hugetlb: fix hugetlb cgroup refcounting during vma split
[linux-2.6-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
6dfeaff9 18#include <linux/mmu_notifier.h>
86039bd3
AA
19#include <linux/poll.h>
20#include <linux/slab.h>
21#include <linux/seq_file.h>
22#include <linux/file.h>
23#include <linux/bug.h>
24#include <linux/anon_inodes.h>
25#include <linux/syscalls.h>
26#include <linux/userfaultfd_k.h>
27#include <linux/mempolicy.h>
28#include <linux/ioctl.h>
29#include <linux/security.h>
cab350af 30#include <linux/hugetlb.h>
86039bd3 31
d0d4730a 32int sysctl_unprivileged_userfaultfd __read_mostly;
cefdca0a 33
3004ec9c
AA
34static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
86039bd3
AA
36enum userfaultfd_state {
37 UFFD_STATE_WAIT_API,
38 UFFD_STATE_RUNNING,
39};
40
3004ec9c
AA
41/*
42 * Start with fault_pending_wqh and fault_wqh so they're more likely
43 * to be in the same cacheline.
cbcfa130
EB
44 *
45 * Locking order:
46 * fd_wqh.lock
47 * fault_pending_wqh.lock
48 * fault_wqh.lock
49 * event_wqh.lock
50 *
51 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
52 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
53 * also taken in IRQ context.
3004ec9c 54 */
86039bd3 55struct userfaultfd_ctx {
15b726ef
AA
56 /* waitqueue head for the pending (i.e. not read) userfaults */
57 wait_queue_head_t fault_pending_wqh;
58 /* waitqueue head for the userfaults */
86039bd3
AA
59 wait_queue_head_t fault_wqh;
60 /* waitqueue head for the pseudo fd to wakeup poll/read */
61 wait_queue_head_t fd_wqh;
9cd75c3c
PE
62 /* waitqueue head for events */
63 wait_queue_head_t event_wqh;
2c5b7e1b 64 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 65 seqcount_spinlock_t refile_seq;
3004ec9c 66 /* pseudo fd refcounting */
ca880420 67 refcount_t refcount;
86039bd3
AA
68 /* userfaultfd syscall flags */
69 unsigned int flags;
9cd75c3c
PE
70 /* features requested from the userspace */
71 unsigned int features;
86039bd3
AA
72 /* state machine */
73 enum userfaultfd_state state;
74 /* released */
75 bool released;
df2cc96e
MR
76 /* memory mappings are changing because of non-cooperative event */
77 bool mmap_changing;
86039bd3
AA
78 /* mm with one ore more vmas attached to this userfaultfd_ctx */
79 struct mm_struct *mm;
80};
81
893e26e6
PE
82struct userfaultfd_fork_ctx {
83 struct userfaultfd_ctx *orig;
84 struct userfaultfd_ctx *new;
85 struct list_head list;
86};
87
897ab3e0
MR
88struct userfaultfd_unmap_ctx {
89 struct userfaultfd_ctx *ctx;
90 unsigned long start;
91 unsigned long end;
92 struct list_head list;
93};
94
86039bd3 95struct userfaultfd_wait_queue {
a9b85f94 96 struct uffd_msg msg;
ac6424b9 97 wait_queue_entry_t wq;
86039bd3 98 struct userfaultfd_ctx *ctx;
15a77c6f 99 bool waken;
86039bd3
AA
100};
101
102struct userfaultfd_wake_range {
103 unsigned long start;
104 unsigned long len;
105};
106
ac6424b9 107static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
108 int wake_flags, void *key)
109{
110 struct userfaultfd_wake_range *range = key;
111 int ret;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
114
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 ret = 0;
86039bd3
AA
117 /* len == 0 means wake all */
118 start = range->start;
119 len = range->len;
a9b85f94
AA
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 122 goto out;
15a77c6f
AA
123 WRITE_ONCE(uwq->waken, true);
124 /*
a9668cd6
PZ
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
15a77c6f 127 */
86039bd3 128 ret = wake_up_state(wq->private, mode);
a9668cd6 129 if (ret) {
86039bd3
AA
130 /*
131 * Wake only once, autoremove behavior.
132 *
a9668cd6
PZ
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
136 *
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 140 */
2055da97 141 list_del_init(&wq->entry);
a9668cd6 142 }
86039bd3
AA
143out:
144 return ret;
145}
146
147/**
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
151 */
152static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153{
ca880420 154 refcount_inc(&ctx->refcount);
86039bd3
AA
155}
156
157/**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
165static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166{
ca880420 167 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 176 mmdrop(ctx->mm);
3004ec9c 177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
178 }
179}
180
a9b85f94 181static inline void msg_init(struct uffd_msg *msg)
86039bd3 182{
a9b85f94
AA
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189}
190
191static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
9d4ac934
AP
193 unsigned long reason,
194 unsigned int features)
a9b85f94
AA
195{
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
7677f7fd
AR
200 /*
201 * These flags indicate why the userfault occurred:
202 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
203 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
204 * - Neither of these flags being set indicates a MISSING fault.
205 *
206 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
207 * fault. Otherwise, it was a read fault.
208 */
86039bd3 209 if (flags & FAULT_FLAG_WRITE)
a9b85f94 210 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 211 if (reason & VM_UFFD_WP)
a9b85f94 212 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
213 if (reason & VM_UFFD_MINOR)
214 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 215 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 216 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 217 return msg;
86039bd3
AA
218}
219
369cd212
MK
220#ifdef CONFIG_HUGETLB_PAGE
221/*
222 * Same functionality as userfaultfd_must_wait below with modifications for
223 * hugepmd ranges.
224 */
225static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 226 struct vm_area_struct *vma,
369cd212
MK
227 unsigned long address,
228 unsigned long flags,
229 unsigned long reason)
230{
231 struct mm_struct *mm = ctx->mm;
1e2c0436 232 pte_t *ptep, pte;
369cd212
MK
233 bool ret = true;
234
42fc5414 235 mmap_assert_locked(mm);
369cd212 236
1e2c0436
JF
237 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
238
239 if (!ptep)
369cd212
MK
240 goto out;
241
242 ret = false;
1e2c0436 243 pte = huge_ptep_get(ptep);
369cd212
MK
244
245 /*
246 * Lockless access: we're in a wait_event so it's ok if it
247 * changes under us.
248 */
1e2c0436 249 if (huge_pte_none(pte))
369cd212 250 ret = true;
1e2c0436 251 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
252 ret = true;
253out:
254 return ret;
255}
256#else
257static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 258 struct vm_area_struct *vma,
369cd212
MK
259 unsigned long address,
260 unsigned long flags,
261 unsigned long reason)
262{
263 return false; /* should never get here */
264}
265#endif /* CONFIG_HUGETLB_PAGE */
266
8d2afd96
AA
267/*
268 * Verify the pagetables are still not ok after having reigstered into
269 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
270 * userfault that has already been resolved, if userfaultfd_read and
271 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
272 * threads.
273 */
274static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
275 unsigned long address,
276 unsigned long flags,
277 unsigned long reason)
278{
279 struct mm_struct *mm = ctx->mm;
280 pgd_t *pgd;
c2febafc 281 p4d_t *p4d;
8d2afd96
AA
282 pud_t *pud;
283 pmd_t *pmd, _pmd;
284 pte_t *pte;
285 bool ret = true;
286
42fc5414 287 mmap_assert_locked(mm);
8d2afd96
AA
288
289 pgd = pgd_offset(mm, address);
290 if (!pgd_present(*pgd))
291 goto out;
c2febafc
KS
292 p4d = p4d_offset(pgd, address);
293 if (!p4d_present(*p4d))
294 goto out;
295 pud = pud_offset(p4d, address);
8d2afd96
AA
296 if (!pud_present(*pud))
297 goto out;
298 pmd = pmd_offset(pud, address);
299 /*
300 * READ_ONCE must function as a barrier with narrower scope
301 * and it must be equivalent to:
302 * _pmd = *pmd; barrier();
303 *
304 * This is to deal with the instability (as in
305 * pmd_trans_unstable) of the pmd.
