Linux 4.20-rc6
[linux-block.git] / fs / ubifs / replay.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file contains journal replay code. It runs when the file-system is being
25 * mounted and requires no locking.
26 *
27 * The larger is the journal, the longer it takes to scan it, so the longer it
28 * takes to mount UBIFS. This is why the journal has limited size which may be
29 * changed depending on the system requirements. But a larger journal gives
30 * faster I/O speed because it writes the index less frequently. So this is a
31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32 * larger is the journal, the more memory its index may consume.
33 */
34
35#include "ubifs.h"
debf12d5 36#include <linux/list_sort.h>
da8ef65f
SH
37#include <crypto/hash.h>
38#include <crypto/algapi.h>
1e51764a 39
1e51764a 40/**
debf12d5 41 * struct replay_entry - replay list entry.
1e51764a
AB
42 * @lnum: logical eraseblock number of the node
43 * @offs: node offset
44 * @len: node length
074bcb9b 45 * @deletion: non-zero if this entry corresponds to a node deletion
1e51764a 46 * @sqnum: node sequence number
debf12d5 47 * @list: links the replay list
1e51764a
AB
48 * @key: node key
49 * @nm: directory entry name
50 * @old_size: truncation old size
51 * @new_size: truncation new size
1e51764a 52 *
debf12d5
AB
53 * The replay process first scans all buds and builds the replay list, then
54 * sorts the replay list in nodes sequence number order, and then inserts all
55 * the replay entries to the TNC.
1e51764a
AB
56 */
57struct replay_entry {
58 int lnum;
59 int offs;
60 int len;
16a26b20 61 u8 hash[UBIFS_HASH_ARR_SZ];
074bcb9b 62 unsigned int deletion:1;
1e51764a 63 unsigned long long sqnum;
debf12d5 64 struct list_head list;
1e51764a
AB
65 union ubifs_key key;
66 union {
f4f61d2c 67 struct fscrypt_name nm;
1e51764a
AB
68 struct {
69 loff_t old_size;
70 loff_t new_size;
71 };
1e51764a
AB
72 };
73};
74
75/**
76 * struct bud_entry - entry in the list of buds to replay.
77 * @list: next bud in the list
78 * @bud: bud description object
1e51764a 79 * @sqnum: reference node sequence number
af1dd412
AB
80 * @free: free bytes in the bud
81 * @dirty: dirty bytes in the bud
1e51764a
AB
82 */
83struct bud_entry {
84 struct list_head list;
85 struct ubifs_bud *bud;
1e51764a 86 unsigned long long sqnum;
af1dd412
AB
87 int free;
88 int dirty;
1e51764a
AB
89};
90
91/**
92 * set_bud_lprops - set free and dirty space used by a bud.
93 * @c: UBIFS file-system description object
074bcb9b
AB
94 * @b: bud entry which describes the bud
95 *
96 * This function makes sure the LEB properties of bud @b are set correctly
97 * after the replay. Returns zero in case of success and a negative error code
98 * in case of failure.
1e51764a 99 */
074bcb9b 100static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
1e51764a
AB
101{
102 const struct ubifs_lprops *lp;
103 int err = 0, dirty;
104
105 ubifs_get_lprops(c);
106
074bcb9b 107 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
1e51764a
AB
108 if (IS_ERR(lp)) {
109 err = PTR_ERR(lp);
110 goto out;
111 }
112
113 dirty = lp->dirty;
074bcb9b 114 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
1e51764a
AB
115 /*
116 * The LEB was added to the journal with a starting offset of
117 * zero which means the LEB must have been empty. The LEB
074bcb9b
AB
118 * property values should be @lp->free == @c->leb_size and
119 * @lp->dirty == 0, but that is not the case. The reason is that
7a9c3e39
AB
120 * the LEB had been garbage collected before it became the bud,
121 * and there was not commit inbetween. The garbage collector
122 * resets the free and dirty space without recording it
123 * anywhere except lprops, so if there was no commit then
124 * lprops does not have that information.
1e51764a
AB
125 *
126 * We do not need to adjust free space because the scan has told
127 * us the exact value which is recorded in the replay entry as
074bcb9b 128 * @b->free.
1e51764a
AB
129 *
130 * However we do need to subtract from the dirty space the
131 * amount of space that the garbage collector reclaimed, which
132 * is the whole LEB minus the amount of space that was free.
133 */
074bcb9b 134 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
1e51764a 135 lp->free, lp->dirty);
074bcb9b 136 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
1e51764a
AB
137 lp->free, lp->dirty);
138 dirty -= c->leb_size - lp->free;
139 /*
140 * If the replay order was perfect the dirty space would now be
7d4e9ccb 141 * zero. The order is not perfect because the journal heads
6edbfafd 142 * race with each other. This is not a problem but is does mean
1e51764a
AB
143 * that the dirty space may temporarily exceed c->leb_size
144 * during the replay.
