s390/stacktrace: Improve detection of invalid instruction pointers
[linux-2.6-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
17fca131 18#include <linux/mm_inline.h>
6dfeaff9 19#include <linux/mmu_notifier.h>
86039bd3
AA
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
5c041f5d 32#include <linux/swapops.h>
2d5de004 33#include <linux/miscdevice.h>
86039bd3 34
2d337b71
Z
35static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37#ifdef CONFIG_SYSCTL
38static struct ctl_table vm_userfaultfd_table[] = {
39 {
40 .procname = "unprivileged_userfaultfd",
41 .data = &sysctl_unprivileged_userfaultfd,
42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
43 .mode = 0644,
44 .proc_handler = proc_dointvec_minmax,
45 .extra1 = SYSCTL_ZERO,
46 .extra2 = SYSCTL_ONE,
47 },
2d337b71
Z
48};
49#endif
cefdca0a 50
68279f9c 51static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
3004ec9c 52
893e26e6
PE
53struct userfaultfd_fork_ctx {
54 struct userfaultfd_ctx *orig;
55 struct userfaultfd_ctx *new;
56 struct list_head list;
57};
58
897ab3e0
MR
59struct userfaultfd_unmap_ctx {
60 struct userfaultfd_ctx *ctx;
61 unsigned long start;
62 unsigned long end;
63 struct list_head list;
64};
65
86039bd3 66struct userfaultfd_wait_queue {
a9b85f94 67 struct uffd_msg msg;
ac6424b9 68 wait_queue_entry_t wq;
86039bd3 69 struct userfaultfd_ctx *ctx;
15a77c6f 70 bool waken;
86039bd3
AA
71};
72
73struct userfaultfd_wake_range {
74 unsigned long start;
75 unsigned long len;
76};
77
22e5fe2a
NA
78/* internal indication that UFFD_API ioctl was successfully executed */
79#define UFFD_FEATURE_INITIALIZED (1u << 31)
80
81static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
82{
83 return ctx->features & UFFD_FEATURE_INITIALIZED;
84}
85
d61ea1cb
PX
86static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
87{
88 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
89}
90
2bad466c
PX
91/*
92 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
93 * meaningful when userfaultfd_wp()==true on the vma and when it's
94 * anonymous.
95 */
96bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
97{
98 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
99
100 if (!ctx)
101 return false;
102
103 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
104}
105
51d3d5eb
DH
106static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
107 vm_flags_t flags)
108{
109 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
110
1c71222e 111 vm_flags_reset(vma, flags);
51d3d5eb
DH
112 /*
113 * For shared mappings, we want to enable writenotify while
114 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
115 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
116 */
117 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
118 vma_set_page_prot(vma);
119}
120
ac6424b9 121static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
122 int wake_flags, void *key)
123{
124 struct userfaultfd_wake_range *range = key;
125 int ret;
126 struct userfaultfd_wait_queue *uwq;
127 unsigned long start, len;
128
129 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
130 ret = 0;
86039bd3
AA
131 /* len == 0 means wake all */
132 start = range->start;
133 len = range->len;
a9b85f94
AA
134 if (len && (start > uwq->msg.arg.pagefault.address ||
135 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 136 goto out;
15a77c6f
AA
137 WRITE_ONCE(uwq->waken, true);
138 /*
a9668cd6
PZ
139 * The Program-Order guarantees provided by the scheduler
140 * ensure uwq->waken is visible before the task is woken.
15a77c6f 141 */
86039bd3 142 ret = wake_up_state(wq->private, mode);
a9668cd6 143 if (ret) {
86039bd3
AA
144 /*
145 * Wake only once, autoremove behavior.
146 *
a9668cd6
PZ
147 * After the effect of list_del_init is visible to the other
148 * CPUs, the waitqueue may disappear from under us, see the
149 * !list_empty_careful() in handle_userfault().
150 *
151 * try_to_wake_up() has an implicit smp_mb(), and the
152 * wq->private is read before calling the extern function
153 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 154 */
2055da97 155 list_del_init(&wq->entry);
a9668cd6 156 }
86039bd3
AA
157out:
158 return ret;
159}
160
161/**
162 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
163 * context.
164 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
165 */
166static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
167{
ca880420 168 refcount_inc(&ctx->refcount);
86039bd3
AA
169}
170
171/**
172 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
173 * context.
174 * @ctx: [in] Pointer to userfaultfd context.
175 *
176 * The userfaultfd context reference must have been previously acquired either
177 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
178 */
179static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
180{
ca880420 181 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
182 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
183 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
184 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
185 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
186 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
187 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
188 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
189 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 190 mmdrop(ctx->mm);
3004ec9c 191 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
192 }
193}
194
a9b85f94 195static inline void msg_init(struct uffd_msg *msg)
86039bd3 196{
a9b85f94
AA
197 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
198 /*
199 * Must use memset to zero out the paddings or kernel data is
200 * leaked to userland.
201 */
202 memset(msg, 0, sizeof(struct uffd_msg));
203}
204
205static inline struct uffd_msg userfault_msg(unsigned long address,
d172b1a3 206 unsigned long real_address,
a9b85f94 207 unsigned int flags,
9d4ac934
AP
208 unsigned long reason,
209 unsigned int features)
a9b85f94
AA
210{
211 struct uffd_msg msg;
d172b1a3 212
a9b85f94
AA
213 msg_init(&msg);
214 msg.event = UFFD_EVENT_PAGEFAULT;
824ddc60 215
d172b1a3
NA
216 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
217 real_address : address;
218
7677f7fd
AR
219 /*
220 * These flags indicate why the userfault occurred:
221 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
222 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
223 * - Neither of these flags being set indicates a MISSING fault.
224 *
225 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
226 * fault. Otherwise, it was a read fault.
227 */
86039bd3 228 if (flags & FAULT_FLAG_WRITE)
a9b85f94 229 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 230 if (reason & VM_UFFD_WP)
a9b85f94 231 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
232 if (reason & VM_UFFD_MINOR)
233 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 234 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 235 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 236 return msg;
86039bd3
AA
237}
238
369cd212
MK
239#ifdef CONFIG_HUGETLB_PAGE
240/*
241 * Same functionality as userfaultfd_must_wait below with modifications for
242 * hugepmd ranges.
243 */
244static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
29a22b9e
SB
245 struct vm_fault *vmf,
246 unsigned long reason)
369cd212 247{
29a22b9e 248 struct vm_area_struct *vma = vmf->vma;
1e2c0436 249 pte_t *ptep, pte;
369cd212
MK
250 bool ret = true;
251
29a22b9e 252 assert_fault_locked(vmf);
1e2c0436 253
29a22b9e 254 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
1e2c0436 255 if (!ptep)
369cd212
MK
256 goto out;
257
258 ret = false;
1e2c0436 259 pte = huge_ptep_get(ptep);
369cd212
MK
260
261 /*
262 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
263 * changes under us. PTE markers should be handled the same as none
264 * ptes here.
369cd212 265 */
5c041f5d 266 if (huge_pte_none_mostly(pte))
369cd212 267 ret = true;
1e2c0436 268 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
269 ret = true;
270out:
271 return ret;
272}
273#else
274static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
29a22b9e
SB
275 struct vm_fault *vmf,
276 unsigned long reason)
369cd212
MK
277{
278 return false; /* should never get here */
279}
280#endif /* CONFIG_HUGETLB_PAGE */
281
8d2afd96
AA
282/*
283 * Verify the pagetables are still not ok after having reigstered into
284 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
285 * userfault that has already been resolved, if userfaultfd_read and
286 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
287 * threads.
288 */
289static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
29a22b9e 290 struct vm_fault *vmf,
8d2afd96
AA
291 unsigned long reason)
292{
293 struct mm_struct *mm = ctx->mm;
29a22b9e 294 unsigned long address = vmf->address;
8d2afd96 295 pgd_t *pgd;
c2febafc 296 p4d_t *p4d;
8d2afd96
AA
297 pud_t *pud;
298 pmd_t *pmd, _pmd;
299 pte_t *pte;
c33c7948 300 pte_t ptent;
8d2afd96
AA
301 bool ret = true;
302
29a22b9e 303 assert_fault_locked(vmf);
8d2afd96
AA
304
305 pgd = pgd_offset(mm, address);
306 if (!pgd_present(*pgd))
307 goto out;
c2febafc
KS
308 p4d = p4d_offset(pgd, address);
309 if (!p4d_present(*p4d))
310 goto out;
311 pud = pud_offset(p4d, address);
8d2afd96
AA
312 if (!pud_present(*pud))
313 goto out;
314 pmd = pmd_offset(pud, address);
2b683a4f 315again:
26e1a0c3 316 _pmd = pmdp_get_lockless(pmd);
a365ac09 317 if (pmd_none(_pmd))
8d2afd96
AA
318 goto out;
319
320 ret = false;
2b683a4f 321 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
a365ac09
HY
322 goto out;
323
63b2d417
AA
324 if (pmd_trans_huge(_pmd)) {
325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
326 ret = true;
8d2afd96 327 goto out;
63b2d417 328 }
8d2afd96 329
8d2afd96 330 pte = pte_offset_map(pmd, address);
2b683a4f
HD
331 if (!pte) {
332 ret = true;
333 goto again;
334 }
8d2afd96
AA
335 /*
336 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
337 * changes under us. PTE markers should be handled the same as none
338 * ptes here.
