usb: gadget: udc: reduce indentation
[linux-2.6-block.git] / fs / ubifs / tnc.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
5a0e3ad6 34#include <linux/slab.h>
1e51764a
AB
35#include "ubifs.h"
36
1cb51a15 37static int try_read_node(const struct ubifs_info *c, void *buf, int type,
545bc8f6 38 struct ubifs_zbranch *zbr);
1cb51a15
RW
39static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 struct ubifs_zbranch *zbr, void *node);
41
1e51764a
AB
42/*
43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44 * @NAME_LESS: name corresponding to the first argument is less than second
45 * @NAME_MATCHES: names match
46 * @NAME_GREATER: name corresponding to the second argument is greater than
47 * first
48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49 *
50 * These constants were introduce to improve readability.
51 */
52enum {
53 NAME_LESS = 0,
54 NAME_MATCHES = 1,
55 NAME_GREATER = 2,
56 NOT_ON_MEDIA = 3,
57};
58
59/**
60 * insert_old_idx - record an index node obsoleted since the last commit start.
61 * @c: UBIFS file-system description object
62 * @lnum: LEB number of obsoleted index node
63 * @offs: offset of obsoleted index node
64 *
65 * Returns %0 on success, and a negative error code on failure.
66 *
67 * For recovery, there must always be a complete intact version of the index on
68 * flash at all times. That is called the "old index". It is the index as at the
69 * time of the last successful commit. Many of the index nodes in the old index
70 * may be dirty, but they must not be erased until the next successful commit
71 * (at which point that index becomes the old index).
72 *
73 * That means that the garbage collection and the in-the-gaps method of
74 * committing must be able to determine if an index node is in the old index.
75 * Most of the old index nodes can be found by looking up the TNC using the
76 * 'lookup_znode()' function. However, some of the old index nodes may have
77 * been deleted from the current index or may have been changed so much that
78 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79 * That is what this function does. The RB-tree is ordered by LEB number and
80 * offset because they uniquely identify the old index node.
81 */
82static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83{
84 struct ubifs_old_idx *old_idx, *o;
85 struct rb_node **p, *parent = NULL;
86
87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 if (unlikely(!old_idx))
89 return -ENOMEM;
90 old_idx->lnum = lnum;
91 old_idx->offs = offs;
92
93 p = &c->old_idx.rb_node;
94 while (*p) {
95 parent = *p;
96 o = rb_entry(parent, struct ubifs_old_idx, rb);
97 if (lnum < o->lnum)
98 p = &(*p)->rb_left;
99 else if (lnum > o->lnum)
100 p = &(*p)->rb_right;
101 else if (offs < o->offs)
102 p = &(*p)->rb_left;
103 else if (offs > o->offs)
104 p = &(*p)->rb_right;
105 else {
235c362b 106 ubifs_err(c, "old idx added twice!");
1e51764a
AB
107 kfree(old_idx);
108 return 0;
109 }
110 }
111 rb_link_node(&old_idx->rb, parent, p);
112 rb_insert_color(&old_idx->rb, &c->old_idx);
113 return 0;
114}
115
116/**
117 * insert_old_idx_znode - record a znode obsoleted since last commit start.
118 * @c: UBIFS file-system description object
119 * @znode: znode of obsoleted index node
120 *
121 * Returns %0 on success, and a negative error code on failure.
122 */
123int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124{
125 if (znode->parent) {
126 struct ubifs_zbranch *zbr;
127
128 zbr = &znode->parent->zbranch[znode->iip];
129 if (zbr->len)
130 return insert_old_idx(c, zbr->lnum, zbr->offs);
131 } else
132 if (c->zroot.len)
133 return insert_old_idx(c, c->zroot.lnum,
134 c->zroot.offs);
135 return 0;
136}
137
138/**
139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140 * @c: UBIFS file-system description object
141 * @znode: znode of obsoleted index node
142 *
143 * Returns %0 on success, and a negative error code on failure.
144 */
145static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 struct ubifs_znode *znode)
147{
148 int err;
149
150 if (znode->parent) {
151 struct ubifs_zbranch *zbr;
152
153 zbr = &znode->parent->zbranch[znode->iip];
154 if (zbr->len) {
155 err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 if (err)
157 return err;
158 zbr->lnum = 0;
159 zbr->offs = 0;
160 zbr->len = 0;
161 }
162 } else
163 if (c->zroot.len) {
164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 if (err)
166 return err;
167 c->zroot.lnum = 0;
168 c->zroot.offs = 0;
169 c->zroot.len = 0;
170 }
171 return 0;
172}
173
174/**
175 * destroy_old_idx - destroy the old_idx RB-tree.
176 * @c: UBIFS file-system description object
177 *
178 * During start commit, the old_idx RB-tree is used to avoid overwriting index
179 * nodes that were in the index last commit but have since been deleted. This
180 * is necessary for recovery i.e. the old index must be kept intact until the
181 * new index is successfully written. The old-idx RB-tree is used for the
182 * in-the-gaps method of writing index nodes and is destroyed every commit.
183 */
184void destroy_old_idx(struct ubifs_info *c)
185{
bb25e49f
CS
186 struct ubifs_old_idx *old_idx, *n;
187
188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
1e51764a 189 kfree(old_idx);
bb25e49f 190
1e51764a
AB
191 c->old_idx = RB_ROOT;
192}
193
194/**
195 * copy_znode - copy a dirty znode.
196 * @c: UBIFS file-system description object
197 * @znode: znode to copy
198 *
199 * A dirty znode being committed may not be changed, so it is copied.
200 */
201static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 struct ubifs_znode *znode)
203{
204 struct ubifs_znode *zn;
205
bbc8a004 206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
1e51764a
AB
207 if (unlikely(!zn))
208 return ERR_PTR(-ENOMEM);
209
1e51764a
AB
210 zn->cnext = NULL;
211 __set_bit(DIRTY_ZNODE, &zn->flags);
212 __clear_bit(COW_ZNODE, &zn->flags);
213
6eb61d58 214 ubifs_assert(c, !ubifs_zn_obsolete(znode));
1e51764a
AB
215 __set_bit(OBSOLETE_ZNODE, &znode->flags);
216
217 if (znode->level != 0) {
218 int i;
219 const int n = zn->child_cnt;
220
221 /* The children now have new parent */
222 for (i = 0; i < n; i++) {
223 struct ubifs_zbranch *zbr = &zn->zbranch[i];
224
225 if (zbr->znode)
226 zbr->znode->parent = zn;
227 }
228 }
229
230 atomic_long_inc(&c->dirty_zn_cnt);
231 return zn;
232}
233
234/**
235 * add_idx_dirt - add dirt due to a dirty znode.
236 * @c: UBIFS file-system description object
237 * @lnum: LEB number of index node
238 * @dirt: size of index node
239 *
240 * This function updates lprops dirty space and the new size of the index.
241 */
242static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243{
244 c->calc_idx_sz -= ALIGN(dirt, 8);
245 return ubifs_add_dirt(c, lnum, dirt);
246}
247
248/**
249 * dirty_cow_znode - ensure a znode is not being committed.
250 * @c: UBIFS file-system description object
251 * @zbr: branch of znode to check
252 *
253 * Returns dirtied znode on success or negative error code on failure.
254 */
255static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 struct ubifs_zbranch *zbr)
257{
258 struct ubifs_znode *znode = zbr->znode;
259 struct ubifs_znode *zn;
260 int err;
261
f42eed7c 262 if (!ubifs_zn_cow(znode)) {
1e51764a
AB
263 /* znode is not being committed */
264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 atomic_long_inc(&c->dirty_zn_cnt);
266 atomic_long_dec(&c->clean_zn_cnt);
267 atomic_long_dec(&ubifs_clean_zn_cnt);
268 err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 if (unlikely(err))
270 return ERR_PTR(err);
271 }
272 return znode;
273 }
274
275 zn = copy_znode(c, znode);
8d47aef4 276 if (IS_ERR(zn))
1e51764a
AB
277 return zn;
278
279 if (zbr->len) {
280 err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 if (unlikely(err))
282 return ERR_PTR(err);
283 err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 } else
285 err = 0;
286
287 zbr->znode = zn;
288 zbr->lnum = 0;
289 zbr->offs = 0;
290 zbr->len = 0;
291
292 if (unlikely(err))
293 return ERR_PTR(err);
294 return zn;
295}
296
297/**
298 * lnc_add - add a leaf node to the leaf node cache.
299 * @c: UBIFS file-system description object
300 * @zbr: zbranch of leaf node
301 * @node: leaf node
302 *
303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304 * purpose of the leaf node cache is to save re-reading the same leaf node over
305 * and over again. Most things are cached by VFS, however the file system must
306 * cache directory entries for readdir and for resolving hash collisions. The
307 * present implementation of the leaf node cache is extremely simple, and
308 * allows for error returns that are not used but that may be needed if a more
309 * complex implementation is created.
310 *
311 * Note, this function does not add the @node object to LNC directly, but
312 * allocates a copy of the object and adds the copy to LNC. The reason for this
313 * is that @node has been allocated outside of the TNC subsystem and will be
314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315 * may be changed at any time, e.g. freed by the shrinker.
316 */
317static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 const void *node)
319{
320 int err;
321 void *lnc_node;
322 const struct ubifs_dent_node *dent = node;
323
6eb61d58
RW
324 ubifs_assert(c, !zbr->leaf);
325 ubifs_assert(c, zbr->len != 0);
326 ubifs_assert(c, is_hash_key(c, &zbr->key));
1e51764a
AB
327
328 err = ubifs_validate_entry(c, dent);
329 if (err) {
7c46d0ae 330 dump_stack();
edf6be24 331 ubifs_dump_node(c, dent);
1e51764a
AB
332 return err;
333 }
334
eaecf43a 335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
1e51764a
AB
336 if (!lnc_node)
337 /* We don't have to have the cache, so no error */
338 return 0;
339
1e51764a
AB
340 zbr->leaf = lnc_node;
341 return 0;
342}
343
344 /**
345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
346 * @c: UBIFS file-system description object
347 * @zbr: zbranch of leaf node
348 * @node: leaf node
349 *
350 * This function is similar to 'lnc_add()', but it does not create a copy of
351 * @node but inserts @node to TNC directly.
352 */
353static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 void *node)
355{
356 int err;
357
6eb61d58
RW
358 ubifs_assert(c, !zbr->leaf);
359 ubifs_assert(c, zbr->len != 0);
1e51764a
AB
360
361 err = ubifs_validate_entry(c, node);
362 if (err) {
7c46d0ae 363 dump_stack();
edf6be24 364 ubifs_dump_node(c, node);
1e51764a
AB
365 return err;
366 }
367
368 zbr->leaf = node;
369 return 0;
370}
371
372/**
373 * lnc_free - remove a leaf node from the leaf node cache.
374 * @zbr: zbranch of leaf node
375 * @node: leaf node
376 */
377static void lnc_free(struct ubifs_zbranch *zbr)
378{
379 if (!zbr->leaf)
380 return;
381 kfree(zbr->leaf);
382 zbr->leaf = NULL;
383}
384
385/**
b91dc981 386 * tnc_read_hashed_node - read a "hashed" leaf node.
1e51764a
AB
387 * @c: UBIFS file-system description object
388 * @zbr: key and position of the node
389 * @node: node is returned here
390 *
391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
392 * (in it is there) or from the hash media, in which case the node is also
393 * added to LNC. Returns zero in case of success or a negative negative error
394 * code in case of failure.
395 */
b91dc981
RW
396static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 void *node)
1e51764a
AB
398{
399 int err;
400
6eb61d58 401 ubifs_assert(c, is_hash_key(c, &zbr->key));
1e51764a
AB
402
403 if (zbr->leaf) {
404 /* Read from the leaf node cache */
6eb61d58 405 ubifs_assert(c, zbr->len != 0);
1e51764a
AB
406 memcpy(node, zbr->leaf, zbr->len);
407 return 0;
408 }
409
1cb51a15
RW
410 if (c->replaying) {
411 err = fallible_read_node(c, &zbr->key, zbr, node);
412 /*
413 * When the node was not found, return -ENOENT, 0 otherwise.
414 * Negative return codes stay as-is.
415 */
416 if (err == 0)
417 err = -ENOENT;
418 else if (err == 1)
419 err = 0;
420 } else {
421 err = ubifs_tnc_read_node(c, zbr, node);
422 }
1e51764a
AB
423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429}
430
431/**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
545bc8f6 436 * @zbr: the zbranch describing the node to read
1e51764a
AB
437 *
438 * This function tries to read a node of known type and length, checks it and
439 * stores it in @buf. This function returns %1 if a node is present and %0 if
440 * a node is not present. A negative error code is returned for I/O errors.
441 * This function performs that same function as ubifs_read_node except that
442 * it does not require that there is actually a node present and instead
443 * the return code indicates if a node was read.
6f7ab6d4
AB
444 *
445 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
446 * is true (it is controlled by corresponding mount option). However, if
18d1d7fb
AB
447 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
448 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
449 * because during mounting or re-mounting from R/O mode to R/W mode we may read
450 * journal nodes (when replying the journal or doing the recovery) and the
451 * journal nodes may potentially be corrupted, so checking is required.
1e51764a
AB
452 */
453static int try_read_node(const struct ubifs_info *c, void *buf, int type,
545bc8f6 454 struct ubifs_zbranch *zbr)
1e51764a 455{
545bc8f6
SH
456 int len = zbr->len;
457 int lnum = zbr->lnum;
458 int offs = zbr->offs;
1e51764a
AB
459 int err, node_len;
460 struct ubifs_ch *ch = buf;
461 uint32_t crc, node_crc;
462
463 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
464
d304820a 465 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
1e51764a 466 if (err) {
235c362b 467 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
1e51764a
AB
468 type, lnum, offs, err);
469 return err;
470 }
471
472 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
473 return 0;
474
475 if (ch->node_type != type)
476 return 0;
477
478 node_len = le32_to_cpu(ch->len);
479 if (node_len != len)
480 return 0;
481
18d1d7fb
AB
482 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
483 !c->remounting_rw)
6f7ab6d4 484 return 1;
2953e73f 485
1e51764a
AB
486 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
487 node_crc = le32_to_cpu(ch->crc);
488 if (crc != node_crc)
489 return 0;
490
16a26b20
SH
491 err = ubifs_node_check_hash(c, buf, zbr->hash);
492 if (err) {
493 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
494 return 0;
495 }
496
1e51764a
AB
497 return 1;
498}
499
500/**
501 * fallible_read_node - try to read a leaf node.