145 */
146 if (dirty != 0)
3668b70f 147 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
79fda517
AB
148 b->bud->lnum, lp->free, lp->dirty, b->free,
149 b->dirty);
1e51764a 150 }
074bcb9b 151 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
1e51764a
AB
152 lp->flags | LPROPS_TAKEN, 0);
153 if (IS_ERR(lp)) {
154 err = PTR_ERR(lp);
155 goto out;
156 }
52c6e6f9
AB
157
158 /* Make sure the journal head points to the latest bud */
074bcb9b 159 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
b36a261e 160 b->bud->lnum, c->leb_size - b->free);
52c6e6f9 161
1e51764a
AB
162out:
163 ubifs_release_lprops(c);
164 return err;
165}
166
074bcb9b
AB
167/**
168 * set_buds_lprops - set free and dirty space for all replayed buds.
169 * @c: UBIFS file-system description object
170 *
171 * This function sets LEB properties for all replayed buds. Returns zero in
172 * case of success and a negative error code in case of failure.
173 */
174static int set_buds_lprops(struct ubifs_info *c)
175{
176 struct bud_entry *b;
177 int err;
178
179 list_for_each_entry(b, &c->replay_buds, list) {
180 err = set_bud_lprops(c, b);
181 if (err)
182 return err;
183 }
184
185 return 0;
186}
187
1e51764a
AB
188/**
189 * trun_remove_range - apply a replay entry for a truncation to the TNC.
190 * @c: UBIFS file-system description object
191 * @r: replay entry of truncation
192 */
193static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
194{
195 unsigned min_blk, max_blk;
196 union ubifs_key min_key, max_key;
197 ino_t ino;
198
199 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
200 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
201 min_blk += 1;
202
203 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
204 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
205 max_blk -= 1;
206
207 ino = key_inum(c, &r->key);
208
209 data_key_init(c, &min_key, ino, min_blk);
210 data_key_init(c, &max_key, ino, max_blk);
211
212 return ubifs_tnc_remove_range(c, &min_key, &max_key);
213}
214
215/**
216 * apply_replay_entry - apply a replay entry to the TNC.
217 * @c: UBIFS file-system description object
218 * @r: replay entry to apply
219 *
220 * Apply a replay entry to the TNC.
221 */
222static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
223{
074bcb9b 224 int err;
1e51764a 225
515315a1
AB
226 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
227 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
1e51764a 228
074bcb9b
AB
229 if (is_hash_key(c, &r->key)) {
230 if (r->deletion)
1e51764a
AB
231 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
232 else
233 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
16a26b20 234 r->len, r->hash, &r->nm);
1e51764a 235 } else {
074bcb9b 236 if (r->deletion)
1e51764a
AB
237 switch (key_type(c, &r->key)) {
238 case UBIFS_INO_KEY:
239 {
240 ino_t inum = key_inum(c, &r->key);
241
242 err = ubifs_tnc_remove_ino(c, inum);
243 break;
244 }
245 case UBIFS_TRUN_KEY:
246 err = trun_remove_range(c, r);
247 break;
248 default:
249 err = ubifs_tnc_remove(c, &r->key);
250 break;
251 }
252 else
253 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
16a26b20 254 r->len, r->hash);
1e51764a
AB
255 if (err)
256 return err;
257
258 if (c->need_recovery)
074bcb9b 259 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
1e51764a
AB
260 r->new_size);
261 }
262
263 return err;
264}
265
266/**
debf12d5
AB
267 * replay_entries_cmp - compare 2 replay entries.
268 * @priv: UBIFS file-system description object
269 * @a: first replay entry
ec037dfc 270 * @b: second replay entry
1e51764a 271 *
debf12d5
AB
272 * This is a comparios function for 'list_sort()' which compares 2 replay
273 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
274 * greater sequence number and %-1 otherwise.
1e51764a 275 */
debf12d5
AB
276static int replay_entries_cmp(void *priv, struct list_head *a,
277 struct list_head *b)
1e51764a 278{
6eb61d58 279 struct ubifs_info *c = priv;
debf12d5
AB
280 struct replay_entry *ra, *rb;
281
282 cond_resched();
283 if (a == b)
284 return 0;
285
286 ra = list_entry(a, struct replay_entry, list);
287 rb = list_entry(b, struct replay_entry, list);
6eb61d58 288 ubifs_assert(c, ra->sqnum != rb->sqnum);
debf12d5
AB
289 if (ra->sqnum > rb->sqnum)
290 return 1;
291 return -1;
1e51764a
AB
292}
293
294/**
debf12d5 295 * apply_replay_list - apply the replay list to the TNC.
1e51764a
AB
296 * @c: UBIFS file-system description object
297 *
debf12d5
AB
298 * Apply all entries in the replay list to the TNC. Returns zero in case of
299 * success and a negative error code in case of failure.
1e51764a 300 */
debf12d5 301static int apply_replay_list(struct ubifs_info *c)
1e51764a 302{
debf12d5
AB
303 struct replay_entry *r;
304 int err;
1e51764a 305
debf12d5 306 list_sort(c, &c->replay_list, &replay_entries_cmp);
1e51764a 307
debf12d5 308 list_for_each_entry(r, &c->replay_list, list) {
1e51764a
AB
309 cond_resched();
310
1e51764a
AB
311 err = apply_replay_entry(c, r);
312 if (err)
313 return err;
1e51764a 314 }
debf12d5 315
1e51764a
AB
316 return 0;
317}
318
319/**
debf12d5
AB
320 * destroy_replay_list - destroy the replay.