306 */
307 _pmd = READ_ONCE(*pmd);
a365ac09 308 if (pmd_none(_pmd))
8d2afd96
AA
309 goto out;
310
311 ret = false;
a365ac09
HY
312 if (!pmd_present(_pmd))
313 goto out;
314
63b2d417
AA
315 if (pmd_trans_huge(_pmd)) {
316 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
317 ret = true;
8d2afd96 318 goto out;
63b2d417 319 }
8d2afd96
AA
320
321 /*
322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 * and use the standard pte_offset_map() instead of parsing _pmd.
324 */
325 pte = pte_offset_map(pmd, address);
326 /*
327 * Lockless access: we're in a wait_event so it's ok if it
328 * changes under us.
329 */
330 if (pte_none(*pte))
331 ret = true;
63b2d417
AA
332 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
333 ret = true;
8d2afd96
AA
334 pte_unmap(pte);
335
336out:
337 return ret;
338}
339
2f064a59 340static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
341{
342 if (flags & FAULT_FLAG_INTERRUPTIBLE)
343 return TASK_INTERRUPTIBLE;
344
345 if (flags & FAULT_FLAG_KILLABLE)
346 return TASK_KILLABLE;
347
348 return TASK_UNINTERRUPTIBLE;
349}
350
86039bd3
AA
351/*
352 * The locking rules involved in returning VM_FAULT_RETRY depending on
353 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
354 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
355 * recommendation in __lock_page_or_retry is not an understatement.
356 *
c1e8d7c6 357 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
358 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
359 * not set.
360 *
361 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
362 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 363 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
364 * returning it.
365 */
2b740303 366vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 367{
82b0f8c3 368 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
369 struct userfaultfd_ctx *ctx;
370 struct userfaultfd_wait_queue uwq;
2b740303 371 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 372 bool must_wait;
2f064a59 373 unsigned int blocking_state;
86039bd3 374
64c2b203
AA
375 /*
376 * We don't do userfault handling for the final child pid update.
377 *
378 * We also don't do userfault handling during
379 * coredumping. hugetlbfs has the special
380 * follow_hugetlb_page() to skip missing pages in the
381 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
382 * the no_page_table() helper in follow_page_mask(), but the
383 * shmem_vm_ops->fault method is invoked even during
c1e8d7c6 384 * coredumping without mmap_lock and it ends up here.
64c2b203
AA
385 */
386 if (current->flags & (PF_EXITING|PF_DUMPCORE))
387 goto out;
388
389 /*
c1e8d7c6
ML
390 * Coredumping runs without mmap_lock so we can only check that
391 * the mmap_lock is held, if PF_DUMPCORE was not set.
64c2b203 392 */
42fc5414 393 mmap_assert_locked(mm);
64c2b203 394
82b0f8c3 395 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 396 if (!ctx)
ba85c702 397 goto out;
86039bd3
AA
398
399 BUG_ON(ctx->mm != mm);
400
7677f7fd
AR
401 /* Any unrecognized flag is a bug. */
402 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
403 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
404 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 405
2d6d6f5a
PS
406 if (ctx->features & UFFD_FEATURE_SIGBUS)
407 goto out;
37cd0575
LG
408 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
409 ctx->flags & UFFD_USER_MODE_ONLY) {
410 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
411 "sysctl knob to 1 if kernel faults must be handled "
412 "without obtaining CAP_SYS_PTRACE capability\n");
413 goto out;
414 }
2d6d6f5a 415
86039bd3
AA
416 /*
417 * If it's already released don't get it. This avoids to loop
418 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 419 * caller of handle_userfault to release the mmap_lock.
86039bd3 420 */
6aa7de05 421 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
422 /*
423 * Don't return VM_FAULT_SIGBUS in this case, so a non
424 * cooperative manager can close the uffd after the
425 * last UFFDIO_COPY, without risking to trigger an
426 * involuntary SIGBUS if the process was starting the
427 * userfaultfd while the userfaultfd was still armed
428 * (but after the last UFFDIO_COPY). If the uffd
429 * wasn't already closed when the userfault reached
430 * this point, that would normally be solved by
431 * userfaultfd_must_wait returning 'false'.
432 *
433 * If we were to return VM_FAULT_SIGBUS here, the non
434 * cooperative manager would be instead forced to
435 * always call UFFDIO_UNREGISTER before it can safely
436 * close the uffd.
437 */
438 ret = VM_FAULT_NOPAGE;
ba85c702 439 goto out;
656710a6 440 }
86039bd3
AA
441
442 /*
443 * Check that we can return VM_FAULT_RETRY.
444 *
445 * NOTE: it should become possible to return VM_FAULT_RETRY
446 * even if FAULT_FLAG_TRIED is set without leading to gup()
447 * -EBUSY failures, if the userfaultfd is to be extended for
448 * VM_UFFD_WP tracking and we intend to arm the userfault
449 * without first stopping userland access to the memory. For
450 * VM_UFFD_MISSING userfaults this is enough for now.
451 */
82b0f8c3 452 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
453 /*
454 * Validate the invariant that nowait must allow retry
455 * to be sure not to return SIGBUS erroneously on
456 * nowait invocations.
457 */
82b0f8c3 458 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
459#ifdef CONFIG_DEBUG_VM
460 if (printk_ratelimit()) {
461 printk(KERN_WARNING
82b0f8c3
JK
462 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
463 vmf->flags);
86039bd3
AA
464 dump_stack();
465 }
466#endif
ba85c702 467 goto out;
86039bd3
AA
468 }
469
470 /*
471 * Handle nowait, not much to do other than tell it to retry
472 * and wait.
473 */
ba85c702 474 ret = VM_FAULT_RETRY;
82b0f8c3 475 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 476 goto out;
86039bd3 477
c1e8d7c6 478 /* take the reference before dropping the mmap_lock */
86039bd3
AA
479 userfaultfd_ctx_get(ctx);
480
86039bd3
AA
481 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
482 uwq.wq.private = current;
9d4ac934
AP
483 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
484 ctx->features);
86039bd3 485 uwq.ctx = ctx;
15a77c6f 486 uwq.waken = false;
86039bd3 487
3e69ad08 488 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 489
cbcfa130 490 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
491 /*
492 * After the __add_wait_queue the uwq is visible to userland
493 * through poll/read().
494 */
15b726ef
AA
495 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
496 /*
497 * The smp_mb() after __set_current_state prevents the reads
498 * following the spin_unlock to happen before the list_add in
499 * __add_wait_queue.
500 */
15a77c6f 501 set_current_state(blocking_state);
cbcfa130 502 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 503
369cd212
MK
504 if (!is_vm_hugetlb_page(vmf->vma))
505 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
506 reason);
507 else
7868a208
PA
508 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
509 vmf->address,
369cd212 510 vmf->flags, reason);
d8ed45c5 511 mmap_read_unlock(mm);
8d2afd96 512
f9bf3522 513 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 514 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 515 schedule();
ba85c702 516 }
86039bd3 517
ba85c702 518 __set_current_state(TASK_RUNNING);
15b726ef
AA
519
520 /*
521 * Here we race with the list_del; list_add in
522 * userfaultfd_ctx_read(), however because we don't ever run
523 * list_del_init() to refile across the two lists, the prev
524 * and next pointers will never point to self. list_add also
525 * would never let any of the two pointers to point to
526 * self. So list_empty_careful won't risk to see both pointers
527 * pointing to self at any time during the list refile. The
528 * only case where list_del_init() is called is the full
529 * removal in the wake function and there we don't re-list_add
530 * and it's fine not to block on the spinlock. The uwq on this
531 * kernel stack can be released after the list_del_init.
532 */
2055da97 533 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 534 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
535 /*
536 * No need of list_del_init(), the uwq on the stack
537 * will be freed shortly anyway.
538 */
2055da97 539 list_del(&uwq.wq.entry);
cbcfa130 540 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 541 }
86039bd3
AA
542
543 /*
544 * ctx may go away after this if the userfault pseudo fd is
545 * already released.