8d2afd96 339 */
c33c7948
RR
340 ptent = ptep_get(pte);
341 if (pte_none_mostly(ptent))
8d2afd96 342 ret = true;
c33c7948 343 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
63b2d417 344 ret = true;
8d2afd96
AA
345 pte_unmap(pte);
346
347out:
348 return ret;
349}
350
2f064a59 351static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
352{
353 if (flags & FAULT_FLAG_INTERRUPTIBLE)
354 return TASK_INTERRUPTIBLE;
355
356 if (flags & FAULT_FLAG_KILLABLE)
357 return TASK_KILLABLE;
358
359 return TASK_UNINTERRUPTIBLE;
360}
361
86039bd3
AA
362/*
363 * The locking rules involved in returning VM_FAULT_RETRY depending on
364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366 * recommendation in __lock_page_or_retry is not an understatement.
367 *
c1e8d7c6 368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
370 * not set.
371 *
372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 374 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
375 * returning it.
376 */
2b740303 377vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 378{
b8da2e46
PX
379 struct vm_area_struct *vma = vmf->vma;
380 struct mm_struct *mm = vma->vm_mm;
86039bd3
AA
381 struct userfaultfd_ctx *ctx;
382 struct userfaultfd_wait_queue uwq;
2b740303 383 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 384 bool must_wait;
2f064a59 385 unsigned int blocking_state;
86039bd3 386
64c2b203
AA
387 /*
388 * We don't do userfault handling for the final child pid update.
389 *
390 * We also don't do userfault handling during
391 * coredumping. hugetlbfs has the special
48498071 392 * hugetlb_follow_page_mask() to skip missing pages in the
64c2b203
AA
393 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
394 * the no_page_table() helper in follow_page_mask(), but the
395 * shmem_vm_ops->fault method is invoked even during
004a9a38 396 * coredumping and it ends up here.
64c2b203
AA
397 */
398 if (current->flags & (PF_EXITING|PF_DUMPCORE))
399 goto out;
400
29a22b9e 401 assert_fault_locked(vmf);
64c2b203 402
b8da2e46 403 ctx = vma->vm_userfaultfd_ctx.ctx;
86039bd3 404 if (!ctx)
ba85c702 405 goto out;
86039bd3
AA
406
407 BUG_ON(ctx->mm != mm);
408
7677f7fd
AR
409 /* Any unrecognized flag is a bug. */
410 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
411 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
412 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 413
2d6d6f5a
PS
414 if (ctx->features & UFFD_FEATURE_SIGBUS)
415 goto out;
2d5de004 416 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
37cd0575 417 goto out;
2d6d6f5a 418
86039bd3
AA
419 /*
420 * If it's already released don't get it. This avoids to loop
421 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 422 * caller of handle_userfault to release the mmap_lock.
86039bd3 423 */
6aa7de05 424 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
425 /*
426 * Don't return VM_FAULT_SIGBUS in this case, so a non
427 * cooperative manager can close the uffd after the
428 * last UFFDIO_COPY, without risking to trigger an
429 * involuntary SIGBUS if the process was starting the
430 * userfaultfd while the userfaultfd was still armed
431 * (but after the last UFFDIO_COPY). If the uffd
432 * wasn't already closed when the userfault reached
433 * this point, that would normally be solved by
434 * userfaultfd_must_wait returning 'false'.
435 *
436 * If we were to return VM_FAULT_SIGBUS here, the non
437 * cooperative manager would be instead forced to
438 * always call UFFDIO_UNREGISTER before it can safely
439 * close the uffd.
440 */
441 ret = VM_FAULT_NOPAGE;
ba85c702 442 goto out;
656710a6 443 }
86039bd3
AA
444
445 /*
446 * Check that we can return VM_FAULT_RETRY.
447 *
448 * NOTE: it should become possible to return VM_FAULT_RETRY
449 * even if FAULT_FLAG_TRIED is set without leading to gup()
450 * -EBUSY failures, if the userfaultfd is to be extended for
451 * VM_UFFD_WP tracking and we intend to arm the userfault
452 * without first stopping userland access to the memory. For
453 * VM_UFFD_MISSING userfaults this is enough for now.
454 */
82b0f8c3 455 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
456 /*
457 * Validate the invariant that nowait must allow retry
458 * to be sure not to return SIGBUS erroneously on
459 * nowait invocations.
460 */
82b0f8c3 461 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
462#ifdef CONFIG_DEBUG_VM
463 if (printk_ratelimit()) {
464 printk(KERN_WARNING
82b0f8c3
JK
465 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
466 vmf->flags);
86039bd3
AA
467 dump_stack();
468 }
469#endif
ba85c702 470 goto out;
86039bd3
AA
471 }
472
473 /*
474 * Handle nowait, not much to do other than tell it to retry
475 * and wait.
476 */
ba85c702 477 ret = VM_FAULT_RETRY;
82b0f8c3 478 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 479 goto out;
86039bd3 480
c1e8d7c6 481 /* take the reference before dropping the mmap_lock */
86039bd3
AA
482 userfaultfd_ctx_get(ctx);
483
86039bd3
AA
484 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
485 uwq.wq.private = current;
d172b1a3
NA
486 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
487 reason, ctx->features);
86039bd3 488 uwq.ctx = ctx;
15a77c6f 489 uwq.waken = false;
86039bd3 490
3e69ad08 491 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 492
b8da2e46
PX
493 /*
494 * Take the vma lock now, in order to safely call
495 * userfaultfd_huge_must_wait() later. Since acquiring the
496 * (sleepable) vma lock can modify the current task state, that
497 * must be before explicitly calling set_current_state().
498 */
499 if (is_vm_hugetlb_page(vma))
500 hugetlb_vma_lock_read(vma);
501
cbcfa130 502 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
503 /*
504 * After the __add_wait_queue the uwq is visible to userland
505 * through poll/read().
506 */
15b726ef
AA
507 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
508 /*
509 * The smp_mb() after __set_current_state prevents the reads
510 * following the spin_unlock to happen before the list_add in
511 * __add_wait_queue.
512 */
15a77c6f 513 set_current_state(blocking_state);
cbcfa130 514 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 515
b8da2e46 516 if (!is_vm_hugetlb_page(vma))
29a22b9e 517 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
369cd212 518 else
29a22b9e 519 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
b8da2e46
PX
520 if (is_vm_hugetlb_page(vma))
521 hugetlb_vma_unlock_read(vma);
29a22b9e 522 release_fault_lock(vmf);
8d2afd96 523
f9bf3522 524 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 525 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 526 schedule();
ba85c702 527 }
86039bd3 528
ba85c702 529 __set_current_state(TASK_RUNNING);
15b726ef
AA
530
531 /*
532 * Here we race with the list_del; list_add in
533 * userfaultfd_ctx_read(), however because we don't ever run
534 * list_del_init() to refile across the two lists, the prev
535 * and next pointers will never point to self. list_add also
536 * would never let any of the two pointers to point to
537 * self. So list_empty_careful won't risk to see both pointers
538 * pointing to self at any time during the list refile. The
539 * only case where list_del_init() is called is the full
540 * removal in the wake function and there we don't re-list_add
541 * and it's fine not to block on the spinlock. The uwq on this
542 * kernel stack can be released after the list_del_init.
543 */
2055da97 544 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 545 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
546 /*
547 * No need of list_del_init(), the uwq on the stack
548 * will be freed shortly anyway.
549 */
2055da97 550 list_del(&uwq.wq.entry);
cbcfa130 551 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 552 }
86039bd3
AA
553
554 /*
555 * ctx may go away after this if the userfault pseudo fd is
556 * already released.
557 */
558 userfaultfd_ctx_put(ctx);
559
ba85c702
AA
560out:
561 return ret;
86039bd3
AA
562}
563
8c9e7bb7
AA
564static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
565 struct userfaultfd_wait_queue *ewq)
9cd75c3c 566{
0cbb4b4f
AA
567 struct userfaultfd_ctx *release_new_ctx;
568
9a69a829
AA
569 if (WARN_ON_ONCE(current->flags & PF_EXITING))
570 goto out;
9cd75c3c
PE
571
572 ewq->ctx = ctx;
573 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 574 release_new_ctx = NULL;
9cd75c3c 575
cbcfa130 576 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
577 /*
578 * After the __add_wait_queue the uwq is visible to userland
579 * through poll/read().
580 */
581 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
582 for (;;) {
583 set_current_state(TASK_KILLABLE);
584 if (ewq->msg.event == 0)
585 break;
6aa7de05 586 if (READ_ONCE(ctx->released) ||
9cd75c3c 587 fatal_signal_pending(current)) {
384632e6
AA
588 /*
589 * &ewq->wq may be queued in fork_event, but
590 * __remove_wait_queue ignores the head
591 * parameter. It would be a problem if it
592 * didn't.