321 * @c: UBIFS file-system description object
322 *
323 * Destroy the replay list.
324 */
325static void destroy_replay_list(struct ubifs_info *c)
326{
327 struct replay_entry *r, *tmp;
328
329 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
330 if (is_hash_key(c, &r->key))
f4f61d2c 331 kfree(fname_name(&r->nm));
debf12d5
AB
332 list_del(&r->list);
333 kfree(r);
334 }
335}
336
337/**
338 * insert_node - insert a node to the replay list
1e51764a
AB
339 * @c: UBIFS file-system description object
340 * @lnum: node logical eraseblock number
341 * @offs: node offset
342 * @len: node length
343 * @key: node key
344 * @sqnum: sequence number
345 * @deletion: non-zero if this is a deletion
346 * @used: number of bytes in use in a LEB
347 * @old_size: truncation old size
348 * @new_size: truncation new size
349 *
debf12d5
AB
350 * This function inserts a scanned non-direntry node to the replay list. The
351 * replay list contains @struct replay_entry elements, and we sort this list in
352 * sequence number order before applying it. The replay list is applied at the
353 * very end of the replay process. Since the list is sorted in sequence number
354 * order, the older modifications are applied first. This function returns zero
355 * in case of success and a negative error code in case of failure.
1e51764a
AB
356 */
357static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
16a26b20
SH
358 const u8 *hash, union ubifs_key *key,
359 unsigned long long sqnum, int deletion, int *used,
360 loff_t old_size, loff_t new_size)
1e51764a 361{
1e51764a
AB
362 struct replay_entry *r;
363
515315a1 364 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
debf12d5 365
1e51764a
AB
366 if (key_inum(c, key) >= c->highest_inum)
367 c->highest_inum = key_inum(c, key);
368
1e51764a
AB
369 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
370 if (!r)
371 return -ENOMEM;
372
373 if (!deletion)
374 *used += ALIGN(len, 8);
375 r->lnum = lnum;
376 r->offs = offs;
377 r->len = len;
16a26b20 378 ubifs_copy_hash(c, hash, r->hash);
074bcb9b 379 r->deletion = !!deletion;
1e51764a 380 r->sqnum = sqnum;
074bcb9b 381 key_copy(c, key, &r->key);
1e51764a
AB
382 r->old_size = old_size;
383 r->new_size = new_size;
1e51764a 384
debf12d5 385 list_add_tail(&r->list, &c->replay_list);
1e51764a
AB
386 return 0;
387}
388
389/**
debf12d5 390 * insert_dent - insert a directory entry node into the replay list.
1e51764a
AB
391 * @c: UBIFS file-system description object
392 * @lnum: node logical eraseblock number
393 * @offs: node offset
394 * @len: node length
395 * @key: node key
396 * @name: directory entry name
397 * @nlen: directory entry name length
398 * @sqnum: sequence number
399 * @deletion: non-zero if this is a deletion
400 * @used: number of bytes in use in a LEB
401 *
debf12d5
AB
402 * This function inserts a scanned directory entry node or an extended
403 * attribute entry to the replay list. Returns zero in case of success and a
404 * negative error code in case of failure.
1e51764a
AB
405 */
406static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
16a26b20
SH
407 const u8 *hash, union ubifs_key *key,
408 const char *name, int nlen, unsigned long long sqnum,
409 int deletion, int *used)
1e51764a 410{
1e51764a
AB
411 struct replay_entry *r;
412 char *nbuf;
413
515315a1 414 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
1e51764a
AB
415 if (key_inum(c, key) >= c->highest_inum)
416 c->highest_inum = key_inum(c, key);
417
1e51764a
AB
418 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
419 if (!r)
420 return -ENOMEM;
debf12d5 421
1e51764a
AB
422 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
423 if (!nbuf) {
424 kfree(r);
425 return -ENOMEM;
426 }
427
428 if (!deletion)
429 *used += ALIGN(len, 8);
430 r->lnum = lnum;
431 r->offs = offs;
432 r->len = len;
16a26b20 433 ubifs_copy_hash(c, hash, r->hash);
074bcb9b 434 r->deletion = !!deletion;
1e51764a 435 r->sqnum = sqnum;
074bcb9b 436 key_copy(c, key, &r->key);
f4f61d2c 437 fname_len(&r->nm) = nlen;
1e51764a
AB
438 memcpy(nbuf, name, nlen);
439 nbuf[nlen] = '\0';
f4f61d2c 440 fname_name(&r->nm) = nbuf;
1e51764a 441
debf12d5 442 list_add_tail(&r->list, &c->replay_list);
1e51764a
AB
443 return 0;
444}
445
446/**
447 * ubifs_validate_entry - validate directory or extended attribute entry node.
448 * @c: UBIFS file-system description object
449 * @dent: the node to validate
450 *
451 * This function validates directory or extended attribute entry node @dent.
452 * Returns zero if the node is all right and a %-EINVAL if not.