546 */
547 userfaultfd_ctx_put(ctx);
548
ba85c702
AA
549out:
550 return ret;
86039bd3
AA
551}
552
8c9e7bb7
AA
553static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
554 struct userfaultfd_wait_queue *ewq)
9cd75c3c 555{
0cbb4b4f
AA
556 struct userfaultfd_ctx *release_new_ctx;
557
9a69a829
AA
558 if (WARN_ON_ONCE(current->flags & PF_EXITING))
559 goto out;
9cd75c3c
PE
560
561 ewq->ctx = ctx;
562 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 563 release_new_ctx = NULL;
9cd75c3c 564
cbcfa130 565 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
566 /*
567 * After the __add_wait_queue the uwq is visible to userland
568 * through poll/read().
569 */
570 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
571 for (;;) {
572 set_current_state(TASK_KILLABLE);
573 if (ewq->msg.event == 0)
574 break;
6aa7de05 575 if (READ_ONCE(ctx->released) ||
9cd75c3c 576 fatal_signal_pending(current)) {
384632e6
AA
577 /*
578 * &ewq->wq may be queued in fork_event, but
579 * __remove_wait_queue ignores the head
580 * parameter. It would be a problem if it
581 * didn't.
582 */
9cd75c3c 583 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
584 if (ewq->msg.event == UFFD_EVENT_FORK) {
585 struct userfaultfd_ctx *new;
586
587 new = (struct userfaultfd_ctx *)
588 (unsigned long)
589 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 590 release_new_ctx = new;
7eb76d45 591 }
9cd75c3c
PE
592 break;
593 }
594
cbcfa130 595 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 596
a9a08845 597 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
598 schedule();
599
cbcfa130 600 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
601 }
602 __set_current_state(TASK_RUNNING);
cbcfa130 603 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 604
0cbb4b4f
AA
605 if (release_new_ctx) {
606 struct vm_area_struct *vma;
607 struct mm_struct *mm = release_new_ctx->mm;
608
609 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 610 mmap_write_lock(mm);
0cbb4b4f 611 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 612 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 613 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 614 vma->vm_flags &= ~__VM_UFFD_FLAGS;
31e810aa 615 }
d8ed45c5 616 mmap_write_unlock(mm);
0cbb4b4f
AA
617
618 userfaultfd_ctx_put(release_new_ctx);
619 }
620
9cd75c3c
PE
621 /*
622 * ctx may go away after this if the userfault pseudo fd is
623 * already released.
624 */
9a69a829 625out:
df2cc96e 626 WRITE_ONCE(ctx->mmap_changing, false);
9cd75c3c 627 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
628}
629
630static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
631 struct userfaultfd_wait_queue *ewq)
632{
633 ewq->msg.event = 0;
634 wake_up_locked(&ctx->event_wqh);
635 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
636}
637
893e26e6
PE
638int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
639{
640 struct userfaultfd_ctx *ctx = NULL, *octx;
641 struct userfaultfd_fork_ctx *fctx;
642
643 octx = vma->vm_userfaultfd_ctx.ctx;
644 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 646 vma->vm_flags &= ~__VM_UFFD_FLAGS;
893e26e6
PE
647 return 0;
648 }
649
650 list_for_each_entry(fctx, fcs, list)
651 if (fctx->orig == octx) {
652 ctx = fctx->new;
653 break;
654 }
655
656 if (!ctx) {
657 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
658 if (!fctx)
659 return -ENOMEM;
660
661 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
662 if (!ctx) {
663 kfree(fctx);
664 return -ENOMEM;
665 }
666
ca880420 667 refcount_set(&ctx->refcount, 1);
893e26e6
PE
668 ctx->flags = octx->flags;
669 ctx->state = UFFD_STATE_RUNNING;
670 ctx->features = octx->features;
671 ctx->released = false;
df2cc96e 672 ctx->mmap_changing = false;
893e26e6 673 ctx->mm = vma->vm_mm;
00bb31fa 674 mmgrab(ctx->mm);
893e26e6
PE
675
676 userfaultfd_ctx_get(octx);
df2cc96e 677 WRITE_ONCE(octx->mmap_changing, true);
893e26e6
PE
678 fctx->orig = octx;
679 fctx->new = ctx;
680 list_add_tail(&fctx->list, fcs);
681 }
682
683 vma->vm_userfaultfd_ctx.ctx = ctx;
684 return 0;
685}
686
8c9e7bb7 687static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
688{
689 struct userfaultfd_ctx *ctx = fctx->orig;
690 struct userfaultfd_wait_queue ewq;
691
692 msg_init(&ewq.msg);
693
694 ewq.msg.event = UFFD_EVENT_FORK;
695 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
696
8c9e7bb7 697 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
698}
699
700void dup_userfaultfd_complete(struct list_head *fcs)
701{
893e26e6
PE
702 struct userfaultfd_fork_ctx *fctx, *n;
703
704 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 705 dup_fctx(fctx);
893e26e6
PE
706 list_del(&fctx->list);
707 kfree(fctx);
708 }
709}
710
72f87654
PE
711void mremap_userfaultfd_prep(struct vm_area_struct *vma,
712 struct vm_userfaultfd_ctx *vm_ctx)
713{
714 struct userfaultfd_ctx *ctx;
715
716 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
717
718 if (!ctx)
719 return;
720
721 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
722 vm_ctx->ctx = ctx;
723 userfaultfd_ctx_get(ctx);
df2cc96e 724 WRITE_ONCE(ctx->mmap_changing, true);
3cfd22be
PX
725 } else {
726 /* Drop uffd context if remap feature not enabled */
727 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 728 vma->vm_flags &= ~__VM_UFFD_FLAGS;
72f87654
PE
729 }
730}
731
90794bf1 732void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
733 unsigned long from, unsigned long to,
734 unsigned long len)
735{
90794bf1 736 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
737 struct userfaultfd_wait_queue ewq;
738
739 if (!ctx)
740 return;
741
742 if (to & ~PAGE_MASK) {
743 userfaultfd_ctx_put(ctx);
744 return;
745 }
746
747 msg_init(&ewq.msg);
748
749 ewq.msg.event = UFFD_EVENT_REMAP;
750 ewq.msg.arg.remap.from = from;
751 ewq.msg.arg.remap.to = to;
752 ewq.msg.arg.remap.len = len;
753
754 userfaultfd_event_wait_completion(ctx, &ewq);
755}
756
70ccb92f 757bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 758 unsigned long start, unsigned long end)
05ce7724
PE
759{
760 struct mm_struct *mm = vma->vm_mm;
761 struct userfaultfd_ctx *ctx;
762 struct userfaultfd_wait_queue ewq;
763
764 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 765 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 766 return true;
05ce7724
PE
767
768 userfaultfd_ctx_get(ctx);
df2cc96e 769 WRITE_ONCE(ctx->mmap_changing, true);
d8ed45c5 770 mmap_read_unlock(mm);
05ce7724 771
05ce7724
PE
772 msg_init(&ewq.msg);
773
d811914d
MR
774 ewq.msg.event = UFFD_EVENT_REMOVE;
775 ewq.msg.arg.remove.start = start;
776 ewq.msg.arg.remove.end = end;
05ce7724
PE
777
778 userfaultfd_event_wait_completion(ctx, &ewq);
779
70ccb92f 780 return false;
05ce7724
PE
781}
782
897ab3e0
MR
783static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
784 unsigned long start, unsigned long end)
785{
786 struct userfaultfd_unmap_ctx *unmap_ctx;
787
788 list_for_each_entry(unmap_ctx, unmaps, list)
789 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
790 unmap_ctx->end == end)
791 return true;
792
793 return false;
794}
795
796int userfaultfd_unmap_prep(struct vm_area_struct *vma,
797 unsigned long start, unsigned long end,
798 struct list_head *unmaps)
799{
800 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
801 struct userfaultfd_unmap_ctx *unmap_ctx;
802 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
803
804 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
805 has_unmap_ctx(ctx, unmaps, start, end))
806 continue;
807
808 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
809 if (!unmap_ctx)
810 return -ENOMEM;
811
812 userfaultfd_ctx_get(ctx);
df2cc96e 813 WRITE_ONCE(ctx->mmap_changing, true);
897ab3e0
MR
814 unmap_ctx->ctx = ctx;
815 unmap_ctx->start = start;
816 unmap_ctx->end = end;
817 list_add_tail(&unmap_ctx->list, unmaps);
818 }
819
820 return 0;
821}
822
823void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
824{
825 struct userfaultfd_unmap_ctx *ctx, *n;
826 struct userfaultfd_wait_queue ewq;
827
828 list_for_each_entry_safe(ctx, n, uf, list) {
829 msg_init(&ewq.msg);
830
831 ewq.msg.event = UFFD_EVENT_UNMAP;
832 ewq.msg.arg.remove.start = ctx->start;
833 ewq.msg.arg.remove.end = ctx->end;
834
835 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
836
837 list_del(&ctx->list);
838 kfree(ctx);
839 }
840}
841
86039bd3
AA
842static int userfaultfd_release(struct inode *inode, struct file *file)
843{
844 struct userfaultfd_ctx *ctx = file->private_data;
845 struct mm_struct *mm = ctx->mm;
846 struct vm_area_struct *vma, *prev;
847 /* len == 0 means wake all */
848 struct userfaultfd_wake_range range = { .len = 0, };
849 unsigned long new_flags;
850
6aa7de05 851 WRITE_ONCE(ctx->released, true);
86039bd3 852
d2005e3f
ON
853 if (!mmget_not_zero(mm))
854 goto wakeup;
855
86039bd3
AA
856 /*
857 * Flush page faults out of all CPUs. NOTE: all page faults
858 * must be retried without returning VM_FAULT_SIGBUS if
859 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 860 * changes while handle_userfault released the mmap_lock. So
86039bd3 861 * it's critical that released is set to true (above), before
c1e8d7c6 862 * taking the mmap_lock for writing.
