userfaultfd: optimize read() and poll() to be O(1)
[linux-block.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15#include <linux/hashtable.h>
16#include <linux/sched.h>
17#include <linux/mm.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/seq_file.h>
21#include <linux/file.h>
22#include <linux/bug.h>
23#include <linux/anon_inodes.h>
24#include <linux/syscalls.h>
25#include <linux/userfaultfd_k.h>
26#include <linux/mempolicy.h>
27#include <linux/ioctl.h>
28#include <linux/security.h>
29
30enum userfaultfd_state {
31 UFFD_STATE_WAIT_API,
32 UFFD_STATE_RUNNING,
33};
34
35struct userfaultfd_ctx {
36 /* pseudo fd refcounting */
37 atomic_t refcount;
15b726ef
AA
38 /* waitqueue head for the pending (i.e. not read) userfaults */
39 wait_queue_head_t fault_pending_wqh;
40 /* waitqueue head for the userfaults */
86039bd3
AA
41 wait_queue_head_t fault_wqh;
42 /* waitqueue head for the pseudo fd to wakeup poll/read */
43 wait_queue_head_t fd_wqh;
44 /* userfaultfd syscall flags */
45 unsigned int flags;
46 /* state machine */
47 enum userfaultfd_state state;
48 /* released */
49 bool released;
50 /* mm with one ore more vmas attached to this userfaultfd_ctx */
51 struct mm_struct *mm;
52};
53
54struct userfaultfd_wait_queue {
a9b85f94 55 struct uffd_msg msg;
86039bd3 56 wait_queue_t wq;
86039bd3
AA
57 struct userfaultfd_ctx *ctx;
58};
59
60struct userfaultfd_wake_range {
61 unsigned long start;
62 unsigned long len;
63};
64
65static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
66 int wake_flags, void *key)
67{
68 struct userfaultfd_wake_range *range = key;
69 int ret;
70 struct userfaultfd_wait_queue *uwq;
71 unsigned long start, len;
72
73 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
74 ret = 0;
86039bd3
AA
75 /* len == 0 means wake all */
76 start = range->start;
77 len = range->len;
a9b85f94
AA
78 if (len && (start > uwq->msg.arg.pagefault.address ||
79 start + len <= uwq->msg.arg.pagefault.address))
86039bd3
AA
80 goto out;
81 ret = wake_up_state(wq->private, mode);
82 if (ret)
83 /*
84 * Wake only once, autoremove behavior.
85 *
86 * After the effect of list_del_init is visible to the
87 * other CPUs, the waitqueue may disappear from under
88 * us, see the !list_empty_careful() in
89 * handle_userfault(). try_to_wake_up() has an
90 * implicit smp_mb__before_spinlock, and the
91 * wq->private is read before calling the extern
92 * function "wake_up_state" (which in turns calls
93 * try_to_wake_up). While the spin_lock;spin_unlock;
94 * wouldn't be enough, the smp_mb__before_spinlock is
95 * enough to avoid an explicit smp_mb() here.
96 */
97 list_del_init(&wq->task_list);
98out:
99 return ret;
100}
101
102/**
103 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
104 * context.
105 * @ctx: [in] Pointer to the userfaultfd context.
106 *
107 * Returns: In case of success, returns not zero.
108 */
109static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
110{
111 if (!atomic_inc_not_zero(&ctx->refcount))
112 BUG();
113}
114
115/**
116 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
117 * context.
118 * @ctx: [in] Pointer to userfaultfd context.
119 *
120 * The userfaultfd context reference must have been previously acquired either
121 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
122 */
123static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
124{
125 if (atomic_dec_and_test(&ctx->refcount)) {
126 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
127 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
128 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
129 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
130 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
131 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
132 mmput(ctx->mm);
133 kfree(ctx);
134 }
135}
136
a9b85f94 137static inline void msg_init(struct uffd_msg *msg)
86039bd3 138{
a9b85f94
AA
139 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
140 /*
141 * Must use memset to zero out the paddings or kernel data is
142 * leaked to userland.
