queue_entry_t *wq;
86039bd3
AA
2021 unsigned long pending = 0, total = 0;
2022
cbcfa130 2023 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2024 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2025 pending++;
2026 total++;
2027 }
2055da97 2028 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2029 total++;
2030 }
cbcfa130 2031 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2032
2033 /*
2034 * If more protocols will be added, there will be all shown
2035 * separated by a space. Like this:
2036 * protocols: aa:... bb:...
2037 */
2038 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2039 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2040 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2041}
2042#endif
2043
2044static const struct file_operations userfaultfd_fops = {
2045#ifdef CONFIG_PROC_FS
2046 .show_fdinfo = userfaultfd_show_fdinfo,
2047#endif
2048 .release = userfaultfd_release,
2049 .poll = userfaultfd_poll,
2050 .read = userfaultfd_read,
2051 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2052 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2053 .llseek = noop_llseek,
2054};
2055
3004ec9c
AA
2056static void init_once_userfaultfd_ctx(void *mem)
2057{
2058 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2059
2060 init_waitqueue_head(&ctx->fault_pending_wqh);
2061 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2062 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2063 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2064 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2065}
2066
284cd241 2067SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 2068{
86039bd3 2069 struct userfaultfd_ctx *ctx;
284cd241 2070 int fd;
86039bd3 2071
d0d4730a
LG
2072 if (!sysctl_unprivileged_userfaultfd &&
2073 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2074 !capable(CAP_SYS_PTRACE)) {
2075 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2076 "sysctl knob to 1 if kernel faults must be handled "
2077 "without obtaining CAP_SYS_PTRACE capability\n");
cefdca0a 2078 return -EPERM;
d0d4730a 2079 }
cefdca0a 2080
86039bd3
AA
2081 BUG_ON(!current->mm);
2082
2083 /* Check the UFFD_* constants for consistency. */
37cd0575 2084 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2085 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2086 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2087
37cd0575 2088 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2089 return -EINVAL;
86039bd3 2090
3004ec9c 2091 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2092 if (!ctx)
284cd241 2093 return -ENOMEM;
86039bd3 2094
ca880420 2095 refcount_set(&ctx->refcount, 1);
86039bd3 2096 ctx->flags = flags;
9cd75c3c 2097 ctx->features = 0;
86039bd3 2098 ctx->released = false;
a759a909 2099 atomic_set(&ctx->mmap_changing, 0);
86039bd3
AA
2100 ctx->mm = current->mm;
2101 /* prevent the mm struct to be freed */
f1f10076 2102 mmgrab(ctx->mm);
86039bd3 2103
b537900f
DC
2104 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2105 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2106 if (fd < 0) {
d2005e3f 2107 mmdrop(ctx->mm);
3004ec9c 2108 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2109 }
86039bd3 2110 return fd;
86039bd3 2111}
3004ec9c
AA
2112
2113static int __init userfaultfd_init(void)
2114{
2115 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2116 sizeof(struct userfaultfd_ctx),
2117 0,
2118 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2119 init_once_userfaultfd_ctx);
2120 return 0;
2121}
2122__initcall(userfaultfd_init);