Merge tag 'acpi-5.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
17fca131 18#include <linux/mm_inline.h>
6dfeaff9 19#include <linux/mmu_notifier.h>
86039bd3
AA
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
5c041f5d 32#include <linux/swapops.h>
86039bd3 33
d0d4730a 34int sysctl_unprivileged_userfaultfd __read_mostly;
cefdca0a 35
3004ec9c
AA
36static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
37
3004ec9c
AA
38/*
39 * Start with fault_pending_wqh and fault_wqh so they're more likely
40 * to be in the same cacheline.
cbcfa130
EB
41 *
42 * Locking order:
43 * fd_wqh.lock
44 * fault_pending_wqh.lock
45 * fault_wqh.lock
46 * event_wqh.lock
47 *
48 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
49 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
50 * also taken in IRQ context.
3004ec9c 51 */
86039bd3 52struct userfaultfd_ctx {
15b726ef
AA
53 /* waitqueue head for the pending (i.e. not read) userfaults */
54 wait_queue_head_t fault_pending_wqh;
55 /* waitqueue head for the userfaults */
86039bd3
AA
56 wait_queue_head_t fault_wqh;
57 /* waitqueue head for the pseudo fd to wakeup poll/read */
58 wait_queue_head_t fd_wqh;
9cd75c3c
PE
59 /* waitqueue head for events */
60 wait_queue_head_t event_wqh;
2c5b7e1b 61 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 62 seqcount_spinlock_t refile_seq;
3004ec9c 63 /* pseudo fd refcounting */
ca880420 64 refcount_t refcount;
86039bd3
AA
65 /* userfaultfd syscall flags */
66 unsigned int flags;
9cd75c3c
PE
67 /* features requested from the userspace */
68 unsigned int features;
86039bd3
AA
69 /* released */
70 bool released;
df2cc96e 71 /* memory mappings are changing because of non-cooperative event */
a759a909 72 atomic_t mmap_changing;
86039bd3
AA
73 /* mm with one ore more vmas attached to this userfaultfd_ctx */
74 struct mm_struct *mm;
75};
76
893e26e6
PE
77struct userfaultfd_fork_ctx {
78 struct userfaultfd_ctx *orig;
79 struct userfaultfd_ctx *new;
80 struct list_head list;
81};
82
897ab3e0
MR
83struct userfaultfd_unmap_ctx {
84 struct userfaultfd_ctx *ctx;
85 unsigned long start;
86 unsigned long end;
87 struct list_head list;
88};
89
86039bd3 90struct userfaultfd_wait_queue {
a9b85f94 91 struct uffd_msg msg;
ac6424b9 92 wait_queue_entry_t wq;
86039bd3 93 struct userfaultfd_ctx *ctx;
15a77c6f 94 bool waken;
86039bd3
AA
95};
96
97struct userfaultfd_wake_range {
98 unsigned long start;
99 unsigned long len;
100};
101
22e5fe2a
NA
102/* internal indication that UFFD_API ioctl was successfully executed */
103#define UFFD_FEATURE_INITIALIZED (1u << 31)
104
105static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
106{
107 return ctx->features & UFFD_FEATURE_INITIALIZED;
108}
109
ac6424b9 110static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
111 int wake_flags, void *key)
112{
113 struct userfaultfd_wake_range *range = key;
114 int ret;
115 struct userfaultfd_wait_queue *uwq;
116 unsigned long start, len;
117
118 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
119 ret = 0;
86039bd3
AA
120 /* len == 0 means wake all */
121 start = range->start;
122 len = range->len;
a9b85f94
AA
123 if (len && (start > uwq->msg.arg.pagefault.address ||
124 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 125 goto out;
15a77c6f
AA
126 WRITE_ONCE(uwq->waken, true);
127 /*
a9668cd6
PZ
128 * The Program-Order guarantees provided by the scheduler
129 * ensure uwq->waken is visible before the task is woken.
15a77c6f 130 */
86039bd3 131 ret = wake_up_state(wq->private, mode);
a9668cd6 132 if (ret) {
86039bd3
AA
133 /*
134 * Wake only once, autoremove behavior.
135 *
a9668cd6
PZ
136 * After the effect of list_del_init is visible to the other
137 * CPUs, the waitqueue may disappear from under us, see the
138 * !list_empty_careful() in handle_userfault().
139 *
140 * try_to_wake_up() has an implicit smp_mb(), and the
141 * wq->private is read before calling the extern function
142 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 143 */
2055da97 144 list_del_init(&wq->entry);
a9668cd6 145 }
86039bd3
AA
146out:
147 return ret;
148}
149
150/**
151 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
152 * context.
153 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
154 */
155static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
156{
ca880420 157 refcount_inc(&ctx->refcount);
86039bd3
AA
158}
159
160/**
161 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
162 * context.
163 * @ctx: [in] Pointer to userfaultfd context.
164 *
165 * The userfaultfd context reference must have been previously acquired either
166 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
167 */
168static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
169{
ca880420 170 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
171 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
175 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
176 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
177 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
178 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 179 mmdrop(ctx->mm);
3004ec9c 180 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
181 }
182}
183
a9b85f94 184static inline void msg_init(struct uffd_msg *msg)
86039bd3 185{
a9b85f94
AA
186 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
187 /*
188 * Must use memset to zero out the paddings or kernel data is
189 * leaked to userland.
190 */
191 memset(msg, 0, sizeof(struct uffd_msg));
192}
193
194static inline struct uffd_msg userfault_msg(unsigned long address,
d172b1a3 195 unsigned long real_address,
a9b85f94 196 unsigned int flags,
9d4ac934
AP
197 unsigned long reason,
198 unsigned int features)
a9b85f94
AA
199{
200 struct uffd_msg msg;
d172b1a3 201
a9b85f94
AA
202 msg_init(&msg);
203 msg.event = UFFD_EVENT_PAGEFAULT;
824ddc60 204
d172b1a3
NA
205 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
206 real_address : address;
207
7677f7fd
AR
208 /*
209 * These flags indicate why the userfault occurred:
210 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
211 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
212 * - Neither of these flags being set indicates a MISSING fault.
213 *
214 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
215 * fault. Otherwise, it was a read fault.
216 */
86039bd3 217 if (flags & FAULT_FLAG_WRITE)
a9b85f94 218 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 219 if (reason & VM_UFFD_WP)
a9b85f94 220 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
221 if (reason & VM_UFFD_MINOR)
222 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 223 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 224 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 225 return msg;
86039bd3
AA
226}
227
369cd212
MK
228#ifdef CONFIG_HUGETLB_PAGE
229/*
230 * Same functionality as userfaultfd_must_wait below with modifications for
231 * hugepmd ranges.
232 */
233static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 234 struct vm_area_struct *vma,
369cd212
MK
235 unsigned long address,
236 unsigned long flags,
237 unsigned long reason)
238{
239 struct mm_struct *mm = ctx->mm;
1e2c0436 240 pte_t *ptep, pte;
369cd212
MK
241 bool ret = true;
242
42fc5414 243 mmap_assert_locked(mm);
369cd212 244
1e2c0436
JF
245 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
246
247 if (!ptep)
369cd212
MK
248 goto out;
249
250 ret = false;
1e2c0436 251 pte = huge_ptep_get(ptep);
369cd212
MK
252
253 /*
254 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
255 * changes under us. PTE markers should be handled the same as none
256 * ptes here.
369cd212 257 */
5c041f5d 258 if (huge_pte_none_mostly(pte))
369cd212 259 ret = true;
1e2c0436 260 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
261 ret = true;
262out:
263 return ret;
264}
265#else
266static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 267 struct vm_area_struct *vma,
369cd212
MK
268 unsigned long address,
269 unsigned long flags,
270 unsigned long reason)
271{
272 return false; /* should never get here */
273}
274#endif /* CONFIG_HUGETLB_PAGE */
275
8d2afd96
AA
276/*
277 * Verify the pagetables are still not ok after having reigstered into
278 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
279 * userfault that has already been resolved, if userfaultfd_read and
280 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
281 * threads.