453 */
454int ubifs_validate_entry(struct ubifs_info *c,
455 const struct ubifs_dent_node *dent)
456{
457 int key_type = key_type_flash(c, dent->key);
458 int nlen = le16_to_cpu(dent->nlen);
459
460 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
461 dent->type >= UBIFS_ITYPES_CNT ||
462 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
304790c0 463 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
1e51764a 464 le64_to_cpu(dent->inum) > MAX_INUM) {
235c362b 465 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
1e51764a
AB
466 "directory entry" : "extended attribute entry");
467 return -EINVAL;
468 }
469
470 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
235c362b 471 ubifs_err(c, "bad key type %d", key_type);
1e51764a
AB
472 return -EINVAL;
473 }
474
475 return 0;
476}
477
91c66083
AB
478/**
479 * is_last_bud - check if the bud is the last in the journal head.
480 * @c: UBIFS file-system description object
481 * @bud: bud description object
482 *
483 * This function checks if bud @bud is the last bud in its journal head. This
484 * information is then used by 'replay_bud()' to decide whether the bud can
485 * have corruptions or not. Indeed, only last buds can be corrupted by power
486 * cuts. Returns %1 if this is the last bud, and %0 if not.
487 */
488static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
489{
490 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
491 struct ubifs_bud *next;
492 uint32_t data;
493 int err;
494
495 if (list_is_last(&bud->list, &jh->buds_list))
496 return 1;
497
498 /*
499 * The following is a quirk to make sure we work correctly with UBIFS
500 * images used with older UBIFS.
501 *
502 * Normally, the last bud will be the last in the journal head's list
503 * of bud. However, there is one exception if the UBIFS image belongs
504 * to older UBIFS. This is fairly unlikely: one would need to use old
505 * UBIFS, then have a power cut exactly at the right point, and then
506 * try to mount this image with new UBIFS.
507 *
508 * The exception is: it is possible to have 2 buds A and B, A goes
509 * before B, and B is the last, bud B is contains no data, and bud A is
510 * corrupted at the end. The reason is that in older versions when the
511 * journal code switched the next bud (from A to B), it first added a
512 * log reference node for the new bud (B), and only after this it
513 * synchronized the write-buffer of current bud (A). But later this was
514 * changed and UBIFS started to always synchronize the write-buffer of
515 * the bud (A) before writing the log reference for the new bud (B).
516 *
517 * But because older UBIFS always synchronized A's write-buffer before
518 * writing to B, we can recognize this exceptional situation but
519 * checking the contents of bud B - if it is empty, then A can be
520 * treated as the last and we can recover it.
521 *
522 * TODO: remove this piece of code in a couple of years (today it is
523 * 16.05.2011).
524 */
525 next = list_entry(bud->list.next, struct ubifs_bud, list);
526 if (!list_is_last(&next->list, &jh->buds_list))
527 return 0;
528
d304820a 529 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
91c66083
AB
530 if (err)
531 return 0;
532
533 return data == 0xFFFFFFFF;
534}
535
da8ef65f
SH
536/**
537 * authenticate_sleb - authenticate one scan LEB
538 * @c: UBIFS file-system description object
539 * @sleb: the scan LEB to authenticate
540 * @log_hash:
541 * @is_last: if true, this is is the last LEB
542 *
543 * This function iterates over the buds of a single LEB authenticating all buds
544 * with the authentication nodes on this LEB. Authentication nodes are written
545 * after some buds and contain a HMAC covering the authentication node itself
546 * and the buds between the last authentication node and the current
547 * authentication node. It can happen that the last buds cannot be authenticated
548 * because a powercut happened when some nodes were written but not the
549 * corresponding authentication node. This function returns the number of nodes
550 * that could be authenticated or a negative error code.
551 */
552static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
553 struct shash_desc *log_hash, int is_last)
554{
555 int n_not_auth = 0;
556 struct ubifs_scan_node *snod;
557 int n_nodes = 0;
558 int err;
559 u8 *hash, *hmac;
560
561 if (!ubifs_authenticated(c))
562 return sleb->nodes_cnt;
563
564 hash = kmalloc(crypto_shash_descsize(c->hash_tfm), GFP_NOFS);
565 hmac = kmalloc(c->hmac_desc_len, GFP_NOFS);
566 if (!hash || !hmac) {
567 err = -ENOMEM;
568 goto out;
569 }
570
571 list_for_each_entry(snod, &sleb->nodes, list) {
572
573 n_nodes++;
574
575 if (snod->type == UBIFS_AUTH_NODE) {
576 struct ubifs_auth_node *auth = snod->node;
577 SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
578 SHASH_DESC_ON_STACK(hmac_desc, c->hmac_tfm);
579
580 hash_desc->tfm = c->hash_tfm;
581 hash_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
582
583 ubifs_shash_copy_state(c, log_hash, hash_desc);
584 err = crypto_shash_final(hash_desc, hash);
585 if (err)
586 goto out;
587
588 hmac_desc->tfm = c->hmac_tfm;
589 hmac_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
590 err = crypto_shash_digest(hmac_desc, hash, c->hash_len,
591 hmac);
592 if (err)
593 goto out;
594
595 err = ubifs_check_hmac(c, auth->hmac, hmac);
596 if (err) {
597 err = -EPERM;
598 goto out;
599 }
600 n_not_auth = 0;
601 } else {
602 err = crypto_shash_update(log_hash, snod->node,
603 snod->len);
604 if (err)
605 goto out;
606 n_not_auth++;
607 }
608 }
609
610 /*
611 * A powercut can happen when some nodes were written, but not yet
612 * the corresponding authentication node. This may only happen on
613 * the last bud though.