86039bd3 863 */
d8ed45c5 864 mmap_write_lock(mm);
86039bd3
AA
865 prev = NULL;
866 for (vma = mm->mmap; vma; vma = vma->vm_next) {
867 cond_resched();
868 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 869 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
870 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
871 prev = vma;
872 continue;
873 }
7677f7fd 874 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
4d45e75a
JH
875 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
876 new_flags, vma->anon_vma,
877 vma->vm_file, vma->vm_pgoff,
878 vma_policy(vma),
879 NULL_VM_UFFD_CTX);
880 if (prev)
881 vma = prev;
882 else
883 prev = vma;
86039bd3
AA
884 vma->vm_flags = new_flags;
885 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
886 }
d8ed45c5 887 mmap_write_unlock(mm);
d2005e3f
ON
888 mmput(mm);
889wakeup:
86039bd3 890 /*
15b726ef 891 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 892 * the last page faults that may have been already waiting on
15b726ef 893 * the fault_*wqh.
86039bd3 894 */
cbcfa130 895 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 896 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 897 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 898 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 899
5a18b64e
MR
900 /* Flush pending events that may still wait on event_wqh */
901 wake_up_all(&ctx->event_wqh);
902
a9a08845 903 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
904 userfaultfd_ctx_put(ctx);
905 return 0;
906}
907
15b726ef 908/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
909static inline struct userfaultfd_wait_queue *find_userfault_in(
910 wait_queue_head_t *wqh)
86039bd3 911{
ac6424b9 912 wait_queue_entry_t *wq;
15b726ef 913 struct userfaultfd_wait_queue *uwq;
86039bd3 914
456a7378 915 lockdep_assert_held(&wqh->lock);
86039bd3 916
15b726ef 917 uwq = NULL;
6dcc27fd 918 if (!waitqueue_active(wqh))
15b726ef
AA
919 goto out;
920 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 921 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
922 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
923out:
924 return uwq;
86039bd3 925}
6dcc27fd
PE
926
927static inline struct userfaultfd_wait_queue *find_userfault(
928 struct userfaultfd_ctx *ctx)
929{
930 return find_userfault_in(&ctx->fault_pending_wqh);
931}
86039bd3 932
9cd75c3c
PE
933static inline struct userfaultfd_wait_queue *find_userfault_evt(
934 struct userfaultfd_ctx *ctx)
935{
936 return find_userfault_in(&ctx->event_wqh);
937}
938
076ccb76 939static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
940{
941 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 942 __poll_t ret;
86039bd3
AA
943
944 poll_wait(file, &ctx->fd_wqh, wait);
945
946 switch (ctx->state) {
947 case UFFD_STATE_WAIT_API:
a9a08845 948 return EPOLLERR;
86039bd3 949 case UFFD_STATE_RUNNING:
ba85c702
AA
950 /*
951 * poll() never guarantees that read won't block.
952 * userfaults can be waken before they're read().
953 */
954 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 955 return EPOLLERR;
15b726ef
AA
956 /*
957 * lockless access to see if there are pending faults
958 * __pollwait last action is the add_wait_queue but
959 * the spin_unlock would allow the waitqueue_active to
960 * pass above the actual list_add inside
961 * add_wait_queue critical section. So use a full
962 * memory barrier to serialize the list_add write of
963 * add_wait_queue() with the waitqueue_active read
964 * below.
965 */
966 ret = 0;
967 smp_mb();
968 if (waitqueue_active(&ctx->fault_pending_wqh))
a9a08845 969 ret = EPOLLIN;
9cd75c3c 970 else if (waitqueue_active(&ctx->event_wqh))
a9a08845 971 ret = EPOLLIN;
9cd75c3c 972
86039bd3
AA
973 return ret;
974 default:
8474901a 975 WARN_ON_ONCE(1);
a9a08845 976 return EPOLLERR;
86039bd3
AA
977 }
978}
979
893e26e6
PE
980static const struct file_operations userfaultfd_fops;
981
b537900f
DC
982static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983 struct inode *inode,
893e26e6
PE
984 struct uffd_msg *msg)
985{
986 int fd;
893e26e6 987
b537900f
DC
988 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
990 if (fd < 0)
991 return fd;
992
893e26e6
PE
993 msg->arg.reserved.reserved1 = 0;
994 msg->arg.fork.ufd = fd;
893e26e6
PE
995 return 0;
996}
997
86039bd3 998static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 999 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1000{
1001 ssize_t ret;
1002 DECLARE_WAITQUEUE(wait, current);
15b726ef 1003 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1004 /*
1005 * Handling fork event requires sleeping operations, so
1006 * we drop the event_wqh lock, then do these ops, then
1007 * lock it back and wake up the waiter. While the lock is
1008 * dropped the ewq may go away so we keep track of it
1009 * carefully.
1010 */
1011 LIST_HEAD(fork_event);
1012 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1013
15b726ef 1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1015 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1016 __add_wait_queue(&ctx->fd_wqh, &wait);
1017 for (;;) {
1018 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1019 spin_lock(&ctx->fault_pending_wqh.lock);
1020 uwq = find_userfault(ctx);
1021 if (uwq) {
2c5b7e1b
AA
1022 /*
1023 * Use a seqcount to repeat the lockless check
1024 * in wake_userfault() to avoid missing
1025 * wakeups because during the refile both
1026 * waitqueue could become empty if this is the
1027 * only userfault.
1028 */
1029 write_seqcount_begin(&ctx->refile_seq);
1030
86039bd3 1031 /*
15b726ef
AA
1032 * The fault_pending_wqh.lock prevents the uwq
1033 * to disappear from under us.
1034 *
1035 * Refile this userfault from
1036 * fault_pending_wqh to fault_wqh, it's not
1037 * pending anymore after we read it.
1038 *
1039 * Use list_del() by hand (as
1040 * userfaultfd_wake_function also uses
1041 * list_del_init() by hand) to be sure nobody
1042 * changes __remove_wait_queue() to use
1043 * list_del_init() in turn breaking the
1044 * !list_empty_careful() check in
2055da97 1045 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1046 * must never be empty at any time during the
1047 * refile, or the waitqueue could disappear
1048 * from under us. The "wait_queue_head_t"
1049 * parameter of __remove_wait_queue() is unused
1050 * anyway.