282 */
283static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
284 unsigned long address,
285 unsigned long flags,
286 unsigned long reason)
287{
288 struct mm_struct *mm = ctx->mm;
289 pgd_t *pgd;
c2febafc 290 p4d_t *p4d;
8d2afd96
AA
291 pud_t *pud;
292 pmd_t *pmd, _pmd;
293 pte_t *pte;
294 bool ret = true;
295
42fc5414 296 mmap_assert_locked(mm);
8d2afd96
AA
297
298 pgd = pgd_offset(mm, address);
299 if (!pgd_present(*pgd))
300 goto out;
c2febafc
KS
301 p4d = p4d_offset(pgd, address);
302 if (!p4d_present(*p4d))
303 goto out;
304 pud = pud_offset(p4d, address);
8d2afd96
AA
305 if (!pud_present(*pud))
306 goto out;
307 pmd = pmd_offset(pud, address);
308 /*
309 * READ_ONCE must function as a barrier with narrower scope
310 * and it must be equivalent to:
311 * _pmd = *pmd; barrier();
312 *
313 * This is to deal with the instability (as in
314 * pmd_trans_unstable) of the pmd.
315 */
316 _pmd = READ_ONCE(*pmd);
a365ac09 317 if (pmd_none(_pmd))
8d2afd96
AA
318 goto out;
319
320 ret = false;
a365ac09
HY
321 if (!pmd_present(_pmd))
322 goto out;
323
63b2d417
AA
324 if (pmd_trans_huge(_pmd)) {
325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
326 ret = true;
8d2afd96 327 goto out;
63b2d417 328 }
8d2afd96
AA
329
330 /*
331 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
332 * and use the standard pte_offset_map() instead of parsing _pmd.
333 */
334 pte = pte_offset_map(pmd, address);
335 /*
336 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
337 * changes under us. PTE markers should be handled the same as none
338 * ptes here.
8d2afd96 339 */
5c041f5d 340 if (pte_none_mostly(*pte))
8d2afd96 341 ret = true;
63b2d417
AA
342 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
343 ret = true;
8d2afd96
AA
344 pte_unmap(pte);
345
346out:
347 return ret;
348}
349
2f064a59 350static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
351{
352 if (flags & FAULT_FLAG_INTERRUPTIBLE)
353 return TASK_INTERRUPTIBLE;
354
355 if (flags & FAULT_FLAG_KILLABLE)
356 return TASK_KILLABLE;
357
358 return TASK_UNINTERRUPTIBLE;
359}
360
86039bd3
AA
361/*
362 * The locking rules involved in returning VM_FAULT_RETRY depending on
363 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
364 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
365 * recommendation in __lock_page_or_retry is not an understatement.
366 *
c1e8d7c6 367 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
368 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
369 * not set.
370 *
371 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
372 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 373 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
374 * returning it.
375 */
2b740303 376vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 377{
82b0f8c3 378 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
379 struct userfaultfd_ctx *ctx;
380 struct userfaultfd_wait_queue uwq;
2b740303 381 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 382 bool must_wait;
2f064a59 383 unsigned int blocking_state;
86039bd3 384
64c2b203
AA
385 /*
386 * We don't do userfault handling for the final child pid update.
387 *
388 * We also don't do userfault handling during
389 * coredumping. hugetlbfs has the special
390 * follow_hugetlb_page() to skip missing pages in the
391 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
392 * the no_page_table() helper in follow_page_mask(), but the
393 * shmem_vm_ops->fault method is invoked even during
c1e8d7c6 394 * coredumping without mmap_lock and it ends up here.
64c2b203
AA
395 */
396 if (current->flags & (PF_EXITING|PF_DUMPCORE))
397 goto out;
398
399 /*
c1e8d7c6
ML
400 * Coredumping runs without mmap_lock so we can only check that
401 * the mmap_lock is held, if PF_DUMPCORE was not set.
64c2b203 402 */
42fc5414 403 mmap_assert_locked(mm);
64c2b203 404
82b0f8c3 405 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 406 if (!ctx)
ba85c702 407 goto out;
86039bd3
AA
408
409 BUG_ON(ctx->mm != mm);
410
7677f7fd
AR
411 /* Any unrecognized flag is a bug. */
412 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
413 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
414 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 415
2d6d6f5a
PS
416 if (ctx->features & UFFD_FEATURE_SIGBUS)
417 goto out;
37cd0575
LG
418 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
419 ctx->flags & UFFD_USER_MODE_ONLY) {
420 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
421 "sysctl knob to 1 if kernel faults must be handled "
422 "without obtaining CAP_SYS_PTRACE capability\n");
423 goto out;
424 }
2d6d6f5a 425
86039bd3
AA
426 /*
427 * If it's already released don't get it. This avoids to loop
428 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 429 * caller of handle_userfault to release the mmap_lock.
86039bd3 430 */
6aa7de05 431 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
432 /*
433 * Don't return VM_FAULT_SIGBUS in this case, so a non
434 * cooperative manager can close the uffd after the
435 * last UFFDIO_COPY, without risking to trigger an
436 * involuntary SIGBUS if the process was starting the
437 * userfaultfd while the userfaultfd was still armed
438 * (but after the last UFFDIO_COPY). If the uffd
439 * wasn't already closed when the userfault reached
440 * this point, that would normally be solved by
441 * userfaultfd_must_wait returning 'false'.
442 *
443 * If we were to return VM_FAULT_SIGBUS here, the non
444 * cooperative manager would be instead forced to
445 * always call UFFDIO_UNREGISTER before it can safely
446 * close the uffd.
447 */
448 ret = VM_FAULT_NOPAGE;
ba85c702 449 goto out;
656710a6 450 }
86039bd3
AA
451
452 /*
453 * Check that we can return VM_FAULT_RETRY.
454 *
455 * NOTE: it should become possible to return VM_FAULT_RETRY
456 * even if FAULT_FLAG_TRIED is set without leading to gup()
457 * -EBUSY failures, if the userfaultfd is to be extended for
458 * VM_UFFD_WP tracking and we intend to arm the userfault
459 * without first stopping userland access to the memory. For
460 * VM_UFFD_MISSING userfaults this is enough for now.
461 */
82b0f8c3 462 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
463 /*
464 * Validate the invariant that nowait must allow retry
465 * to be sure not to return SIGBUS erroneously on
466 * nowait invocations.
467 */
82b0f8c3 468 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
469#ifdef CONFIG_DEBUG_VM
470 if (printk_ratelimit()) {
471 printk(KERN_WARNING
82b0f8c3
JK
472 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
473 vmf->flags);
86039bd3
AA
474 dump_stack();
475 }
476#endif
ba85c702 477 goto out;
86039bd3
AA
478 }
479
480 /*
481 * Handle nowait, not much to do other than tell it to retry
482 * and wait.
483 */
ba85c702 484 ret = VM_FAULT_RETRY;
82b0f8c3 485 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 486 goto out;
86039bd3 487
c1e8d7c6 488 /* take the reference before dropping the mmap_lock */
86039bd3
AA
489 userfaultfd_ctx_get(ctx);
490
86039bd3
AA
491 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
492 uwq.wq.private = current;
d172b1a3
NA
493 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
494 reason, ctx->features);
86039bd3 495 uwq.ctx = ctx;
15a77c6f 496 uwq.waken = false;
86039bd3 497
3e69ad08 498 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 499
cbcfa130 500 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
501 /*
502 * After the __add_wait_queue the uwq is visible to userland
503 * through poll/read().
504 */
15b726ef
AA
505 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
506 /*
507 * The smp_mb() after __set_current_state prevents the reads
508 * following the spin_unlock to happen before the list_add in
509 * __add_wait_queue.
510 */
15a77c6f 511 set_current_state(blocking_state);
cbcfa130 512 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 513
369cd212
MK
514 if (!is_vm_hugetlb_page(vmf->vma))
515 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
516 reason);
517 else
7868a208
PA
518 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
519 vmf->address,
369cd212 520 vmf->flags, reason);
d8ed45c5 521 mmap_read_unlock(mm);
8d2afd96 522
f9bf3522 523 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 524 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 525 schedule();
ba85c702 526 }
86039bd3 527
ba85c702 528 __set_current_state(TASK_RUNNING);
15b726ef
AA
529
530 /*
531 * Here we race with the list_del; list_add in
532 * userfaultfd_ctx_read(), however because we don't ever run
533 * list_del_init() to refile across the two lists, the prev
534 * and next pointers will never point to self. list_add also
535 * would never let any of the two pointers to point to
536 * self. So list_empty_careful won't risk to see both pointers
537 * pointing to self at any time during the list refile. The
538 * only case where list_del_init() is called is the full
539 * removal in the wake function and there we don't re-list_add
540 * and it's fine not to block on the spinlock. The uwq on this
541 * kernel stack can be released after the list_del_init.