593 */
9cd75c3c 594 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
595 if (ewq->msg.event == UFFD_EVENT_FORK) {
596 struct userfaultfd_ctx *new;
597
598 new = (struct userfaultfd_ctx *)
599 (unsigned long)
600 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 601 release_new_ctx = new;
7eb76d45 602 }
9cd75c3c
PE
603 break;
604 }
605
cbcfa130 606 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 607
a9a08845 608 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
609 schedule();
610
cbcfa130 611 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
612 }
613 __set_current_state(TASK_RUNNING);
cbcfa130 614 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 615
0cbb4b4f
AA
616 if (release_new_ctx) {
617 struct vm_area_struct *vma;
618 struct mm_struct *mm = release_new_ctx->mm;
69dbe6da 619 VMA_ITERATOR(vmi, mm, 0);
0cbb4b4f
AA
620
621 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 622 mmap_write_lock(mm);
69dbe6da 623 for_each_vma(vmi, vma) {
31e810aa 624 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
60081bf1 625 vma_start_write(vma);
0cbb4b4f 626 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb
DH
627 userfaultfd_set_vm_flags(vma,
628 vma->vm_flags & ~__VM_UFFD_FLAGS);
31e810aa 629 }
69dbe6da 630 }
d8ed45c5 631 mmap_write_unlock(mm);
0cbb4b4f
AA
632
633 userfaultfd_ctx_put(release_new_ctx);
634 }
635
9cd75c3c
PE
636 /*
637 * ctx may go away after this if the userfault pseudo fd is
638 * already released.
639 */
9a69a829 640out:
a759a909
NA
641 atomic_dec(&ctx->mmap_changing);
642 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
9cd75c3c 643 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
644}
645
646static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
647 struct userfaultfd_wait_queue *ewq)
648{
649 ewq->msg.event = 0;
650 wake_up_locked(&ctx->event_wqh);
651 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
652}
653
893e26e6
PE
654int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
655{
656 struct userfaultfd_ctx *ctx = NULL, *octx;
657 struct userfaultfd_fork_ctx *fctx;
658
659 octx = vma->vm_userfaultfd_ctx.ctx;
660 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
60081bf1 661 vma_start_write(vma);
893e26e6 662 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb 663 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
893e26e6
PE
664 return 0;
665 }
666
667 list_for_each_entry(fctx, fcs, list)
668 if (fctx->orig == octx) {
669 ctx = fctx->new;
670 break;
671 }
672
673 if (!ctx) {
674 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
675 if (!fctx)
676 return -ENOMEM;
677
678 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
679 if (!ctx) {
680 kfree(fctx);
681 return -ENOMEM;
682 }
683
ca880420 684 refcount_set(&ctx->refcount, 1);
893e26e6 685 ctx->flags = octx->flags;
893e26e6
PE
686 ctx->features = octx->features;
687 ctx->released = false;
5e4c24a5 688 init_rwsem(&ctx->map_changing_lock);
a759a909 689 atomic_set(&ctx->mmap_changing, 0);
893e26e6 690 ctx->mm = vma->vm_mm;
00bb31fa 691 mmgrab(ctx->mm);
893e26e6
PE
692
693 userfaultfd_ctx_get(octx);
5e4c24a5 694 down_write(&octx->map_changing_lock);
a759a909 695 atomic_inc(&octx->mmap_changing);
5e4c24a5 696 up_write(&octx->map_changing_lock);
893e26e6
PE
697 fctx->orig = octx;
698 fctx->new = ctx;
699 list_add_tail(&fctx->list, fcs);
700 }
701
702 vma->vm_userfaultfd_ctx.ctx = ctx;
703 return 0;
704}
705
8c9e7bb7 706static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
707{
708 struct userfaultfd_ctx *ctx = fctx->orig;
709 struct userfaultfd_wait_queue ewq;
710
711 msg_init(&ewq.msg);
712
713 ewq.msg.event = UFFD_EVENT_FORK;
714 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
715
8c9e7bb7 716 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
717}
718
719void dup_userfaultfd_complete(struct list_head *fcs)
720{
893e26e6
PE
721 struct userfaultfd_fork_ctx *fctx, *n;
722
723 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 724 dup_fctx(fctx);
893e26e6
PE
725 list_del(&fctx->list);
726 kfree(fctx);
727 }
728}
729
72f87654
PE
730void mremap_userfaultfd_prep(struct vm_area_struct *vma,
731 struct vm_userfaultfd_ctx *vm_ctx)
732{
733 struct userfaultfd_ctx *ctx;
734
735 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
736
737 if (!ctx)
738 return;
739
740 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
741 vm_ctx->ctx = ctx;
742 userfaultfd_ctx_get(ctx);
5e4c24a5 743 down_write(&ctx->map_changing_lock);
a759a909 744 atomic_inc(&ctx->mmap_changing);
5e4c24a5 745 up_write(&ctx->map_changing_lock);
3cfd22be
PX
746 } else {
747 /* Drop uffd context if remap feature not enabled */
60081bf1 748 vma_start_write(vma);
3cfd22be 749 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb 750 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
72f87654
PE
751 }
752}
753
90794bf1 754void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
755 unsigned long from, unsigned long to,
756 unsigned long len)
757{
90794bf1 758 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
759 struct userfaultfd_wait_queue ewq;
760
761 if (!ctx)
762 return;
763
764 if (to & ~PAGE_MASK) {
765 userfaultfd_ctx_put(ctx);
766 return;
767 }
768
769 msg_init(&ewq.msg);
770
771 ewq.msg.event = UFFD_EVENT_REMAP;
772 ewq.msg.arg.remap.from = from;
773 ewq.msg.arg.remap.to = to;
774 ewq.msg.arg.remap.len = len;
775
776 userfaultfd_event_wait_completion(ctx, &ewq);
777}
778
70ccb92f 779bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 780 unsigned long start, unsigned long end)
05ce7724
PE
781{
782 struct mm_struct *mm = vma->vm_mm;
783 struct userfaultfd_ctx *ctx;
784 struct userfaultfd_wait_queue ewq;
785
786 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 787 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 788 return true;
05ce7724
PE
789
790 userfaultfd_ctx_get(ctx);
5e4c24a5 791 down_write(&ctx->map_changing_lock);
a759a909 792 atomic_inc(&ctx->mmap_changing);
5e4c24a5 793 up_write(&ctx->map_changing_lock);
d8ed45c5 794 mmap_read_unlock(mm);
05ce7724 795
05ce7724
PE
796 msg_init(&ewq.msg);
797
d811914d
MR
798 ewq.msg.event = UFFD_EVENT_REMOVE;
799 ewq.msg.arg.remove.start = start;
800 ewq.msg.arg.remove.end = end;
05ce7724
PE
801
802 userfaultfd_event_wait_completion(ctx, &ewq);
803
70ccb92f 804 return false;
05ce7724
PE
805}
806
897ab3e0
MR
807static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
808 unsigned long start, unsigned long end)
809{
810 struct userfaultfd_unmap_ctx *unmap_ctx;
811
812 list_for_each_entry(unmap_ctx, unmaps, list)
813 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
814 unmap_ctx->end == end)
815 return true;
816
817 return false;
818}
819
65ac1320 820int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
69dbe6da 821 unsigned long end, struct list_head *unmaps)
897ab3e0 822{
65ac1320
LH
823 struct userfaultfd_unmap_ctx *unmap_ctx;
824 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
897ab3e0 825
65ac1320
LH
826 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
827 has_unmap_ctx(ctx, unmaps, start, end))
828 return 0;
897ab3e0 829
65ac1320
LH
830 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
831 if (!unmap_ctx)
832 return -ENOMEM;
897ab3e0 833
65ac1320 834 userfaultfd_ctx_get(ctx);
5e4c24a5 835 down_write(&ctx->map_changing_lock);
65ac1320 836 atomic_inc(&ctx->mmap_changing);
5e4c24a5 837 up_write(&ctx->map_changing_lock);
65ac1320
LH
838 unmap_ctx->ctx = ctx;
839 unmap_ctx->start = start;
840 unmap_ctx->end = end;
841 list_add_tail(&unmap_ctx->list, unmaps);
897ab3e0
MR
842
843 return 0;
844}
845
846void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
847{
848 struct userfaultfd_unmap_ctx *ctx, *n;
849 struct userfaultfd_wait_queue ewq;
850
851 list_for_each_entry_safe(ctx, n, uf, list) {
852 msg_init(&ewq.msg);
853
854 ewq.msg.event = UFFD_EVENT_UNMAP;
855 ewq.msg.arg.remove.start = ctx->start;
856 ewq.msg.arg.remove.end = ctx->end;
857
858 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
859
860 list_del(&ctx->list);
861 kfree(ctx);
862 }
863}
864
86039bd3
AA
865static int userfaultfd_release(struct inode *inode, struct file *file)
866{
867 struct userfaultfd_ctx *ctx = file->private_data;
868 struct mm_struct *mm = ctx->mm;
869 struct vm_area_struct *vma, *prev;
870 /* len == 0 means wake all */
871 struct userfaultfd_wake_range range = { .len = 0, };
872 unsigned long new_flags;
11a9b902 873 VMA_ITERATOR(vmi, mm, 0);
86039bd3 874
6aa7de05 875 WRITE_ONCE(ctx->released, true);
86039bd3 876
d2005e3f
ON
877 if (!mmget_not_zero(mm))
878 goto wakeup;
879
86039bd3
AA
880 /*
881 * Flush page faults out of all CPUs. NOTE: all page faults
882 * must be retried without returning VM_FAULT_SIGBUS if
883 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 884 * changes while handle_userfault released the mmap_lock. So
86039bd3 885 * it's critical that released is set to true (above), before
c1e8d7c6 886 * taking the mmap_lock for writing.