502 * @c: UBIFS file-system description object
503 * @key: key of node to read
504 * @zbr: position of node
505 * @node: node returned
506 *
507 * This function tries to read a node and returns %1 if the node is read, %0
508 * if the node is not present, and a negative error code in the case of error.
509 */
510static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
511 struct ubifs_zbranch *zbr, void *node)
512{
513 int ret;
514
515315a1 515 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
1e51764a 516
545bc8f6 517 ret = try_read_node(c, node, key_type(c, key), zbr);
1e51764a
AB
518 if (ret == 1) {
519 union ubifs_key node_key;
520 struct ubifs_dent_node *dent = node;
521
522 /* All nodes have key in the same place */
523 key_read(c, &dent->key, &node_key);
524 if (keys_cmp(c, key, &node_key) != 0)
525 ret = 0;
526 }
601c0bc4 527 if (ret == 0 && c->replaying)
515315a1
AB
528 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
529 zbr->lnum, zbr->offs, zbr->len);
1e51764a
AB
530 return ret;
531}
532
533/**
534 * matches_name - determine if a direntry or xattr entry matches a given name.
535 * @c: UBIFS file-system description object
536 * @zbr: zbranch of dent
537 * @nm: name to match
538 *
539 * This function checks if xentry/direntry referred by zbranch @zbr matches name
540 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
541 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
542 * of failure, a negative error code is returned.
543 */
544static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
f4f61d2c 545 const struct fscrypt_name *nm)
1e51764a
AB
546{
547 struct ubifs_dent_node *dent;
548 int nlen, err;
549
550 /* If possible, match against the dent in the leaf node cache */
551 if (!zbr->leaf) {
552 dent = kmalloc(zbr->len, GFP_NOFS);
553 if (!dent)
554 return -ENOMEM;
555
556 err = ubifs_tnc_read_node(c, zbr, dent);
557 if (err)
558 goto out_free;
559
560 /* Add the node to the leaf node cache */
561 err = lnc_add_directly(c, zbr, dent);
562 if (err)
563 goto out_free;
564 } else
565 dent = zbr->leaf;
566
567 nlen = le16_to_cpu(dent->nlen);
f4f61d2c 568 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
1e51764a 569 if (err == 0) {
f4f61d2c 570 if (nlen == fname_len(nm))
1e51764a 571 return NAME_MATCHES;
f4f61d2c 572 else if (nlen < fname_len(nm))
1e51764a
AB
573 return NAME_LESS;
574 else
575 return NAME_GREATER;
576 } else if (err < 0)
577 return NAME_LESS;
578 else
579 return NAME_GREATER;
580
581out_free:
582 kfree(dent);
583 return err;
584}
585
586/**
587 * get_znode - get a TNC znode that may not be loaded yet.
588 * @c: UBIFS file-system description object
589 * @znode: parent znode
590 * @n: znode branch slot number
591 *
592 * This function returns the znode or a negative error code.
593 */
594static struct ubifs_znode *get_znode(struct ubifs_info *c,
595 struct ubifs_znode *znode, int n)
596{
597 struct ubifs_zbranch *zbr;
598
599 zbr = &znode->zbranch[n];
600 if (zbr->znode)
601 znode = zbr->znode;
602 else
603 znode = ubifs_load_znode(c, zbr, znode, n);
604 return znode;
605}
606
607/**
608 * tnc_next - find next TNC entry.
609 * @c: UBIFS file-system description object
610 * @zn: znode is passed and returned here
611 * @n: znode branch slot number is passed and returned here
612 *
613 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
614 * no next entry, or a negative error code otherwise.
615 */
616static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
617{
618 struct ubifs_znode *znode = *zn;
619 int nn = *n;
620
621 nn += 1;
622 if (nn < znode->child_cnt) {
623 *n = nn;
624 return 0;
625 }
626 while (1) {
627 struct ubifs_znode *zp;
628
629 zp = znode->parent;
630 if (!zp)
631 return -ENOENT;
632 nn = znode->iip + 1;
633 znode = zp;
634 if (nn < znode->child_cnt) {
635 znode = get_znode(c, znode, nn);
636 if (IS_ERR(znode))
637 return PTR_ERR(znode);
638 while (znode->level != 0) {
639 znode = get_znode(c, znode, 0);
640 if (IS_ERR(znode))
641 return PTR_ERR(znode);
642 }
643 nn = 0;
644 break;
645 }
646 }
647 *zn = znode;
648 *n = nn;
649 return 0;
650}
651
652/**
653 * tnc_prev - find previous TNC entry.
654 * @c: UBIFS file-system description object
655 * @zn: znode is returned here
656 * @n: znode branch slot number is passed and returned here
657 *
658 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
659 * there is no next entry, or a negative error code otherwise.
660 */
661static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
662{
663 struct ubifs_znode *znode = *zn;
664 int nn = *n;
665
666 if (nn > 0) {
667 *n = nn - 1;
668 return 0;
669 }
670 while (1) {
671 struct ubifs_znode *zp;
672
673 zp = znode->parent;
674 if (!zp)
675 return -ENOENT;
676 nn = znode->iip - 1;
677 znode = zp;
678 if (nn >= 0) {
679 znode = get_znode(c, znode, nn);
680 if (IS_ERR(znode))
681 return PTR_ERR(znode);
682 while (znode->level != 0) {
683 nn = znode->child_cnt - 1;
684 znode = get_znode(c, znode, nn);
685 if (IS_ERR(znode))
686 return PTR_ERR(znode);
687 }
688 nn = znode->child_cnt - 1;
689 break;
690 }
691 }
692 *zn = znode;
693 *n = nn;
694 return 0;
695}
696
697/**
698 * resolve_collision - resolve a collision.
699 * @c: UBIFS file-system description object
700 * @key: key of a directory or extended attribute entry
701 * @zn: znode is returned here
702 * @n: zbranch number is passed and returned here
703 * @nm: name of the entry
704 *
705 * This function is called for "hashed" keys to make sure that the found key
706 * really corresponds to the looked up node (directory or extended attribute
707 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
708 * %0 is returned if @nm is not found and @zn and @n are set to the previous
709 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
710 * This means that @n may be set to %-1 if the leftmost key in @zn is the
711 * previous one. A negative error code is returned on failures.
712 */
713static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
714 struct ubifs_znode **zn, int *n,
f4f61d2c 715 const struct fscrypt_name *nm)
1e51764a
AB
716{
717 int err;
718
719 err = matches_name(c, &(*zn)->zbranch[*n], nm);
720 if (unlikely(err < 0))
721 return err;
722 if (err == NAME_MATCHES)
723 return 1;
724
725 if (err == NAME_GREATER) {
726 /* Look left */
727 while (1) {
728 err = tnc_prev(c, zn, n);
729 if (err == -ENOENT) {
6eb61d58 730 ubifs_assert(c, *n == 0);
1e51764a
AB
731 *n = -1;
732 return 0;
733 }
734 if (err < 0)
735 return err;
736 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
737 /*
738 * We have found the branch after which we would
739 * like to insert, but inserting in this znode
740 * may still be wrong. Consider the following 3
741 * znodes, in the case where we are resolving a
742 * collision with Key2.
743 *
744 * znode zp
745 * ----------------------
746 * level 1 | Key0 | Key1 |
747 * -----------------------
748 * | |
749 * znode za | | znode zb
750 * ------------ ------------
751 * level 0 | Key0 | | Key2 |
752 * ------------ ------------
753 *
754 * The lookup finds Key2 in znode zb. Lets say
755 * there is no match and the name is greater so
756 * we look left. When we find Key0, we end up
757 * here. If we return now, we will insert into
758 * znode za at slot n = 1. But that is invalid
759 * according to the parent's keys. Key2 must
760 * be inserted into znode zb.
761 *
762 * Note, this problem is not relevant for the
763 * case when we go right, because
764 * 'tnc_insert()' would correct the parent key.
765 */
766 if (*n == (*zn)->child_cnt - 1) {
767 err = tnc_next(c, zn, n);
768 if (err) {
769 /* Should be impossible */
6eb61d58 770 ubifs_assert(c, 0);
1e51764a
AB
771 if (err == -ENOENT)
772 err = -EINVAL;
773 return err;
774 }
6eb61d58 775 ubifs_assert(c, *n == 0);
1e51764a
AB
776 *n = -1;
777 }
778 return 0;
779 }
780 err = matches_name(c, &(*zn)->zbranch[*n], nm);
781 if (err < 0)
782 return err;
783 if (err == NAME_LESS)
784 return 0;
785 if (err == NAME_MATCHES)
786 return 1;
6eb61d58 787 ubifs_assert(c, err == NAME_GREATER);
1e51764a
AB
788 }
789 } else {
790 int nn = *n;
791 struct ubifs_znode *znode = *zn;
792
793 /* Look right */
794 while (1) {
795 err = tnc_next(c, &znode, &nn);
796 if (err == -ENOENT)
797 return 0;
798 if (err < 0)
799 return err;
800 if (keys_cmp(c, &znode->zbranch[nn].key, key))
801 return 0;
802 err = matches_name(c, &znode->zbranch[nn], nm);
803 if (err < 0)
804 return err;
805 if (err == NAME_GREATER)
806 return 0;
807 *zn = znode;
808 *n = nn;
809 if (err == NAME_MATCHES)
810 return 1;
6eb61d58 811 ubifs_assert(c, err == NAME_LESS);
1e51764a
AB
812 }
813 }
814}
815
816/**
817 * fallible_matches_name - determine if a dent matches a given name.
818 * @c: UBIFS file-system description object
819 * @zbr: zbranch of dent
820 * @nm: name to match
821 *
822 * This is a "fallible" version of 'matches_name()' function which does not
823 * panic if the direntry/xentry referred by @zbr does not exist on the media.
824 *
825 * This function checks if xentry/direntry referred by zbranch @zbr matches name
826 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
827 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
828 * if xentry/direntry referred by @zbr does not exist on the media. A negative
829 * error code is returned in case of failure.
830 */
831static int fallible_matches_name(struct ubifs_info *c,
832 struct ubifs_zbranch *zbr,
f4f61d2c 833 const struct fscrypt_name *nm)
1e51764a
AB
834{
835 struct ubifs_dent_node *dent;
836 int nlen, err;
837
838 /* If possible, match against the dent in the leaf node cache */
839 if (!zbr->leaf) {
840 dent = kmalloc(zbr->len, GFP_NOFS);
841 if (!dent)
842 return -ENOMEM;
843
844 err = fallible_read_node(c, &zbr->key, zbr, dent);
845 if (err < 0)
846 goto out_free;
847 if (err == 0) {
848 /* The node was not present */
849 err = NOT_ON_MEDIA;
850 goto out_free;
851 }
6eb61d58 852 ubifs_assert(c, err == 1);
1e51764a
AB
853
854 err = lnc_add_directly(c, zbr, dent);
855 if (err)
856 goto out_free;
857 } else
858 dent = zbr->leaf;
859
860 nlen = le16_to_cpu(dent->nlen);
f4f61d2c 861 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
1e51764a 862 if (err == 0) {
f4f61d2c 863 if (nlen == fname_len(nm))
1e51764a 864 return NAME_MATCHES;
f4f61d2c 865 else if (nlen < fname_len(nm))
1e51764a
AB
866 return NAME_LESS;
867 else
868 return NAME_GREATER;
869 } else if (err < 0)
870 return NAME_LESS;
871 else
872 return NAME_GREATER;
873
874out_free:
875 kfree(dent);
876 return err;
877}
878
879/**
880 * fallible_resolve_collision - resolve a collision even if nodes are missing.
881 * @c: UBIFS file-system description object
882 * @key: key
883 * @zn: znode is returned here
884 * @n: branch number is passed and returned here
885 * @nm: name of directory entry
886 * @adding: indicates caller is adding a key to the TNC
887 *
888 * This is a "fallible" version of the 'resolve_collision()' function which
889 * does not panic if one of the nodes referred to by TNC does not exist on the
890 * media. This may happen when replaying the journal if a deleted node was
891 * Garbage-collected and the commit was not done. A branch that refers to a node
892 * that is not present is called a dangling branch. The following are the return
893 * codes for this function:
894 * o if @nm was found, %1 is returned and @zn and @n are set to the found
895 * branch;
896 * o if we are @adding and @nm was not found, %0 is returned;
897 * o if we are not @adding and @nm was not found, but a dangling branch was
898 * found, then %1 is returned and @zn and @n are set to the dangling branch;
899 * o a negative error code is returned in case of failure.
900 */
901static int fallible_resolve_collision(struct ubifs_info *c,
902 const union ubifs_key *key,
903 struct ubifs_znode **zn, int *n,
f4f61d2c
RW
904 const struct fscrypt_name *nm,
905 int adding)
1e51764a
AB
906{
907 struct ubifs_znode *o_znode = NULL, *znode = *zn;
908 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
909
910 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
911 if (unlikely(cmp < 0))
912 return cmp;
913 if (cmp == NAME_MATCHES)
914 return 1;
915 if (cmp == NOT_ON_MEDIA) {
916 o_znode = znode;
917 o_n = nn;
918 /*
919 * We are unlucky and hit a dangling branch straight away.
920 * Now we do not really know where to go to find the needed
921 * branch - to the left or to the right. Well, let's try left.