143 */
144 memset(msg, 0, sizeof(struct uffd_msg));
145}
146
147static inline struct uffd_msg userfault_msg(unsigned long address,
148 unsigned int flags,
149 unsigned long reason)
150{
151 struct uffd_msg msg;
152 msg_init(&msg);
153 msg.event = UFFD_EVENT_PAGEFAULT;
154 msg.arg.pagefault.address = address;
86039bd3
AA
155 if (flags & FAULT_FLAG_WRITE)
156 /*
a9b85f94
AA
157 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
158 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
159 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
160 * was a read fault, otherwise if set it means it's
161 * a write fault.
86039bd3 162 */
a9b85f94 163 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
164 if (reason & VM_UFFD_WP)
165 /*
a9b85f94
AA
166 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
167 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
168 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
169 * a missing fault, otherwise if set it means it's a
170 * write protect fault.
86039bd3 171 */
a9b85f94
AA
172 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
173 return msg;
86039bd3
AA
174}
175
176/*
177 * The locking rules involved in returning VM_FAULT_RETRY depending on
178 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
179 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
180 * recommendation in __lock_page_or_retry is not an understatement.
181 *
182 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
183 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
184 * not set.
185 *
186 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
187 * set, VM_FAULT_RETRY can still be returned if and only if there are
188 * fatal_signal_pending()s, and the mmap_sem must be released before
189 * returning it.
190 */
191int handle_userfault(struct vm_area_struct *vma, unsigned long address,
192 unsigned int flags, unsigned long reason)
193{
194 struct mm_struct *mm = vma->vm_mm;
195 struct userfaultfd_ctx *ctx;
196 struct userfaultfd_wait_queue uwq;
ba85c702 197 int ret;
86039bd3
AA
198
199 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
200
ba85c702 201 ret = VM_FAULT_SIGBUS;
86039bd3
AA
202 ctx = vma->vm_userfaultfd_ctx.ctx;
203 if (!ctx)
ba85c702 204 goto out;
86039bd3
AA
205
206 BUG_ON(ctx->mm != mm);
207
208 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
209 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
210
211 /*
212 * If it's already released don't get it. This avoids to loop
213 * in __get_user_pages if userfaultfd_release waits on the
214 * caller of handle_userfault to release the mmap_sem.
215 */
216 if (unlikely(ACCESS_ONCE(ctx->released)))
ba85c702 217 goto out;
86039bd3
AA
218
219 /*
220 * Check that we can return VM_FAULT_RETRY.
221 *
222 * NOTE: it should become possible to return VM_FAULT_RETRY
223 * even if FAULT_FLAG_TRIED is set without leading to gup()
224 * -EBUSY failures, if the userfaultfd is to be extended for
225 * VM_UFFD_WP tracking and we intend to arm the userfault
226 * without first stopping userland access to the memory. For
227 * VM_UFFD_MISSING userfaults this is enough for now.
228 */
229 if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
230 /*
231 * Validate the invariant that nowait must allow retry
232 * to be sure not to return SIGBUS erroneously on
233 * nowait invocations.
234 */
235 BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
236#ifdef CONFIG_DEBUG_VM
237 if (printk_ratelimit()) {
238 printk(KERN_WARNING
239 "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
240 dump_stack();
241 }
242#endif
ba85c702 243 goto out;
86039bd3
AA
244 }
245
246 /*
247 * Handle nowait, not much to do other than tell it to retry
248 * and wait.
249 */
ba85c702 250 ret = VM_FAULT_RETRY;
86039bd3 251 if (flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 252 goto out;
86039bd3
AA
253
254 /* take the reference before dropping the mmap_sem */
255 userfaultfd_ctx_get(ctx);
256
257 /* be gentle and immediately relinquish the mmap_sem */
258 up_read(&mm->mmap_sem);
259
260 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
261 uwq.wq.private = current;
a9b85f94 262 uwq.msg = userfault_msg(address, flags, reason);
86039bd3
AA
263 uwq.ctx = ctx;
264
15b726ef 265 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
266 /*
267 * After the __add_wait_queue the uwq is visible to userland
268 * through poll/read().
269 */
15b726ef
AA
270 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
271 /*
272 * The smp_mb() after __set_current_state prevents the reads
273 * following the spin_unlock to happen before the list_add in
274 * __add_wait_queue.