614 */
615 if (n_not_auth) {
616 if (is_last) {
617 dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
618 n_not_auth, sleb->lnum);
619 err = 0;
620 } else {
621 dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
622 n_not_auth, sleb->lnum);
623 err = -EPERM;
624 }
625 } else {
626 err = 0;
627 }
628out:
629 kfree(hash);
630 kfree(hmac);
631
632 return err ? err : n_nodes - n_not_auth;
633}
634
1e51764a
AB
635/**
636 * replay_bud - replay a bud logical eraseblock.
637 * @c: UBIFS file-system description object
e76a4526 638 * @b: bud entry which describes the bud
1e51764a 639 *
e76a4526
AB
640 * This function replays bud @bud, recovers it if needed, and adds all nodes
641 * from this bud to the replay list. Returns zero in case of success and a
642 * negative error code in case of failure.
1e51764a 643 */
e76a4526 644static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
1e51764a 645{
91c66083 646 int is_last = is_last_bud(c, b->bud);
e76a4526 647 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
da8ef65f 648 int n_nodes, n = 0;
1e51764a
AB
649 struct ubifs_scan_leb *sleb;
650 struct ubifs_scan_node *snod;
1e51764a 651
91c66083
AB
652 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
653 lnum, b->bud->jhead, offs, is_last);
e76a4526 654
91c66083
AB
655 if (c->need_recovery && is_last)
656 /*
657 * Recover only last LEBs in the journal heads, because power
658 * cuts may cause corruptions only in these LEBs, because only
659 * these LEBs could possibly be written to at the power cut
660 * time.
661 */
efcfde54 662 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
1e51764a 663 else
348709ba 664 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
1e51764a
AB
665 if (IS_ERR(sleb))
666 return PTR_ERR(sleb);
667
da8ef65f
SH
668 n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
669 if (n_nodes < 0) {
670 err = n_nodes;
671 goto out;
672 }
673
674 ubifs_shash_copy_state(c, b->bud->log_hash,
675 c->jheads[b->bud->jhead].log_hash);
676
1e51764a
AB
677 /*
678 * The bud does not have to start from offset zero - the beginning of
679 * the 'lnum' LEB may contain previously committed data. One of the
680 * things we have to do in replay is to correctly update lprops with
681 * newer information about this LEB.
682 *
683 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
684 * bytes of free space because it only contain information about
685 * committed data.
686 *
687 * But we know that real amount of free space is 'c->leb_size -
688 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
689 * 'sleb->endpt' is used by bud data. We have to correctly calculate
690 * how much of these data are dirty and update lprops with this
691 * information.
692 *
693 * The dirt in that LEB region is comprised of padding nodes, deletion
694 * nodes, truncation nodes and nodes which are obsoleted by subsequent
695 * nodes in this LEB. So instead of calculating clean space, we
696 * calculate used space ('used' variable).
697 */
698
699 list_for_each_entry(snod, &sleb->nodes, list) {
16a26b20 700 u8 hash[UBIFS_HASH_ARR_SZ];
1e51764a
AB
701 int deletion = 0;
702
703 cond_resched();
704
705 if (snod->sqnum >= SQNUM_WATERMARK) {
235c362b 706 ubifs_err(c, "file system's life ended");
1e51764a
AB
707 goto out_dump;
708 }
709
16a26b20
SH
710 ubifs_node_calc_hash(c, snod->node, hash);
711
1e51764a
AB
712 if (snod->sqnum > c->max_sqnum)
713 c->max_sqnum = snod->sqnum;
714
715 switch (snod->type) {
716 case UBIFS_INO_NODE:
717 {
718 struct ubifs_ino_node *ino = snod->node;
719 loff_t new_size = le64_to_cpu(ino->size);
720
721 if (le32_to_cpu(ino->nlink) == 0)
722 deletion = 1;
16a26b20 723 err = insert_node(c, lnum, snod->offs, snod->len, hash,
1e51764a
AB
724 &snod->key, snod->sqnum, deletion,
725 &used, 0, new_size);
726 break;
727 }
728 case UBIFS_DATA_NODE:
729 {
730 struct ubifs_data_node *dn = snod->node;
731 loff_t new_size = le32_to_cpu(dn->size) +
732 key_block(c, &snod->key) *
733 UBIFS_BLOCK_SIZE;
734
16a26b20 735 err = insert_node(c, lnum, snod->offs, snod->len, hash,
1e51764a
AB
736 &snod->key, snod->sqnum, deletion,
737 &used, 0, new_size);
738 break;
739 }
740 case UBIFS_DENT_NODE:
741 case UBIFS_XENT_NODE:
742 {
743 struct ubifs_dent_node *dent = snod->node;
744
745 err = ubifs_validate_entry(c, dent);
746 if (err)
747 goto out_dump;
748
16a26b20 749 err = insert_dent(c, lnum, snod->offs, snod->len, hash,
1e51764a
AB
750 &snod->key, dent->name,
751 le16_to_cpu(dent->nlen), snod->sqnum,
752 !le64_to_cpu(dent->inum), &used);
753 break;
754 }
755 case UBIFS_TRUN_NODE:
756 {
757 struct ubifs_trun_node *trun = snod->node;
758 loff_t old_size = le64_to_cpu(trun->old_size);
759 loff_t new_size = le64_to_cpu(trun->new_size);
760 union ubifs_key key;
761
762 /* Validate truncation node */
763 if (old_size < 0 || old_size > c->max_inode_sz ||
764 new_size < 0 || new_size > c->max_inode_sz ||
765 old_size <= new_size) {
235c362b 766 ubifs_err(c, "bad truncation node");
1e51764a
AB
767 goto out_dump;
768 }
769
770 /*
771 * Create a fake truncation key just to use the same
772 * functions which expect nodes to have keys.