922 */
923 unsure = 1;
924 } else if (!adding)
925 unsure = 1; /* Remove a dangling branch wherever it is */
926
927 if (cmp == NAME_GREATER || unsure) {
928 /* Look left */
929 while (1) {
930 err = tnc_prev(c, zn, n);
931 if (err == -ENOENT) {
6eb61d58 932 ubifs_assert(c, *n == 0);
1e51764a
AB
933 *n = -1;
934 break;
935 }
936 if (err < 0)
937 return err;
938 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
939 /* See comments in 'resolve_collision()' */
940 if (*n == (*zn)->child_cnt - 1) {
941 err = tnc_next(c, zn, n);
942 if (err) {
943 /* Should be impossible */
6eb61d58 944 ubifs_assert(c, 0);
1e51764a
AB
945 if (err == -ENOENT)
946 err = -EINVAL;
947 return err;
948 }
6eb61d58 949 ubifs_assert(c, *n == 0);
1e51764a
AB
950 *n = -1;
951 }
952 break;
953 }
954 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
955 if (err < 0)
956 return err;
957 if (err == NAME_MATCHES)
958 return 1;
959 if (err == NOT_ON_MEDIA) {
960 o_znode = *zn;
961 o_n = *n;
962 continue;
963 }
964 if (!adding)
965 continue;
966 if (err == NAME_LESS)
967 break;
968 else
969 unsure = 0;
970 }
971 }
972
973 if (cmp == NAME_LESS || unsure) {
974 /* Look right */
975 *zn = znode;
976 *n = nn;
977 while (1) {
978 err = tnc_next(c, &znode, &nn);
979 if (err == -ENOENT)
980 break;
981 if (err < 0)
982 return err;
983 if (keys_cmp(c, &znode->zbranch[nn].key, key))
984 break;
985 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
986 if (err < 0)
987 return err;
988 if (err == NAME_GREATER)
989 break;
990 *zn = znode;
991 *n = nn;
992 if (err == NAME_MATCHES)
993 return 1;
994 if (err == NOT_ON_MEDIA) {
995 o_znode = znode;
996 o_n = nn;
997 }
998 }
999 }
1000
1001 /* Never match a dangling branch when adding */
1002 if (adding || !o_znode)
1003 return 0;
1004
515315a1 1005 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1e51764a 1006 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
515315a1 1007 o_znode->zbranch[o_n].len);
1e51764a
AB
1008 *zn = o_znode;
1009 *n = o_n;
1010 return 1;
1011}
1012
1013/**
1014 * matches_position - determine if a zbranch matches a given position.
1015 * @zbr: zbranch of dent
1016 * @lnum: LEB number of dent to match
1017 * @offs: offset of dent to match
1018 *
1019 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1020 */
1021static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1022{
1023 if (zbr->lnum == lnum && zbr->offs == offs)
1024 return 1;
1025 else
1026 return 0;
1027}
1028
1029/**
1030 * resolve_collision_directly - resolve a collision directly.
1031 * @c: UBIFS file-system description object
1032 * @key: key of directory entry
1033 * @zn: znode is passed and returned here
1034 * @n: zbranch number is passed and returned here
1035 * @lnum: LEB number of dent node to match
1036 * @offs: offset of dent node to match
1037 *
1038 * This function is used for "hashed" keys to make sure the found directory or
1039 * extended attribute entry node is what was looked for. It is used when the
1040 * flash address of the right node is known (@lnum:@offs) which makes it much
1041 * easier to resolve collisions (no need to read entries and match full
1042 * names). This function returns %1 and sets @zn and @n if the collision is
1043 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1044 * previous directory entry. Otherwise a negative error code is returned.
1045 */
1046static int resolve_collision_directly(struct ubifs_info *c,
1047 const union ubifs_key *key,
1048 struct ubifs_znode **zn, int *n,
1049 int lnum, int offs)
1050{
1051 struct ubifs_znode *znode;
1052 int nn, err;
1053
1054 znode = *zn;
1055 nn = *n;
1056 if (matches_position(&znode->zbranch[nn], lnum, offs))
1057 return 1;
1058
1059 /* Look left */
1060 while (1) {
1061 err = tnc_prev(c, &znode, &nn);
1062 if (err == -ENOENT)
1063 break;
1064 if (err < 0)
1065 return err;
1066 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1067 break;
1068 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1069 *zn = znode;
1070 *n = nn;
1071 return 1;
1072 }
1073 }
1074
1075 /* Look right */
1076 znode = *zn;
1077 nn = *n;
1078 while (1) {
1079 err = tnc_next(c, &znode, &nn);
1080 if (err == -ENOENT)
1081 return 0;
1082 if (err < 0)
1083 return err;
1084 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1085 return 0;
1086 *zn = znode;
1087 *n = nn;
1088 if (matches_position(&znode->zbranch[nn], lnum, offs))
1089 return 1;
1090 }
1091}
1092
1093/**
1094 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1095 * @c: UBIFS file-system description object
1096 * @znode: znode to dirty
1097 *
1098 * If we do not have a unique key that resides in a znode, then we cannot
1099 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1100 * This function records the path back to the last dirty ancestor, and then
1101 * dirties the znodes on that path.
1102 */
1103static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1104 struct ubifs_znode *znode)
1105{
1106 struct ubifs_znode *zp;
1107 int *path = c->bottom_up_buf, p = 0;
1108
6eb61d58
RW
1109 ubifs_assert(c, c->zroot.znode);
1110 ubifs_assert(c, znode);
1e51764a
AB
1111 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1112 kfree(c->bottom_up_buf);
6da2ec56
KC
1113 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1114 sizeof(int),
1115 GFP_NOFS);
1e51764a
AB
1116 if (!c->bottom_up_buf)
1117 return ERR_PTR(-ENOMEM);
1118 path = c->bottom_up_buf;
1119 }
1120 if (c->zroot.znode->level) {
1121 /* Go up until parent is dirty */
1122 while (1) {
1123 int n;
1124
1125 zp = znode->parent;
1126 if (!zp)
1127 break;
1128 n = znode->iip;
6eb61d58 1129 ubifs_assert(c, p < c->zroot.znode->level);
1e51764a
AB
1130 path[p++] = n;
1131 if (!zp->cnext && ubifs_zn_dirty(znode))
1132 break;
1133 znode = zp;
1134 }
1135 }
1136
1137 /* Come back down, dirtying as we go */
1138 while (1) {
1139 struct ubifs_zbranch *zbr;
1140
1141 zp = znode->parent;
1142 if (zp) {
6eb61d58
RW
1143 ubifs_assert(c, path[p - 1] >= 0);
1144 ubifs_assert(c, path[p - 1] < zp->child_cnt);
1e51764a
AB
1145 zbr = &zp->zbranch[path[--p]];
1146 znode = dirty_cow_znode(c, zbr);
1147 } else {
6eb61d58 1148 ubifs_assert(c, znode == c->zroot.znode);
1e51764a
AB
1149 znode = dirty_cow_znode(c, &c->zroot);
1150 }
8d47aef4 1151 if (IS_ERR(znode) || !p)
1e51764a 1152 break;
6eb61d58
RW
1153 ubifs_assert(c, path[p - 1] >= 0);
1154 ubifs_assert(c, path[p - 1] < znode->child_cnt);
1e51764a
AB
1155 znode = znode->zbranch[path[p - 1]].znode;
1156 }
1157
1158 return znode;
1159}
1160
1161/**
1162 * ubifs_lookup_level0 - search for zero-level znode.
1163 * @c: UBIFS file-system description object
1164 * @key: key to lookup
1165 * @zn: znode is returned here
1166 * @n: znode branch slot number is returned here
1167 *
1168 * This function looks up the TNC tree and search for zero-level znode which
1169 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1170 * cases:
1171 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1172 * is returned and slot number of the matched branch is stored in @n;
1173 * o not exact match, which means that zero-level znode does not contain
e3c3efc2
AB
1174 * @key, then %0 is returned and slot number of the closest branch is stored
1175 * in @n;
1e51764a
AB
1176 * o @key is so small that it is even less than the lowest key of the
1177 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1178 *
1179 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1180 * function reads corresponding indexing nodes and inserts them to TNC. In
1181 * case of failure, a negative error code is returned.
1182 */
1183int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1184 struct ubifs_znode **zn, int *n)
1185{
1186 int err, exact;
1187 struct ubifs_znode *znode;
6cff5732 1188 time64_t time = ktime_get_seconds();
1e51764a 1189
515315a1 1190 dbg_tnck(key, "search key ");
6eb61d58 1191 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1e51764a
AB
1192
1193 znode = c->zroot.znode;
1194 if (unlikely(!znode)) {
1195 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1196 if (IS_ERR(znode))
1197 return PTR_ERR(znode);
1198 }
1199
1200 znode->time = time;
1201
1202 while (1) {
1203 struct ubifs_zbranch *zbr;
1204
1205 exact = ubifs_search_zbranch(c, znode, key, n);
1206
1207 if (znode->level == 0)
1208 break;
1209
1210 if (*n < 0)
1211 *n = 0;
1212 zbr = &znode->zbranch[*n];
1213
1214 if (zbr->znode) {
1215 znode->time = time;
1216 znode = zbr->znode;
1217 continue;
1218 }
1219
1220 /* znode is not in TNC cache, load it from the media */
1221 znode = ubifs_load_znode(c, zbr, znode, *n);
1222 if (IS_ERR(znode))
1223 return PTR_ERR(znode);
1224 }
1225
1226 *zn = znode;
1227 if (exact || !is_hash_key(c, key) || *n != -1) {
1228 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1229 return exact;
1230 }
1231
1232 /*
1233 * Here is a tricky place. We have not found the key and this is a
1234 * "hashed" key, which may collide. The rest of the code deals with
1235 * situations like this:
1236 *
1237 * | 3 | 5 |
1238 * / \
1239 * | 3 | 5 | | 6 | 7 | (x)
1240 *
1241 * Or more a complex example:
1242 *
1243 * | 1 | 5 |
1244 * / \
1245 * | 1 | 3 | | 5 | 8 |
1246 * \ /
1247 * | 5 | 5 | | 6 | 7 | (x)
1248 *
1249 * In the examples, if we are looking for key "5", we may reach nodes
1250 * marked with "(x)". In this case what we have do is to look at the
1251 * left and see if there is "5" key there. If there is, we have to
1252 * return it.
1253 *
1254 * Note, this whole situation is possible because we allow to have
1255 * elements which are equivalent to the next key in the parent in the
1256 * children of current znode. For example, this happens if we split a
1257 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1258 * like this:
1259 * | 3 | 5 |
1260 * / \
1261 * | 3 | 5 | | 5 | 6 | 7 |
1262 * ^
1263 * And this becomes what is at the first "picture" after key "5" marked
1264 * with "^" is removed. What could be done is we could prohibit
1265 * splitting in the middle of the colliding sequence. Also, when
1266 * removing the leftmost key, we would have to correct the key of the
1267 * parent node, which would introduce additional complications. Namely,
7d4e9ccb 1268 * if we changed the leftmost key of the parent znode, the garbage
1e51764a
AB
1269 * collector would be unable to find it (GC is doing this when GC'ing
1270 * indexing LEBs). Although we already have an additional RB-tree where
1271 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1272 * after the commit. But anyway, this does not look easy to implement
1273 * so we did not try this.
1274 */
1275 err = tnc_prev(c, &znode, n);
1276 if (err == -ENOENT) {
1277 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 *n = -1;
1279 return 0;
1280 }
1281 if (unlikely(err < 0))
1282 return err;
1283 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1284 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1285 *n = -1;
1286 return 0;
1287 }
1288
1289 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1290 *zn = znode;
1291 return 1;
1292}
1293
1294/**
1295 * lookup_level0_dirty - search for zero-level znode dirtying.
1296 * @c: UBIFS file-system description object
1297 * @key: key to lookup
1298 * @zn: znode is returned here
1299 * @n: znode branch slot number is returned here
1300 *
1301 * This function looks up the TNC tree and search for zero-level znode which
1302 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1303 * cases:
1304 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1305 * is returned and slot number of the matched branch is stored in @n;
1306 * o not exact match, which means that zero-level znode does not contain @key
1307 * then %0 is returned and slot number of the closed branch is stored in
1308 * @n;
1309 * o @key is so small that it is even less than the lowest key of the
1310 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1311 *
1312 * Additionally all znodes in the path from the root to the located zero-level
1313 * znode are marked as dirty.
1314 *
1315 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1316 * function reads corresponding indexing nodes and inserts them to TNC. In
1317 * case of failure, a negative error code is returned.
1318 */
1319static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1320 struct ubifs_znode **zn, int *n)
1321{
1322 int err, exact;
1323 struct ubifs_znode *znode;
6cff5732 1324 time64_t time = ktime_get_seconds();
1e51764a 1325
515315a1 1326 dbg_tnck(key, "search and dirty key ");
1e51764a
AB
1327
1328 znode = c->zroot.znode;
1329 if (unlikely(!znode)) {
1330 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1331 if (IS_ERR(znode))
1332 return PTR_ERR(znode);
1333 }
1334
1335 znode = dirty_cow_znode(c, &c->zroot);
1336 if (IS_ERR(znode))
1337 return PTR_ERR(znode);
1338
1339 znode->time = time;
1340
1341 while (1) {
1342 struct ubifs_zbranch *zbr;
1343
1344 exact = ubifs_search_zbranch(c, znode, key, n);
1345
1346 if (znode->level == 0)
1347 break;
1348
1349 if (*n < 0)
1350 *n = 0;
1351 zbr = &znode->zbranch[*n];
1352
1353 if (zbr->znode) {
1354 znode->time = time;
1355 znode = dirty_cow_znode(c, zbr);
1356 if (IS_ERR(znode))
1357 return PTR_ERR(znode);
1358 continue;
1359 }
1360
1361 /* znode is not in TNC cache, load it from the media */
1362 znode = ubifs_load_znode(c, zbr, znode, *n);
1363 if (IS_ERR(znode))
1364 return PTR_ERR(znode);
1365 znode = dirty_cow_znode(c, zbr);
1366 if (IS_ERR(znode))
1367 return PTR_ERR(znode);
1368 }
1369
1370 *zn = znode;
1371 if (exact || !is_hash_key(c, key) || *n != -1) {
1372 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1373 return exact;
1374 }
1375
1376 /*
1377 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1378 * code.