275 */
ba85c702 276 set_current_state(TASK_KILLABLE);
15b726ef 277 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 278
ba85c702
AA
279 if (likely(!ACCESS_ONCE(ctx->released) &&
280 !fatal_signal_pending(current))) {
86039bd3
AA
281 wake_up_poll(&ctx->fd_wqh, POLLIN);
282 schedule();
ba85c702
AA
283 ret |= VM_FAULT_MAJOR;
284 }
86039bd3 285
ba85c702 286 __set_current_state(TASK_RUNNING);
15b726ef
AA
287
288 /*
289 * Here we race with the list_del; list_add in
290 * userfaultfd_ctx_read(), however because we don't ever run
291 * list_del_init() to refile across the two lists, the prev
292 * and next pointers will never point to self. list_add also
293 * would never let any of the two pointers to point to
294 * self. So list_empty_careful won't risk to see both pointers
295 * pointing to self at any time during the list refile. The
296 * only case where list_del_init() is called is the full
297 * removal in the wake function and there we don't re-list_add
298 * and it's fine not to block on the spinlock. The uwq on this
299 * kernel stack can be released after the list_del_init.
300 */
ba85c702 301 if (!list_empty_careful(&uwq.wq.task_list)) {
15b726ef
AA
302 spin_lock(&ctx->fault_pending_wqh.lock);
303 /*
304 * No need of list_del_init(), the uwq on the stack
305 * will be freed shortly anyway.
306 */
307 list_del(&uwq.wq.task_list);
308 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 309 }
86039bd3
AA
310
311 /*
312 * ctx may go away after this if the userfault pseudo fd is
313 * already released.
314 */
315 userfaultfd_ctx_put(ctx);
316
ba85c702
AA
317out:
318 return ret;
86039bd3
AA
319}
320
321static int userfaultfd_release(struct inode *inode, struct file *file)
322{
323 struct userfaultfd_ctx *ctx = file->private_data;
324 struct mm_struct *mm = ctx->mm;
325 struct vm_area_struct *vma, *prev;
326 /* len == 0 means wake all */
327 struct userfaultfd_wake_range range = { .len = 0, };
328 unsigned long new_flags;
329
330 ACCESS_ONCE(ctx->released) = true;
331
332 /*
333 * Flush page faults out of all CPUs. NOTE: all page faults
334 * must be retried without returning VM_FAULT_SIGBUS if
335 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
336 * changes while handle_userfault released the mmap_sem. So
337 * it's critical that released is set to true (above), before
338 * taking the mmap_sem for writing.
339 */
340 down_write(&mm->mmap_sem);
341 prev = NULL;
342 for (vma = mm->mmap; vma; vma = vma->vm_next) {
343 cond_resched();
344 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
345 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
346 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
347 prev = vma;
348 continue;
349 }
350 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
351 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
352 new_flags, vma->anon_vma,
353 vma->vm_file, vma->vm_pgoff,
354 vma_policy(vma),
355 NULL_VM_UFFD_CTX);
356 if (prev)
357 vma = prev;
358 else
359 prev = vma;
360 vma->vm_flags = new_flags;
361 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
362 }
363 up_write(&mm->mmap_sem);
364
365 /*
15b726ef 366 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 367 * the last page faults that may have been already waiting on
15b726ef 368 * the fault_*wqh.
86039bd3 369 */
15b726ef
AA
370 spin_lock(&ctx->fault_pending_wqh.lock);
371 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 0, &range);
86039bd3 372 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, 0, &range);
15b726ef 373 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
374
375 wake_up_poll(&ctx->fd_wqh, POLLHUP);
376 userfaultfd_ctx_put(ctx);
377 return 0;
378}
379
15b726ef
AA
380/* fault_pending_wqh.lock must be hold by the caller */
381static inline struct userfaultfd_wait_queue *find_userfault(
382 struct userfaultfd_ctx *ctx)
86039bd3
AA
383{
384 wait_queue_t *wq;
15b726ef 385 struct userfaultfd_wait_queue *uwq;
86039bd3 386
15b726ef 387 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
86039bd3 388
15b726ef
AA
389 uwq = NULL;
390 if (!waitqueue_active(&ctx->fault_pending_wqh))
391 goto out;
392 /* walk in reverse to provide FIFO behavior to read userfaults */
393 wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
394 typeof(*wq), task_list);
395 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
396out:
397 return uwq;
86039bd3
AA
398}
399
400static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
401{
402 struct userfaultfd_ctx *ctx = file->private_data;
403 unsigned int ret;
404
405 poll_wait(file, &ctx->fd_wqh, wait);
406
407 switch (ctx->state) {
408 case UFFD_STATE_WAIT_API:
409 return POLLERR;
410 case UFFD_STATE_RUNNING:
ba85c702
AA
411 /*
412 * poll() never guarantees that read won't block.