773 */
774 trun_key_init(c, &key, le32_to_cpu(trun->inum));
16a26b20 775 err = insert_node(c, lnum, snod->offs, snod->len, hash,
1e51764a
AB
776 &key, snod->sqnum, 1, &used,
777 old_size, new_size);
778 break;
779 }
6a98bc46
SH
780 case UBIFS_AUTH_NODE:
781 break;
1e51764a 782 default:
235c362b 783 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
1e51764a
AB
784 snod->type, lnum, snod->offs);
785 err = -EINVAL;
786 goto out_dump;
787 }
788 if (err)
789 goto out;
da8ef65f
SH
790
791 n++;
792 if (n == n_nodes)
793 break;
1e51764a
AB
794 }
795
6eb61d58
RW
796 ubifs_assert(c, ubifs_search_bud(c, lnum));
797 ubifs_assert(c, sleb->endpt - offs >= used);
798 ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
1e51764a 799
e76a4526
AB
800 b->dirty = sleb->endpt - offs - used;
801 b->free = c->leb_size - sleb->endpt;
79fda517
AB
802 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
803 lnum, b->dirty, b->free);
1e51764a
AB
804
805out:
806 ubifs_scan_destroy(sleb);
807 return err;
808
809out_dump:
235c362b 810 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
edf6be24 811 ubifs_dump_node(c, snod->node);
1e51764a
AB
812 ubifs_scan_destroy(sleb);
813 return -EINVAL;
814}
815
1e51764a
AB
816/**
817 * replay_buds - replay all buds.
818 * @c: UBIFS file-system description object
819 *
820 * This function returns zero in case of success and a negative error code in
821 * case of failure.
822 */
823static int replay_buds(struct ubifs_info *c)
824{
825 struct bud_entry *b;
074bcb9b 826 int err;
7703f09d 827 unsigned long long prev_sqnum = 0;
1e51764a
AB
828
829 list_for_each_entry(b, &c->replay_buds, list) {
e76a4526 830 err = replay_bud(c, b);
1e51764a
AB
831 if (err)
832 return err;
7703f09d 833
6eb61d58 834 ubifs_assert(c, b->sqnum > prev_sqnum);
7703f09d 835 prev_sqnum = b->sqnum;
1e51764a
AB
836 }
837
838 return 0;
839}
840
841/**
842 * destroy_bud_list - destroy the list of buds to replay.
843 * @c: UBIFS file-system description object
844 */
845static void destroy_bud_list(struct ubifs_info *c)
846{
847 struct bud_entry *b;
848
849 while (!list_empty(&c->replay_buds)) {
850 b = list_entry(c->replay_buds.next, struct bud_entry, list);
851 list_del(&b->list);
852 kfree(b);
853 }
854}
855
856/**
857 * add_replay_bud - add a bud to the list of buds to replay.
858 * @c: UBIFS file-system description object
859 * @lnum: bud logical eraseblock number to replay
860 * @offs: bud start offset
861 * @jhead: journal head to which this bud belongs
862 * @sqnum: reference node sequence number
863 *
864 * This function returns zero in case of success and a negative error code in
865 * case of failure.
866 */
867static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
868 unsigned long long sqnum)
869{
870 struct ubifs_bud *bud;
871 struct bud_entry *b;
da8ef65f 872 int err;
1e51764a
AB
873
874 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
875
876 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
877 if (!bud)
878 return -ENOMEM;
879
880 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
881 if (!b) {
da8ef65f
SH
882 err = -ENOMEM;
883 goto out;
1e51764a
AB
884 }
885
886 bud->lnum = lnum;
887 bud->start = offs;
888 bud->jhead = jhead;
da8ef65f
SH
889 bud->log_hash = ubifs_hash_get_desc(c);
890 if (IS_ERR(bud->log_hash)) {
891 err = PTR_ERR(bud->log_hash);
892 goto out;
893 }
894
895 ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
896
1e51764a
AB
897 ubifs_add_bud(c, bud);
898
899 b->bud = bud;
900 b->sqnum = sqnum;
901 list_add_tail(&b->list, &c->replay_buds);
902
903 return 0;
da8ef65f
SH
904out:
905 kfree(bud);
906 kfree(b);
907
908 return err;
1e51764a
AB
909}
910
911/**
912 * validate_ref - validate a reference node.
913 * @c: UBIFS file-system description object
914 * @ref: the reference node to validate
915 * @ref_lnum: LEB number of the reference node
916 * @ref_offs: reference node offset
917 *
918 * This function returns %1 if a bud reference already exists for the LEB. %0 is
919 * returned if the reference node is new, otherwise %-EINVAL is returned if
920 * validation failed.