1379 */
1380 err = tnc_prev(c, &znode, n);
1381 if (err == -ENOENT) {
1382 *n = -1;
1383 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 return 0;
1385 }
1386 if (unlikely(err < 0))
1387 return err;
1388 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1389 *n = -1;
1390 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1391 return 0;
1392 }
1393
1394 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1395 znode = dirty_cow_bottom_up(c, znode);
1396 if (IS_ERR(znode))
1397 return PTR_ERR(znode);
1398 }
1399
1400 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1401 *zn = znode;
1402 return 1;
1403}
1404
1405/**
601c0bc4 1406 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1e51764a 1407 * @c: UBIFS file-system description object
601c0bc4
AH
1408 * @lnum: LEB number
1409 * @gc_seq1: garbage collection sequence number
1e51764a 1410 *
601c0bc4
AH
1411 * This function determines if @lnum may have been garbage collected since
1412 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1413 * %0 is returned.
1e51764a 1414 */
601c0bc4 1415static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1e51764a 1416{
601c0bc4 1417 int gc_seq2, gced_lnum;
1e51764a 1418
601c0bc4
AH
1419 gced_lnum = c->gced_lnum;
1420 smp_rmb();
1421 gc_seq2 = c->gc_seq;
1422 /* Same seq means no GC */
1423 if (gc_seq1 == gc_seq2)
1424 return 0;
1425 /* Different by more than 1 means we don't know */
1426 if (gc_seq1 + 1 != gc_seq2)
1427 return 1;
1428 /*
1429 * We have seen the sequence number has increased by 1. Now we need to
1430 * be sure we read the right LEB number, so read it again.
1431 */
1432 smp_rmb();
1433 if (gced_lnum != c->gced_lnum)
1434 return 1;
1435 /* Finally we can check lnum */
1436 if (gced_lnum == lnum)
1437 return 1;
1438 return 0;
1e51764a
AB
1439}
1440
1441/**
1442 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1443 * @c: UBIFS file-system description object
1444 * @key: node key to lookup
1445 * @node: the node is returned here
1446 * @lnum: LEB number is returned here
1447 * @offs: offset is returned here
1448 *
e3c3efc2 1449 * This function looks up and reads node with key @key. The caller has to make
601c0bc4
AH
1450 * sure the @node buffer is large enough to fit the node. Returns zero in case
1451 * of success, %-ENOENT if the node was not found, and a negative error code in
1452 * case of failure. The node location can be returned in @lnum and @offs.
1e51764a
AB
1453 */
1454int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1455 void *node, int *lnum, int *offs)
1456{
601c0bc4 1457 int found, n, err, safely = 0, gc_seq1;
1e51764a
AB
1458 struct ubifs_znode *znode;
1459 struct ubifs_zbranch zbr, *zt;
1460
601c0bc4 1461again:
1e51764a
AB
1462 mutex_lock(&c->tnc_mutex);
1463 found = ubifs_lookup_level0(c, key, &znode, &n);
1464 if (!found) {
1465 err = -ENOENT;
1466 goto out;
1467 } else if (found < 0) {
1468 err = found;
1469 goto out;
1470 }
1471 zt = &znode->zbranch[n];
601c0bc4
AH
1472 if (lnum) {
1473 *lnum = zt->lnum;
1474 *offs = zt->offs;
1475 }
1e51764a
AB
1476 if (is_hash_key(c, key)) {
1477 /*
1478 * In this case the leaf node cache gets used, so we pass the
1479 * address of the zbranch and keep the mutex locked
1480 */
b91dc981 1481 err = tnc_read_hashed_node(c, zt, node);
1e51764a
AB
1482 goto out;
1483 }
601c0bc4
AH
1484 if (safely) {
1485 err = ubifs_tnc_read_node(c, zt, node);
1486 goto out;
1487 }
1488 /* Drop the TNC mutex prematurely and race with garbage collection */
1e51764a 1489 zbr = znode->zbranch[n];
601c0bc4 1490 gc_seq1 = c->gc_seq;
1e51764a
AB
1491 mutex_unlock(&c->tnc_mutex);
1492
601c0bc4
AH
1493 if (ubifs_get_wbuf(c, zbr.lnum)) {
1494 /* We do not GC journal heads */
1495 err = ubifs_tnc_read_node(c, &zbr, node);
1496 return err;
1497 }
1e51764a 1498
601c0bc4 1499 err = fallible_read_node(c, key, &zbr, node);
6dcfac4f 1500 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
601c0bc4
AH
1501 /*
1502 * The node may have been GC'ed out from under us so try again
1503 * while keeping the TNC mutex locked.
1504 */
1505 safely = 1;
1506 goto again;
1507 }
1508 return 0;
1e51764a
AB
1509
1510out:
1511 mutex_unlock(&c->tnc_mutex);
1512 return err;
1513}
1514
4793e7c5
AH
1515/**
1516 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1517 * @c: UBIFS file-system description object
1518 * @bu: bulk-read parameters and results
1519 *
1520 * Lookup consecutive data node keys for the same inode that reside
6c0c42cd
AB
1521 * consecutively in the same LEB. This function returns zero in case of success
1522 * and a negative error code in case of failure.
1523 *
1524 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1525 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
6f7ab6d4 1526 * maximum possible amount of nodes for bulk-read.
4793e7c5
AH
1527 */
1528int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1529{
1530 int n, err = 0, lnum = -1, uninitialized_var(offs);
1531 int uninitialized_var(len);
1532 unsigned int block = key_block(c, &bu->key);
1533 struct ubifs_znode *znode;
1534
1535 bu->cnt = 0;
1536 bu->blk_cnt = 0;
1537 bu->eof = 0;
1538
1539 mutex_lock(&c->tnc_mutex);
1540 /* Find first key */
1541 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1542 if (err < 0)
1543 goto out;
1544 if (err) {
1545 /* Key found */
1546 len = znode->zbranch[n].len;
1547 /* The buffer must be big enough for at least 1 node */
1548 if (len > bu->buf_len) {
1549 err = -EINVAL;
1550 goto out;
1551 }
1552 /* Add this key */
1553 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1554 bu->blk_cnt += 1;
1555 lnum = znode->zbranch[n].lnum;
1556 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1557 }
1558 while (1) {
1559 struct ubifs_zbranch *zbr;
1560 union ubifs_key *key;
1561 unsigned int next_block;
1562
1563 /* Find next key */
1564 err = tnc_next(c, &znode, &n);
1565 if (err)
1566 goto out;
1567 zbr = &znode->zbranch[n];
1568 key = &zbr->key;
1569 /* See if there is another data key for this file */
1570 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1571 key_type(c, key) != UBIFS_DATA_KEY) {
1572 err = -ENOENT;
1573 goto out;
1574 }
1575 if (lnum < 0) {
1576 /* First key found */
1577 lnum = zbr->lnum;
1578 offs = ALIGN(zbr->offs + zbr->len, 8);
1579 len = zbr->len;
1580 if (len > bu->buf_len) {
1581 err = -EINVAL;
1582 goto out;
1583 }
1584 } else {
1585 /*
1586 * The data nodes must be in consecutive positions in
1587 * the same LEB.
1588 */
1589 if (zbr->lnum != lnum || zbr->offs != offs)
1590 goto out;
1591 offs += ALIGN(zbr->len, 8);
1592 len = ALIGN(len, 8) + zbr->len;
1593 /* Must not exceed buffer length */
1594 if (len > bu->buf_len)
1595 goto out;
1596 }
1597 /* Allow for holes */
1598 next_block = key_block(c, key);
1599 bu->blk_cnt += (next_block - block - 1);
1600 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1601 goto out;
1602 block = next_block;
1603 /* Add this key */
1604 bu->zbranch[bu->cnt++] = *zbr;
1605 bu->blk_cnt += 1;
1606 /* See if we have room for more */
1607 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1608 goto out;
1609 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1610 goto out;
1611 }
1612out:
1613 if (err == -ENOENT) {
1614 bu->eof = 1;
1615 err = 0;
1616 }
1617 bu->gc_seq = c->gc_seq;
1618 mutex_unlock(&c->tnc_mutex);
1619 if (err)
1620 return err;
1621 /*
1622 * An enormous hole could cause bulk-read to encompass too many
1623 * page cache pages, so limit the number here.
1624 */
63c300b6 1625 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
4793e7c5
AH
1626 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1627 /*
1628 * Ensure that bulk-read covers a whole number of page cache
1629 * pages.
1630 */
1631 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1632 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1633 return 0;
1634 if (bu->eof) {
1635 /* At the end of file we can round up */
1636 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1637 return 0;
1638 }
1639 /* Exclude data nodes that do not make up a whole page cache page */
1640 block = key_block(c, &bu->key) + bu->blk_cnt;
1641 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1642 while (bu->cnt) {
1643 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1644 break;
1645 bu->cnt -= 1;
1646 }
1647 return 0;
1648}
1649
1650/**
1651 * read_wbuf - bulk-read from a LEB with a wbuf.
1652 * @wbuf: wbuf that may overlap the read
1653 * @buf: buffer into which to read
1654 * @len: read length
1655 * @lnum: LEB number from which to read
1656 * @offs: offset from which to read
1657 *
1658 * This functions returns %0 on success or a negative error code on failure.
1659 */
1660static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1661 int offs)
1662{
1663 const struct ubifs_info *c = wbuf->c;
1664 int rlen, overlap;
1665
1666 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
6eb61d58
RW
1667 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1668 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1669 ubifs_assert(c, offs + len <= c->leb_size);
4793e7c5
AH
1670
1671 spin_lock(&wbuf->lock);
1672 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1673 if (!overlap) {
1674 /* We may safely unlock the write-buffer and read the data */
1675 spin_unlock(&wbuf->lock);
d304820a 1676 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
4793e7c5
AH
1677 }
1678
1679 /* Don't read under wbuf */
1680 rlen = wbuf->offs - offs;
1681 if (rlen < 0)
1682 rlen = 0;
1683
1684 /* Copy the rest from the write-buffer */
1685 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1686 spin_unlock(&wbuf->lock);
1687
1688 if (rlen > 0)
1689 /* Read everything that goes before write-buffer */
d304820a 1690 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
4793e7c5
AH
1691
1692 return 0;
1693}
1694
1695/**
1696 * validate_data_node - validate data nodes for bulk-read.
1697 * @c: UBIFS file-system description object
1698 * @buf: buffer containing data node to validate
1699 * @zbr: zbranch of data node to validate
1700 *
1701 * This functions returns %0 on success or a negative error code on failure.
1702 */
1703static int validate_data_node(struct ubifs_info *c, void *buf,
1704 struct ubifs_zbranch *zbr)
1705{
1706 union ubifs_key key1;
1707 struct ubifs_ch *ch = buf;
1708 int err, len;
1709
1710 if (ch->node_type != UBIFS_DATA_NODE) {
235c362b 1711 ubifs_err(c, "bad node type (%d but expected %d)",
4793e7c5
AH
1712 ch->node_type, UBIFS_DATA_NODE);
1713 goto out_err;
1714 }
1715
2953e73f 1716 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
4793e7c5 1717 if (err) {
235c362b 1718 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
4793e7c5
AH
1719 goto out;
1720 }
1721
16a26b20
SH
1722 err = ubifs_node_check_hash(c, buf, zbr->hash);
1723 if (err) {
1724 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1725 return err;
1726 }
1727
4793e7c5
AH
1728 len = le32_to_cpu(ch->len);
1729 if (len != zbr->len) {
235c362b 1730 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
4793e7c5
AH
1731 goto out_err;
1732 }
1733
1734 /* Make sure the key of the read node is correct */
1735 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1736 if (!keys_eq(c, &zbr->key, &key1)) {
235c362b 1737 ubifs_err(c, "bad key in node at LEB %d:%d",
4793e7c5 1738 zbr->lnum, zbr->offs);
515315a1
AB
1739 dbg_tnck(&zbr->key, "looked for key ");
1740 dbg_tnck(&key1, "found node's key ");
4793e7c5
AH
1741 goto out_err;
1742 }
1743
1744 return 0;
1745
1746out_err:
1747 err = -EINVAL;
1748out:
235c362b 1749 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
edf6be24 1750 ubifs_dump_node(c, buf);
7c46d0ae 1751 dump_stack();
4793e7c5
AH
1752 return err;
1753}
1754
1755/**
1756 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1757 * @c: UBIFS file-system description object
1758 * @bu: bulk-read parameters and results
1759 *
1760 * This functions reads and validates the data nodes that were identified by the
1761 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1762 * -EAGAIN to indicate a race with GC, or another negative error code on
1763 * failure.
1764 */
1765int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1766{
1767 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1768 struct ubifs_wbuf *wbuf;
1769 void *buf;
1770
1771 len = bu->zbranch[bu->cnt - 1].offs;
1772 len += bu->zbranch[bu->cnt - 1].len - offs;
1773 if (len > bu->buf_len) {
235c362b 1774 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
4793e7c5
AH
1775 return -EINVAL;
1776 }
1777
1778 /* Do the read */
1779 wbuf = ubifs_get_wbuf(c, lnum);
1780 if (wbuf)
1781 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1782 else
d304820a 1783 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
4793e7c5
AH
1784
1785 /* Check for a race with GC */
1786 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1787 return -EAGAIN;
1788
1789 if (err && err != -EBADMSG) {
235c362b 1790 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
4793e7c5 1791 lnum, offs, err);
7c46d0ae 1792 dump_stack();
515315a1 1793 dbg_tnck(&bu->key, "key ");
4793e7c5
AH
1794 return err;
1795 }
1796
1797 /* Validate the nodes read */
1798 buf = bu->buf;
1799 for (i = 0; i < bu->cnt; i++) {
1800 err = validate_data_node(c, buf, &bu->zbranch[i]);
1801 if (err)
1802 return err;
1803 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1804 }
1805
1806 return 0;
1807}
1808
1e51764a
AB
1809/**
1810 * do_lookup_nm- look up a "hashed" node.
1811 * @c: UBIFS file-system description object
1812 * @key: node key to lookup
1813 * @node: the node is returned here
1814 * @nm: node name
1815 *
528e3d17 1816 * This function looks up and reads a node which contains name hash in the key.
1e51764a
AB
1817 * Since the hash may have collisions, there may be many nodes with the same
1818 * key, so we have to sequentially look to all of them until the needed one is
1819 * found. This function returns zero in case of success, %-ENOENT if the node
1820 * was not found, and a negative error code in case of failure.