86039bd3 887 */
d8ed45c5 888 mmap_write_lock(mm);
86039bd3 889 prev = NULL;
11a9b902 890 for_each_vma(vmi, vma) {
86039bd3
AA
891 cond_resched();
892 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 893 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
894 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
895 prev = vma;
896 continue;
897 }
c88033ef
PX
898 /* Reset ptes for the whole vma range if wr-protected */
899 if (userfaultfd_wp(vma))
900 uffd_wp_range(vma, vma->vm_start,
901 vma->vm_end - vma->vm_start, false);
7677f7fd 902 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
94d7d923
LS
903 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
904 vma->vm_end, new_flags,
905 NULL_VM_UFFD_CTX);
69dbe6da 906
60081bf1 907 vma_start_write(vma);
51d3d5eb 908 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3 909 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
94d7d923
LS
910
911 prev = vma;
86039bd3 912 }
d8ed45c5 913 mmap_write_unlock(mm);
d2005e3f
ON
914 mmput(mm);
915wakeup:
86039bd3 916 /*
15b726ef 917 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 918 * the last page faults that may have been already waiting on
15b726ef 919 * the fault_*wqh.
86039bd3 920 */
cbcfa130 921 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 922 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 923 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 924 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 925
5a18b64e
MR
926 /* Flush pending events that may still wait on event_wqh */
927 wake_up_all(&ctx->event_wqh);
928
a9a08845 929 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
930 userfaultfd_ctx_put(ctx);
931 return 0;
932}
933
15b726ef 934/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
935static inline struct userfaultfd_wait_queue *find_userfault_in(
936 wait_queue_head_t *wqh)
86039bd3 937{
ac6424b9 938 wait_queue_entry_t *wq;
15b726ef 939 struct userfaultfd_wait_queue *uwq;
86039bd3 940
456a7378 941 lockdep_assert_held(&wqh->lock);
86039bd3 942
15b726ef 943 uwq = NULL;
6dcc27fd 944 if (!waitqueue_active(wqh))
15b726ef
AA
945 goto out;
946 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 947 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
948 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
949out:
950 return uwq;
86039bd3 951}
6dcc27fd
PE
952
953static inline struct userfaultfd_wait_queue *find_userfault(
954 struct userfaultfd_ctx *ctx)
955{
956 return find_userfault_in(&ctx->fault_pending_wqh);
957}
86039bd3 958
9cd75c3c
PE
959static inline struct userfaultfd_wait_queue *find_userfault_evt(
960 struct userfaultfd_ctx *ctx)
961{
962 return find_userfault_in(&ctx->event_wqh);
963}
964
076ccb76 965static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
966{
967 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 968 __poll_t ret;
86039bd3
AA
969
970 poll_wait(file, &ctx->fd_wqh, wait);
971
22e5fe2a 972 if (!userfaultfd_is_initialized(ctx))
a9a08845 973 return EPOLLERR;
9cd75c3c 974
22e5fe2a
NA
975 /*
976 * poll() never guarantees that read won't block.
977 * userfaults can be waken before they're read().
978 */
979 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 980 return EPOLLERR;
22e5fe2a
NA
981 /*
982 * lockless access to see if there are pending faults
983 * __pollwait last action is the add_wait_queue but
984 * the spin_unlock would allow the waitqueue_active to
985 * pass above the actual list_add inside
986 * add_wait_queue critical section. So use a full
987 * memory barrier to serialize the list_add write of
988 * add_wait_queue() with the waitqueue_active read
989 * below.
990 */
991 ret = 0;
992 smp_mb();
993 if (waitqueue_active(&ctx->fault_pending_wqh))
994 ret = EPOLLIN;
995 else if (waitqueue_active(&ctx->event_wqh))
996 ret = EPOLLIN;
997
998 return ret;
86039bd3
AA
999}
1000
893e26e6
PE
1001static const struct file_operations userfaultfd_fops;
1002
b537900f
DC
1003static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1004 struct inode *inode,
893e26e6
PE
1005 struct uffd_msg *msg)
1006{
1007 int fd;
893e26e6 1008
4f0b9194 1009 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
abec3d01 1010 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
1011 if (fd < 0)
1012 return fd;
1013
893e26e6
PE
1014 msg->arg.reserved.reserved1 = 0;
1015 msg->arg.fork.ufd = fd;
893e26e6
PE
1016 return 0;
1017}
1018
86039bd3 1019static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 1020 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1021{
1022 ssize_t ret;
1023 DECLARE_WAITQUEUE(wait, current);
15b726ef 1024 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1025 /*
1026 * Handling fork event requires sleeping operations, so
1027 * we drop the event_wqh lock, then do these ops, then
1028 * lock it back and wake up the waiter. While the lock is
1029 * dropped the ewq may go away so we keep track of it
1030 * carefully.
1031 */
1032 LIST_HEAD(fork_event);
1033 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1034
15b726ef 1035 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1036 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1037 __add_wait_queue(&ctx->fd_wqh, &wait);
1038 for (;;) {
1039 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1040 spin_lock(&ctx->fault_pending_wqh.lock);
1041 uwq = find_userfault(ctx);
1042 if (uwq) {
2c5b7e1b
AA
1043 /*
1044 * Use a seqcount to repeat the lockless check
1045 * in wake_userfault() to avoid missing
1046 * wakeups because during the refile both
1047 * waitqueue could become empty if this is the
1048 * only userfault.
1049 */
1050 write_seqcount_begin(&ctx->refile_seq);
1051
86039bd3 1052 /*
15b726ef
AA
1053 * The fault_pending_wqh.lock prevents the uwq
1054 * to disappear from under us.
1055 *
1056 * Refile this userfault from
1057 * fault_pending_wqh to fault_wqh, it's not
1058 * pending anymore after we read it.
1059 *
1060 * Use list_del() by hand (as
1061 * userfaultfd_wake_function also uses
1062 * list_del_init() by hand) to be sure nobody
1063 * changes __remove_wait_queue() to use
1064 * list_del_init() in turn breaking the
1065 * !list_empty_careful() check in
2055da97 1066 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1067 * must never be empty at any time during the
1068 * refile, or the waitqueue could disappear
1069 * from under us. The "wait_queue_head_t"
1070 * parameter of __remove_wait_queue() is unused
1071 * anyway.
86039bd3 1072 */
2055da97 1073 list_del(&uwq->wq.entry);
c430d1e8 1074 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1075
2c5b7e1b
AA
1076 write_seqcount_end(&ctx->refile_seq);
1077
a9b85f94
AA
1078 /* careful to always initialize msg if ret == 0 */
1079 *msg = uwq->msg;
15b726ef 1080 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1081 ret = 0;
1082 break;
1083 }
15b726ef 1084 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1085
1086 spin_lock(&ctx->event_wqh.lock);
1087 uwq = find_userfault_evt(ctx);
1088 if (uwq) {
1089 *msg = uwq->msg;
1090
893e26e6
PE
1091 if (uwq->msg.event == UFFD_EVENT_FORK) {
1092 fork_nctx = (struct userfaultfd_ctx *)
1093 (unsigned long)
1094 uwq->msg.arg.reserved.reserved1;
2055da97 1095 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1096 /*
1097 * fork_nctx can be freed as soon as
1098 * we drop the lock, unless we take a
1099 * reference on it.
1100 */
1101 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1102 spin_unlock(&ctx->event_wqh.lock);
1103 ret = 0;
1104 break;
1105 }
1106
9cd75c3c
PE
1107 userfaultfd_event_complete(ctx, uwq);
1108 spin_unlock(&ctx->event_wqh.lock);
1109 ret = 0;
1110 break;
1111 }
1112 spin_unlock(&ctx->event_wqh.lock);
1113
86039bd3
AA
1114 if (signal_pending(current)) {
1115 ret = -ERESTARTSYS;
1116 break;
1117 }
1118 if (no_wait) {
1119 ret = -EAGAIN;
1120 break;
1121 }
ae62c16e 1122 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1123 schedule();
ae62c16e 1124 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1125 }
1126 __remove_wait_queue(&ctx->fd_wqh, &wait);
1127 __set_current_state(TASK_RUNNING);
ae62c16e 1128 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1129
893e26e6 1130 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1131 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1132 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1133 if (!list_empty(&fork_event)) {
1134 /*
1135 * The fork thread didn't abort, so we can
1136 * drop the temporary refcount.