921 */
922static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
923{
924 struct ubifs_bud *bud;
925 int lnum = le32_to_cpu(ref->lnum);
926 unsigned int offs = le32_to_cpu(ref->offs);
927 unsigned int jhead = le32_to_cpu(ref->jhead);
928
929 /*
930 * ref->offs may point to the end of LEB when the journal head points
931 * to the end of LEB and we write reference node for it during commit.
932 * So this is why we require 'offs > c->leb_size'.
933 */
934 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
935 lnum < c->main_first || offs > c->leb_size ||
936 offs & (c->min_io_size - 1))
937 return -EINVAL;
938
939 /* Make sure we have not already looked at this bud */
940 bud = ubifs_search_bud(c, lnum);
941 if (bud) {
942 if (bud->jhead == jhead && bud->start <= offs)
943 return 1;
235c362b 944 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
1e51764a
AB
945 return -EINVAL;
946 }
947
948 return 0;
949}
950
951/**
952 * replay_log_leb - replay a log logical eraseblock.
953 * @c: UBIFS file-system description object
954 * @lnum: log logical eraseblock to replay
955 * @offs: offset to start replaying from
956 * @sbuf: scan buffer
957 *
958 * This function replays a log LEB and returns zero in case of success, %1 if
959 * this is the last LEB in the log, and a negative error code in case of
960 * failure.
961 */
962static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
963{
964 int err;
965 struct ubifs_scan_leb *sleb;
966 struct ubifs_scan_node *snod;
967 const struct ubifs_cs_node *node;
968
969 dbg_mnt("replay log LEB %d:%d", lnum, offs);
348709ba
AB
970 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
971 if (IS_ERR(sleb)) {
ed43f2f0
AB
972 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
973 return PTR_ERR(sleb);
7d08ae3c
AB
974 /*
975 * Note, the below function will recover this log LEB only if
976 * it is the last, because unclean reboots can possibly corrupt
977 * only the tail of the log.
978 */
ed43f2f0 979 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1e51764a
AB
980 if (IS_ERR(sleb))
981 return PTR_ERR(sleb);
982 }
983
984 if (sleb->nodes_cnt == 0) {
985 err = 1;
986 goto out;
987 }
988
989 node = sleb->buf;
1e51764a
AB
990 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
991 if (c->cs_sqnum == 0) {
992 /*
993 * This is the first log LEB we are looking at, make sure that
994 * the first node is a commit start node. Also record its
995 * sequence number so that UBIFS can determine where the log
996 * ends, because all nodes which were have higher sequence
997 * numbers.
998 */
999 if (snod->type != UBIFS_CS_NODE) {
235c362b 1000 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
a6aae4dd 1001 lnum, offs);
1e51764a
AB
1002 goto out_dump;
1003 }
1004 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
235c362b 1005 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
a6aae4dd
AB
1006 lnum, offs,
1007 (unsigned long long)le64_to_cpu(node->cmt_no),
1008 c->cmt_no);
1e51764a
AB
1009 goto out_dump;
1010 }
1011
1012 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1013 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
da8ef65f
SH
1014
1015 err = ubifs_shash_init(c, c->log_hash);
1016 if (err)
1017 goto out;
1018
1019 err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1020 if (err < 0)
1021 goto out;
1e51764a
AB
1022 }
1023
1024 if (snod->sqnum < c->cs_sqnum) {
1025 /*
1026 * This means that we reached end of log and now
1027 * look to the older log data, which was already
1028 * committed but the eraseblock was not erased (UBIFS
6edbfafd 1029 * only un-maps it). So this basically means we have to
1e51764a
AB
1030 * exit with "end of log" code.
1031 */
1032 err = 1;
1033 goto out;
1034 }
1035
1036 /* Make sure the first node sits at offset zero of the LEB */
1037 if (snod->offs != 0) {
235c362b 1038 ubifs_err(c, "first node is not at zero offset");
1e51764a
AB
1039 goto out_dump;
1040 }
1041
1042 list_for_each_entry(snod, &sleb->nodes, list) {
1e51764a
AB
1043 cond_resched();
1044
1045 if (snod->sqnum >= SQNUM_WATERMARK) {
235c362b 1046 ubifs_err(c, "file system's life ended");
1e51764a
AB
1047 goto out_dump;
1048 }
1049
1050 if (snod->sqnum < c->cs_sqnum) {
235c362b 1051 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
a6aae4dd 1052 snod->sqnum, c->cs_sqnum);
1e51764a
AB
1053 goto out_dump;
1054 }
1055
1056 if (snod->sqnum > c->max_sqnum)
1057 c->max_sqnum = snod->sqnum;
1058
1059 switch (snod->type) {
1060 case UBIFS_REF_NODE: {
1061 const struct ubifs_ref_node *ref = snod->node;
1062
1063 err = validate_ref(c, ref);
1064 if (err == 1)
1065 break; /* Already have this bud */
1066 if (err)
1067 goto out_dump;
1068
da8ef65f
SH
1069 err = ubifs_shash_update(c, c->log_hash, ref,
1070 UBIFS_REF_NODE_SZ);
1071 if (err)
1072 goto out;
1073
1e51764a
AB
1074 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1075 le32_to_cpu(ref->offs),
1076 le32_to_cpu(ref->jhead),
1077 snod->sqnum);
1078 if (err)
1079 goto out;
1080
1081 break;
1082 }
1083 case UBIFS_CS_NODE:
1084 /* Make sure it sits at the beginning of LEB */
1085 if (snod->offs != 0) {
235c362b 1086 ubifs_err(c, "unexpected node in log");
1e51764a
AB
1087 goto out_dump;
1088 }
1089 break;
1090 default:
235c362b 1091 ubifs_err(c, "unexpected node in log");
1e51764a
AB
1092 goto out_dump;
1093 }
1094 }
1095
1096 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1097 c->lhead_lnum = lnum;
1098 c->lhead_offs = sleb->endpt;
1099 }
1100
1101 err = !sleb->endpt;
1102out:
1103 ubifs_scan_destroy(sleb);
1104 return err;
1105
1106out_dump:
235c362b 1107 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1e51764a 1108 lnum, offs + snod->offs);
edf6be24 1109 ubifs_dump_node(c, snod->node);
1e51764a
AB
1110 ubifs_scan_destroy(sleb);
1111 return -EINVAL;
1112}
1113
1114/**
1115 * take_ihead - update the status of the index head in lprops to 'taken'.