1821 */
1822static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 1823 void *node, const struct fscrypt_name *nm)
1e51764a
AB
1824{
1825 int found, n, err;
1826 struct ubifs_znode *znode;
1e51764a 1827
35ee314c 1828 dbg_tnck(key, "key ");
1e51764a
AB
1829 mutex_lock(&c->tnc_mutex);
1830 found = ubifs_lookup_level0(c, key, &znode, &n);
1831 if (!found) {
1832 err = -ENOENT;
1833 goto out_unlock;
1834 } else if (found < 0) {
1835 err = found;
1836 goto out_unlock;
1837 }
1838
6eb61d58 1839 ubifs_assert(c, n >= 0);
1e51764a
AB
1840
1841 err = resolve_collision(c, key, &znode, &n, nm);
1842 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1843 if (unlikely(err < 0))
1844 goto out_unlock;
1845 if (err == 0) {
1846 err = -ENOENT;
1847 goto out_unlock;
1848 }
1849
b91dc981 1850 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1e51764a
AB
1851
1852out_unlock:
1853 mutex_unlock(&c->tnc_mutex);
1854 return err;
1855}
1856
1857/**
1858 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1859 * @c: UBIFS file-system description object
1860 * @key: node key to lookup
1861 * @node: the node is returned here
1862 * @nm: node name
1863 *
528e3d17 1864 * This function looks up and reads a node which contains name hash in the key.
1e51764a
AB
1865 * Since the hash may have collisions, there may be many nodes with the same
1866 * key, so we have to sequentially look to all of them until the needed one is
1867 * found. This function returns zero in case of success, %-ENOENT if the node
1868 * was not found, and a negative error code in case of failure.
1869 */
1870int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 1871 void *node, const struct fscrypt_name *nm)
1e51764a
AB
1872{
1873 int err, len;
1874 const struct ubifs_dent_node *dent = node;
1875
1876 /*
1877 * We assume that in most of the cases there are no name collisions and
1878 * 'ubifs_tnc_lookup()' returns us the right direntry.
1879 */
1880 err = ubifs_tnc_lookup(c, key, node);
1881 if (err)
1882 return err;
1883
1884 len = le16_to_cpu(dent->nlen);
f4f61d2c 1885 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1e51764a
AB
1886 return 0;
1887
1888 /*
1889 * Unluckily, there are hash collisions and we have to iterate over
1890 * them look at each direntry with colliding name hash sequentially.
1891 */
528e3d17 1892
1e51764a
AB
1893 return do_lookup_nm(c, key, node, nm);
1894}
1895
781f675e
RW
1896static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1897 struct ubifs_dent_node *dent, uint32_t cookie,
1898 struct ubifs_znode **zn, int *n)
528e3d17 1899{
781f675e
RW
1900 int err;
1901 struct ubifs_znode *znode = *zn;
528e3d17 1902 struct ubifs_zbranch *zbr;
781f675e 1903 union ubifs_key *dkey;
528e3d17
RW
1904
1905 for (;;) {
781f675e 1906 zbr = &znode->zbranch[*n];
528e3d17
RW
1907 dkey = &zbr->key;
1908
1909 if (key_inum(c, dkey) != key_inum(c, key) ||
781f675e 1910 key_type(c, dkey) != key_type(c, key)) {
c877154d 1911 return -ENOENT;
528e3d17
RW
1912 }
1913
1914 err = tnc_read_hashed_node(c, zbr, dent);
1915 if (err)
c877154d 1916 return err;
528e3d17
RW
1917
1918 if (key_hash(c, key) == key_hash(c, dkey) &&
781f675e
RW
1919 le32_to_cpu(dent->cookie) == cookie) {
1920 *zn = znode;
c877154d 1921 return 0;
781f675e 1922 }
781f675e 1923
c877154d
GU
1924 err = tnc_next(c, &znode, n);
1925 if (err)
1926 return err;
1927 }
781f675e
RW
1928}
1929
1930static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1931 struct ubifs_dent_node *dent, uint32_t cookie)
1932{
1933 int n, err;
1934 struct ubifs_znode *znode;
1935 union ubifs_key start_key;
1936
6eb61d58 1937 ubifs_assert(c, is_hash_key(c, key));
781f675e
RW
1938
1939 lowest_dent_key(c, &start_key, key_inum(c, key));
1940
1941 mutex_lock(&c->tnc_mutex);
1942 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1943 if (unlikely(err < 0))
1944 goto out_unlock;
1945
1946 err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1947
528e3d17
RW
1948out_unlock:
1949 mutex_unlock(&c->tnc_mutex);
1950 return err;
1951}
1952
1953/**
1954 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1955 * @c: UBIFS file-system description object
1956 * @key: node key to lookup
1957 * @node: the node is returned here
1958 * @cookie: node cookie for collision resolution
1959 *
1960 * This function looks up and reads a node which contains name hash in the key.
1961 * Since the hash may have collisions, there may be many nodes with the same
1962 * key, so we have to sequentially look to all of them until the needed one
1963 * with the same cookie value is found.
1964 * This function returns zero in case of success, %-ENOENT if the node
1965 * was not found, and a negative error code in case of failure.
1966 */
1967int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1968 void *node, uint32_t cookie)
1969{
1970 int err;
1971 const struct ubifs_dent_node *dent = node;
1972
d63d61c1
RW
1973 if (!c->double_hash)
1974 return -EOPNOTSUPP;
1975
528e3d17
RW
1976 /*
1977 * We assume that in most of the cases there are no name collisions and
1978 * 'ubifs_tnc_lookup()' returns us the right direntry.
1979 */
1980 err = ubifs_tnc_lookup(c, key, node);
1981 if (err)
1982 return err;
1983
1984 if (le32_to_cpu(dent->cookie) == cookie)
1985 return 0;
1986
1987 /*
1988 * Unluckily, there are hash collisions and we have to iterate over
1989 * them look at each direntry with colliding name hash sequentially.
1990 */
1991 return do_lookup_dh(c, key, node, cookie);
1992}
1993
1e51764a
AB
1994/**
1995 * correct_parent_keys - correct parent znodes' keys.
1996 * @c: UBIFS file-system description object
1997 * @znode: znode to correct parent znodes for
1998 *
1999 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
2000 * zbranch changes, keys of parent znodes have to be corrected. This helper
2001 * function is called in such situations and corrects the keys if needed.
2002 */
2003static void correct_parent_keys(const struct ubifs_info *c,
2004 struct ubifs_znode *znode)
2005{
2006 union ubifs_key *key, *key1;
2007
6eb61d58
RW
2008 ubifs_assert(c, znode->parent);
2009 ubifs_assert(c, znode->iip == 0);
1e51764a
AB
2010
2011 key = &znode->zbranch[0].key;
2012 key1 = &znode->parent->zbranch[0].key;
2013
2014 while (keys_cmp(c, key, key1) < 0) {
2015 key_copy(c, key, key1);
2016 znode = znode->parent;
2017 znode->alt = 1;
2018 if (!znode->parent || znode->iip)
2019 break;
2020 key1 = &znode->parent->zbranch[0].key;
2021 }
2022}
2023
2024/**
2025 * insert_zbranch - insert a zbranch into a znode.
6eb61d58 2026 * @c: UBIFS file-system description object
1e51764a
AB
2027 * @znode: znode into which to insert
2028 * @zbr: zbranch to insert
2029 * @n: slot number to insert to
2030 *
2031 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2032 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2033 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2034 * slot, zbranches starting from @n have to be moved right.
2035 */
6eb61d58 2036static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
1e51764a
AB
2037 const struct ubifs_zbranch *zbr, int n)
2038{
2039 int i;
2040
6eb61d58 2041 ubifs_assert(c, ubifs_zn_dirty(znode));
1e51764a
AB
2042
2043 if (znode->level) {
2044 for (i = znode->child_cnt; i > n; i--) {
2045 znode->zbranch[i] = znode->zbranch[i - 1];
2046 if (znode->zbranch[i].znode)
2047 znode->zbranch[i].znode->iip = i;
2048 }
2049 if (zbr->znode)
2050 zbr->znode->iip = n;
2051 } else
2052 for (i = znode->child_cnt; i > n; i--)
2053 znode->zbranch[i] = znode->zbranch[i - 1];
2054
2055 znode->zbranch[n] = *zbr;
2056 znode->child_cnt += 1;
2057
2058 /*
2059 * After inserting at slot zero, the lower bound of the key range of
2060 * this znode may have changed. If this znode is subsequently split
2061 * then the upper bound of the key range may change, and furthermore
2062 * it could change to be lower than the original lower bound. If that
2063 * happens, then it will no longer be possible to find this znode in the
2064 * TNC using the key from the index node on flash. That is bad because
2065 * if it is not found, we will assume it is obsolete and may overwrite
2066 * it. Then if there is an unclean unmount, we will start using the
2067 * old index which will be broken.
2068 *
2069 * So we first mark znodes that have insertions at slot zero, and then
2070 * if they are split we add their lnum/offs to the old_idx tree.
2071 */
2072 if (n == 0)
2073 znode->alt = 1;
2074}
2075
2076/**
2077 * tnc_insert - insert a node into TNC.
2078 * @c: UBIFS file-system description object
2079 * @znode: znode to insert into
2080 * @zbr: branch to insert
2081 * @n: slot number to insert new zbranch to
2082 *
2083 * This function inserts a new node described by @zbr into znode @znode. If
2084 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2085 * are splat as well if needed. Returns zero in case of success or a negative
2086 * error code in case of failure.
2087 */
2088static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2089 struct ubifs_zbranch *zbr, int n)
2090{
2091 struct ubifs_znode *zn, *zi, *zp;
2092 int i, keep, move, appending = 0;
2242c689 2093 union ubifs_key *key = &zbr->key, *key1;
1e51764a 2094
6eb61d58 2095 ubifs_assert(c, n >= 0 && n <= c->fanout);
1e51764a
AB
2096
2097 /* Implement naive insert for now */
2098again:
2099 zp = znode->parent;
2100 if (znode->child_cnt < c->fanout) {
6eb61d58 2101 ubifs_assert(c, n != c->fanout);
515315a1 2102 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1e51764a 2103
6eb61d58 2104 insert_zbranch(c, znode, zbr, n);
1e51764a
AB
2105
2106 /* Ensure parent's key is correct */
2107 if (n == 0 && zp && znode->iip == 0)
2108 correct_parent_keys(c, znode);
2109
2110 return 0;
2111 }
2112
2113 /*
2114 * Unfortunately, @znode does not have more empty slots and we have to
2115 * split it.
2116 */
515315a1 2117 dbg_tnck(key, "splitting level %d, key ", znode->level);
1e51764a
AB
2118
2119 if (znode->alt)
2120 /*
2121 * We can no longer be sure of finding this znode by key, so we
2122 * record it in the old_idx tree.
2123 */
2124 ins_clr_old_idx_znode(c, znode);
2125
2126 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2127 if (!zn)
2128 return -ENOMEM;
2129 zn->parent = zp;
2130 zn->level = znode->level;
2131
2132 /* Decide where to split */
2242c689
AH
2133 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2134 /* Try not to split consecutive data keys */
2135 if (n == c->fanout) {
2136 key1 = &znode->zbranch[n - 1].key;
2137 if (key_inum(c, key1) == key_inum(c, key) &&
2138 key_type(c, key1) == UBIFS_DATA_KEY)
2139 appending = 1;
2140 } else
2141 goto check_split;
2142 } else if (appending && n != c->fanout) {
2143 /* Try not to split consecutive data keys */
2144 appending = 0;
2145check_split:
2146 if (n >= (c->fanout + 1) / 2) {
2147 key1 = &znode->zbranch[0].key;
2148 if (key_inum(c, key1) == key_inum(c, key) &&
2149 key_type(c, key1) == UBIFS_DATA_KEY) {
2150 key1 = &znode->zbranch[n].key;
2151 if (key_inum(c, key1) != key_inum(c, key) ||
2152 key_type(c, key1) != UBIFS_DATA_KEY) {
2153 keep = n;
2154 move = c->fanout - keep;
2155 zi = znode;
2156 goto do_split;
2157 }
2158 }
2159 }
1e51764a
AB
2160 }
2161
2162 if (appending) {
2163 keep = c->fanout;
2164 move = 0;
2165 } else {
2166 keep = (c->fanout + 1) / 2;
2167 move = c->fanout - keep;
2168 }
2169
2170 /*
2171 * Although we don't at present, we could look at the neighbors and see
2172 * if we can move some zbranches there.
2173 */
2174
2175 if (n < keep) {
2176 /* Insert into existing znode */
2177 zi = znode;
2178 move += 1;
2179 keep -= 1;
2180 } else {
2181 /* Insert into new znode */
2182 zi = zn;
2183 n -= keep;
2184 /* Re-parent */
2185 if (zn->level != 0)
2186 zbr->znode->parent = zn;
2187 }
2188
2242c689
AH
2189do_split:
2190
1e51764a
AB
2191 __set_bit(DIRTY_ZNODE, &zn->flags);
2192 atomic_long_inc(&c->dirty_zn_cnt);
2193
2194 zn->child_cnt = move;
2195 znode->child_cnt = keep;
2196
2197 dbg_tnc("moving %d, keeping %d", move, keep);
2198
2199 /* Move zbranch */
2200 for (i = 0; i < move; i++) {
2201 zn->zbranch[i] = znode->zbranch[keep + i];
2202 /* Re-parent */
2203 if (zn->level != 0)
2204 if (zn->zbranch[i].znode) {
2205 zn->zbranch[i].znode->parent = zn;
2206 zn->zbranch[i].znode->iip = i;
2207 }
2208 }
2209
2210 /* Insert new key and branch */
515315a1 2211 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
1e51764a 2212
6eb61d58 2213 insert_zbranch(c, zi, zbr, n);
1e51764a
AB
2214
2215 /* Insert new znode (produced by spitting) into the parent */
2216 if (zp) {
2242c689
AH
2217 if (n == 0 && zi == znode && znode->iip == 0)
2218 correct_parent_keys(c, znode);
2219
1e51764a
AB
2220 /* Locate insertion point */
2221 n = znode->iip + 1;
1e51764a
AB
2222
2223 /* Tail recursion */
2224 zbr->key = zn->zbranch[0].key;
2225 zbr->znode = zn;
2226 zbr->lnum = 0;
2227 zbr->offs = 0;
2228 zbr->len = 0;
2229 znode = zp;
2230
2231 goto again;
2232 }
2233
2234 /* We have to split root znode */
2235 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2236
2237 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2238 if (!zi)
2239 return -ENOMEM;
2240
2241 zi->child_cnt = 2;
2242 zi->level = znode->level + 1;
2243
2244 __set_bit(DIRTY_ZNODE, &zi->flags);
2245 atomic_long_inc(&c->dirty_zn_cnt);
2246
2247 zi->zbranch[0].key = znode->zbranch[0].key;
2248 zi->zbranch[0].znode = znode;
2249 zi->zbranch[0].lnum = c->zroot.lnum;
2250 zi->zbranch[0].offs = c->zroot.offs;
2251 zi->zbranch[0].len = c->zroot.len;
2252 zi->zbranch[1].key = zn->zbranch[0].key;
2253 zi->zbranch[1].znode = zn;
2254
2255 c->zroot.lnum = 0;
2256 c->zroot.offs = 0;
2257 c->zroot.len = 0;
2258 c->zroot.znode = zi;
2259
2260 zn->parent = zi;
2261 zn->iip = 1;
2262 znode->parent = zi;
2263 znode->iip = 0;
2264
2265 return 0;
2266}
2267
2268/**
2269 * ubifs_tnc_add - add a node to TNC.