413 * userfaults can be waken before they're read().
414 */
415 if (unlikely(!(file->f_flags & O_NONBLOCK)))
416 return POLLERR;
15b726ef
AA
417 /*
418 * lockless access to see if there are pending faults
419 * __pollwait last action is the add_wait_queue but
420 * the spin_unlock would allow the waitqueue_active to
421 * pass above the actual list_add inside
422 * add_wait_queue critical section. So use a full
423 * memory barrier to serialize the list_add write of
424 * add_wait_queue() with the waitqueue_active read
425 * below.
426 */
427 ret = 0;
428 smp_mb();
429 if (waitqueue_active(&ctx->fault_pending_wqh))
430 ret = POLLIN;
86039bd3
AA
431 return ret;
432 default:
433 BUG();
434 }
435}
436
437static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 438 struct uffd_msg *msg)
86039bd3
AA
439{
440 ssize_t ret;
441 DECLARE_WAITQUEUE(wait, current);
15b726ef 442 struct userfaultfd_wait_queue *uwq;
86039bd3 443
15b726ef 444 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
445 spin_lock(&ctx->fd_wqh.lock);
446 __add_wait_queue(&ctx->fd_wqh, &wait);
447 for (;;) {
448 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
449 spin_lock(&ctx->fault_pending_wqh.lock);
450 uwq = find_userfault(ctx);
451 if (uwq) {
86039bd3 452 /*
15b726ef
AA
453 * The fault_pending_wqh.lock prevents the uwq
454 * to disappear from under us.
455 *
456 * Refile this userfault from
457 * fault_pending_wqh to fault_wqh, it's not
458 * pending anymore after we read it.
459 *
460 * Use list_del() by hand (as
461 * userfaultfd_wake_function also uses
462 * list_del_init() by hand) to be sure nobody
463 * changes __remove_wait_queue() to use
464 * list_del_init() in turn breaking the
465 * !list_empty_careful() check in
466 * handle_userfault(). The uwq->wq.task_list
467 * must never be empty at any time during the
468 * refile, or the waitqueue could disappear
469 * from under us. The "wait_queue_head_t"
470 * parameter of __remove_wait_queue() is unused
471 * anyway.
86039bd3 472 */
15b726ef
AA
473 list_del(&uwq->wq.task_list);
474 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
475
a9b85f94
AA
476 /* careful to always initialize msg if ret == 0 */
477 *msg = uwq->msg;
15b726ef 478 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
479 ret = 0;
480 break;
481 }
15b726ef 482 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
483 if (signal_pending(current)) {
484 ret = -ERESTARTSYS;
485 break;
486 }
487 if (no_wait) {
488 ret = -EAGAIN;
489 break;
490 }
491 spin_unlock(&ctx->fd_wqh.lock);
492 schedule();
493 spin_lock(&ctx->fd_wqh.lock);
494 }
495 __remove_wait_queue(&ctx->fd_wqh, &wait);
496 __set_current_state(TASK_RUNNING);
497 spin_unlock(&ctx->fd_wqh.lock);
498
499 return ret;
500}
501
502static ssize_t userfaultfd_read(struct file *file, char __user *buf,
503 size_t count, loff_t *ppos)
504{
505 struct userfaultfd_ctx *ctx = file->private_data;
506 ssize_t _ret, ret = 0;
a9b85f94 507 struct uffd_msg msg;
86039bd3
AA
508 int no_wait = file->f_flags & O_NONBLOCK;
509
510 if (ctx->state == UFFD_STATE_WAIT_API)
511 return -EINVAL;
512 BUG_ON(ctx->state != UFFD_STATE_RUNNING);
513
514 for (;;) {
a9b85f94 515 if (count < sizeof(msg))
86039bd3 516 return ret ? ret : -EINVAL;
a9b85f94 517 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
518 if (_ret < 0)
519 return ret ? ret : _ret;
a9b85f94 520 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 521 return ret ? ret : -EFAULT;
a9b85f94
AA
522 ret += sizeof(msg);
523 buf += sizeof(msg);
524 count -= sizeof(msg);
86039bd3
AA
525 /*
526 * Allow to read more than one fault at time but only
527 * block if waiting for the very first one.