542 */
2055da97 543 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 544 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
545 /*
546 * No need of list_del_init(), the uwq on the stack
547 * will be freed shortly anyway.
548 */
2055da97 549 list_del(&uwq.wq.entry);
cbcfa130 550 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 551 }
86039bd3
AA
552
553 /*
554 * ctx may go away after this if the userfault pseudo fd is
555 * already released.
556 */
557 userfaultfd_ctx_put(ctx);
558
ba85c702
AA
559out:
560 return ret;
86039bd3
AA
561}
562
8c9e7bb7
AA
563static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
564 struct userfaultfd_wait_queue *ewq)
9cd75c3c 565{
0cbb4b4f
AA
566 struct userfaultfd_ctx *release_new_ctx;
567
9a69a829
AA
568 if (WARN_ON_ONCE(current->flags & PF_EXITING))
569 goto out;
9cd75c3c
PE
570
571 ewq->ctx = ctx;
572 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 573 release_new_ctx = NULL;
9cd75c3c 574
cbcfa130 575 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
576 /*
577 * After the __add_wait_queue the uwq is visible to userland
578 * through poll/read().
579 */
580 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
581 for (;;) {
582 set_current_state(TASK_KILLABLE);
583 if (ewq->msg.event == 0)
584 break;
6aa7de05 585 if (READ_ONCE(ctx->released) ||
9cd75c3c 586 fatal_signal_pending(current)) {
384632e6
AA
587 /*
588 * &ewq->wq may be queued in fork_event, but
589 * __remove_wait_queue ignores the head
590 * parameter. It would be a problem if it
591 * didn't.
592 */
9cd75c3c 593 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
594 if (ewq->msg.event == UFFD_EVENT_FORK) {
595 struct userfaultfd_ctx *new;
596
597 new = (struct userfaultfd_ctx *)
598 (unsigned long)
599 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 600 release_new_ctx = new;
7eb76d45 601 }
9cd75c3c
PE
602 break;
603 }
604
cbcfa130 605 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 606
a9a08845 607 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
608 schedule();
609
cbcfa130 610 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
611 }
612 __set_current_state(TASK_RUNNING);
cbcfa130 613 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 614
0cbb4b4f
AA
615 if (release_new_ctx) {
616 struct vm_area_struct *vma;
617 struct mm_struct *mm = release_new_ctx->mm;
618
619 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 620 mmap_write_lock(mm);
0cbb4b4f 621 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 622 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 623 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 624 vma->vm_flags &= ~__VM_UFFD_FLAGS;
31e810aa 625 }
d8ed45c5 626 mmap_write_unlock(mm);
0cbb4b4f
AA
627
628 userfaultfd_ctx_put(release_new_ctx);
629 }
630
9cd75c3c
PE
631 /*
632 * ctx may go away after this if the userfault pseudo fd is
633 * already released.
634 */
9a69a829 635out:
a759a909
NA
636 atomic_dec(&ctx->mmap_changing);
637 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
9cd75c3c 638 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
639}
640
641static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
642 struct userfaultfd_wait_queue *ewq)
643{
644 ewq->msg.event = 0;
645 wake_up_locked(&ctx->event_wqh);
646 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
647}
648
893e26e6
PE
649int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
650{
651 struct userfaultfd_ctx *ctx = NULL, *octx;
652 struct userfaultfd_fork_ctx *fctx;
653
654 octx = vma->vm_userfaultfd_ctx.ctx;
655 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
656 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 657 vma->vm_flags &= ~__VM_UFFD_FLAGS;
893e26e6
PE
658 return 0;
659 }
660
661 list_for_each_entry(fctx, fcs, list)
662 if (fctx->orig == octx) {
663 ctx = fctx->new;
664 break;
665 }
666
667 if (!ctx) {
668 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
669 if (!fctx)
670 return -ENOMEM;
671
672 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
673 if (!ctx) {
674 kfree(fctx);
675 return -ENOMEM;
676 }
677
ca880420 678 refcount_set(&ctx->refcount, 1);
893e26e6 679 ctx->flags = octx->flags;
893e26e6
PE
680 ctx->features = octx->features;
681 ctx->released = false;
a759a909 682 atomic_set(&ctx->mmap_changing, 0);
893e26e6 683 ctx->mm = vma->vm_mm;
00bb31fa 684 mmgrab(ctx->mm);
893e26e6
PE
685
686 userfaultfd_ctx_get(octx);
a759a909 687 atomic_inc(&octx->mmap_changing);
893e26e6
PE
688 fctx->orig = octx;
689 fctx->new = ctx;
690 list_add_tail(&fctx->list, fcs);
691 }
692
693 vma->vm_userfaultfd_ctx.ctx = ctx;
694 return 0;
695}
696
8c9e7bb7 697static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
698{
699 struct userfaultfd_ctx *ctx = fctx->orig;
700 struct userfaultfd_wait_queue ewq;
701
702 msg_init(&ewq.msg);
703
704 ewq.msg.event = UFFD_EVENT_FORK;
705 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
706
8c9e7bb7 707 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
708}
709
710void dup_userfaultfd_complete(struct list_head *fcs)
711{
893e26e6
PE
712 struct userfaultfd_fork_ctx *fctx, *n;
713
714 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 715 dup_fctx(fctx);
893e26e6
PE
716 list_del(&fctx->list);
717 kfree(fctx);
718 }
719}
720
72f87654
PE
721void mremap_userfaultfd_prep(struct vm_area_struct *vma,
722 struct vm_userfaultfd_ctx *vm_ctx)
723{
724 struct userfaultfd_ctx *ctx;
725
726 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
727
728 if (!ctx)
729 return;
730
731 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
732 vm_ctx->ctx = ctx;
733 userfaultfd_ctx_get(ctx);
a759a909 734 atomic_inc(&ctx->mmap_changing);
3cfd22be
PX
735 } else {
736 /* Drop uffd context if remap feature not enabled */
737 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 738 vma->vm_flags &= ~__VM_UFFD_FLAGS;
72f87654
PE
739 }
740}
741
90794bf1 742void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
743 unsigned long from, unsigned long to,
744 unsigned long len)
745{
90794bf1 746 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
747 struct userfaultfd_wait_queue ewq;
748
749 if (!ctx)
750 return;
751
752 if (to & ~PAGE_MASK) {
753 userfaultfd_ctx_put(ctx);
754 return;
755 }
756
757 msg_init(&ewq.msg);
758
759 ewq.msg.event = UFFD_EVENT_REMAP;
760 ewq.msg.arg.remap.from = from;
761 ewq.msg.arg.remap.to = to;
762 ewq.msg.arg.remap.len = len;
763
764 userfaultfd_event_wait_completion(ctx, &ewq);
765}
766
70ccb92f 767bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 768 unsigned long start, unsigned long end)
05ce7724
PE
769{
770 struct mm_struct *mm = vma->vm_mm;
771 struct userfaultfd_ctx *ctx;
772 struct userfaultfd_wait_queue ewq;
773
774 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 775 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 776 return true;
05ce7724
PE
777
778 userfaultfd_ctx_get(ctx);
a759a909 779 atomic_inc(&ctx->mmap_changing);
d8ed45c5 780 mmap_read_unlock(mm);
05ce7724 781
05ce7724
PE
782 msg_init(&ewq.msg);
783
d811914d
MR
784 ewq.msg.event = UFFD_EVENT_REMOVE;
785 ewq.msg.arg.remove.start = start;
786 ewq.msg.arg.remove.end = end;
05ce7724
PE
787
788 userfaultfd_event_wait_completion(ctx, &ewq);
789
70ccb92f 790 return false;
05ce7724
PE
791}
792
897ab3e0
MR
793static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
794 unsigned long start, unsigned long end)
795{
796 struct userfaultfd_unmap_ctx *unmap_ctx;
797
798 list_for_each_entry(unmap_ctx, unmaps, list)
799 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
800 unmap_ctx->end == end)
801 return true;
802
803 return false;
804}
805
806int userfaultfd_unmap_prep(struct vm_area_struct *vma,
807 unsigned long start, unsigned long end,
808 struct list_head *unmaps)
809{
810 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
811 struct userfaultfd_unmap_ctx *unmap_ctx;
812 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
813
814 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
815 has_unmap_ctx(ctx, unmaps, start, end))
816 continue;
817
818 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
819 if (!unmap_ctx)
820 return -ENOMEM;
821
822 userfaultfd_ctx_get(ctx);
a759a909 823 atomic_inc(&ctx->mmap_changing);
897ab3e0
MR
824 unmap_ctx->ctx = ctx;
825 unmap_ctx->start = start;
826 unmap_ctx->end = end;
827 list_add_tail(&unmap_ctx->list, unmaps);
828 }
829
830 return 0;
831}
832
833void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
834{
835 struct userfaultfd_unmap_ctx *ctx, *n;
836 struct userfaultfd_wait_queue ewq;
837
838 list_for_each_entry_safe(ctx, n, uf, list) {
839 msg_init(&ewq.msg);
840
841 ewq.msg.event = UFFD_EVENT_UNMAP;
842 ewq.msg.arg.remove.start = ctx->start;
843 ewq.msg.arg.remove.end = ctx->end;
844
845 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
846
847 list_del(&ctx->list);
848 kfree(ctx);
849 }
850}
851
86039bd3
AA
852static int userfaultfd_release(struct inode *inode, struct file *file)
853{
854 struct userfaultfd_ctx *ctx = file->private_data;
855 struct mm_struct *mm = ctx->mm;
856 struct vm_area_struct *vma, *prev;
857 /* len == 0 means wake all */
858 struct userfaultfd_wake_range range = { .len = 0, };
859 unsigned long new_flags;
860
6aa7de05 861 WRITE_ONCE(ctx->released, true);
86039bd3 862
d2005e3f
ON
863 if (!mmget_not_zero(mm))
864 goto wakeup;
865
86039bd3
AA
866 /*
867 * Flush page faults out of all CPUs. NOTE: all page faults
868 * must be retried without returning VM_FAULT_SIGBUS if
869 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 870 * changes while handle_userfault released the mmap_lock. So
86039bd3 871 * it's critical that released is set to true (above), before
c1e8d7c6 872 * taking the mmap_lock for writing.