86039bd3 1051 */
2055da97 1052 list_del(&uwq->wq.entry);
c430d1e8 1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1054
2c5b7e1b
AA
1055 write_seqcount_end(&ctx->refile_seq);
1056
a9b85f94
AA
1057 /* careful to always initialize msg if ret == 0 */
1058 *msg = uwq->msg;
15b726ef 1059 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1060 ret = 0;
1061 break;
1062 }
15b726ef 1063 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1064
1065 spin_lock(&ctx->event_wqh.lock);
1066 uwq = find_userfault_evt(ctx);
1067 if (uwq) {
1068 *msg = uwq->msg;
1069
893e26e6
PE
1070 if (uwq->msg.event == UFFD_EVENT_FORK) {
1071 fork_nctx = (struct userfaultfd_ctx *)
1072 (unsigned long)
1073 uwq->msg.arg.reserved.reserved1;
2055da97 1074 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1075 /*
1076 * fork_nctx can be freed as soon as
1077 * we drop the lock, unless we take a
1078 * reference on it.
1079 */
1080 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1081 spin_unlock(&ctx->event_wqh.lock);
1082 ret = 0;
1083 break;
1084 }
1085
9cd75c3c
PE
1086 userfaultfd_event_complete(ctx, uwq);
1087 spin_unlock(&ctx->event_wqh.lock);
1088 ret = 0;
1089 break;
1090 }
1091 spin_unlock(&ctx->event_wqh.lock);
1092
86039bd3
AA
1093 if (signal_pending(current)) {
1094 ret = -ERESTARTSYS;
1095 break;
1096 }
1097 if (no_wait) {
1098 ret = -EAGAIN;
1099 break;
1100 }
ae62c16e 1101 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1102 schedule();
ae62c16e 1103 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1104 }
1105 __remove_wait_queue(&ctx->fd_wqh, &wait);
1106 __set_current_state(TASK_RUNNING);
ae62c16e 1107 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1108
893e26e6 1109 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1110 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1111 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1112 if (!list_empty(&fork_event)) {
1113 /*
1114 * The fork thread didn't abort, so we can
1115 * drop the temporary refcount.
1116 */
1117 userfaultfd_ctx_put(fork_nctx);
1118
1119 uwq = list_first_entry(&fork_event,
1120 typeof(*uwq),
1121 wq.entry);
1122 /*
1123 * If fork_event list wasn't empty and in turn
1124 * the event wasn't already released by fork
1125 * (the event is allocated on fork kernel
1126 * stack), put the event back to its place in
1127 * the event_wq. fork_event head will be freed
1128 * as soon as we return so the event cannot
1129 * stay queued there no matter the current
1130 * "ret" value.
1131 */
1132 list_del(&uwq->wq.entry);
1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1134
384632e6
AA
1135 /*
1136 * Leave the event in the waitqueue and report
1137 * error to userland if we failed to resolve
1138 * the userfault fork.
1139 */
1140 if (likely(!ret))
893e26e6 1141 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1142 } else {
1143 /*
1144 * Here the fork thread aborted and the
1145 * refcount from the fork thread on fork_nctx
1146 * has already been released. We still hold
1147 * the reference we took before releasing the
1148 * lock above. If resolve_userfault_fork
1149 * failed we've to drop it because the
1150 * fork_nctx has to be freed in such case. If
1151 * it succeeded we'll hold it because the new
1152 * uffd references it.
1153 */
1154 if (ret)
1155 userfaultfd_ctx_put(fork_nctx);
893e26e6 1156 }
cbcfa130 1157 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1158 }
1159
86039bd3
AA
1160 return ret;
1161}
1162
1163static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164 size_t count, loff_t *ppos)
1165{
1166 struct userfaultfd_ctx *ctx = file->private_data;
1167 ssize_t _ret, ret = 0;
a9b85f94 1168 struct uffd_msg msg;
86039bd3 1169 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1170 struct inode *inode = file_inode(file);
86039bd3
AA
1171
1172 if (ctx->state == UFFD_STATE_WAIT_API)
1173 return -EINVAL;
86039bd3
AA
1174
1175 for (;;) {
a9b85f94 1176 if (count < sizeof(msg))
86039bd3 1177 return ret ? ret : -EINVAL;
b537900f 1178 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1179 if (_ret < 0)
1180 return ret ? ret : _ret;
a9b85f94 1181 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1182 return ret ? ret : -EFAULT;
a9b85f94
AA
1183 ret += sizeof(msg);
1184 buf += sizeof(msg);
1185 count -= sizeof(msg);
86039bd3
AA
1186 /*
1187 * Allow to read more than one fault at time but only
1188 * block if waiting for the very first one.
1189 */
1190 no_wait = O_NONBLOCK;
1191 }
1192}
1193
1194static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195 struct userfaultfd_wake_range *range)
1196{
cbcfa130 1197 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1198 /* wake all in the range and autoremove */
15b726ef 1199 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1200 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1201 range);
1202 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1203 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1204 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1205}
1206
1207static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208 struct userfaultfd_wake_range *range)
1209{
2c5b7e1b
AA
1210 unsigned seq;
1211 bool need_wakeup;
1212
86039bd3
AA
1213 /*
1214 * To be sure waitqueue_active() is not reordered by the CPU
1215 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1216 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1217 * have release semantics that can allow the
1218 * waitqueue_active() to be reordered before the pte update.
1219 */
1220 smp_mb();
1221
1222 /*
1223 * Use waitqueue_active because it's very frequent to
1224 * change the address space atomically even if there are no
1225 * userfaults yet. So we take the spinlock only when we're
1226 * sure we've userfaults to wake.
1227 */
2c5b7e1b
AA
1228 do {
1229 seq = read_seqcount_begin(&ctx->refile_seq);
1230 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231 waitqueue_active(&ctx->fault_wqh);
1232 cond_resched();
1233 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1234 if (need_wakeup)
86039bd3
AA
1235 __wake_userfault(ctx, range);
1236}
1237
1238static __always_inline int validate_range(struct mm_struct *mm,
e71e2ace 1239 __u64 start, __u64 len)
86039bd3
AA
1240{
1241 __u64 task_size = mm->task_size;
1242
e71e2ace 1243 if (start & ~PAGE_MASK)
86039bd3
AA
1244 return -EINVAL;
1245 if (len & ~PAGE_MASK)
1246 return -EINVAL;
1247 if (!len)
1248 return -EINVAL;
e71e2ace 1249 if (start < mmap_min_addr)
86039bd3 1250 return -EINVAL;
e71e2ace 1251 if (start >= task_size)
86039bd3 1252 return -EINVAL;
e71e2ace 1253 if (len > task_size - start)
86039bd3
AA
1254 return -EINVAL;
1255 return 0;
1256}
1257
63b2d417
AA
1258static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259 unsigned long vm_flags)
ba6907db 1260{
63b2d417 1261 /* FIXME: add WP support to hugetlbfs and shmem */
7677f7fd
AR
1262 if (vm_flags & VM_UFFD_WP) {
1263 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1264 return false;
1265 }
1266
1267 if (vm_flags & VM_UFFD_MINOR) {
c949b097 1268 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
7677f7fd
AR
1269 return false;
1270 }
1271
1272 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1273 vma_is_shmem(vma);
ba6907db
MR
1274}
1275
86039bd3
AA
1276static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1277 unsigned long arg)
1278{
1279 struct mm_struct *mm = ctx->mm;
1280 struct vm_area_struct *vma, *prev, *cur;
1281 int ret;
1282 struct uffdio_register uffdio_register;
1283 struct uffdio_register __user *user_uffdio_register;
1284 unsigned long vm_flags, new_flags;
1285 bool found;
ce53e8e6 1286 bool basic_ioctls;
86039bd3
AA
1287 unsigned long start, end, vma_end;
1288
1289 user_uffdio_register = (struct uffdio_register __user *) arg;
1290
1291 ret = -EFAULT;
1292 if (copy_from_user(&uffdio_register, user_uffdio_register,
1293 sizeof(uffdio_register)-sizeof(__u64)))
1294 goto out;
1295
1296 ret = -EINVAL;
1297 if (!uffdio_register.mode)
1298 goto out;
7677f7fd 1299 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1300 goto out;
1301 vm_flags = 0;
1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1306 goto out;
1307#endif
86039bd3 1308 vm_flags |= VM_UFFD_WP;
00b151f2 1309 }
7677f7fd
AR
1310 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1311#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1312 goto out;
1313#endif
1314 vm_flags |= VM_UFFD_MINOR;
1315 }
86039bd3 1316
e71e2ace 1317 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1318 uffdio_register.range.len);
1319 if (ret)
1320 goto out;
1321
1322 start = uffdio_register.range.start;
1323 end = start + uffdio_register.range.len;
1324
d2005e3f
ON
1325 ret = -ENOMEM;
1326 if (!mmget_not_zero(mm))
1327 goto out;
1328
d8ed45c5 1329 mmap_write_lock(mm);
86039bd3 1330 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1331 if (!vma)
1332 goto out_unlock;
1333
1334 /* check that there's at least one vma in the range */
1335 ret = -EINVAL;
1336 if (vma->vm_start >= end)
1337 goto out_unlock;
1338
cab350af
MK
1339 /*
1340 * If the first vma contains huge pages, make sure start address
1341 * is aligned to huge page size.