528 */
529 no_wait = O_NONBLOCK;
530 }
531}
532
533static void __wake_userfault(struct userfaultfd_ctx *ctx,
534 struct userfaultfd_wake_range *range)
535{
536 unsigned long start, end;
537
538 start = range->start;
539 end = range->start + range->len;
540
15b726ef 541 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 542 /* wake all in the range and autoremove */
15b726ef
AA
543 if (waitqueue_active(&ctx->fault_pending_wqh))
544 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 0,
545 range);
546 if (waitqueue_active(&ctx->fault_wqh))
547 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, 0, range);
548 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
549}
550
551static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
552 struct userfaultfd_wake_range *range)
553{
554 /*
555 * To be sure waitqueue_active() is not reordered by the CPU
556 * before the pagetable update, use an explicit SMP memory
557 * barrier here. PT lock release or up_read(mmap_sem) still
558 * have release semantics that can allow the
559 * waitqueue_active() to be reordered before the pte update.
560 */
561 smp_mb();
562
563 /*
564 * Use waitqueue_active because it's very frequent to
565 * change the address space atomically even if there are no
566 * userfaults yet. So we take the spinlock only when we're
567 * sure we've userfaults to wake.
568 */
15b726ef
AA
569 if (waitqueue_active(&ctx->fault_pending_wqh) ||
570 waitqueue_active(&ctx->fault_wqh))
86039bd3
AA
571 __wake_userfault(ctx, range);
572}
573
574static __always_inline int validate_range(struct mm_struct *mm,
575 __u64 start, __u64 len)
576{
577 __u64 task_size = mm->task_size;
578
579 if (start & ~PAGE_MASK)
580 return -EINVAL;
581 if (len & ~PAGE_MASK)
582 return -EINVAL;
583 if (!len)
584 return -EINVAL;
585 if (start < mmap_min_addr)
586 return -EINVAL;
587 if (start >= task_size)
588 return -EINVAL;
589 if (len > task_size - start)
590 return -EINVAL;
591 return 0;
592}
593
594static int userfaultfd_register(struct userfaultfd_ctx *ctx,
595 unsigned long arg)
596{
597 struct mm_struct *mm = ctx->mm;
598 struct vm_area_struct *vma, *prev, *cur;
599 int ret;
600 struct uffdio_register uffdio_register;
601 struct uffdio_register __user *user_uffdio_register;
602 unsigned long vm_flags, new_flags;
603 bool found;
604 unsigned long start, end, vma_end;
605
606 user_uffdio_register = (struct uffdio_register __user *) arg;
607
608 ret = -EFAULT;
609 if (copy_from_user(&uffdio_register, user_uffdio_register,
610 sizeof(uffdio_register)-sizeof(__u64)))
611 goto out;
612
613 ret = -EINVAL;
614 if (!uffdio_register.mode)
615 goto out;
616 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
617 UFFDIO_REGISTER_MODE_WP))
618 goto out;
619 vm_flags = 0;
620 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
621 vm_flags |= VM_UFFD_MISSING;
622 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
623 vm_flags |= VM_UFFD_WP;
624 /*
625 * FIXME: remove the below error constraint by
626 * implementing the wprotect tracking mode.
627 */
628 ret = -EINVAL;
629 goto out;
630 }
631
632 ret = validate_range(mm, uffdio_register.range.start,
633 uffdio_register.range.len);
634 if (ret)
635 goto out;
636
637 start = uffdio_register.range.start;
638 end = start + uffdio_register.range.len;
639
640 down_write(&mm->mmap_sem);
641 vma = find_vma_prev(mm, start, &prev);
642
643 ret = -ENOMEM;
644 if (!vma)
645 goto out_unlock;
646
647 /* check that there's at least one vma in the range */
648 ret = -EINVAL;
649 if (vma->vm_start >= end)
650 goto out_unlock;
651
652 /*
653 * Search for not compatible vmas.
654 *
655 * FIXME: this shall be relaxed later so that it doesn't fail
656 * on tmpfs backed vmas (in addition to the current allowance
657 * on anonymous vmas).