1137 */
1138 userfaultfd_ctx_put(fork_nctx);
1139
1140 uwq = list_first_entry(&fork_event,
1141 typeof(*uwq),
1142 wq.entry);
1143 /*
1144 * If fork_event list wasn't empty and in turn
1145 * the event wasn't already released by fork
1146 * (the event is allocated on fork kernel
1147 * stack), put the event back to its place in
1148 * the event_wq. fork_event head will be freed
1149 * as soon as we return so the event cannot
1150 * stay queued there no matter the current
1151 * "ret" value.
1152 */
1153 list_del(&uwq->wq.entry);
1154 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1155
384632e6
AA
1156 /*
1157 * Leave the event in the waitqueue and report
1158 * error to userland if we failed to resolve
1159 * the userfault fork.
1160 */
1161 if (likely(!ret))
893e26e6 1162 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1163 } else {
1164 /*
1165 * Here the fork thread aborted and the
1166 * refcount from the fork thread on fork_nctx
1167 * has already been released. We still hold
1168 * the reference we took before releasing the
1169 * lock above. If resolve_userfault_fork
1170 * failed we've to drop it because the
1171 * fork_nctx has to be freed in such case. If
1172 * it succeeded we'll hold it because the new
1173 * uffd references it.
1174 */
1175 if (ret)
1176 userfaultfd_ctx_put(fork_nctx);
893e26e6 1177 }
cbcfa130 1178 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1179 }
1180
86039bd3
AA
1181 return ret;
1182}
1183
1184static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185 size_t count, loff_t *ppos)
1186{
1187 struct userfaultfd_ctx *ctx = file->private_data;
1188 ssize_t _ret, ret = 0;
a9b85f94 1189 struct uffd_msg msg;
86039bd3 1190 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1191 struct inode *inode = file_inode(file);
86039bd3 1192
22e5fe2a 1193 if (!userfaultfd_is_initialized(ctx))
86039bd3 1194 return -EINVAL;
86039bd3
AA
1195
1196 for (;;) {
a9b85f94 1197 if (count < sizeof(msg))
86039bd3 1198 return ret ? ret : -EINVAL;
b537900f 1199 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1200 if (_ret < 0)
1201 return ret ? ret : _ret;
a9b85f94 1202 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1203 return ret ? ret : -EFAULT;
a9b85f94
AA
1204 ret += sizeof(msg);
1205 buf += sizeof(msg);
1206 count -= sizeof(msg);
86039bd3
AA
1207 /*
1208 * Allow to read more than one fault at time but only
1209 * block if waiting for the very first one.
1210 */
1211 no_wait = O_NONBLOCK;
1212 }
1213}
1214
1215static void __wake_userfault(struct userfaultfd_ctx *ctx,
1216 struct userfaultfd_wake_range *range)
1217{
cbcfa130 1218 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1219 /* wake all in the range and autoremove */
15b726ef 1220 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1221 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1222 range);
1223 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1224 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1225 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1226}
1227
1228static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1229 struct userfaultfd_wake_range *range)
1230{
2c5b7e1b
AA
1231 unsigned seq;
1232 bool need_wakeup;
1233
86039bd3
AA
1234 /*
1235 * To be sure waitqueue_active() is not reordered by the CPU
1236 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1237 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1238 * have release semantics that can allow the
1239 * waitqueue_active() to be reordered before the pte update.
1240 */
1241 smp_mb();
1242
1243 /*
1244 * Use waitqueue_active because it's very frequent to
1245 * change the address space atomically even if there are no
1246 * userfaults yet. So we take the spinlock only when we're
1247 * sure we've userfaults to wake.
1248 */
2c5b7e1b
AA
1249 do {
1250 seq = read_seqcount_begin(&ctx->refile_seq);
1251 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1252 waitqueue_active(&ctx->fault_wqh);
1253 cond_resched();
1254 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1255 if (need_wakeup)
86039bd3
AA
1256 __wake_userfault(ctx, range);
1257}
1258
2ef5d724
AR
1259static __always_inline int validate_unaligned_range(
1260 struct mm_struct *mm, __u64 start, __u64 len)
86039bd3
AA
1261{
1262 __u64 task_size = mm->task_size;
1263
86039bd3
AA
1264 if (len & ~PAGE_MASK)
1265 return -EINVAL;
1266 if (!len)
1267 return -EINVAL;
e71e2ace 1268 if (start < mmap_min_addr)
86039bd3 1269 return -EINVAL;
e71e2ace 1270 if (start >= task_size)
86039bd3 1271 return -EINVAL;
e71e2ace 1272 if (len > task_size - start)
86039bd3 1273 return -EINVAL;
2ef5d724
AR
1274 if (start + len <= start)
1275 return -EINVAL;
86039bd3
AA
1276 return 0;
1277}
1278
2ef5d724
AR
1279static __always_inline int validate_range(struct mm_struct *mm,
1280 __u64 start, __u64 len)
1281{
1282 if (start & ~PAGE_MASK)
1283 return -EINVAL;
1284
1285 return validate_unaligned_range(mm, start, len);
1286}
1287
86039bd3
AA
1288static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1289 unsigned long arg)
1290{
1291 struct mm_struct *mm = ctx->mm;
1292 struct vm_area_struct *vma, *prev, *cur;
1293 int ret;
1294 struct uffdio_register uffdio_register;
1295 struct uffdio_register __user *user_uffdio_register;
1296 unsigned long vm_flags, new_flags;
1297 bool found;
ce53e8e6 1298 bool basic_ioctls;
86039bd3 1299 unsigned long start, end, vma_end;
11a9b902 1300 struct vma_iterator vmi;
d61ea1cb 1301 bool wp_async = userfaultfd_wp_async_ctx(ctx);
86039bd3
AA
1302
1303 user_uffdio_register = (struct uffdio_register __user *) arg;
1304
1305 ret = -EFAULT;
1306 if (copy_from_user(&uffdio_register, user_uffdio_register,
1307 sizeof(uffdio_register)-sizeof(__u64)))
1308 goto out;
1309
1310 ret = -EINVAL;
1311 if (!uffdio_register.mode)
1312 goto out;
7677f7fd 1313 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1314 goto out;
1315 vm_flags = 0;
1316 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1317 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1319#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1320 goto out;
1321#endif
86039bd3 1322 vm_flags |= VM_UFFD_WP;
00b151f2 1323 }
7677f7fd
AR
1324 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1325#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1326 goto out;
1327#endif
1328 vm_flags |= VM_UFFD_MINOR;
1329 }
86039bd3 1330
e71e2ace 1331 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1332 uffdio_register.range.len);
1333 if (ret)
1334 goto out;
1335
1336 start = uffdio_register.range.start;
1337 end = start + uffdio_register.range.len;
1338
d2005e3f
ON
1339 ret = -ENOMEM;
1340 if (!mmget_not_zero(mm))
1341 goto out;
1342
11a9b902 1343 ret = -EINVAL;
d8ed45c5 1344 mmap_write_lock(mm);
11a9b902
LH
1345 vma_iter_init(&vmi, mm, start);
1346 vma = vma_find(&vmi, end);
86039bd3
AA
1347 if (!vma)
1348 goto out_unlock;
1349
cab350af
MK
1350 /*
1351 * If the first vma contains huge pages, make sure start address
1352 * is aligned to huge page size.
1353 */
1354 if (is_vm_hugetlb_page(vma)) {
1355 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1356
1357 if (start & (vma_hpagesize - 1))
1358 goto out_unlock;
1359 }
1360
86039bd3
AA
1361 /*
1362 * Search for not compatible vmas.
86039bd3
AA
1363 */
1364 found = false;
ce53e8e6 1365 basic_ioctls = false;
11a9b902
LH
1366 cur = vma;
1367 do {
86039bd3
AA
1368 cond_resched();
1369
1370 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1371 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1372
1373 /* check not compatible vmas */
1374 ret = -EINVAL;
d61ea1cb 1375 if (!vma_can_userfault(cur, vm_flags, wp_async))
86039bd3 1376 goto out_unlock;
29ec9066
AA
1377
1378 /*
1379 * UFFDIO_COPY will fill file holes even without
1380 * PROT_WRITE. This check enforces that if this is a
1381 * MAP_SHARED, the process has write permission to the backing
1382 * file. If VM_MAYWRITE is set it also enforces that on a
1383 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1384 * F_WRITE_SEAL can be taken until the vma is destroyed.
1385 */
1386 ret = -EPERM;
1387 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1388 goto out_unlock;
1389
cab350af
MK
1390 /*
1391 * If this vma contains ending address, and huge pages
1392 * check alignment.
1393 */
1394 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1395 end > cur->vm_start) {
1396 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1397
1398 ret = -EINVAL;
1399
1400 if (end & (vma_hpagesize - 1))
1401 goto out_unlock;
1402 }
63b2d417
AA
1403 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1404 goto out_unlock;
86039bd3
AA
1405
1406 /*
1407 * Check that this vma isn't already owned by a
1408 * different userfaultfd. We can't allow more than one
1409 * userfaultfd to own a single vma simultaneously or we
1410 * wouldn't know which one to deliver the userfaults to.