2270 * @c: UBIFS file-system description object
2271 * @key: key to add
2272 * @lnum: LEB number of node
2273 * @offs: node offset
2274 * @len: node length
823838a4 2275 * @hash: The hash over the node
1e51764a
AB
2276 *
2277 * This function adds a node with key @key to TNC. The node may be new or it may
2278 * obsolete some existing one. Returns %0 on success or negative error code on
2279 * failure.
2280 */
2281int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
823838a4 2282 int offs, int len, const u8 *hash)
1e51764a
AB
2283{
2284 int found, n, err = 0;
2285 struct ubifs_znode *znode;
2286
2287 mutex_lock(&c->tnc_mutex);
515315a1 2288 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
1e51764a
AB
2289 found = lookup_level0_dirty(c, key, &znode, &n);
2290 if (!found) {
2291 struct ubifs_zbranch zbr;
2292
2293 zbr.znode = NULL;
2294 zbr.lnum = lnum;
2295 zbr.offs = offs;
2296 zbr.len = len;
823838a4 2297 ubifs_copy_hash(c, hash, zbr.hash);
1e51764a
AB
2298 key_copy(c, key, &zbr.key);
2299 err = tnc_insert(c, znode, &zbr, n + 1);
2300 } else if (found == 1) {
2301 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2302
2303 lnc_free(zbr);
2304 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2305 zbr->lnum = lnum;
2306 zbr->offs = offs;
2307 zbr->len = len;
823838a4 2308 ubifs_copy_hash(c, hash, zbr->hash);
1e51764a
AB
2309 } else
2310 err = found;
2311 if (!err)
2312 err = dbg_check_tnc(c, 0);
2313 mutex_unlock(&c->tnc_mutex);
2314
2315 return err;
2316}
2317
2318/**
2319 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2320 * @c: UBIFS file-system description object
2321 * @key: key to add
2322 * @old_lnum: LEB number of old node
2323 * @old_offs: old node offset
2324 * @lnum: LEB number of node
2325 * @offs: node offset
2326 * @len: node length
2327 *
2328 * This function replaces a node with key @key in the TNC only if the old node
2329 * is found. This function is called by garbage collection when node are moved.
2330 * Returns %0 on success or negative error code on failure.
2331 */
2332int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2333 int old_lnum, int old_offs, int lnum, int offs, int len)
2334{
2335 int found, n, err = 0;
2336 struct ubifs_znode *znode;
2337
2338 mutex_lock(&c->tnc_mutex);
515315a1
AB
2339 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2340 old_offs, lnum, offs, len);
1e51764a
AB
2341 found = lookup_level0_dirty(c, key, &znode, &n);
2342 if (found < 0) {
2343 err = found;
2344 goto out_unlock;
2345 }
2346
2347 if (found == 1) {
2348 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2349
2350 found = 0;
2351 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2352 lnc_free(zbr);
2353 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2354 if (err)
2355 goto out_unlock;
2356 zbr->lnum = lnum;
2357 zbr->offs = offs;
2358 zbr->len = len;
2359 found = 1;
2360 } else if (is_hash_key(c, key)) {
2361 found = resolve_collision_directly(c, key, &znode, &n,
2362 old_lnum, old_offs);
2363 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2364 found, znode, n, old_lnum, old_offs);
2365 if (found < 0) {
2366 err = found;
2367 goto out_unlock;
2368 }
2369
2370 if (found) {
2371 /* Ensure the znode is dirtied */
2372 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2373 znode = dirty_cow_bottom_up(c, znode);
2374 if (IS_ERR(znode)) {
2375 err = PTR_ERR(znode);
2376 goto out_unlock;
2377 }
1e51764a
AB
2378 }
2379 zbr = &znode->zbranch[n];
2380 lnc_free(zbr);
2381 err = ubifs_add_dirt(c, zbr->lnum,
2382 zbr->len);
2383 if (err)
2384 goto out_unlock;
2385 zbr->lnum = lnum;
2386 zbr->offs = offs;
2387 zbr->len = len;
2388 }
2389 }
2390 }
2391
2392 if (!found)
2393 err = ubifs_add_dirt(c, lnum, len);
2394
2395 if (!err)
2396 err = dbg_check_tnc(c, 0);
2397
2398out_unlock:
2399 mutex_unlock(&c->tnc_mutex);
2400 return err;
2401}
2402
2403/**
2404 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2405 * @c: UBIFS file-system description object
2406 * @key: key to add
2407 * @lnum: LEB number of node
2408 * @offs: node offset
2409 * @len: node length
823838a4 2410 * @hash: The hash over the node
1e51764a
AB
2411 * @nm: node name
2412 *
2413 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2414 * may have collisions, like directory entry keys.
2415 */
2416int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
823838a4 2417 int lnum, int offs, int len, const u8 *hash,
f4f61d2c 2418 const struct fscrypt_name *nm)
1e51764a
AB
2419{
2420 int found, n, err = 0;
2421 struct ubifs_znode *znode;
2422
2423 mutex_lock(&c->tnc_mutex);
35ee314c 2424 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
1e51764a
AB
2425 found = lookup_level0_dirty(c, key, &znode, &n);
2426 if (found < 0) {
2427 err = found;
2428 goto out_unlock;
2429 }
2430
2431 if (found == 1) {
2432 if (c->replaying)
2433 found = fallible_resolve_collision(c, key, &znode, &n,
2434 nm, 1);
2435 else
2436 found = resolve_collision(c, key, &znode, &n, nm);
2437 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2438 if (found < 0) {
2439 err = found;
2440 goto out_unlock;
2441 }
2442
2443 /* Ensure the znode is dirtied */
2444 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2445 znode = dirty_cow_bottom_up(c, znode);
2446 if (IS_ERR(znode)) {
2447 err = PTR_ERR(znode);
2448 goto out_unlock;
2449 }
1e51764a
AB
2450 }
2451
2452 if (found == 1) {
2453 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2454
2455 lnc_free(zbr);
2456 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2457 zbr->lnum = lnum;
2458 zbr->offs = offs;
2459 zbr->len = len;
823838a4 2460 ubifs_copy_hash(c, hash, zbr->hash);
1e51764a
AB
2461 goto out_unlock;
2462 }
2463 }
2464
2465 if (!found) {
2466 struct ubifs_zbranch zbr;
2467
2468 zbr.znode = NULL;
2469 zbr.lnum = lnum;
2470 zbr.offs = offs;
2471 zbr.len = len;
823838a4 2472 ubifs_copy_hash(c, hash, zbr.hash);
1e51764a
AB
2473 key_copy(c, key, &zbr.key);
2474 err = tnc_insert(c, znode, &zbr, n + 1);
2475 if (err)
2476 goto out_unlock;
2477 if (c->replaying) {
2478 /*
2479 * We did not find it in the index so there may be a
2480 * dangling branch still in the index. So we remove it
2481 * by passing 'ubifs_tnc_remove_nm()' the same key but
2482 * an unmatchable name.
2483 */
f4f61d2c 2484 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
1e51764a
AB
2485
2486 err = dbg_check_tnc(c, 0);
2487 mutex_unlock(&c->tnc_mutex);
2488 if (err)
2489 return err;
2490 return ubifs_tnc_remove_nm(c, key, &noname);
2491 }
2492 }
2493
2494out_unlock:
2495 if (!err)
2496 err = dbg_check_tnc(c, 0);
2497 mutex_unlock(&c->tnc_mutex);
2498 return err;
2499}
2500
2501/**
2502 * tnc_delete - delete a znode form TNC.
2503 * @c: UBIFS file-system description object
2504 * @znode: znode to delete from
2505 * @n: zbranch slot number to delete
2506 *
2507 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2508 * case of success and a negative error code in case of failure.
2509 */
2510static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2511{
2512 struct ubifs_zbranch *zbr;
2513 struct ubifs_znode *zp;
2514 int i, err;
2515
2516 /* Delete without merge for now */
6eb61d58
RW
2517 ubifs_assert(c, znode->level == 0);
2518 ubifs_assert(c, n >= 0 && n < c->fanout);
515315a1 2519 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
1e51764a
AB
2520
2521 zbr = &znode->zbranch[n];
2522 lnc_free(zbr);
2523
2524 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2525 if (err) {
edf6be24 2526 ubifs_dump_znode(c, znode);
1e51764a
AB
2527 return err;
2528 }
2529
2530 /* We do not "gap" zbranch slots */
2531 for (i = n; i < znode->child_cnt - 1; i++)
2532 znode->zbranch[i] = znode->zbranch[i + 1];
2533 znode->child_cnt -= 1;
2534
2535 if (znode->child_cnt > 0)
2536 return 0;
2537
2538 /*
2539 * This was the last zbranch, we have to delete this znode from the
2540 * parent.
2541 */
2542
2543 do {
6eb61d58
RW
2544 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2545 ubifs_assert(c, ubifs_zn_dirty(znode));
1e51764a
AB
2546
2547 zp = znode->parent;
2548 n = znode->iip;
2549
2550 atomic_long_dec(&c->dirty_zn_cnt);
2551
2552 err = insert_old_idx_znode(c, znode);
2553 if (err)
2554 return err;
2555
2556 if (znode->cnext) {
2557 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2558 atomic_long_inc(&c->clean_zn_cnt);
2559 atomic_long_inc(&ubifs_clean_zn_cnt);
2560 } else
2561 kfree(znode);
2562 znode = zp;
2563 } while (znode->child_cnt == 1); /* while removing last child */
2564
2565 /* Remove from znode, entry n - 1 */
2566 znode->child_cnt -= 1;
6eb61d58 2567 ubifs_assert(c, znode->level != 0);
1e51764a
AB
2568 for (i = n; i < znode->child_cnt; i++) {
2569 znode->zbranch[i] = znode->zbranch[i + 1];
2570 if (znode->zbranch[i].znode)
2571 znode->zbranch[i].znode->iip = i;
2572 }
2573
2574 /*
2575 * If this is the root and it has only 1 child then
2576 * collapse the tree.
2577 */
2578 if (!znode->parent) {
2579 while (znode->child_cnt == 1 && znode->level != 0) {
2580 zp = znode;
2581 zbr = &znode->zbranch[0];
2582 znode = get_znode(c, znode, 0);
2583 if (IS_ERR(znode))
2584 return PTR_ERR(znode);
2585 znode = dirty_cow_znode(c, zbr);
2586 if (IS_ERR(znode))
2587 return PTR_ERR(znode);
2588 znode->parent = NULL;
2589 znode->iip = 0;
2590 if (c->zroot.len) {
2591 err = insert_old_idx(c, c->zroot.lnum,
2592 c->zroot.offs);
2593 if (err)
2594 return err;
2595 }
2596 c->zroot.lnum = zbr->lnum;
2597 c->zroot.offs = zbr->offs;
2598 c->zroot.len = zbr->len;
2599 c->zroot.znode = znode;
6eb61d58
RW
2600 ubifs_assert(c, !ubifs_zn_obsolete(zp));
2601 ubifs_assert(c, ubifs_zn_dirty(zp));
1e51764a
AB
2602 atomic_long_dec(&c->dirty_zn_cnt);
2603
2604 if (zp->cnext) {
2605 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2606 atomic_long_inc(&c->clean_zn_cnt);
2607 atomic_long_inc(&ubifs_clean_zn_cnt);
2608 } else
2609 kfree(zp);
2610 }
2611 }
2612
2613 return 0;
2614}
2615
2616/**
2617 * ubifs_tnc_remove - remove an index entry of a node.
2618 * @c: UBIFS file-system description object
2619 * @key: key of node
2620 *
2621 * Returns %0 on success or negative error code on failure.
2622 */
2623int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2624{
2625 int found, n, err = 0;
2626 struct ubifs_znode *znode;
2627
2628 mutex_lock(&c->tnc_mutex);
515315a1 2629 dbg_tnck(key, "key ");
1e51764a
AB
2630 found = lookup_level0_dirty(c, key, &znode, &n);
2631 if (found < 0) {
2632 err = found;
2633 goto out_unlock;
2634 }
2635 if (found == 1)
2636 err = tnc_delete(c, znode, n);
2637 if (!err)
2638 err = dbg_check_tnc(c, 0);
2639
2640out_unlock:
2641 mutex_unlock(&c->tnc_mutex);
2642 return err;
2643}
2644
2645/**
2646 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2647 * @c: UBIFS file-system description object
2648 * @key: key of node
2649 * @nm: directory entry name
2650 *
2651 * Returns %0 on success or negative error code on failure.