658 */
659 found = false;
660 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
661 cond_resched();
662
663 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
664 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
665
666 /* check not compatible vmas */
667 ret = -EINVAL;
668 if (cur->vm_ops)
669 goto out_unlock;
670
671 /*
672 * Check that this vma isn't already owned by a
673 * different userfaultfd. We can't allow more than one
674 * userfaultfd to own a single vma simultaneously or we
675 * wouldn't know which one to deliver the userfaults to.
676 */
677 ret = -EBUSY;
678 if (cur->vm_userfaultfd_ctx.ctx &&
679 cur->vm_userfaultfd_ctx.ctx != ctx)
680 goto out_unlock;
681
682 found = true;
683 }
684 BUG_ON(!found);
685
686 if (vma->vm_start < start)
687 prev = vma;
688
689 ret = 0;
690 do {
691 cond_resched();
692
693 BUG_ON(vma->vm_ops);
694 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
695 vma->vm_userfaultfd_ctx.ctx != ctx);
696
697 /*
698 * Nothing to do: this vma is already registered into this
699 * userfaultfd and with the right tracking mode too.
700 */
701 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
702 (vma->vm_flags & vm_flags) == vm_flags)
703 goto skip;
704
705 if (vma->vm_start > start)
706 start = vma->vm_start;
707 vma_end = min(end, vma->vm_end);
708
709 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
710 prev = vma_merge(mm, prev, start, vma_end, new_flags,
711 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
712 vma_policy(vma),
713 ((struct vm_userfaultfd_ctx){ ctx }));
714 if (prev) {
715 vma = prev;
716 goto next;
717 }
718 if (vma->vm_start < start) {
719 ret = split_vma(mm, vma, start, 1);
720 if (ret)
721 break;
722 }
723 if (vma->vm_end > end) {
724 ret = split_vma(mm, vma, end, 0);
725 if (ret)
726 break;
727 }
728 next:
729 /*
730 * In the vma_merge() successful mprotect-like case 8:
731 * the next vma was merged into the current one and
732 * the current one has not been updated yet.
733 */
734 vma->vm_flags = new_flags;
735 vma->vm_userfaultfd_ctx.ctx = ctx;
736
737 skip:
738 prev = vma;
739 start = vma->vm_end;
740 vma = vma->vm_next;
741 } while (vma && vma->vm_start < end);
742out_unlock:
743 up_write(&mm->mmap_sem);
744 if (!ret) {
745 /*
746 * Now that we scanned all vmas we can already tell
747 * userland which ioctls methods are guaranteed to
748 * succeed on this range.
749 */
750 if (put_user(UFFD_API_RANGE_IOCTLS,
751 &user_uffdio_register->ioctls))
752 ret = -EFAULT;
753 }
754out:
755 return ret;
756}
757
758static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
759 unsigned long arg)
760{
761 struct mm_struct *mm = ctx->mm;
762 struct vm_area_struct *vma, *prev, *cur;
763 int ret;
764 struct uffdio_range uffdio_unregister;
765 unsigned long new_flags;
766 bool found;
767 unsigned long start, end, vma_end;
768 const void __user *buf = (void __user *)arg;
769
770 ret = -EFAULT;
771 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
772 goto out;
773
774 ret = validate_range(mm, uffdio_unregister.start,
775 uffdio_unregister.len);
776 if (ret)
777 goto out;
778
779 start = uffdio_unregister.start;
780 end = start + uffdio_unregister.len;
781
782 down_write(&mm->mmap_sem);
783 vma = find_vma_prev(mm, start, &prev);
784
785 ret = -ENOMEM;
786 if (!vma)
787 goto out_unlock;
788
789 /* check that there's at least one vma in the range */
790 ret = -EINVAL;
791 if (vma->vm_start >= end)
792 goto out_unlock;
793
794 /*
795 * Search for not compatible vmas.
796 *
797 * FIXME: this shall be relaxed later so that it doesn't fail
798 * on tmpfs backed vmas (in addition to the current allowance
799 * on anonymous vmas).
800 */
801 found = false;
802 ret = -EINVAL;
803 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
804 cond_resched();
805
806 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
807 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
808
809 /*
810 * Check not compatible vmas, not strictly required
811 * here as not compatible vmas cannot have an
812 * userfaultfd_ctx registered on them, but this
813 * provides for more strict behavior to notice
814 * unregistration errors.