1411 */
1412 ret = -EBUSY;
1413 if (cur->vm_userfaultfd_ctx.ctx &&
1414 cur->vm_userfaultfd_ctx.ctx != ctx)
1415 goto out_unlock;
1416
cab350af
MK
1417 /*
1418 * Note vmas containing huge pages
1419 */
ce53e8e6
MR
1420 if (is_vm_hugetlb_page(cur))
1421 basic_ioctls = true;
cab350af 1422
86039bd3 1423 found = true;
11a9b902 1424 } for_each_vma_range(vmi, cur, end);
86039bd3
AA
1425 BUG_ON(!found);
1426
11a9b902
LH
1427 vma_iter_set(&vmi, start);
1428 prev = vma_prev(&vmi);
270aa010
PX
1429 if (vma->vm_start < start)
1430 prev = vma;
86039bd3
AA
1431
1432 ret = 0;
11a9b902 1433 for_each_vma_range(vmi, vma, end) {
86039bd3
AA
1434 cond_resched();
1435
d61ea1cb 1436 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
86039bd3
AA
1437 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1438 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1439 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1440
1441 /*
1442 * Nothing to do: this vma is already registered into this
1443 * userfaultfd and with the right tracking mode too.
1444 */
1445 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1446 (vma->vm_flags & vm_flags) == vm_flags)
1447 goto skip;
1448
1449 if (vma->vm_start > start)
1450 start = vma->vm_start;
1451 vma_end = min(end, vma->vm_end);
1452
7677f7fd 1453 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
94d7d923
LS
1454 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1455 new_flags,
1456 (struct vm_userfaultfd_ctx){ctx});
1457 if (IS_ERR(vma)) {
1458 ret = PTR_ERR(vma);
1459 break;
86039bd3 1460 }
94d7d923 1461
86039bd3
AA
1462 /*
1463 * In the vma_merge() successful mprotect-like case 8:
1464 * the next vma was merged into the current one and
1465 * the current one has not been updated yet.
1466 */
60081bf1 1467 vma_start_write(vma);
51d3d5eb 1468 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3
AA
1469 vma->vm_userfaultfd_ctx.ctx = ctx;
1470
6dfeaff9
PX
1471 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1472 hugetlb_unshare_all_pmds(vma);
1473
86039bd3
AA
1474 skip:
1475 prev = vma;
1476 start = vma->vm_end;
11a9b902
LH
1477 }
1478
86039bd3 1479out_unlock:
d8ed45c5 1480 mmap_write_unlock(mm);
d2005e3f 1481 mmput(mm);
86039bd3 1482 if (!ret) {
14819305
PX
1483 __u64 ioctls_out;
1484
1485 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1486 UFFD_API_RANGE_IOCTLS;
1487
1488 /*
1489 * Declare the WP ioctl only if the WP mode is
1490 * specified and all checks passed with the range
1491 */
1492 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1493 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1494
f6191471
AR
1495 /* CONTINUE ioctl is only supported for MINOR ranges. */
1496 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1497 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1498
86039bd3
AA
1499 /*
1500 * Now that we scanned all vmas we can already tell
1501 * userland which ioctls methods are guaranteed to
1502 * succeed on this range.
1503 */
14819305 1504 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1505 ret = -EFAULT;
1506 }
1507out:
1508 return ret;
1509}
1510
1511static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1512 unsigned long arg)
1513{
1514 struct mm_struct *mm = ctx->mm;
1515 struct vm_area_struct *vma, *prev, *cur;
1516 int ret;
1517 struct uffdio_range uffdio_unregister;
1518 unsigned long new_flags;
1519 bool found;
1520 unsigned long start, end, vma_end;
1521 const void __user *buf = (void __user *)arg;
11a9b902 1522 struct vma_iterator vmi;
d61ea1cb 1523 bool wp_async = userfaultfd_wp_async_ctx(ctx);
86039bd3
AA
1524
1525 ret = -EFAULT;
1526 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1527 goto out;
1528
e71e2ace 1529 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1530 uffdio_unregister.len);
1531 if (ret)
1532 goto out;
1533
1534 start = uffdio_unregister.start;
1535 end = start + uffdio_unregister.len;
1536
d2005e3f
ON
1537 ret = -ENOMEM;
1538 if (!mmget_not_zero(mm))
1539 goto out;
1540
d8ed45c5 1541 mmap_write_lock(mm);
86039bd3 1542 ret = -EINVAL;
11a9b902
LH
1543 vma_iter_init(&vmi, mm, start);
1544 vma = vma_find(&vmi, end);
1545 if (!vma)
86039bd3
AA
1546 goto out_unlock;
1547
cab350af
MK
1548 /*
1549 * If the first vma contains huge pages, make sure start address
1550 * is aligned to huge page size.
1551 */
1552 if (is_vm_hugetlb_page(vma)) {
1553 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1554
1555 if (start & (vma_hpagesize - 1))
1556 goto out_unlock;
1557 }
1558
86039bd3
AA
1559 /*
1560 * Search for not compatible vmas.
86039bd3
AA
1561 */
1562 found = false;
11a9b902
LH
1563 cur = vma;
1564 do {
86039bd3
AA
1565 cond_resched();
1566
1567 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1568 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1569
1570 /*
1571 * Check not compatible vmas, not strictly required
1572 * here as not compatible vmas cannot have an
1573 * userfaultfd_ctx registered on them, but this
1574 * provides for more strict behavior to notice
1575 * unregistration errors.
1576 */
d61ea1cb 1577 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
86039bd3
AA
1578 goto out_unlock;
1579
1580 found = true;
11a9b902 1581 } for_each_vma_range(vmi, cur, end);
86039bd3
AA
1582 BUG_ON(!found);
1583
11a9b902
LH
1584 vma_iter_set(&vmi, start);
1585 prev = vma_prev(&vmi);
270aa010
PX
1586 if (vma->vm_start < start)
1587 prev = vma;
1588
86039bd3 1589 ret = 0;
11a9b902 1590 for_each_vma_range(vmi, vma, end) {
86039bd3
AA
1591 cond_resched();
1592
d61ea1cb 1593 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
86039bd3
AA
1594
1595 /*
1596 * Nothing to do: this vma is already registered into this
1597 * userfaultfd and with the right tracking mode too.
1598 */
1599 if (!vma->vm_userfaultfd_ctx.ctx)
1600 goto skip;
1601
01e881f5
AA
1602 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1603
86039bd3
AA
1604 if (vma->vm_start > start)
1605 start = vma->vm_start;
1606 vma_end = min(end, vma->vm_end);
1607
09fa5296
AA
1608 if (userfaultfd_missing(vma)) {
1609 /*
1610 * Wake any concurrent pending userfault while
1611 * we unregister, so they will not hang
1612 * permanently and it avoids userland to call
1613 * UFFDIO_WAKE explicitly.
1614 */
1615 struct userfaultfd_wake_range range;
1616 range.start = start;
1617 range.len = vma_end - start;
1618 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1619 }
1620
f369b07c
PX
1621 /* Reset ptes for the whole vma range if wr-protected */
1622 if (userfaultfd_wp(vma))
61c50040 1623 uffd_wp_range(vma, start, vma_end - start, false);
f369b07c 1624
7677f7fd 1625 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
94d7d923
LS
1626 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1627 new_flags, NULL_VM_UFFD_CTX);
1628 if (IS_ERR(vma)) {
1629 ret = PTR_ERR(vma);
1630 break;
86039bd3 1631 }
94d7d923 1632
86039bd3
AA
1633 /*
1634 * In the vma_merge() successful mprotect-like case 8:
1635 * the next vma was merged into the current one and
1636 * the current one has not been updated yet.
1637 */
60081bf1 1638 vma_start_write(vma);
51d3d5eb 1639 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3
AA
1640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641
1642 skip:
1643 prev = vma;
1644 start = vma->vm_end;
11a9b902
LH
1645 }
1646
86039bd3 1647out_unlock:
d8ed45c5 1648 mmap_write_unlock(mm);
d2005e3f 1649 mmput(mm);
86039bd3
AA
1650out:
1651 return ret;
1652}
1653
1654/*
ba85c702
AA
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1657 */
1658static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 unsigned long arg)
1660{
1661 int ret;
1662 struct uffdio_range uffdio_wake;
1663 struct userfaultfd_wake_range range;
1664 const void __user *buf = (void __user *)arg;
1665
1666 ret = -EFAULT;
1667 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 goto out;
1669
e71e2ace 1670 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1671 if (ret)
1672 goto out;
1673
1674 range.start = uffdio_wake.start;
1675 range.len = uffdio_wake.len;
1676
1677 /*
1678 * len == 0 means wake all and we don't want to wake all here,
1679 * so check it again to be sure.