86039bd3 873 */
d8ed45c5 874 mmap_write_lock(mm);
86039bd3
AA
875 prev = NULL;
876 for (vma = mm->mmap; vma; vma = vma->vm_next) {
877 cond_resched();
878 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 879 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
880 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
881 prev = vma;
882 continue;
883 }
7677f7fd 884 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
4d45e75a
JH
885 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
886 new_flags, vma->anon_vma,
887 vma->vm_file, vma->vm_pgoff,
888 vma_policy(vma),
5c26f6ac 889 NULL_VM_UFFD_CTX, anon_vma_name(vma));
4d45e75a
JH
890 if (prev)
891 vma = prev;
892 else
893 prev = vma;
86039bd3
AA
894 vma->vm_flags = new_flags;
895 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
896 }
d8ed45c5 897 mmap_write_unlock(mm);
d2005e3f
ON
898 mmput(mm);
899wakeup:
86039bd3 900 /*
15b726ef 901 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 902 * the last page faults that may have been already waiting on
15b726ef 903 * the fault_*wqh.
86039bd3 904 */
cbcfa130 905 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 906 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 907 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 908 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 909
5a18b64e
MR
910 /* Flush pending events that may still wait on event_wqh */
911 wake_up_all(&ctx->event_wqh);
912
a9a08845 913 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
914 userfaultfd_ctx_put(ctx);
915 return 0;
916}
917
15b726ef 918/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
919static inline struct userfaultfd_wait_queue *find_userfault_in(
920 wait_queue_head_t *wqh)
86039bd3 921{
ac6424b9 922 wait_queue_entry_t *wq;
15b726ef 923 struct userfaultfd_wait_queue *uwq;
86039bd3 924
456a7378 925 lockdep_assert_held(&wqh->lock);
86039bd3 926
15b726ef 927 uwq = NULL;
6dcc27fd 928 if (!waitqueue_active(wqh))
15b726ef
AA
929 goto out;
930 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 931 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
932 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
933out:
934 return uwq;
86039bd3 935}
6dcc27fd
PE
936
937static inline struct userfaultfd_wait_queue *find_userfault(
938 struct userfaultfd_ctx *ctx)
939{
940 return find_userfault_in(&ctx->fault_pending_wqh);
941}
86039bd3 942
9cd75c3c
PE
943static inline struct userfaultfd_wait_queue *find_userfault_evt(
944 struct userfaultfd_ctx *ctx)
945{
946 return find_userfault_in(&ctx->event_wqh);
947}
948
076ccb76 949static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
950{
951 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 952 __poll_t ret;
86039bd3
AA
953
954 poll_wait(file, &ctx->fd_wqh, wait);
955
22e5fe2a 956 if (!userfaultfd_is_initialized(ctx))
a9a08845 957 return EPOLLERR;
9cd75c3c 958
22e5fe2a
NA
959 /*
960 * poll() never guarantees that read won't block.
961 * userfaults can be waken before they're read().
962 */
963 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 964 return EPOLLERR;
22e5fe2a
NA
965 /*
966 * lockless access to see if there are pending faults
967 * __pollwait last action is the add_wait_queue but
968 * the spin_unlock would allow the waitqueue_active to
969 * pass above the actual list_add inside
970 * add_wait_queue critical section. So use a full
971 * memory barrier to serialize the list_add write of
972 * add_wait_queue() with the waitqueue_active read
973 * below.
974 */
975 ret = 0;
976 smp_mb();
977 if (waitqueue_active(&ctx->fault_pending_wqh))
978 ret = EPOLLIN;
979 else if (waitqueue_active(&ctx->event_wqh))
980 ret = EPOLLIN;
981
982 return ret;
86039bd3
AA
983}
984
893e26e6
PE
985static const struct file_operations userfaultfd_fops;
986
b537900f
DC
987static int resolve_userfault_fork(struct userfaultfd_ctx *new,
988 struct inode *inode,
893e26e6
PE
989 struct uffd_msg *msg)
990{
991 int fd;
893e26e6 992
b537900f
DC
993 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
994 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
995 if (fd < 0)
996 return fd;
997
893e26e6
PE
998 msg->arg.reserved.reserved1 = 0;
999 msg->arg.fork.ufd = fd;
893e26e6
PE
1000 return 0;
1001}
1002
86039bd3 1003static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 1004 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1005{
1006 ssize_t ret;
1007 DECLARE_WAITQUEUE(wait, current);
15b726ef 1008 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1009 /*
1010 * Handling fork event requires sleeping operations, so
1011 * we drop the event_wqh lock, then do these ops, then
1012 * lock it back and wake up the waiter. While the lock is
1013 * dropped the ewq may go away so we keep track of it
1014 * carefully.
1015 */
1016 LIST_HEAD(fork_event);
1017 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1018
15b726ef 1019 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1020 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1021 __add_wait_queue(&ctx->fd_wqh, &wait);
1022 for (;;) {
1023 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1024 spin_lock(&ctx->fault_pending_wqh.lock);
1025 uwq = find_userfault(ctx);
1026 if (uwq) {
2c5b7e1b
AA
1027 /*
1028 * Use a seqcount to repeat the lockless check
1029 * in wake_userfault() to avoid missing
1030 * wakeups because during the refile both
1031 * waitqueue could become empty if this is the
1032 * only userfault.
1033 */
1034 write_seqcount_begin(&ctx->refile_seq);
1035
86039bd3 1036 /*
15b726ef
AA
1037 * The fault_pending_wqh.lock prevents the uwq
1038 * to disappear from under us.
1039 *
1040 * Refile this userfault from
1041 * fault_pending_wqh to fault_wqh, it's not
1042 * pending anymore after we read it.