1342 */
1343 if (is_vm_hugetlb_page(vma)) {
1344 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1345
1346 if (start & (vma_hpagesize - 1))
1347 goto out_unlock;
1348 }
1349
86039bd3
AA
1350 /*
1351 * Search for not compatible vmas.
86039bd3
AA
1352 */
1353 found = false;
ce53e8e6 1354 basic_ioctls = false;
86039bd3
AA
1355 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1356 cond_resched();
1357
1358 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1359 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1360
1361 /* check not compatible vmas */
1362 ret = -EINVAL;
63b2d417 1363 if (!vma_can_userfault(cur, vm_flags))
86039bd3 1364 goto out_unlock;
29ec9066
AA
1365
1366 /*
1367 * UFFDIO_COPY will fill file holes even without
1368 * PROT_WRITE. This check enforces that if this is a
1369 * MAP_SHARED, the process has write permission to the backing
1370 * file. If VM_MAYWRITE is set it also enforces that on a
1371 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372 * F_WRITE_SEAL can be taken until the vma is destroyed.
1373 */
1374 ret = -EPERM;
1375 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1376 goto out_unlock;
1377
cab350af
MK
1378 /*
1379 * If this vma contains ending address, and huge pages
1380 * check alignment.
1381 */
1382 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383 end > cur->vm_start) {
1384 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1385
1386 ret = -EINVAL;
1387
1388 if (end & (vma_hpagesize - 1))
1389 goto out_unlock;
1390 }
63b2d417
AA
1391 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1392 goto out_unlock;
86039bd3
AA
1393
1394 /*
1395 * Check that this vma isn't already owned by a
1396 * different userfaultfd. We can't allow more than one
1397 * userfaultfd to own a single vma simultaneously or we
1398 * wouldn't know which one to deliver the userfaults to.
1399 */
1400 ret = -EBUSY;
1401 if (cur->vm_userfaultfd_ctx.ctx &&
1402 cur->vm_userfaultfd_ctx.ctx != ctx)
1403 goto out_unlock;
1404
cab350af
MK
1405 /*
1406 * Note vmas containing huge pages
1407 */
ce53e8e6
MR
1408 if (is_vm_hugetlb_page(cur))
1409 basic_ioctls = true;
cab350af 1410
86039bd3
AA
1411 found = true;
1412 }
1413 BUG_ON(!found);
1414
1415 if (vma->vm_start < start)
1416 prev = vma;
1417
1418 ret = 0;
1419 do {
1420 cond_resched();
1421
63b2d417 1422 BUG_ON(!vma_can_userfault(vma, vm_flags));
86039bd3
AA
1423 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1424 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1425 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1426
1427 /*
1428 * Nothing to do: this vma is already registered into this
1429 * userfaultfd and with the right tracking mode too.
1430 */
1431 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1432 (vma->vm_flags & vm_flags) == vm_flags)
1433 goto skip;
1434
1435 if (vma->vm_start > start)
1436 start = vma->vm_start;
1437 vma_end = min(end, vma->vm_end);
1438
7677f7fd 1439 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
86039bd3
AA
1440 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1441 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1442 vma_policy(vma),
1443 ((struct vm_userfaultfd_ctx){ ctx }));
1444 if (prev) {
1445 vma = prev;
1446 goto next;
1447 }
1448 if (vma->vm_start < start) {
1449 ret = split_vma(mm, vma, start, 1);
1450 if (ret)
1451 break;
1452 }
1453 if (vma->vm_end > end) {
1454 ret = split_vma(mm, vma, end, 0);
1455 if (ret)
1456 break;
1457 }
1458 next:
1459 /*
1460 * In the vma_merge() successful mprotect-like case 8:
1461 * the next vma was merged into the current one and
1462 * the current one has not been updated yet.
1463 */
1464 vma->vm_flags = new_flags;
1465 vma->vm_userfaultfd_ctx.ctx = ctx;
1466
6dfeaff9
PX
1467 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1468 hugetlb_unshare_all_pmds(vma);
1469
86039bd3
AA
1470 skip:
1471 prev = vma;
1472 start = vma->vm_end;
1473 vma = vma->vm_next;
1474 } while (vma && vma->vm_start < end);
1475out_unlock:
d8ed45c5 1476 mmap_write_unlock(mm);
d2005e3f 1477 mmput(mm);
86039bd3 1478 if (!ret) {
14819305
PX
1479 __u64 ioctls_out;
1480
1481 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1482 UFFD_API_RANGE_IOCTLS;
1483
1484 /*
1485 * Declare the WP ioctl only if the WP mode is
1486 * specified and all checks passed with the range
1487 */
1488 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1489 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1490
f6191471
AR
1491 /* CONTINUE ioctl is only supported for MINOR ranges. */
1492 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1493 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1494
86039bd3
AA
1495 /*
1496 * Now that we scanned all vmas we can already tell
1497 * userland which ioctls methods are guaranteed to
1498 * succeed on this range.
1499 */
14819305 1500 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1501 ret = -EFAULT;
1502 }
1503out:
1504 return ret;
1505}
1506
1507static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1508 unsigned long arg)
1509{
1510 struct mm_struct *mm = ctx->mm;
1511 struct vm_area_struct *vma, *prev, *cur;
1512 int ret;
1513 struct uffdio_range uffdio_unregister;
1514 unsigned long new_flags;
1515 bool found;
1516 unsigned long start, end, vma_end;
1517 const void __user *buf = (void __user *)arg;
1518
1519 ret = -EFAULT;
1520 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1521 goto out;
1522
e71e2ace 1523 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1524 uffdio_unregister.len);
1525 if (ret)
1526 goto out;
1527
1528 start = uffdio_unregister.start;
1529 end = start + uffdio_unregister.len;
1530
d2005e3f
ON
1531 ret = -ENOMEM;
1532 if (!mmget_not_zero(mm))
1533 goto out;
1534
d8ed45c5 1535 mmap_write_lock(mm);
86039bd3 1536 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1537 if (!vma)
1538 goto out_unlock;
1539
1540 /* check that there's at least one vma in the range */
1541 ret = -EINVAL;
1542 if (vma->vm_start >= end)
1543 goto out_unlock;
1544
cab350af
MK
1545 /*
1546 * If the first vma contains huge pages, make sure start address
1547 * is aligned to huge page size.
1548 */
1549 if (is_vm_hugetlb_page(vma)) {
1550 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1551
1552 if (start & (vma_hpagesize - 1))
1553 goto out_unlock;
1554 }
1555
86039bd3
AA
1556 /*
1557 * Search for not compatible vmas.
86039bd3
AA
1558 */
1559 found = false;
1560 ret = -EINVAL;
1561 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1562 cond_resched();
1563
1564 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1565 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1566
1567 /*
1568 * Check not compatible vmas, not strictly required
1569 * here as not compatible vmas cannot have an
1570 * userfaultfd_ctx registered on them, but this
1571 * provides for more strict behavior to notice
1572 * unregistration errors.