815 */
816 if (cur->vm_ops)
817 goto out_unlock;
818
819 found = true;
820 }
821 BUG_ON(!found);
822
823 if (vma->vm_start < start)
824 prev = vma;
825
826 ret = 0;
827 do {
828 cond_resched();
829
830 BUG_ON(vma->vm_ops);
831
832 /*
833 * Nothing to do: this vma is already registered into this
834 * userfaultfd and with the right tracking mode too.
835 */
836 if (!vma->vm_userfaultfd_ctx.ctx)
837 goto skip;
838
839 if (vma->vm_start > start)
840 start = vma->vm_start;
841 vma_end = min(end, vma->vm_end);
842
843 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
844 prev = vma_merge(mm, prev, start, vma_end, new_flags,
845 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
846 vma_policy(vma),
847 NULL_VM_UFFD_CTX);
848 if (prev) {
849 vma = prev;
850 goto next;
851 }
852 if (vma->vm_start < start) {
853 ret = split_vma(mm, vma, start, 1);
854 if (ret)
855 break;
856 }
857 if (vma->vm_end > end) {
858 ret = split_vma(mm, vma, end, 0);
859 if (ret)
860 break;
861 }
862 next:
863 /*
864 * In the vma_merge() successful mprotect-like case 8:
865 * the next vma was merged into the current one and
866 * the current one has not been updated yet.
867 */
868 vma->vm_flags = new_flags;
869 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
870
871 skip:
872 prev = vma;
873 start = vma->vm_end;
874 vma = vma->vm_next;
875 } while (vma && vma->vm_start < end);
876out_unlock:
877 up_write(&mm->mmap_sem);
878out:
879 return ret;
880}
881
882/*
ba85c702
AA
883 * userfaultfd_wake is needed in case an userfault is in flight by the
884 * time a UFFDIO_COPY (or other ioctl variants) completes. The page
885 * may be well get mapped and the page fault if repeated wouldn't lead
886 * to a userfault anymore, but before scheduling in TASK_KILLABLE mode
887 * handle_userfault() doesn't recheck the pagetables and it doesn't
888 * serialize against UFFDO_COPY (or other ioctl variants). Ultimately
889 * the knowledge of which pages are mapped is left to userland who is
890 * responsible for handling the race between read() userfaults and
891 * background UFFDIO_COPY (or other ioctl variants), if done by
892 * separate concurrent threads.
893 *
894 * userfaultfd_wake may be used in combination with the
895 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
896 */
897static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
898 unsigned long arg)
899{
900 int ret;
901 struct uffdio_range uffdio_wake;
902 struct userfaultfd_wake_range range;
903 const void __user *buf = (void __user *)arg;
904
905 ret = -EFAULT;
906 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
907 goto out;
908
909 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
910 if (ret)
911 goto out;
912
913 range.start = uffdio_wake.start;
914 range.len = uffdio_wake.len;
915
916 /*
917 * len == 0 means wake all and we don't want to wake all here,
918 * so check it again to be sure.
919 */
920 VM_BUG_ON(!range.len);
921
922 wake_userfault(ctx, &range);
923 ret = 0;
924
925out:
926 return ret;
927}
928
929/*
930 * userland asks for a certain API version and we return which bits
931 * and ioctl commands are implemented in this kernel for such API
932 * version or -EINVAL if unknown.