1043 *
1044 * Use list_del() by hand (as
1045 * userfaultfd_wake_function also uses
1046 * list_del_init() by hand) to be sure nobody
1047 * changes __remove_wait_queue() to use
1048 * list_del_init() in turn breaking the
1049 * !list_empty_careful() check in
2055da97 1050 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1051 * must never be empty at any time during the
1052 * refile, or the waitqueue could disappear
1053 * from under us. The "wait_queue_head_t"
1054 * parameter of __remove_wait_queue() is unused
1055 * anyway.
86039bd3 1056 */
2055da97 1057 list_del(&uwq->wq.entry);
c430d1e8 1058 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1059
2c5b7e1b
AA
1060 write_seqcount_end(&ctx->refile_seq);
1061
a9b85f94
AA
1062 /* careful to always initialize msg if ret == 0 */
1063 *msg = uwq->msg;
15b726ef 1064 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1065 ret = 0;
1066 break;
1067 }
15b726ef 1068 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1069
1070 spin_lock(&ctx->event_wqh.lock);
1071 uwq = find_userfault_evt(ctx);
1072 if (uwq) {
1073 *msg = uwq->msg;
1074
893e26e6
PE
1075 if (uwq->msg.event == UFFD_EVENT_FORK) {
1076 fork_nctx = (struct userfaultfd_ctx *)
1077 (unsigned long)
1078 uwq->msg.arg.reserved.reserved1;
2055da97 1079 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1080 /*
1081 * fork_nctx can be freed as soon as
1082 * we drop the lock, unless we take a
1083 * reference on it.
1084 */
1085 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1086 spin_unlock(&ctx->event_wqh.lock);
1087 ret = 0;
1088 break;
1089 }
1090
9cd75c3c
PE
1091 userfaultfd_event_complete(ctx, uwq);
1092 spin_unlock(&ctx->event_wqh.lock);
1093 ret = 0;
1094 break;
1095 }
1096 spin_unlock(&ctx->event_wqh.lock);
1097
86039bd3
AA
1098 if (signal_pending(current)) {
1099 ret = -ERESTARTSYS;
1100 break;
1101 }
1102 if (no_wait) {
1103 ret = -EAGAIN;
1104 break;
1105 }
ae62c16e 1106 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1107 schedule();
ae62c16e 1108 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1109 }
1110 __remove_wait_queue(&ctx->fd_wqh, &wait);
1111 __set_current_state(TASK_RUNNING);
ae62c16e 1112 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1113
893e26e6 1114 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1115 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1116 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1117 if (!list_empty(&fork_event)) {
1118 /*
1119 * The fork thread didn't abort, so we can
1120 * drop the temporary refcount.
1121 */
1122 userfaultfd_ctx_put(fork_nctx);
1123
1124 uwq = list_first_entry(&fork_event,
1125 typeof(*uwq),
1126 wq.entry);
1127 /*
1128 * If fork_event list wasn't empty and in turn
1129 * the event wasn't already released by fork
1130 * (the event is allocated on fork kernel
1131 * stack), put the event back to its place in
1132 * the event_wq. fork_event head will be freed
1133 * as soon as we return so the event cannot
1134 * stay queued there no matter the current
1135 * "ret" value.
1136 */
1137 list_del(&uwq->wq.entry);
1138 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1139
384632e6
AA
1140 /*
1141 * Leave the event in the waitqueue and report
1142 * error to userland if we failed to resolve
1143 * the userfault fork.
1144 */
1145 if (likely(!ret))
893e26e6 1146 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1147 } else {
1148 /*
1149 * Here the fork thread aborted and the
1150 * refcount from the fork thread on fork_nctx
1151 * has already been released. We still hold
1152 * the reference we took before releasing the
1153 * lock above. If resolve_userfault_fork
1154 * failed we've to drop it because the
1155 * fork_nctx has to be freed in such case. If
1156 * it succeeded we'll hold it because the new
1157 * uffd references it.
1158 */
1159 if (ret)
1160 userfaultfd_ctx_put(fork_nctx);
893e26e6 1161 }
cbcfa130 1162 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1163 }
1164
86039bd3
AA
1165 return ret;
1166}
1167
1168static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1169 size_t count, loff_t *ppos)
1170{
1171 struct userfaultfd_ctx *ctx = file->private_data;
1172 ssize_t _ret, ret = 0;
a9b85f94 1173 struct uffd_msg msg;
86039bd3 1174 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1175 struct inode *inode = file_inode(file);
86039bd3 1176
22e5fe2a 1177 if (!userfaultfd_is_initialized(ctx))
86039bd3 1178 return -EINVAL;
86039bd3
AA
1179
1180 for (;;) {
a9b85f94 1181 if (count < sizeof(msg))
86039bd3 1182 return ret ? ret : -EINVAL;
b537900f 1183 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1184 if (_ret < 0)
1185 return ret ? ret : _ret;
a9b85f94 1186 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1187 return ret ? ret : -EFAULT;
a9b85f94
AA
1188 ret += sizeof(msg);
1189 buf += sizeof(msg);
1190 count -= sizeof(msg);
86039bd3
AA
1191 /*
1192 * Allow to read more than one fault at time but only
1193 * block if waiting for the very first one.
1194 */
1195 no_wait = O_NONBLOCK;
1196 }
1197}
1198
1199static void __wake_userfault(struct userfaultfd_ctx *ctx,
1200 struct userfaultfd_wake_range *range)
1201{
cbcfa130 1202 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1203 /* wake all in the range and autoremove */
15b726ef 1204 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1205 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1206 range);
1207 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1208 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1209 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1210}
1211
1212static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1213 struct userfaultfd_wake_range *range)
1214{
2c5b7e1b
AA
1215 unsigned seq;
1216 bool need_wakeup;
1217
86039bd3
AA
1218 /*
1219 * To be sure waitqueue_active() is not reordered by the CPU
1220 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1221 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1222 * have release semantics that can allow the
1223 * waitqueue_active() to be reordered before the pte update.
1224 */
1225 smp_mb();
1226
1227 /*
1228 * Use waitqueue_active because it's very frequent to
1229 * change the address space atomically even if there are no
1230 * userfaults yet. So we take the spinlock only when we're
1231 * sure we've userfaults to wake.
1232 */
2c5b7e1b
AA
1233 do {
1234 seq = read_seqcount_begin(&ctx->refile_seq);
1235 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1236 waitqueue_active(&ctx->fault_wqh);
1237 cond_resched();
1238 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1239 if (need_wakeup)
86039bd3
AA
1240 __wake_userfault(ctx, range);
1241}
1242
1243static __always_inline int validate_range(struct mm_struct *mm,
e71e2ace 1244 __u64 start, __u64 len)
86039bd3
AA
1245{
1246 __u64 task_size = mm->task_size;
1247
e71e2ace 1248 if (start & ~PAGE_MASK)
86039bd3
AA
1249 return -EINVAL;
1250 if (len & ~PAGE_MASK)
1251 return -EINVAL;
1252 if (!len)
1253 return -EINVAL;
e71e2ace 1254 if (start < mmap_min_addr)
86039bd3 1255 return -EINVAL;
e71e2ace 1256 if (start >= task_size)
86039bd3 1257 return -EINVAL;
e71e2ace 1258 if (len > task_size - start)
86039bd3
AA
1259 return -EINVAL;
1260 return 0;
1261}
1262
1263static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1264 unsigned long arg)
1265{
1266 struct mm_struct *mm = ctx->mm;
1267 struct vm_area_struct *vma, *prev, *cur;
1268 int ret;
1269 struct uffdio_register uffdio_register;
1270 struct uffdio_register __user *user_uffdio_register;
1271 unsigned long vm_flags, new_flags;
1272 bool found;
ce53e8e6 1273 bool basic_ioctls;
86039bd3
AA
1274 unsigned long start, end, vma_end;
1275
1276 user_uffdio_register = (struct uffdio_register __user *) arg;
1277
1278 ret = -EFAULT;
1279 if (copy_from_user(&uffdio_register, user_uffdio_register,
1280 sizeof(uffdio_register)-sizeof(__u64)))
1281 goto out;
1282
1283 ret = -EINVAL;
1284 if (!uffdio_register.mode)
1285 goto out;
7677f7fd 1286 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1287 goto out;
1288 vm_flags = 0;
1289 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1290 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1291 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1292#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1293 goto out;
1294#endif
86039bd3 1295 vm_flags |= VM_UFFD_WP;
00b151f2 1296 }
7677f7fd
AR
1297 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1298#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1299 goto out;
1300#endif
1301 vm_flags |= VM_UFFD_MINOR;
1302 }
86039bd3 1303
e71e2ace 1304 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1305 uffdio_register.range.len);
1306 if (ret)
1307 goto out;
1308
1309 start = uffdio_register.range.start;
1310 end = start + uffdio_register.range.len;
1311
d2005e3f
ON
1312 ret = -ENOMEM;
1313 if (!mmget_not_zero(mm))
1314 goto out;
1315
d8ed45c5 1316 mmap_write_lock(mm);
86039bd3 1317 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1318 if (!vma)
1319 goto out_unlock;
1320
1321 /* check that there's at least one vma in the range */
1322 ret = -EINVAL;
1323 if (vma->vm_start >= end)
1324 goto out_unlock;
1325
cab350af
MK
1326 /*
1327 * If the first vma contains huge pages, make sure start address
1328 * is aligned to huge page size.