1116 * @c: UBIFS file-system description object
1117 *
1118 * This function returns the amount of free space in the index head LEB or a
1119 * negative error code.
1120 */
1121static int take_ihead(struct ubifs_info *c)
1122{
1123 const struct ubifs_lprops *lp;
1124 int err, free;
1125
1126 ubifs_get_lprops(c);
1127
1128 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1129 if (IS_ERR(lp)) {
1130 err = PTR_ERR(lp);
1131 goto out;
1132 }
1133
1134 free = lp->free;
1135
1136 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1137 lp->flags | LPROPS_TAKEN, 0);
1138 if (IS_ERR(lp)) {
1139 err = PTR_ERR(lp);
1140 goto out;
1141 }
1142
1143 err = free;
1144out:
1145 ubifs_release_lprops(c);
1146 return err;
1147}
1148
1149/**
1150 * ubifs_replay_journal - replay journal.
1151 * @c: UBIFS file-system description object
1152 *
1153 * This function scans the journal, replays and cleans it up. It makes sure all
1154 * memory data structures related to uncommitted journal are built (dirty TNC
1155 * tree, tree of buds, modified lprops, etc).
1156 */
1157int ubifs_replay_journal(struct ubifs_info *c)
1158{
d51f17ea 1159 int err, lnum, free;
1e51764a
AB
1160
1161 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1162
1163 /* Update the status of the index head in lprops to 'taken' */
1164 free = take_ihead(c);
1165 if (free < 0)
1166 return free; /* Error code */
1167
1168 if (c->ihead_offs != c->leb_size - free) {
235c362b 1169 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1e51764a
AB
1170 c->ihead_offs);
1171 return -EINVAL;
1172 }
1173
1e51764a 1174 dbg_mnt("start replaying the journal");
1e51764a 1175 c->replaying = 1;
1e51764a 1176 lnum = c->ltail_lnum = c->lhead_lnum;
1e51764a 1177
d51f17ea
AB
1178 do {
1179 err = replay_log_leb(c, lnum, 0, c->sbuf);
88cff0f0 1180 if (err == 1) {
1181 if (lnum != c->lhead_lnum)
1182 /* We hit the end of the log */
1183 break;
1184
1185 /*
1186 * The head of the log must always start with the
1187 * "commit start" node on a properly formatted UBIFS.
1188 * But we found no nodes at all, which means that
c7e593b3 1189 * something went wrong and we cannot proceed mounting
88cff0f0 1190 * the file-system.
1191 */
235c362b 1192 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
88cff0f0 1193 lnum, 0);
1194 err = -EINVAL;
1195 }
1e51764a
AB
1196 if (err)
1197 goto out;
d51f17ea 1198 lnum = ubifs_next_log_lnum(c, lnum);
c212f402 1199 } while (lnum != c->ltail_lnum);
1e51764a
AB
1200
1201 err = replay_buds(c);
1202 if (err)
1203 goto out;
1204
debf12d5 1205 err = apply_replay_list(c);
1e51764a
AB
1206 if (err)
1207 goto out;
1208
074bcb9b
AB
1209 err = set_buds_lprops(c);
1210 if (err)
1211 goto out;
1212
6edbfafd 1213 /*
b137545c
AB
1214 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1215 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
6edbfafd
AB
1216 * depend on it. This means we have to initialize it to make sure
1217 * budgeting works properly.
1218 */
b137545c
AB
1219 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1220 c->bi.uncommitted_idx *= c->max_idx_node_sz;
6edbfafd 1221
6eb61d58 1222 ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
79fda517
AB
1223 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1224 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
e84461ad 1225 (unsigned long)c->highest_inum);
1e51764a 1226out:
debf12d5 1227 destroy_replay_list(c);
1e51764a 1228 destroy_bud_list(c);
1e51764a
AB
1229 c->replaying = 0;
1230 return err;
1231}