933 */
934static int userfaultfd_api(struct userfaultfd_ctx *ctx,
935 unsigned long arg)
936{
937 struct uffdio_api uffdio_api;
938 void __user *buf = (void __user *)arg;
939 int ret;
940
941 ret = -EINVAL;
942 if (ctx->state != UFFD_STATE_WAIT_API)
943 goto out;
944 ret = -EFAULT;
a9b85f94 945 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 946 goto out;
a9b85f94 947 if (uffdio_api.api != UFFD_API || uffdio_api.features) {
86039bd3
AA
948 memset(&uffdio_api, 0, sizeof(uffdio_api));
949 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
950 goto out;
951 ret = -EINVAL;
952 goto out;
953 }
3f602d27 954 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
955 uffdio_api.ioctls = UFFD_API_IOCTLS;
956 ret = -EFAULT;
957 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
958 goto out;
959 ctx->state = UFFD_STATE_RUNNING;
960 ret = 0;
961out:
962 return ret;
963}
964
965static long userfaultfd_ioctl(struct file *file, unsigned cmd,
966 unsigned long arg)
967{
968 int ret = -EINVAL;
969 struct userfaultfd_ctx *ctx = file->private_data;
970
971 switch(cmd) {
972 case UFFDIO_API:
973 ret = userfaultfd_api(ctx, arg);
974 break;
975 case UFFDIO_REGISTER:
976 ret = userfaultfd_register(ctx, arg);
977 break;
978 case UFFDIO_UNREGISTER:
979 ret = userfaultfd_unregister(ctx, arg);
980 break;
981 case UFFDIO_WAKE:
982 ret = userfaultfd_wake(ctx, arg);
983 break;
984 }
985 return ret;
986}
987
988#ifdef CONFIG_PROC_FS
989static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
990{
991 struct userfaultfd_ctx *ctx = f->private_data;
992 wait_queue_t *wq;
993 struct userfaultfd_wait_queue *uwq;
994 unsigned long pending = 0, total = 0;
995
15b726ef
AA
996 spin_lock(&ctx->fault_pending_wqh.lock);
997 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
998 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
999 pending++;
1000 total++;
1001 }
86039bd3
AA
1002 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1003 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1004 total++;
1005 }
15b726ef 1006 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1007
1008 /*
1009 * If more protocols will be added, there will be all shown
1010 * separated by a space. Like this:
1011 * protocols: aa:... bb:...
1012 */
1013 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
3f602d27 1014 pending, total, UFFD_API, UFFD_API_FEATURES,
86039bd3
AA
1015 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1016}
1017#endif
1018
1019static const struct file_operations userfaultfd_fops = {
1020#ifdef CONFIG_PROC_FS
1021 .show_fdinfo = userfaultfd_show_fdinfo,
1022#endif
1023 .release = userfaultfd_release,
1024 .poll = userfaultfd_poll,
1025 .read = userfaultfd_read,
1026 .unlocked_ioctl = userfaultfd_ioctl,
1027 .compat_ioctl = userfaultfd_ioctl,
1028 .llseek = noop_llseek,
1029};
1030
1031/**
1032 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1033 * @flags: Flags for the userfaultfd file.
1034 *
1035 * This function creates an userfaultfd file pointer, w/out installing
1036 * it into the fd table. This is useful when the userfaultfd file is
1037 * used during the initialization of data structures that require
1038 * extra setup after the userfaultfd creation. So the userfaultfd
1039 * creation is split into the file pointer creation phase, and the
1040 * file descriptor installation phase. In this way races with
1041 * userspace closing the newly installed file descriptor can be
1042 * avoided. Returns an userfaultfd file pointer, or a proper error
1043 * pointer.
1044 */
1045static struct file *userfaultfd_file_create(int flags)
1046{
1047 struct file *file;
1048 struct userfaultfd_ctx *ctx;
1049
1050 BUG_ON(!current->mm);
1051
1052 /* Check the UFFD_* constants for consistency. */
1053 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1054 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1055
1056 file = ERR_PTR(-EINVAL);
1057 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1058 goto out;
1059
1060 file = ERR_PTR(-ENOMEM);
1061 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
1062 if (!ctx)
1063 goto out;
1064
1065 atomic_set(&ctx->refcount, 1);
15b726ef 1066 init_waitqueue_head(&ctx->fault_pending_wqh);
86039bd3
AA
1067 init_waitqueue_head(&ctx->fault_wqh);
1068 init_waitqueue_head(&ctx->fd_wqh);
1069 ctx->flags = flags;
1070 ctx->state = UFFD_STATE_WAIT_API;
1071 ctx->released = false;
1072 ctx->mm = current->mm;
1073 /* prevent the mm struct to be freed */
1074 atomic_inc(&ctx->mm->mm_users);
1075
1076 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1077 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1078 if (IS_ERR(file))
1079 kfree(ctx);
1080out:
1081 return file;
1082}
1083
1084SYSCALL_DEFINE1(userfaultfd, int, flags)
1085{
1086 int fd, error;
1087 struct file *file;
1088
1089 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1090 if (error < 0)
1091 return error;
1092 fd = error;
1093
1094 file = userfaultfd_file_create(flags);
1095 if (IS_ERR(file)) {
1096 error = PTR_ERR(file);
1097 goto err_put_unused_fd;
1098 }
1099 fd_install(fd, file);
1100
1101 return fd;
1102
1103err_put_unused_fd:
1104 put_unused_fd(fd);
1105
1106 return error;
1107}