1329 */
1330 if (is_vm_hugetlb_page(vma)) {
1331 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1332
1333 if (start & (vma_hpagesize - 1))
1334 goto out_unlock;
1335 }
1336
86039bd3
AA
1337 /*
1338 * Search for not compatible vmas.
86039bd3
AA
1339 */
1340 found = false;
ce53e8e6 1341 basic_ioctls = false;
86039bd3
AA
1342 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1343 cond_resched();
1344
1345 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1346 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1347
1348 /* check not compatible vmas */
1349 ret = -EINVAL;
63b2d417 1350 if (!vma_can_userfault(cur, vm_flags))
86039bd3 1351 goto out_unlock;
29ec9066
AA
1352
1353 /*
1354 * UFFDIO_COPY will fill file holes even without
1355 * PROT_WRITE. This check enforces that if this is a
1356 * MAP_SHARED, the process has write permission to the backing
1357 * file. If VM_MAYWRITE is set it also enforces that on a
1358 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1359 * F_WRITE_SEAL can be taken until the vma is destroyed.
1360 */
1361 ret = -EPERM;
1362 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1363 goto out_unlock;
1364
cab350af
MK
1365 /*
1366 * If this vma contains ending address, and huge pages
1367 * check alignment.
1368 */
1369 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1370 end > cur->vm_start) {
1371 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1372
1373 ret = -EINVAL;
1374
1375 if (end & (vma_hpagesize - 1))
1376 goto out_unlock;
1377 }
63b2d417
AA
1378 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1379 goto out_unlock;
86039bd3
AA
1380
1381 /*
1382 * Check that this vma isn't already owned by a
1383 * different userfaultfd. We can't allow more than one
1384 * userfaultfd to own a single vma simultaneously or we
1385 * wouldn't know which one to deliver the userfaults to.
1386 */
1387 ret = -EBUSY;
1388 if (cur->vm_userfaultfd_ctx.ctx &&
1389 cur->vm_userfaultfd_ctx.ctx != ctx)
1390 goto out_unlock;
1391
cab350af
MK
1392 /*
1393 * Note vmas containing huge pages
1394 */
ce53e8e6
MR
1395 if (is_vm_hugetlb_page(cur))
1396 basic_ioctls = true;
cab350af 1397
86039bd3
AA
1398 found = true;
1399 }
1400 BUG_ON(!found);
1401
1402 if (vma->vm_start < start)
1403 prev = vma;
1404
1405 ret = 0;
1406 do {
1407 cond_resched();
1408
63b2d417 1409 BUG_ON(!vma_can_userfault(vma, vm_flags));
86039bd3
AA
1410 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1411 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1412 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1413
1414 /*
1415 * Nothing to do: this vma is already registered into this
1416 * userfaultfd and with the right tracking mode too.
1417 */
1418 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1419 (vma->vm_flags & vm_flags) == vm_flags)
1420 goto skip;
1421
1422 if (vma->vm_start > start)
1423 start = vma->vm_start;
1424 vma_end = min(end, vma->vm_end);
1425
7677f7fd 1426 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
86039bd3
AA
1427 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1428 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1429 vma_policy(vma),
9a10064f 1430 ((struct vm_userfaultfd_ctx){ ctx }),
5c26f6ac 1431 anon_vma_name(vma));
86039bd3
AA
1432 if (prev) {
1433 vma = prev;
1434 goto next;
1435 }
1436 if (vma->vm_start < start) {
1437 ret = split_vma(mm, vma, start, 1);
1438 if (ret)
1439 break;
1440 }
1441 if (vma->vm_end > end) {
1442 ret = split_vma(mm, vma, end, 0);
1443 if (ret)
1444 break;
1445 }
1446 next:
1447 /*
1448 * In the vma_merge() successful mprotect-like case 8:
1449 * the next vma was merged into the current one and
1450 * the current one has not been updated yet.
1451 */
1452 vma->vm_flags = new_flags;
1453 vma->vm_userfaultfd_ctx.ctx = ctx;
1454
6dfeaff9
PX
1455 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1456 hugetlb_unshare_all_pmds(vma);
1457
86039bd3
AA
1458 skip:
1459 prev = vma;
1460 start = vma->vm_end;
1461 vma = vma->vm_next;
1462 } while (vma && vma->vm_start < end);
1463out_unlock:
d8ed45c5 1464 mmap_write_unlock(mm);
d2005e3f 1465 mmput(mm);
86039bd3 1466 if (!ret) {
14819305
PX
1467 __u64 ioctls_out;
1468
1469 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1470 UFFD_API_RANGE_IOCTLS;
1471
1472 /*
1473 * Declare the WP ioctl only if the WP mode is
1474 * specified and all checks passed with the range
1475 */
1476 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1477 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1478
f6191471
AR
1479 /* CONTINUE ioctl is only supported for MINOR ranges. */
1480 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1481 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1482
86039bd3
AA
1483 /*
1484 * Now that we scanned all vmas we can already tell
1485 * userland which ioctls methods are guaranteed to
1486 * succeed on this range.
1487 */
14819305 1488 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1489 ret = -EFAULT;
1490 }
1491out:
1492 return ret;
1493}
1494
1495static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1496 unsigned long arg)
1497{
1498 struct mm_struct *mm = ctx->mm;
1499 struct vm_area_struct *vma, *prev, *cur;
1500 int ret;
1501 struct uffdio_range uffdio_unregister;
1502 unsigned long new_flags;
1503 bool found;
1504 unsigned long start, end, vma_end;
1505 const void __user *buf = (void __user *)arg;
1506
1507 ret = -EFAULT;
1508 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1509 goto out;
1510
e71e2ace 1511 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1512 uffdio_unregister.len);
1513 if (ret)
1514 goto out;
1515
1516 start = uffdio_unregister.start;
1517 end = start + uffdio_unregister.len;
1518
d2005e3f
ON
1519 ret = -ENOMEM;
1520 if (!mmget_not_zero(mm))
1521 goto out;
1522
d8ed45c5 1523 mmap_write_lock(mm);
86039bd3 1524 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1525 if (!vma)
1526 goto out_unlock;
1527
1528 /* check that there's at least one vma in the range */
1529 ret = -EINVAL;
1530 if (vma->vm_start >= end)
1531 goto out_unlock;
1532
cab350af
MK
1533 /*
1534 * If the first vma contains huge pages, make sure start address
1535 * is aligned to huge page size.
1536 */
1537 if (is_vm_hugetlb_page(vma)) {
1538 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1539
1540 if (start & (vma_hpagesize - 1))
1541 goto out_unlock;
1542 }
1543
86039bd3
AA
1544 /*
1545 * Search for not compatible vmas.
86039bd3
AA
1546 */
1547 found = false;
1548 ret = -EINVAL;
1549 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1550 cond_resched();
1551
1552 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1553 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1554
1555 /*
1556 * Check not compatible vmas, not strictly required
1557 * here as not compatible vmas cannot have an
1558 * userfaultfd_ctx registered on them, but this
1559 * provides for more strict behavior to notice
1560 * unregistration errors.