1573 */
63b2d417 1574 if (!vma_can_userfault(cur, cur->vm_flags))
86039bd3
AA
1575 goto out_unlock;
1576
1577 found = true;
1578 }
1579 BUG_ON(!found);
1580
1581 if (vma->vm_start < start)
1582 prev = vma;
1583
1584 ret = 0;
1585 do {
1586 cond_resched();
1587
63b2d417 1588 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
86039bd3
AA
1589
1590 /*
1591 * Nothing to do: this vma is already registered into this
1592 * userfaultfd and with the right tracking mode too.
1593 */
1594 if (!vma->vm_userfaultfd_ctx.ctx)
1595 goto skip;
1596
01e881f5
AA
1597 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1598
86039bd3
AA
1599 if (vma->vm_start > start)
1600 start = vma->vm_start;
1601 vma_end = min(end, vma->vm_end);
1602
09fa5296
AA
1603 if (userfaultfd_missing(vma)) {
1604 /*
1605 * Wake any concurrent pending userfault while
1606 * we unregister, so they will not hang
1607 * permanently and it avoids userland to call
1608 * UFFDIO_WAKE explicitly.
1609 */
1610 struct userfaultfd_wake_range range;
1611 range.start = start;
1612 range.len = vma_end - start;
1613 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1614 }
1615
7677f7fd 1616 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
86039bd3
AA
1617 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1618 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1619 vma_policy(vma),
1620 NULL_VM_UFFD_CTX);
1621 if (prev) {
1622 vma = prev;
1623 goto next;
1624 }
1625 if (vma->vm_start < start) {
1626 ret = split_vma(mm, vma, start, 1);
1627 if (ret)
1628 break;
1629 }
1630 if (vma->vm_end > end) {
1631 ret = split_vma(mm, vma, end, 0);
1632 if (ret)
1633 break;
1634 }
1635 next:
1636 /*
1637 * In the vma_merge() successful mprotect-like case 8:
1638 * the next vma was merged into the current one and
1639 * the current one has not been updated yet.
1640 */
1641 vma->vm_flags = new_flags;
1642 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1643
1644 skip:
1645 prev = vma;
1646 start = vma->vm_end;
1647 vma = vma->vm_next;
1648 } while (vma && vma->vm_start < end);
1649out_unlock:
d8ed45c5 1650 mmap_write_unlock(mm);
d2005e3f 1651 mmput(mm);
86039bd3
AA
1652out:
1653 return ret;
1654}
1655
1656/*
ba85c702
AA
1657 * userfaultfd_wake may be used in combination with the
1658 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1659 */
1660static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1661 unsigned long arg)
1662{
1663 int ret;
1664 struct uffdio_range uffdio_wake;
1665 struct userfaultfd_wake_range range;
1666 const void __user *buf = (void __user *)arg;
1667
1668 ret = -EFAULT;
1669 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1670 goto out;
1671
e71e2ace 1672 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1673 if (ret)
1674 goto out;
1675
1676 range.start = uffdio_wake.start;
1677 range.len = uffdio_wake.len;
1678
1679 /*
1680 * len == 0 means wake all and we don't want to wake all here,
1681 * so check it again to be sure.
1682 */
1683 VM_BUG_ON(!range.len);
1684
1685 wake_userfault(ctx, &range);
1686 ret = 0;
1687
1688out:
1689 return ret;
1690}
1691
ad465cae
AA
1692static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1693 unsigned long arg)
1694{
1695 __s64 ret;
1696 struct uffdio_copy uffdio_copy;
1697 struct uffdio_copy __user *user_uffdio_copy;
1698 struct userfaultfd_wake_range range;
1699
1700 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1701
df2cc96e
MR
1702 ret = -EAGAIN;
1703 if (READ_ONCE(ctx->mmap_changing))
1704 goto out;
1705
ad465cae
AA
1706 ret = -EFAULT;
1707 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1708 /* don't copy "copy" last field */
1709 sizeof(uffdio_copy)-sizeof(__s64)))
1710 goto out;
1711
e71e2ace 1712 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1713 if (ret)
1714 goto out;
1715 /*
1716 * double check for wraparound just in case. copy_from_user()
1717 * will later check uffdio_copy.src + uffdio_copy.len to fit
1718 * in the userland range.
1719 */
1720 ret = -EINVAL;
1721 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1722 goto out;
72981e0e 1723 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1724 goto out;
d2005e3f
ON
1725 if (mmget_not_zero(ctx->mm)) {
1726 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
72981e0e
AA
1727 uffdio_copy.len, &ctx->mmap_changing,
1728 uffdio_copy.mode);
d2005e3f 1729 mmput(ctx->mm);
96333187 1730 } else {
e86b298b 1731 return -ESRCH;
d2005e3f 1732 }
ad465cae
AA
1733 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1734 return -EFAULT;
1735 if (ret < 0)
1736 goto out;
1737 BUG_ON(!ret);
1738 /* len == 0 would wake all */
1739 range.len = ret;
1740 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1741 range.start = uffdio_copy.dst;
1742 wake_userfault(ctx, &range);
1743 }
1744 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1745out:
1746 return ret;
1747}
1748
1749static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1750 unsigned long arg)
1751{
1752 __s64 ret;
1753 struct uffdio_zeropage uffdio_zeropage;
1754 struct uffdio_zeropage __user *user_uffdio_zeropage;
1755 struct userfaultfd_wake_range range;
1756
1757 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1758
df2cc96e
MR
1759 ret = -EAGAIN;
1760 if (READ_ONCE(ctx->mmap_changing))
1761 goto out;
1762
ad465cae
AA
1763 ret = -EFAULT;
1764 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1765 /* don't copy "zeropage" last field */
1766 sizeof(uffdio_zeropage)-sizeof(__s64)))
1767 goto out;
1768
e71e2ace 1769 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1770 uffdio_zeropage.range.len);
1771 if (ret)
1772 goto out;
1773 ret = -EINVAL;
1774 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1775 goto out;
1776
d2005e3f
ON
1777 if (mmget_not_zero(ctx->mm)) {
1778 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1779 uffdio_zeropage.range.len,
1780 &ctx->mmap_changing);
d2005e3f 1781 mmput(ctx->mm);
9d95aa4b 1782 } else {
e86b298b 1783 return -ESRCH;
d2005e3f 1784 }
ad465cae
AA
1785 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1786 return -EFAULT;
1787 if (ret < 0)
1788 goto out;
1789 /* len == 0 would wake all */
1790 BUG_ON(!ret);
1791 range.len = ret;
1792 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1793 range.start = uffdio_zeropage.range.start;
1794 wake_userfault(ctx, &range);
1795 }
1796 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1797out:
1798 return ret;
1799}
1800
63b2d417
AA
1801static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1802 unsigned long arg)
1803{
1804 int ret;
1805 struct uffdio_writeprotect uffdio_wp;
1806 struct uffdio_writeprotect __user *user_uffdio_wp;
1807 struct userfaultfd_wake_range range;
23080e27 1808 bool mode_wp, mode_dontwake;
63b2d417
AA
1809
1810 if (READ_ONCE(ctx->mmap_changing))
1811 return -EAGAIN;
1812
1813 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1814
1815 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1816 sizeof(struct uffdio_writeprotect)))
1817 return -EFAULT;
1818
e71e2ace 1819 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1820 uffdio_wp.range.len);
1821 if (ret)
1822 return ret;
1823
1824 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1825 UFFDIO_WRITEPROTECT_MODE_WP))
1826 return -EINVAL;
23080e27
PX
1827
1828 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1829 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1830
1831 if (mode_wp && mode_dontwake)
63b2d417
AA
1832 return -EINVAL;
1833
1834 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
23080e27 1835 uffdio_wp.range.len, mode_wp,
63b2d417
AA
1836 &ctx->mmap_changing);
1837 if (ret)
1838 return ret;
1839
23080e27 1840 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1841 range.start = uffdio_wp.range.start;
1842 range.len = uffdio_wp.range.len;
1843 wake_userfault(ctx, &range);
1844 }
1845 return ret;
1846}
1847
f6191471
AR
1848static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1849{
1850 __s64 ret;
1851 struct uffdio_continue uffdio_continue;
1852 struct uffdio_continue __user *user_uffdio_continue;
1853 struct userfaultfd_wake_range range;
1854
1855 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1856
1857 ret = -EAGAIN;
1858 if (READ_ONCE(ctx->mmap_changing))
1859 goto out;
1860
1861 ret = -EFAULT;
1862 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1863 /* don't copy the output fields */
1864 sizeof(uffdio_continue) - (sizeof(__s64))))
1865 goto out;
1866
e71e2ace 1867 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1868 uffdio_continue.range.len);
1869 if (ret)
1870 goto out;
1871
1872 ret = -EINVAL;
1873 /* double check for wraparound just in case. */
1874 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1875 uffdio_continue.range.start) {
1876 goto out;
1877 }
1878 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1879 goto out;
1880
1881 if (mmget_not_zero(ctx->mm)) {
1882 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1883 uffdio_continue.range.len,
1884 &ctx->mmap_changing);
1885 mmput(ctx->mm);
1886 } else {
1887 return -ESRCH;
1888 }
1889
1890 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891 return -EFAULT;
1892 if (ret < 0)
1893 goto out;
1894
1895 /* len == 0 would wake all */
1896 BUG_ON(!ret);
1897 range.len = ret;
1898 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899 range.start = uffdio_continue.range.start;
1900 wake_userfault(ctx, &range);
1901 }
1902 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1903
1904out:
1905 return ret;
1906}
1907
9cd75c3c
PE
1908static inline unsigned int uffd_ctx_features(__u64 user_features)
1909{
1910 /*
1911 * For the current set of features the bits just coincide
1912 */
1913 return (unsigned int)user_features;
1914}
1915
86039bd3
AA
1916/*
1917 * userland asks for a certain API version and we return which bits
1918 * and ioctl commands are implemented in this kernel for such API
1919 * version or -EINVAL if unknown.