2652 */
2653int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 2654 const struct fscrypt_name *nm)
1e51764a
AB
2655{
2656 int n, err;
2657 struct ubifs_znode *znode;
2658
2659 mutex_lock(&c->tnc_mutex);
35ee314c 2660 dbg_tnck(key, "key ");
1e51764a
AB
2661 err = lookup_level0_dirty(c, key, &znode, &n);
2662 if (err < 0)
2663 goto out_unlock;
2664
2665 if (err) {
2666 if (c->replaying)
2667 err = fallible_resolve_collision(c, key, &znode, &n,
2668 nm, 0);
2669 else
2670 err = resolve_collision(c, key, &znode, &n, nm);
2671 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2672 if (err < 0)
2673 goto out_unlock;
2674 if (err) {
2675 /* Ensure the znode is dirtied */
2676 if (znode->cnext || !ubifs_zn_dirty(znode)) {
c4361570
AB
2677 znode = dirty_cow_bottom_up(c, znode);
2678 if (IS_ERR(znode)) {
2679 err = PTR_ERR(znode);
2680 goto out_unlock;
2681 }
1e51764a
AB
2682 }
2683 err = tnc_delete(c, znode, n);
2684 }
2685 }
2686
2687out_unlock:
2688 if (!err)
2689 err = dbg_check_tnc(c, 0);
2690 mutex_unlock(&c->tnc_mutex);
2691 return err;
2692}
2693
781f675e
RW
2694/**
2695 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2696 * @c: UBIFS file-system description object
2697 * @key: key of node
2698 * @cookie: node cookie for collision resolution
2699 *
2700 * Returns %0 on success or negative error code on failure.
2701 */
2702int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2703 uint32_t cookie)
2704{
2705 int n, err;
2706 struct ubifs_znode *znode;
2707 struct ubifs_dent_node *dent;
2708 struct ubifs_zbranch *zbr;
2709
2710 if (!c->double_hash)
2711 return -EOPNOTSUPP;
2712
2713 mutex_lock(&c->tnc_mutex);
2714 err = lookup_level0_dirty(c, key, &znode, &n);
2715 if (err <= 0)
2716 goto out_unlock;
2717
2718 zbr = &znode->zbranch[n];
2719 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2720 if (!dent) {
2721 err = -ENOMEM;
2722 goto out_unlock;
2723 }
2724
2725 err = tnc_read_hashed_node(c, zbr, dent);
2726 if (err)
2727 goto out_free;
2728
2729 /* If the cookie does not match, we're facing a hash collision. */
2730 if (le32_to_cpu(dent->cookie) != cookie) {
2731 union ubifs_key start_key;
2732
2733 lowest_dent_key(c, &start_key, key_inum(c, key));
2734
2735 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2736 if (unlikely(err < 0))
2737 goto out_free;
2738
2739 err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2740 if (err)
2741 goto out_free;
2742 }
2743
2744 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2745 znode = dirty_cow_bottom_up(c, znode);
2746 if (IS_ERR(znode)) {
2747 err = PTR_ERR(znode);
2748 goto out_free;
2749 }
2750 }
2751 err = tnc_delete(c, znode, n);
2752
2753out_free:
2754 kfree(dent);
2755out_unlock:
2756 if (!err)
2757 err = dbg_check_tnc(c, 0);
2758 mutex_unlock(&c->tnc_mutex);
2759 return err;
2760}
2761
1e51764a
AB
2762/**
2763 * key_in_range - determine if a key falls within a range of keys.
2764 * @c: UBIFS file-system description object
2765 * @key: key to check
2766 * @from_key: lowest key in range
2767 * @to_key: highest key in range
2768 *
2769 * This function returns %1 if the key is in range and %0 otherwise.
2770 */
2771static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2772 union ubifs_key *from_key, union ubifs_key *to_key)
2773{
2774 if (keys_cmp(c, key, from_key) < 0)
2775 return 0;
2776 if (keys_cmp(c, key, to_key) > 0)
2777 return 0;
2778 return 1;
2779}
2780
2781/**
2782 * ubifs_tnc_remove_range - remove index entries in range.
2783 * @c: UBIFS file-system description object
2784 * @from_key: lowest key to remove
2785 * @to_key: highest key to remove
2786 *
2787 * This function removes index entries starting at @from_key and ending at
2788 * @to_key. This function returns zero in case of success and a negative error
2789 * code in case of failure.
2790 */
2791int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2792 union ubifs_key *to_key)
2793{
2794 int i, n, k, err = 0;
2795 struct ubifs_znode *znode;
2796 union ubifs_key *key;
2797
2798 mutex_lock(&c->tnc_mutex);
2799 while (1) {
2800 /* Find first level 0 znode that contains keys to remove */
2801 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2802 if (err < 0)
2803 goto out_unlock;
2804
2805 if (err)
2806 key = from_key;
2807 else {
2808 err = tnc_next(c, &znode, &n);
2809 if (err == -ENOENT) {
2810 err = 0;
2811 goto out_unlock;
2812 }
2813 if (err < 0)
2814 goto out_unlock;
2815 key = &znode->zbranch[n].key;
2816 if (!key_in_range(c, key, from_key, to_key)) {
2817 err = 0;
2818 goto out_unlock;
2819 }
2820 }
2821
2822 /* Ensure the znode is dirtied */
2823 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2824 znode = dirty_cow_bottom_up(c, znode);
2825 if (IS_ERR(znode)) {
2826 err = PTR_ERR(znode);
2827 goto out_unlock;
2828 }
1e51764a
AB
2829 }
2830
2831 /* Remove all keys in range except the first */
2832 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2833 key = &znode->zbranch[i].key;
2834 if (!key_in_range(c, key, from_key, to_key))
2835 break;
2836 lnc_free(&znode->zbranch[i]);
2837 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2838 znode->zbranch[i].len);
2839 if (err) {
edf6be24 2840 ubifs_dump_znode(c, znode);
1e51764a
AB
2841 goto out_unlock;
2842 }
515315a1 2843 dbg_tnck(key, "removing key ");
1e51764a
AB
2844 }
2845 if (k) {
2846 for (i = n + 1 + k; i < znode->child_cnt; i++)
2847 znode->zbranch[i - k] = znode->zbranch[i];
2848 znode->child_cnt -= k;
2849 }
2850
2851 /* Now delete the first */
2852 err = tnc_delete(c, znode, n);
2853 if (err)
2854 goto out_unlock;
2855 }
2856
2857out_unlock:
2858 if (!err)
2859 err = dbg_check_tnc(c, 0);
2860 mutex_unlock(&c->tnc_mutex);
2861 return err;
2862}
2863
2864/**
2865 * ubifs_tnc_remove_ino - remove an inode from TNC.
2866 * @c: UBIFS file-system description object
2867 * @inum: inode number to remove
2868 *
2869 * This function remove inode @inum and all the extended attributes associated
2870 * with the anode from TNC and returns zero in case of success or a negative
2871 * error code in case of failure.
2872 */
2873int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2874{
2875 union ubifs_key key1, key2;
2876 struct ubifs_dent_node *xent, *pxent = NULL;
f4f61d2c 2877 struct fscrypt_name nm = {0};
1e51764a 2878
e84461ad 2879 dbg_tnc("ino %lu", (unsigned long)inum);
1e51764a
AB
2880
2881 /*
2882 * Walk all extended attribute entries and remove them together with
2883 * corresponding extended attribute inodes.
2884 */
2885 lowest_xent_key(c, &key1, inum);
2886 while (1) {
2887 ino_t xattr_inum;
2888 int err;
2889
2890 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2891 if (IS_ERR(xent)) {
2892 err = PTR_ERR(xent);
2893 if (err == -ENOENT)
2894 break;
2895 return err;
2896 }
2897
2898 xattr_inum = le64_to_cpu(xent->inum);
e84461ad
AB
2899 dbg_tnc("xent '%s', ino %lu", xent->name,
2900 (unsigned long)xattr_inum);
1e51764a 2901
272eda82
RW
2902 ubifs_evict_xattr_inode(c, xattr_inum);
2903
f4f61d2c
RW
2904 fname_name(&nm) = xent->name;
2905 fname_len(&nm) = le16_to_cpu(xent->nlen);
1e51764a
AB
2906 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2907 if (err) {
2908 kfree(xent);
2909 return err;
2910 }
2911
2912 lowest_ino_key(c, &key1, xattr_inum);
2913 highest_ino_key(c, &key2, xattr_inum);
2914 err = ubifs_tnc_remove_range(c, &key1, &key2);
2915 if (err) {
2916 kfree(xent);
2917 return err;
2918 }
2919
2920 kfree(pxent);
2921 pxent = xent;
2922 key_read(c, &xent->key, &key1);
2923 }
2924
2925 kfree(pxent);
2926 lowest_ino_key(c, &key1, inum);
2927 highest_ino_key(c, &key2, inum);
2928
2929 return ubifs_tnc_remove_range(c, &key1, &key2);
2930}
2931
2932/**
2933 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2934 * @c: UBIFS file-system description object
2935 * @key: key of last entry
2936 * @nm: name of last entry found or %NULL
2937 *
2938 * This function finds and reads the next directory or extended attribute entry
2939 * after the given key (@key) if there is one. @nm is used to resolve
2940 * collisions.
2941 *
2942 * If the name of the current entry is not known and only the key is known,
2943 * @nm->name has to be %NULL. In this case the semantics of this function is a
2944 * little bit different and it returns the entry corresponding to this key, not
2945 * the next one. If the key was not found, the closest "right" entry is
2946 * returned.
2947 *
2948 * If the fist entry has to be found, @key has to contain the lowest possible
2949 * key value for this inode and @name has to be %NULL.
2950 *
2951 * This function returns the found directory or extended attribute entry node
2952 * in case of success, %-ENOENT is returned if no entry was found, and a
2953 * negative error code is returned in case of failure.
2954 */
2955struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2956 union ubifs_key *key,
f4f61d2c 2957 const struct fscrypt_name *nm)
1e51764a
AB
2958{
2959 int n, err, type = key_type(c, key);
2960 struct ubifs_znode *znode;
2961 struct ubifs_dent_node *dent;
2962 struct ubifs_zbranch *zbr;
2963 union ubifs_key *dkey;
2964
35ee314c 2965 dbg_tnck(key, "key ");
6eb61d58 2966 ubifs_assert(c, is_hash_key(c, key));
1e51764a
AB
2967
2968 mutex_lock(&c->tnc_mutex);
2969 err = ubifs_lookup_level0(c, key, &znode, &n);
2970 if (unlikely(err < 0))
2971 goto out_unlock;
2972
f4f61d2c 2973 if (fname_len(nm) > 0) {
1e51764a
AB
2974 if (err) {
2975 /* Handle collisions */
1cb51a15
RW
2976 if (c->replaying)
2977 err = fallible_resolve_collision(c, key, &znode, &n,
2978 nm, 0);
2979 else
2980 err = resolve_collision(c, key, &znode, &n, nm);
1e51764a
AB
2981 dbg_tnc("rc returned %d, znode %p, n %d",
2982 err, znode, n);
2983 if (unlikely(err < 0))
2984 goto out_unlock;
2985 }
2986
2987 /* Now find next entry */
2988 err = tnc_next(c, &znode, &n);
2989 if (unlikely(err))
2990 goto out_unlock;
2991 } else {
2992 /*
2993 * The full name of the entry was not given, in which case the
2994 * behavior of this function is a little different and it
2995 * returns current entry, not the next one.
2996 */
2997 if (!err) {
2998 /*
2999 * However, the given key does not exist in the TNC
3000 * tree and @znode/@n variables contain the closest
3001 * "preceding" element. Switch to the next one.
3002 */
3003 err = tnc_next(c, &znode, &n);
3004 if (err)
3005 goto out_unlock;
3006 }
3007 }
3008
3009 zbr = &znode->zbranch[n];
3010 dent = kmalloc(zbr->len, GFP_NOFS);
3011 if (unlikely(!dent)) {
3012 err = -ENOMEM;
3013 goto out_unlock;
3014 }
3015
3016 /*
3017 * The above 'tnc_next()' call could lead us to the next inode, check
3018 * this.
3019 */
3020 dkey = &zbr->key;
3021 if (key_inum(c, dkey) != key_inum(c, key) ||
3022 key_type(c, dkey) != type) {
3023 err = -ENOENT;
3024 goto out_free;
3025 }
3026
b91dc981 3027 err = tnc_read_hashed_node(c, zbr, dent);
1e51764a
AB
3028 if (unlikely(err))
3029 goto out_free;
3030
3031 mutex_unlock(&c->tnc_mutex);
3032 return dent;
3033
3034out_free:
3035 kfree(dent);
3036out_unlock:
3037 mutex_unlock(&c->tnc_mutex);
3038 return ERR_PTR(err);
3039}
3040
3041/**
3042 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3043 * @c: UBIFS file-system description object
3044 *
3045 * Destroy left-over obsolete znodes from a failed commit.
3046 */
3047static void tnc_destroy_cnext(struct ubifs_info *c)
3048{
3049 struct ubifs_znode *cnext;
3050
3051 if (!c->cnext)
3052 return;
6eb61d58 3053 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
1e51764a
AB
3054 cnext = c->cnext;
3055 do {
3056 struct ubifs_znode *znode = cnext;
3057
3058 cnext = cnext->cnext;
f42eed7c 3059 if (ubifs_zn_obsolete(znode))
1e51764a
AB
3060 kfree(znode);
3061 } while (cnext && cnext != c->cnext);
3062}
3063
3064/**
3065 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3066 * @c: UBIFS file-system description object
3067 */
3068void ubifs_tnc_close(struct ubifs_info *c)
3069{
1e51764a
AB
3070 tnc_destroy_cnext(c);
3071 if (c->zroot.znode) {
380347e9 3072 long n, freed;
83707237 3073
83707237 3074 n = atomic_long_read(&c->clean_zn_cnt);
6eb61d58
RW
3075 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3076 ubifs_assert(c, freed == n);
83707237 3077 atomic_long_sub(n, &ubifs_clean_zn_cnt);
1e51764a
AB
3078 }
3079 kfree(c->gap_lebs);
3080 kfree(c->ilebs);
3081 destroy_old_idx(c);
3082}
3083
3084/**
3085 * left_znode - get the znode to the left.