1680 */
1681 VM_BUG_ON(!range.len);
1682
1683 wake_userfault(ctx, &range);
1684 ret = 0;
1685
1686out:
1687 return ret;
1688}
1689
ad465cae
AA
1690static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 unsigned long arg)
1692{
1693 __s64 ret;
1694 struct uffdio_copy uffdio_copy;
1695 struct uffdio_copy __user *user_uffdio_copy;
1696 struct userfaultfd_wake_range range;
d9712937 1697 uffd_flags_t flags = 0;
ad465cae
AA
1698
1699 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700
df2cc96e 1701 ret = -EAGAIN;
a759a909 1702 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1703 goto out;
1704
ad465cae
AA
1705 ret = -EFAULT;
1706 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1707 /* don't copy "copy" last field */
1708 sizeof(uffdio_copy)-sizeof(__s64)))
1709 goto out;
1710
2ef5d724
AR
1711 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1712 uffdio_copy.len);
1713 if (ret)
1714 goto out;
e71e2ace 1715 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1716 if (ret)
1717 goto out;
2ef5d724 1718
ad465cae 1719 ret = -EINVAL;
72981e0e 1720 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1721 goto out;
d9712937
AR
1722 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1723 flags |= MFILL_ATOMIC_WP;
d2005e3f 1724 if (mmget_not_zero(ctx->mm)) {
5e4c24a5
LG
1725 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1726 uffdio_copy.len, flags);
d2005e3f 1727 mmput(ctx->mm);
96333187 1728 } else {
e86b298b 1729 return -ESRCH;
d2005e3f 1730 }
ad465cae
AA
1731 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732 return -EFAULT;
1733 if (ret < 0)
1734 goto out;
1735 BUG_ON(!ret);
1736 /* len == 0 would wake all */
1737 range.len = ret;
1738 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1739 range.start = uffdio_copy.dst;
1740 wake_userfault(ctx, &range);
1741 }
1742 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743out:
1744 return ret;
1745}
1746
1747static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1748 unsigned long arg)
1749{
1750 __s64 ret;
1751 struct uffdio_zeropage uffdio_zeropage;
1752 struct uffdio_zeropage __user *user_uffdio_zeropage;
1753 struct userfaultfd_wake_range range;
1754
1755 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756
df2cc96e 1757 ret = -EAGAIN;
a759a909 1758 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1759 goto out;
1760
ad465cae
AA
1761 ret = -EFAULT;
1762 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1763 /* don't copy "zeropage" last field */
1764 sizeof(uffdio_zeropage)-sizeof(__s64)))
1765 goto out;
1766
e71e2ace 1767 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1768 uffdio_zeropage.range.len);
1769 if (ret)
1770 goto out;
1771 ret = -EINVAL;
1772 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1773 goto out;
1774
d2005e3f 1775 if (mmget_not_zero(ctx->mm)) {
5e4c24a5
LG
1776 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1777 uffdio_zeropage.range.len);
d2005e3f 1778 mmput(ctx->mm);
9d95aa4b 1779 } else {
e86b298b 1780 return -ESRCH;
d2005e3f 1781 }
ad465cae
AA
1782 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783 return -EFAULT;
1784 if (ret < 0)
1785 goto out;
1786 /* len == 0 would wake all */
1787 BUG_ON(!ret);
1788 range.len = ret;
1789 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790 range.start = uffdio_zeropage.range.start;
1791 wake_userfault(ctx, &range);
1792 }
1793 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794out:
1795 return ret;
1796}
1797
63b2d417
AA
1798static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1799 unsigned long arg)
1800{
1801 int ret;
1802 struct uffdio_writeprotect uffdio_wp;
1803 struct uffdio_writeprotect __user *user_uffdio_wp;
1804 struct userfaultfd_wake_range range;
23080e27 1805 bool mode_wp, mode_dontwake;
63b2d417 1806
a759a909 1807 if (atomic_read(&ctx->mmap_changing))
63b2d417
AA
1808 return -EAGAIN;
1809
1810 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1811
1812 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1813 sizeof(struct uffdio_writeprotect)))
1814 return -EFAULT;
1815
e71e2ace 1816 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1817 uffdio_wp.range.len);
1818 if (ret)
1819 return ret;
1820
1821 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1822 UFFDIO_WRITEPROTECT_MODE_WP))
1823 return -EINVAL;
23080e27
PX
1824
1825 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1826 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1827
1828 if (mode_wp && mode_dontwake)
63b2d417
AA
1829 return -EINVAL;
1830
cb185d5f 1831 if (mmget_not_zero(ctx->mm)) {
5e4c24a5
LG
1832 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1833 uffdio_wp.range.len, mode_wp);
cb185d5f
NA
1834 mmput(ctx->mm);
1835 } else {
1836 return -ESRCH;
1837 }
1838
63b2d417
AA
1839 if (ret)
1840 return ret;
1841
23080e27 1842 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1843 range.start = uffdio_wp.range.start;
1844 range.len = uffdio_wp.range.len;
1845 wake_userfault(ctx, &range);
1846 }
1847 return ret;
1848}
1849
f6191471
AR
1850static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1851{
1852 __s64 ret;
1853 struct uffdio_continue uffdio_continue;
1854 struct uffdio_continue __user *user_uffdio_continue;
1855 struct userfaultfd_wake_range range;
02891844 1856 uffd_flags_t flags = 0;
f6191471
AR
1857
1858 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1859
1860 ret = -EAGAIN;
a759a909 1861 if (atomic_read(&ctx->mmap_changing))
f6191471
AR
1862 goto out;
1863
1864 ret = -EFAULT;
1865 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1866 /* don't copy the output fields */
1867 sizeof(uffdio_continue) - (sizeof(__s64))))
1868 goto out;
1869
e71e2ace 1870 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1871 uffdio_continue.range.len);
1872 if (ret)
1873 goto out;
1874
1875 ret = -EINVAL;
02891844
AR
1876 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1877 UFFDIO_CONTINUE_MODE_WP))
f6191471 1878 goto out;
02891844
AR
1879 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1880 flags |= MFILL_ATOMIC_WP;
f6191471
AR
1881
1882 if (mmget_not_zero(ctx->mm)) {
5e4c24a5
LG
1883 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1884 uffdio_continue.range.len, flags);
f6191471
AR
1885 mmput(ctx->mm);
1886 } else {
1887 return -ESRCH;
1888 }
1889
1890 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891 return -EFAULT;
1892 if (ret < 0)
1893 goto out;
1894
1895 /* len == 0 would wake all */
1896 BUG_ON(!ret);
1897 range.len = ret;
1898 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899 range.start = uffdio_continue.range.start;
1900 wake_userfault(ctx, &range);
1901 }
1902 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1903
1904out:
1905 return ret;
1906}
1907
fc71884a
AR
1908static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1909{
1910 __s64 ret;
1911 struct uffdio_poison uffdio_poison;
1912 struct uffdio_poison __user *user_uffdio_poison;
1913 struct userfaultfd_wake_range range;
1914
1915 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1916
1917 ret = -EAGAIN;
1918 if (atomic_read(&ctx->mmap_changing))
1919 goto out;
1920
1921 ret = -EFAULT;
1922 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1923 /* don't copy the output fields */
1924 sizeof(uffdio_poison) - (sizeof(__s64))))
1925 goto out;
1926
1927 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1928 uffdio_poison.range.len);
1929 if (ret)
1930 goto out;
1931
1932 ret = -EINVAL;
1933 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1934 goto out;
1935
1936 if (mmget_not_zero(ctx->mm)) {
5e4c24a5
LG
1937 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1938 uffdio_poison.range.len, 0);
fc71884a
AR
1939 mmput(ctx->mm);
1940 } else {
1941 return -ESRCH;
1942 }
1943
1944 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1945 return -EFAULT;
1946 if (ret < 0)
1947 goto out;
1948
1949 /* len == 0 would wake all */
1950 BUG_ON(!ret);
1951 range.len = ret;
1952 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1953 range.start = uffdio_poison.range.start;
1954 wake_userfault(ctx, &range);
1955 }
1956 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1957
1958out:
1959 return ret;
1960}
1961
d61ea1cb
PX
1962bool userfaultfd_wp_async(struct vm_area_struct *vma)
1963{
1964 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1965}
1966
9cd75c3c
PE
1967static inline unsigned int uffd_ctx_features(__u64 user_features)
1968{
1969 /*
22e5fe2a
NA
1970 * For the current set of features the bits just coincide. Set
1971 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
9cd75c3c 1972 */
22e5fe2a 1973 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
9cd75c3c
PE
1974}
1975
adef4406
AA
1976static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1977 unsigned long arg)
1978{
1979 __s64 ret;
1980 struct uffdio_move uffdio_move;
1981 struct uffdio_move __user *user_uffdio_move;
1982 struct userfaultfd_wake_range range;
1983 struct mm_struct *mm = ctx->mm;
1984
1985 user_uffdio_move = (struct uffdio_move __user *) arg;
1986
1987 if (atomic_read(&ctx->mmap_changing))
1988 return -EAGAIN;
1989
1990 if (copy_from_user(&uffdio_move, user_uffdio_move,
1991 /* don't copy "move" last field */
1992 sizeof(uffdio_move)-sizeof(__s64)))
1993 return -EFAULT;
1994
1995 /* Do not allow cross-mm moves. */
1996 if (mm != current->mm)
1997 return -EINVAL;
1998
1999 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2000 if (ret)
2001 return ret;
2002
2003 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2004 if (ret)
2005 return ret;
2006
2007 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2008 UFFDIO_MOVE_MODE_DONTWAKE))
2009 return -EINVAL;
2010
2011 if (mmget_not_zero(mm)) {
867a43a3
LG
2012 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2013 uffdio_move.len, uffdio_move.mode);
adef4406
AA
2014 mmput(mm);
2015 } else {
2016 return -ESRCH;
2017 }
2018
2019 if (unlikely(put_user(ret, &user_uffdio_move->move)))
2020 return -EFAULT;
2021 if (ret < 0)
2022 goto out;
2023
2024 /* len == 0 would wake all */
2025 VM_WARN_ON(!ret);
2026 range.len = ret;
2027 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2028 range.start = uffdio_move.dst;
2029 wake_userfault(ctx, &range);
2030 }
2031 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2032
2033out:
2034 return ret;
2035}
2036
86039bd3
AA
2037/*
2038 * userland asks for a certain API version and we return which bits
2039 * and ioctl commands are implemented in this kernel for such API
2040 * version or -EINVAL if unknown.