1561 */
63b2d417 1562 if (!vma_can_userfault(cur, cur->vm_flags))
86039bd3
AA
1563 goto out_unlock;
1564
1565 found = true;
1566 }
1567 BUG_ON(!found);
1568
1569 if (vma->vm_start < start)
1570 prev = vma;
1571
1572 ret = 0;
1573 do {
1574 cond_resched();
1575
63b2d417 1576 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
86039bd3
AA
1577
1578 /*
1579 * Nothing to do: this vma is already registered into this
1580 * userfaultfd and with the right tracking mode too.
1581 */
1582 if (!vma->vm_userfaultfd_ctx.ctx)
1583 goto skip;
1584
01e881f5
AA
1585 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1586
86039bd3
AA
1587 if (vma->vm_start > start)
1588 start = vma->vm_start;
1589 vma_end = min(end, vma->vm_end);
1590
09fa5296
AA
1591 if (userfaultfd_missing(vma)) {
1592 /*
1593 * Wake any concurrent pending userfault while
1594 * we unregister, so they will not hang
1595 * permanently and it avoids userland to call
1596 * UFFDIO_WAKE explicitly.
1597 */
1598 struct userfaultfd_wake_range range;
1599 range.start = start;
1600 range.len = vma_end - start;
1601 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1602 }
1603
7677f7fd 1604 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
86039bd3
AA
1605 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1606 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1607 vma_policy(vma),
5c26f6ac 1608 NULL_VM_UFFD_CTX, anon_vma_name(vma));
86039bd3
AA
1609 if (prev) {
1610 vma = prev;
1611 goto next;
1612 }
1613 if (vma->vm_start < start) {
1614 ret = split_vma(mm, vma, start, 1);
1615 if (ret)
1616 break;
1617 }
1618 if (vma->vm_end > end) {
1619 ret = split_vma(mm, vma, end, 0);
1620 if (ret)
1621 break;
1622 }
1623 next:
1624 /*
1625 * In the vma_merge() successful mprotect-like case 8:
1626 * the next vma was merged into the current one and
1627 * the current one has not been updated yet.
1628 */
1629 vma->vm_flags = new_flags;
1630 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1631
1632 skip:
1633 prev = vma;
1634 start = vma->vm_end;
1635 vma = vma->vm_next;
1636 } while (vma && vma->vm_start < end);
1637out_unlock:
d8ed45c5 1638 mmap_write_unlock(mm);
d2005e3f 1639 mmput(mm);
86039bd3
AA
1640out:
1641 return ret;
1642}
1643
1644/*
ba85c702
AA
1645 * userfaultfd_wake may be used in combination with the
1646 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1647 */
1648static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1649 unsigned long arg)
1650{
1651 int ret;
1652 struct uffdio_range uffdio_wake;
1653 struct userfaultfd_wake_range range;
1654 const void __user *buf = (void __user *)arg;
1655
1656 ret = -EFAULT;
1657 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1658 goto out;
1659
e71e2ace 1660 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1661 if (ret)
1662 goto out;
1663
1664 range.start = uffdio_wake.start;
1665 range.len = uffdio_wake.len;
1666
1667 /*
1668 * len == 0 means wake all and we don't want to wake all here,
1669 * so check it again to be sure.
1670 */
1671 VM_BUG_ON(!range.len);
1672
1673 wake_userfault(ctx, &range);
1674 ret = 0;
1675
1676out:
1677 return ret;
1678}
1679
ad465cae
AA
1680static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1681 unsigned long arg)
1682{
1683 __s64 ret;
1684 struct uffdio_copy uffdio_copy;
1685 struct uffdio_copy __user *user_uffdio_copy;
1686 struct userfaultfd_wake_range range;
1687
1688 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1689
df2cc96e 1690 ret = -EAGAIN;
a759a909 1691 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1692 goto out;
1693
ad465cae
AA
1694 ret = -EFAULT;
1695 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1696 /* don't copy "copy" last field */
1697 sizeof(uffdio_copy)-sizeof(__s64)))
1698 goto out;
1699
e71e2ace 1700 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1701 if (ret)
1702 goto out;
1703 /*
1704 * double check for wraparound just in case. copy_from_user()
1705 * will later check uffdio_copy.src + uffdio_copy.len to fit
1706 * in the userland range.
1707 */
1708 ret = -EINVAL;
1709 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1710 goto out;
72981e0e 1711 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1712 goto out;
d2005e3f
ON
1713 if (mmget_not_zero(ctx->mm)) {
1714 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
72981e0e
AA
1715 uffdio_copy.len, &ctx->mmap_changing,
1716 uffdio_copy.mode);
d2005e3f 1717 mmput(ctx->mm);
96333187 1718 } else {
e86b298b 1719 return -ESRCH;
d2005e3f 1720 }
ad465cae
AA
1721 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1722 return -EFAULT;
1723 if (ret < 0)
1724 goto out;
1725 BUG_ON(!ret);
1726 /* len == 0 would wake all */
1727 range.len = ret;
1728 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1729 range.start = uffdio_copy.dst;
1730 wake_userfault(ctx, &range);
1731 }
1732 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1733out:
1734 return ret;
1735}
1736
1737static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1738 unsigned long arg)
1739{
1740 __s64 ret;
1741 struct uffdio_zeropage uffdio_zeropage;
1742 struct uffdio_zeropage __user *user_uffdio_zeropage;
1743 struct userfaultfd_wake_range range;
1744
1745 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1746
df2cc96e 1747 ret = -EAGAIN;
a759a909 1748 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1749 goto out;
1750
ad465cae
AA
1751 ret = -EFAULT;
1752 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1753 /* don't copy "zeropage" last field */
1754 sizeof(uffdio_zeropage)-sizeof(__s64)))
1755 goto out;
1756
e71e2ace 1757 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1758 uffdio_zeropage.range.len);
1759 if (ret)
1760 goto out;
1761 ret = -EINVAL;
1762 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1763 goto out;
1764
d2005e3f
ON
1765 if (mmget_not_zero(ctx->mm)) {
1766 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1767 uffdio_zeropage.range.len,
1768 &ctx->mmap_changing);
d2005e3f 1769 mmput(ctx->mm);
9d95aa4b 1770 } else {
e86b298b 1771 return -ESRCH;
d2005e3f 1772 }
ad465cae
AA
1773 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1774 return -EFAULT;
1775 if (ret < 0)
1776 goto out;
1777 /* len == 0 would wake all */
1778 BUG_ON(!ret);
1779 range.len = ret;
1780 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1781 range.start = uffdio_zeropage.range.start;
1782 wake_userfault(ctx, &range);
1783 }
1784 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1785out:
1786 return ret;
1787}
1788
63b2d417
AA
1789static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1790 unsigned long arg)
1791{
1792 int ret;
1793 struct uffdio_writeprotect uffdio_wp;
1794 struct uffdio_writeprotect __user *user_uffdio_wp;
1795 struct userfaultfd_wake_range range;
23080e27 1796 bool mode_wp, mode_dontwake;
63b2d417 1797
a759a909 1798 if (atomic_read(&ctx->mmap_changing))
63b2d417
AA
1799 return -EAGAIN;
1800
1801 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1802
1803 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1804 sizeof(struct uffdio_writeprotect)))
1805 return -EFAULT;
1806
e71e2ace 1807 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1808 uffdio_wp.range.len);
1809 if (ret)
1810 return ret;
1811
1812 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1813 UFFDIO_WRITEPROTECT_MODE_WP))
1814 return -EINVAL;
23080e27
PX
1815
1816 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1817 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1818
1819 if (mode_wp && mode_dontwake)
63b2d417
AA
1820 return -EINVAL;
1821
cb185d5f
NA
1822 if (mmget_not_zero(ctx->mm)) {
1823 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1824 uffdio_wp.range.len, mode_wp,
1825 &ctx->mmap_changing);
1826 mmput(ctx->mm);
1827 } else {
1828 return -ESRCH;
1829 }
1830
63b2d417
AA
1831 if (ret)
1832 return ret;
1833
23080e27 1834 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1835 range.start = uffdio_wp.range.start;
1836 range.len = uffdio_wp.range.len;
1837 wake_userfault(ctx, &range);
1838 }
1839 return ret;
1840}
1841
f6191471
AR
1842static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1843{
1844 __s64 ret;
1845 struct uffdio_continue uffdio_continue;
1846 struct uffdio_continue __user *user_uffdio_continue;
1847 struct userfaultfd_wake_range range;
1848
1849 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1850
1851 ret = -EAGAIN;
a759a909 1852 if (atomic_read(&ctx->mmap_changing))
f6191471
AR
1853 goto out;
1854
1855 ret = -EFAULT;
1856 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1857 /* don't copy the output fields */
1858 sizeof(uffdio_continue) - (sizeof(__s64))))
1859 goto out;
1860
e71e2ace 1861 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1862 uffdio_continue.range.len);
1863 if (ret)
1864 goto out;
1865
1866 ret = -EINVAL;
1867 /* double check for wraparound just in case. */
1868 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1869 uffdio_continue.range.start) {
1870 goto out;
1871 }
1872 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1873 goto out;
1874
1875 if (mmget_not_zero(ctx->mm)) {
1876 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1877 uffdio_continue.range.len,
1878 &ctx->mmap_changing);
1879 mmput(ctx->mm);
1880 } else {
1881 return -ESRCH;
1882 }
1883
1884 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1885 return -EFAULT;
1886 if (ret < 0)
1887 goto out;
1888
1889 /* len == 0 would wake all */
1890 BUG_ON(!ret);
1891 range.len = ret;
1892 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1893 range.start = uffdio_continue.range.start;
1894 wake_userfault(ctx, &range);
1895 }
1896 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1897
1898out:
1899 return ret;
1900}
1901
9cd75c3c
PE
1902static inline unsigned int uffd_ctx_features(__u64 user_features)
1903{
1904 /*
22e5fe2a
NA
1905 * For the current set of features the bits just coincide. Set
1906 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
9cd75c3c 1907 */
22e5fe2a 1908 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
9cd75c3c
PE
1909}
1910
86039bd3
AA
1911/*
1912 * userland asks for a certain API version and we return which bits
1913 * and ioctl commands are implemented in this kernel for such API
1914 * version or -EINVAL if unknown.