3086 * @c: UBIFS file-system description object
3087 * @znode: znode
3088 *
3089 * This function returns a pointer to the znode to the left of @znode or NULL if
3090 * there is not one. A negative error code is returned on failure.
3091 */
3092static struct ubifs_znode *left_znode(struct ubifs_info *c,
3093 struct ubifs_znode *znode)
3094{
3095 int level = znode->level;
3096
3097 while (1) {
3098 int n = znode->iip - 1;
3099
3100 /* Go up until we can go left */
3101 znode = znode->parent;
3102 if (!znode)
3103 return NULL;
3104 if (n >= 0) {
3105 /* Now go down the rightmost branch to 'level' */
3106 znode = get_znode(c, znode, n);
3107 if (IS_ERR(znode))
3108 return znode;
3109 while (znode->level != level) {
3110 n = znode->child_cnt - 1;
3111 znode = get_znode(c, znode, n);
3112 if (IS_ERR(znode))
3113 return znode;
3114 }
3115 break;
3116 }
3117 }
3118 return znode;
3119}
3120
3121/**
3122 * right_znode - get the znode to the right.
3123 * @c: UBIFS file-system description object
3124 * @znode: znode
3125 *
3126 * This function returns a pointer to the znode to the right of @znode or NULL
3127 * if there is not one. A negative error code is returned on failure.
3128 */
3129static struct ubifs_znode *right_znode(struct ubifs_info *c,
3130 struct ubifs_znode *znode)
3131{
3132 int level = znode->level;
3133
3134 while (1) {
3135 int n = znode->iip + 1;
3136
3137 /* Go up until we can go right */
3138 znode = znode->parent;
3139 if (!znode)
3140 return NULL;
3141 if (n < znode->child_cnt) {
3142 /* Now go down the leftmost branch to 'level' */
3143 znode = get_znode(c, znode, n);
3144 if (IS_ERR(znode))
3145 return znode;
3146 while (znode->level != level) {
3147 znode = get_znode(c, znode, 0);
3148 if (IS_ERR(znode))
3149 return znode;
3150 }
3151 break;
3152 }
3153 }
3154 return znode;
3155}
3156
3157/**
3158 * lookup_znode - find a particular indexing node from TNC.
3159 * @c: UBIFS file-system description object
3160 * @key: index node key to lookup
3161 * @level: index node level
3162 * @lnum: index node LEB number
3163 * @offs: index node offset
3164 *
3165 * This function searches an indexing node by its first key @key and its
3166 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
ba2f48f7 3167 * nodes it traverses to TNC. This function is called for indexing nodes which
1e51764a
AB
3168 * were found on the media by scanning, for example when garbage-collecting or
3169 * when doing in-the-gaps commit. This means that the indexing node which is
3170 * looked for does not have to have exactly the same leftmost key @key, because
3171 * the leftmost key may have been changed, in which case TNC will contain a
3172 * dirty znode which still refers the same @lnum:@offs. This function is clever
3173 * enough to recognize such indexing nodes.
3174 *
3175 * Note, if a znode was deleted or changed too much, then this function will
3176 * not find it. For situations like this UBIFS has the old index RB-tree
3177 * (indexed by @lnum:@offs).
3178 *
3179 * This function returns a pointer to the znode found or %NULL if it is not
3180 * found. A negative error code is returned on failure.
3181 */
3182static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3183 union ubifs_key *key, int level,
3184 int lnum, int offs)
3185{
3186 struct ubifs_znode *znode, *zn;
3187 int n, nn;
3188
6eb61d58 3189 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
ba2f48f7 3190
1e51764a
AB
3191 /*
3192 * The arguments have probably been read off flash, so don't assume
3193 * they are valid.
3194 */
3195 if (level < 0)
3196 return ERR_PTR(-EINVAL);
3197
3198 /* Get the root znode */
3199 znode = c->zroot.znode;
3200 if (!znode) {
3201 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3202 if (IS_ERR(znode))
3203 return znode;
3204 }
3205 /* Check if it is the one we are looking for */
3206 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3207 return znode;
3208 /* Descend to the parent level i.e. (level + 1) */
3209 if (level >= znode->level)
3210 return NULL;
3211 while (1) {
3212 ubifs_search_zbranch(c, znode, key, &n);
3213 if (n < 0) {
3214 /*
3215 * We reached a znode where the leftmost key is greater
3216 * than the key we are searching for. This is the same
3217 * situation as the one described in a huge comment at
3218 * the end of the 'ubifs_lookup_level0()' function. And
3219 * for exactly the same reasons we have to try to look
3220 * left before giving up.
3221 */
3222 znode = left_znode(c, znode);
3223 if (!znode)
3224 return NULL;
3225 if (IS_ERR(znode))
3226 return znode;
3227 ubifs_search_zbranch(c, znode, key, &n);
6eb61d58 3228 ubifs_assert(c, n >= 0);
1e51764a
AB
3229 }
3230 if (znode->level == level + 1)
3231 break;
3232 znode = get_znode(c, znode, n);
3233 if (IS_ERR(znode))
3234 return znode;
3235 }
3236 /* Check if the child is the one we are looking for */
3237 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3238 return get_znode(c, znode, n);
3239 /* If the key is unique, there is nowhere else to look */
3240 if (!is_hash_key(c, key))
3241 return NULL;
3242 /*
3243 * The key is not unique and so may be also in the znodes to either
3244 * side.
3245 */
3246 zn = znode;
3247 nn = n;
3248 /* Look left */
3249 while (1) {
3250 /* Move one branch to the left */
3251 if (n)
3252 n -= 1;
3253 else {
3254 znode = left_znode(c, znode);
3255 if (!znode)
3256 break;
3257 if (IS_ERR(znode))
3258 return znode;
3259 n = znode->child_cnt - 1;
3260 }
3261 /* Check it */
3262 if (znode->zbranch[n].lnum == lnum &&
3263 znode->zbranch[n].offs == offs)
3264 return get_znode(c, znode, n);
3265 /* Stop if the key is less than the one we are looking for */
3266 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3267 break;
3268 }
3269 /* Back to the middle */
3270 znode = zn;
3271 n = nn;
3272 /* Look right */
3273 while (1) {
3274 /* Move one branch to the right */
3275 if (++n >= znode->child_cnt) {
3276 znode = right_znode(c, znode);
3277 if (!znode)
3278 break;
3279 if (IS_ERR(znode))
3280 return znode;
3281 n = 0;
3282 }
3283 /* Check it */
3284 if (znode->zbranch[n].lnum == lnum &&
3285 znode->zbranch[n].offs == offs)
3286 return get_znode(c, znode, n);
3287 /* Stop if the key is greater than the one we are looking for */
3288 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3289 break;
3290 }
3291 return NULL;
3292}
3293
3294/**
3295 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3296 * @c: UBIFS file-system description object
3297 * @key: key of index node
3298 * @level: index node level
3299 * @lnum: LEB number of index node
3300 * @offs: offset of index node
3301 *
3302 * This function returns %0 if the index node is not referred to in the TNC, %1
3303 * if the index node is referred to in the TNC and the corresponding znode is
3304 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3305 * znode is clean, and a negative error code in case of failure.
3306 *
3307 * Note, the @key argument has to be the key of the first child. Also note,
3308 * this function relies on the fact that 0:0 is never a valid LEB number and
3309 * offset for a main-area node.
3310 */
3311int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3312 int lnum, int offs)
3313{
3314 struct ubifs_znode *znode;
3315
3316 znode = lookup_znode(c, key, level, lnum, offs);
3317 if (!znode)
3318 return 0;
3319 if (IS_ERR(znode))
3320 return PTR_ERR(znode);
3321
3322 return ubifs_zn_dirty(znode) ? 1 : 2;
3323}
3324
3325/**
3326 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3327 * @c: UBIFS file-system description object
3328 * @key: node key
3329 * @lnum: node LEB number
3330 * @offs: node offset
3331 *
3332 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3333 * not, and a negative error code in case of failure.
3334 *
3335 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3336 * and offset for a main-area node.
3337 */
3338static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3339 int lnum, int offs)
3340{
3341 struct ubifs_zbranch *zbr;
3342 struct ubifs_znode *znode, *zn;
3343 int n, found, err, nn;
3344 const int unique = !is_hash_key(c, key);
3345
3346 found = ubifs_lookup_level0(c, key, &znode, &n);
3347 if (found < 0)
3348 return found; /* Error code */
3349 if (!found)
3350 return 0;
3351 zbr = &znode->zbranch[n];
3352 if (lnum == zbr->lnum && offs == zbr->offs)
3353 return 1; /* Found it */
3354 if (unique)
3355 return 0;
3356 /*
3357 * Because the key is not unique, we have to look left
3358 * and right as well
3359 */
3360 zn = znode;
3361 nn = n;
3362 /* Look left */
3363 while (1) {
3364 err = tnc_prev(c, &znode, &n);
3365 if (err == -ENOENT)
3366 break;
3367 if (err)
3368 return err;
3369 if (keys_cmp(c, key, &znode->zbranch[n].key))
3370 break;
3371 zbr = &znode->zbranch[n];
3372 if (lnum == zbr->lnum && offs == zbr->offs)
3373 return 1; /* Found it */
3374 }
3375 /* Look right */
3376 znode = zn;
3377 n = nn;
3378 while (1) {
3379 err = tnc_next(c, &znode, &n);
3380 if (err) {
3381 if (err == -ENOENT)
3382 return 0;
3383 return err;
3384 }
3385 if (keys_cmp(c, key, &znode->zbranch[n].key))
3386 break;
3387 zbr = &znode->zbranch[n];
3388 if (lnum == zbr->lnum && offs == zbr->offs)
3389 return 1; /* Found it */
3390 }
3391 return 0;
3392}
3393
3394/**
3395 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3396 * @c: UBIFS file-system description object
3397 * @key: node key
3398 * @level: index node level (if it is an index node)
3399 * @lnum: node LEB number
3400 * @offs: node offset
3401 * @is_idx: non-zero if the node is an index node
3402 *
3403 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3404 * negative error code in case of failure. For index nodes, @key has to be the
3405 * key of the first child. An index node is considered to be in the TNC only if
3406 * the corresponding znode is clean or has not been loaded.
3407 */
3408int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3409 int lnum, int offs, int is_idx)
3410{
3411 int err;
3412
3413 mutex_lock(&c->tnc_mutex);
3414 if (is_idx) {
3415 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3416 if (err < 0)
3417 goto out_unlock;
3418 if (err == 1)
3419 /* The index node was found but it was dirty */
3420 err = 0;
3421 else if (err == 2)
3422 /* The index node was found and it was clean */
3423 err = 1;
3424 else
3425 BUG_ON(err != 0);
3426 } else
3427 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3428
3429out_unlock:
3430 mutex_unlock(&c->tnc_mutex);
3431 return err;
3432}
3433
3434/**
3435 * ubifs_dirty_idx_node - dirty an index node.
3436 * @c: UBIFS file-system description object
3437 * @key: index node key
3438 * @level: index node level
3439 * @lnum: index node LEB number
3440 * @offs: index node offset
3441 *
3442 * This function loads and dirties an index node so that it can be garbage
3443 * collected. The @key argument has to be the key of the first child. This
3444 * function relies on the fact that 0:0 is never a valid LEB number and offset
3445 * for a main-area node. Returns %0 on success and a negative error code on
3446 * failure.
3447 */
3448int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3449 int lnum, int offs)
3450{
3451 struct ubifs_znode *znode;
3452 int err = 0;
3453
3454 mutex_lock(&c->tnc_mutex);
3455 znode = lookup_znode(c, key, level, lnum, offs);
3456 if (!znode)
3457 goto out_unlock;
3458 if (IS_ERR(znode)) {
3459 err = PTR_ERR(znode);
3460 goto out_unlock;
3461 }
3462 znode = dirty_cow_bottom_up(c, znode);
3463 if (IS_ERR(znode)) {
3464 err = PTR_ERR(znode);
3465 goto out_unlock;
3466 }
3467
3468out_unlock:
3469 mutex_unlock(&c->tnc_mutex);
3470 return err;
3471}
e3c3efc2 3472
e3c3efc2
AB
3473/**
3474 * dbg_check_inode_size - check if inode size is correct.
3475 * @c: UBIFS file-system description object
3476 * @inum: inode number
3477 * @size: inode size
3478 *
3479 * This function makes sure that the inode size (@size) is correct and it does
3480 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3481 * if it has a data page beyond @size, and other negative error code in case of
3482 * other errors.
3483 */
3484int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3485 loff_t size)
3486{
3487 int err, n;
3488 union ubifs_key from_key, to_key, *key;
3489 struct ubifs_znode *znode;
3490 unsigned int block;
3491
3492 if (!S_ISREG(inode->i_mode))
3493 return 0;
2b1844a8 3494 if (!dbg_is_chk_gen(c))
e3c3efc2
AB
3495 return 0;
3496
3497 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3498 data_key_init(c, &from_key, inode->i_ino, block);
3499 highest_data_key(c, &to_key, inode->i_ino);
3500
3501 mutex_lock(&c->tnc_mutex);
3502 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3503 if (err < 0)
3504 goto out_unlock;
3505
3506 if (err) {
e3c3efc2
AB
3507 key = &from_key;
3508 goto out_dump;
3509 }
3510
3511 err = tnc_next(c, &znode, &n);
3512 if (err == -ENOENT) {
3513 err = 0;
3514 goto out_unlock;
3515 }
3516 if (err < 0)
3517 goto out_unlock;
3518
6eb61d58 3519 ubifs_assert(c, err == 0);
e3c3efc2
AB
3520 key = &znode->zbranch[n].key;
3521 if (!key_in_range(c, key, &from_key, &to_key))
3522 goto out_unlock;
3523
3524out_dump:
3525 block = key_block(c, key);
235c362b 3526 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
515315a1
AB
3527 (unsigned long)inode->i_ino, size,
3528 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
4315fb40 3529 mutex_unlock(&c->tnc_mutex);
edf6be24 3530 ubifs_dump_inode(c, inode);
7c46d0ae 3531 dump_stack();
4315fb40 3532 return -EINVAL;
e3c3efc2
AB
3533
3534out_unlock:
3535 mutex_unlock(&c->tnc_mutex);
3536 return err;
3537}