2041 */
2042static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2043 unsigned long arg)
2044{
2045 struct uffdio_api uffdio_api;
2046 void __user *buf = (void __user *)arg;
22e5fe2a 2047 unsigned int ctx_features;
86039bd3 2048 int ret;
65603144 2049 __u64 features;
86039bd3 2050
86039bd3 2051 ret = -EFAULT;
a9b85f94 2052 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 2053 goto out;
2ff559f3
PX
2054 features = uffdio_api.features;
2055 ret = -EINVAL;
2056 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2057 goto err_out;
3c1c24d9
MR
2058 ret = -EPERM;
2059 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2060 goto err_out;
d61ea1cb
PX
2061
2062 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2063 if (features & UFFD_FEATURE_WP_ASYNC)
2064 features |= UFFD_FEATURE_WP_UNPOPULATED;
2065
65603144
AA
2066 /* report all available features and ioctls to userland */
2067 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 2068#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
2069 uffdio_api.features &=
2070 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
2071#endif
2072#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2073 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
b1f9e876
PX
2074#endif
2075#ifndef CONFIG_PTE_MARKER_UFFD_WP
2076 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2bad466c 2077 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
d61ea1cb 2078 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
7677f7fd 2079#endif
86039bd3
AA
2080 uffdio_api.ioctls = UFFD_API_IOCTLS;
2081 ret = -EFAULT;
2082 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2083 goto out;
22e5fe2a 2084
65603144 2085 /* only enable the requested features for this uffd context */
22e5fe2a
NA
2086 ctx_features = uffd_ctx_features(features);
2087 ret = -EINVAL;
2088 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2089 goto err_out;
2090
86039bd3
AA
2091 ret = 0;
2092out:
2093 return ret;
3c1c24d9
MR
2094err_out:
2095 memset(&uffdio_api, 0, sizeof(uffdio_api));
2096 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2097 ret = -EFAULT;
2098 goto out;
86039bd3
AA
2099}
2100
2101static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2102 unsigned long arg)
2103{
2104 int ret = -EINVAL;
2105 struct userfaultfd_ctx *ctx = file->private_data;
2106
22e5fe2a 2107 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
e6485a47
AA
2108 return -EINVAL;
2109
86039bd3
AA
2110 switch(cmd) {
2111 case UFFDIO_API:
2112 ret = userfaultfd_api(ctx, arg);
2113 break;
2114 case UFFDIO_REGISTER:
2115 ret = userfaultfd_register(ctx, arg);
2116 break;
2117 case UFFDIO_UNREGISTER:
2118 ret = userfaultfd_unregister(ctx, arg);
2119 break;
2120 case UFFDIO_WAKE:
2121 ret = userfaultfd_wake(ctx, arg);
2122 break;
ad465cae
AA
2123 case UFFDIO_COPY:
2124 ret = userfaultfd_copy(ctx, arg);
2125 break;
2126 case UFFDIO_ZEROPAGE:
2127 ret = userfaultfd_zeropage(ctx, arg);
2128 break;
adef4406
AA
2129 case UFFDIO_MOVE:
2130 ret = userfaultfd_move(ctx, arg);
2131 break;
63b2d417
AA
2132 case UFFDIO_WRITEPROTECT:
2133 ret = userfaultfd_writeprotect(ctx, arg);
2134 break;
f6191471
AR
2135 case UFFDIO_CONTINUE:
2136 ret = userfaultfd_continue(ctx, arg);
2137 break;
fc71884a
AR
2138 case UFFDIO_POISON:
2139 ret = userfaultfd_poison(ctx, arg);
2140 break;
86039bd3
AA
2141 }
2142 return ret;
2143}
2144
2145#ifdef CONFIG_PROC_FS
2146static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2147{
2148 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2149 wait_queue_entry_t *wq;
86039bd3
AA
2150 unsigned long pending = 0, total = 0;
2151
cbcfa130 2152 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2153 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2154 pending++;
2155 total++;
2156 }
2055da97 2157 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2158 total++;
2159 }
cbcfa130 2160 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2161
2162 /*
2163 * If more protocols will be added, there will be all shown
2164 * separated by a space. Like this:
2165 * protocols: aa:... bb:...
2166 */
2167 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2168 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2169 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2170}
2171#endif
2172
2173static const struct file_operations userfaultfd_fops = {
2174#ifdef CONFIG_PROC_FS
2175 .show_fdinfo = userfaultfd_show_fdinfo,
2176#endif
2177 .release = userfaultfd_release,
2178 .poll = userfaultfd_poll,
2179 .read = userfaultfd_read,
2180 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2181 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2182 .llseek = noop_llseek,
2183};
2184
3004ec9c
AA
2185static void init_once_userfaultfd_ctx(void *mem)
2186{
2187 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2188
2189 init_waitqueue_head(&ctx->fault_pending_wqh);
2190 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2191 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2192 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2193 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2194}
2195
2d5de004 2196static int new_userfaultfd(int flags)
86039bd3 2197{
86039bd3 2198 struct userfaultfd_ctx *ctx;
284cd241 2199 int fd;
86039bd3
AA
2200
2201 BUG_ON(!current->mm);
2202
2203 /* Check the UFFD_* constants for consistency. */
37cd0575 2204 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2205 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2206 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2207
37cd0575 2208 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2209 return -EINVAL;
86039bd3 2210
3004ec9c 2211 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2212 if (!ctx)
284cd241 2213 return -ENOMEM;
86039bd3 2214
ca880420 2215 refcount_set(&ctx->refcount, 1);
86039bd3 2216 ctx->flags = flags;
9cd75c3c 2217 ctx->features = 0;
86039bd3 2218 ctx->released = false;
5e4c24a5 2219 init_rwsem(&ctx->map_changing_lock);
a759a909 2220 atomic_set(&ctx->mmap_changing, 0);
86039bd3
AA
2221 ctx->mm = current->mm;
2222 /* prevent the mm struct to be freed */
f1f10076 2223 mmgrab(ctx->mm);
86039bd3 2224
4f0b9194
PB
2225 /* Create a new inode so that the LSM can block the creation. */
2226 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
abec3d01 2227 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2228 if (fd < 0) {
d2005e3f 2229 mmdrop(ctx->mm);
3004ec9c 2230 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2231 }
86039bd3 2232 return fd;
86039bd3 2233}
3004ec9c 2234
2d5de004
AR
2235static inline bool userfaultfd_syscall_allowed(int flags)
2236{
2237 /* Userspace-only page faults are always allowed */
2238 if (flags & UFFD_USER_MODE_ONLY)
2239 return true;
2240
2241 /*
2242 * The user is requesting a userfaultfd which can handle kernel faults.
2243 * Privileged users are always allowed to do this.
2244 */
2245 if (capable(CAP_SYS_PTRACE))
2246 return true;
2247
2248 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2249 return sysctl_unprivileged_userfaultfd;
2250}
2251
2252SYSCALL_DEFINE1(userfaultfd, int, flags)
2253{
2254 if (!userfaultfd_syscall_allowed(flags))
2255 return -EPERM;
2256
2257 return new_userfaultfd(flags);
2258}
2259
2260static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2261{
2262 if (cmd != USERFAULTFD_IOC_NEW)
2263 return -EINVAL;
2264
2265 return new_userfaultfd(flags);
2266}
2267
2268static const struct file_operations userfaultfd_dev_fops = {
2269 .unlocked_ioctl = userfaultfd_dev_ioctl,
2270 .compat_ioctl = userfaultfd_dev_ioctl,
2271 .owner = THIS_MODULE,
2272 .llseek = noop_llseek,
2273};
2274
2275static struct miscdevice userfaultfd_misc = {
2276 .minor = MISC_DYNAMIC_MINOR,
2277 .name = "userfaultfd",
2278 .fops = &userfaultfd_dev_fops
2279};
2280
3004ec9c
AA
2281static int __init userfaultfd_init(void)
2282{
2d5de004
AR
2283 int ret;
2284
2285 ret = misc_register(&userfaultfd_misc);
2286 if (ret)
2287 return ret;
2288
3004ec9c
AA
2289 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2290 sizeof(struct userfaultfd_ctx),
2291 0,
2292 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2293 init_once_userfaultfd_ctx);
2d337b71
Z
2294#ifdef CONFIG_SYSCTL
2295 register_sysctl_init("vm", vm_userfaultfd_table);
2296#endif
3004ec9c
AA
2297 return 0;
2298}
2299__initcall(userfaultfd_init);