1915 */
1916static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1917 unsigned long arg)
1918{
1919 struct uffdio_api uffdio_api;
1920 void __user *buf = (void __user *)arg;
22e5fe2a 1921 unsigned int ctx_features;
86039bd3 1922 int ret;
65603144 1923 __u64 features;
86039bd3 1924
86039bd3 1925 ret = -EFAULT;
a9b85f94 1926 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1927 goto out;
914eedcb
AR
1928 /* Ignore unsupported features (userspace built against newer kernel) */
1929 features = uffdio_api.features & UFFD_API_FEATURES;
3c1c24d9
MR
1930 ret = -EPERM;
1931 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1932 goto err_out;
65603144
AA
1933 /* report all available features and ioctls to userland */
1934 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 1935#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
1936 uffdio_api.features &=
1937 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
1938#endif
1939#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1940 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
b1f9e876
PX
1941#endif
1942#ifndef CONFIG_PTE_MARKER_UFFD_WP
1943 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
7677f7fd 1944#endif
86039bd3
AA
1945 uffdio_api.ioctls = UFFD_API_IOCTLS;
1946 ret = -EFAULT;
1947 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1948 goto out;
22e5fe2a 1949
65603144 1950 /* only enable the requested features for this uffd context */
22e5fe2a
NA
1951 ctx_features = uffd_ctx_features(features);
1952 ret = -EINVAL;
1953 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1954 goto err_out;
1955
86039bd3
AA
1956 ret = 0;
1957out:
1958 return ret;
3c1c24d9
MR
1959err_out:
1960 memset(&uffdio_api, 0, sizeof(uffdio_api));
1961 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1962 ret = -EFAULT;
1963 goto out;
86039bd3
AA
1964}
1965
1966static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1967 unsigned long arg)
1968{
1969 int ret = -EINVAL;
1970 struct userfaultfd_ctx *ctx = file->private_data;
1971
22e5fe2a 1972 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
e6485a47
AA
1973 return -EINVAL;
1974
86039bd3
AA
1975 switch(cmd) {
1976 case UFFDIO_API:
1977 ret = userfaultfd_api(ctx, arg);
1978 break;
1979 case UFFDIO_REGISTER:
1980 ret = userfaultfd_register(ctx, arg);
1981 break;
1982 case UFFDIO_UNREGISTER:
1983 ret = userfaultfd_unregister(ctx, arg);
1984 break;
1985 case UFFDIO_WAKE:
1986 ret = userfaultfd_wake(ctx, arg);
1987 break;
ad465cae
AA
1988 case UFFDIO_COPY:
1989 ret = userfaultfd_copy(ctx, arg);
1990 break;
1991 case UFFDIO_ZEROPAGE:
1992 ret = userfaultfd_zeropage(ctx, arg);
1993 break;
63b2d417
AA
1994 case UFFDIO_WRITEPROTECT:
1995 ret = userfaultfd_writeprotect(ctx, arg);
1996 break;
f6191471
AR
1997 case UFFDIO_CONTINUE:
1998 ret = userfaultfd_continue(ctx, arg);
1999 break;
86039bd3
AA
2000 }
2001 return ret;
2002}
2003
2004#ifdef CONFIG_PROC_FS
2005static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2006{
2007 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2008 wait_queue_entry_t *wq;
86039bd3
AA
2009 unsigned long pending = 0, total = 0;
2010
cbcfa130 2011 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2012 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2013 pending++;
2014 total++;
2015 }
2055da97 2016 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2017 total++;
2018 }
cbcfa130 2019 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2020
2021 /*
2022 * If more protocols will be added, there will be all shown
2023 * separated by a space. Like this:
2024 * protocols: aa:... bb:...
2025 */
2026 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2027 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2028 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2029}
2030#endif
2031
2032static const struct file_operations userfaultfd_fops = {
2033#ifdef CONFIG_PROC_FS
2034 .show_fdinfo = userfaultfd_show_fdinfo,
2035#endif
2036 .release = userfaultfd_release,
2037 .poll = userfaultfd_poll,
2038 .read = userfaultfd_read,
2039 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2040 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2041 .llseek = noop_llseek,
2042};
2043
3004ec9c
AA
2044static void init_once_userfaultfd_ctx(void *mem)
2045{
2046 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2047
2048 init_waitqueue_head(&ctx->fault_pending_wqh);
2049 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2050 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2051 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2052 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2053}
2054
284cd241 2055SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 2056{
86039bd3 2057 struct userfaultfd_ctx *ctx;
284cd241 2058 int fd;
86039bd3 2059
d0d4730a
LG
2060 if (!sysctl_unprivileged_userfaultfd &&
2061 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2062 !capable(CAP_SYS_PTRACE)) {
2063 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2064 "sysctl knob to 1 if kernel faults must be handled "
2065 "without obtaining CAP_SYS_PTRACE capability\n");
cefdca0a 2066 return -EPERM;
d0d4730a 2067 }
cefdca0a 2068
86039bd3
AA
2069 BUG_ON(!current->mm);
2070
2071 /* Check the UFFD_* constants for consistency. */
37cd0575 2072 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2073 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2074 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2075
37cd0575 2076 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2077 return -EINVAL;
86039bd3 2078
3004ec9c 2079 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2080 if (!ctx)
284cd241 2081 return -ENOMEM;
86039bd3 2082
ca880420 2083 refcount_set(&ctx->refcount, 1);
86039bd3 2084 ctx->flags = flags;
9cd75c3c 2085 ctx->features = 0;
86039bd3 2086 ctx->released = false;
a759a909 2087 atomic_set(&ctx->mmap_changing, 0);
86039bd3
AA
2088 ctx->mm = current->mm;
2089 /* prevent the mm struct to be freed */
f1f10076 2090 mmgrab(ctx->mm);
86039bd3 2091
b537900f
DC
2092 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2093 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2094 if (fd < 0) {
d2005e3f 2095 mmdrop(ctx->mm);
3004ec9c 2096 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2097 }
86039bd3 2098 return fd;
86039bd3 2099}
3004ec9c
AA
2100
2101static int __init userfaultfd_init(void)
2102{
2103 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2104 sizeof(struct userfaultfd_ctx),
2105 0,
2106 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2107 init_once_userfaultfd_ctx);
2108 return 0;
2109}
2110__initcall(userfaultfd_init);