1920 */
1921static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1922 unsigned long arg)
1923{
1924 struct uffdio_api uffdio_api;
1925 void __user *buf = (void __user *)arg;
1926 int ret;
65603144 1927 __u64 features;
86039bd3
AA
1928
1929 ret = -EINVAL;
1930 if (ctx->state != UFFD_STATE_WAIT_API)
1931 goto out;
1932 ret = -EFAULT;
a9b85f94 1933 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1934 goto out;
65603144 1935 features = uffdio_api.features;
3c1c24d9
MR
1936 ret = -EINVAL;
1937 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1938 goto err_out;
1939 ret = -EPERM;
1940 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1941 goto err_out;
65603144
AA
1942 /* report all available features and ioctls to userland */
1943 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 1944#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
1945 uffdio_api.features &=
1946 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
1947#endif
1948#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1949 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
7677f7fd 1950#endif
86039bd3
AA
1951 uffdio_api.ioctls = UFFD_API_IOCTLS;
1952 ret = -EFAULT;
1953 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1954 goto out;
1955 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1956 /* only enable the requested features for this uffd context */
1957 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1958 ret = 0;
1959out:
1960 return ret;
3c1c24d9
MR
1961err_out:
1962 memset(&uffdio_api, 0, sizeof(uffdio_api));
1963 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1964 ret = -EFAULT;
1965 goto out;
86039bd3
AA
1966}
1967
1968static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1969 unsigned long arg)
1970{
1971 int ret = -EINVAL;
1972 struct userfaultfd_ctx *ctx = file->private_data;
1973
e6485a47
AA
1974 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1975 return -EINVAL;
1976
86039bd3
AA
1977 switch(cmd) {
1978 case UFFDIO_API:
1979 ret = userfaultfd_api(ctx, arg);
1980 break;
1981 case UFFDIO_REGISTER:
1982 ret = userfaultfd_register(ctx, arg);
1983 break;
1984 case UFFDIO_UNREGISTER:
1985 ret = userfaultfd_unregister(ctx, arg);
1986 break;
1987 case UFFDIO_WAKE:
1988 ret = userfaultfd_wake(ctx, arg);
1989 break;
ad465cae
AA
1990 case UFFDIO_COPY:
1991 ret = userfaultfd_copy(ctx, arg);
1992 break;
1993 case UFFDIO_ZEROPAGE:
1994 ret = userfaultfd_zeropage(ctx, arg);
1995 break;
63b2d417
AA
1996 case UFFDIO_WRITEPROTECT:
1997 ret = userfaultfd_writeprotect(ctx, arg);
1998 break;
f6191471
AR
1999 case UFFDIO_CONTINUE:
2000 ret = userfaultfd_continue(ctx, arg);
2001 break;
86039bd3
AA
2002 }
2003 return ret;
2004}
2005
2006#ifdef CONFIG_PROC_FS
2007static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2008{
2009 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2010 wait_queue_entry_t *wq;
86039bd3
AA
2011 unsigned long pending = 0, total = 0;
2012
cbcfa130 2013 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2014 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2015 pending++;
2016 total++;
2017 }
2055da97 2018 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2019 total++;
2020 }
cbcfa130 2021 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2022
2023 /*
2024 * If more protocols will be added, there will be all shown
2025 * separated by a space. Like this:
2026 * protocols: aa:... bb:...
2027 */
2028 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2029 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2030 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2031}
2032#endif
2033
2034static const struct file_operations userfaultfd_fops = {
2035#ifdef CONFIG_PROC_FS
2036 .show_fdinfo = userfaultfd_show_fdinfo,
2037#endif
2038 .release = userfaultfd_release,
2039 .poll = userfaultfd_poll,
2040 .read = userfaultfd_read,
2041 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2042 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2043 .llseek = noop_llseek,
2044};
2045
3004ec9c
AA
2046static void init_once_userfaultfd_ctx(void *mem)
2047{
2048 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2049
2050 init_waitqueue_head(&ctx->fault_pending_wqh);
2051 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2052 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2053 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2054 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2055}
2056
284cd241 2057SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 2058{
86039bd3 2059 struct userfaultfd_ctx *ctx;
284cd241 2060 int fd;
86039bd3 2061
d0d4730a
LG
2062 if (!sysctl_unprivileged_userfaultfd &&
2063 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2064 !capable(CAP_SYS_PTRACE)) {
2065 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2066 "sysctl knob to 1 if kernel faults must be handled "
2067 "without obtaining CAP_SYS_PTRACE capability\n");
cefdca0a 2068 return -EPERM;
d0d4730a 2069 }
cefdca0a 2070
86039bd3
AA
2071 BUG_ON(!current->mm);
2072
2073 /* Check the UFFD_* constants for consistency. */
37cd0575 2074 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2075 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2076 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2077
37cd0575 2078 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2079 return -EINVAL;
86039bd3 2080
3004ec9c 2081 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2082 if (!ctx)
284cd241 2083 return -ENOMEM;
86039bd3 2084
ca880420 2085 refcount_set(&ctx->refcount, 1);
86039bd3 2086 ctx->flags = flags;
9cd75c3c 2087 ctx->features = 0;
86039bd3
AA
2088 ctx->state = UFFD_STATE_WAIT_API;
2089 ctx->released = false;
df2cc96e 2090 ctx->mmap_changing = false;
86039bd3
AA
2091 ctx->mm = current->mm;
2092 /* prevent the mm struct to be freed */
f1f10076 2093 mmgrab(ctx->mm);
86039bd3 2094
b537900f
DC
2095 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2096 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2097 if (fd < 0) {
d2005e3f 2098 mmdrop(ctx->mm);
3004ec9c 2099 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2100 }
86039bd3 2101 return fd;
86039bd3 2102}
3004ec9c
AA
2103
2104static int __init userfaultfd_init(void)
2105{
2106 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2107 sizeof(struct userfaultfd_ctx),
2108 0,
2109 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2110 init_once_userfaultfd_ctx);
2111 return 0;
2112}
2113__initcall(userfaultfd_init);