Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / fs / ubifs / replay.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file contains journal replay code. It runs when the file-system is being
25 * mounted and requires no locking.
26 *
27 * The larger is the journal, the longer it takes to scan it, so the longer it
28 * takes to mount UBIFS. This is why the journal has limited size which may be
29 * changed depending on the system requirements. But a larger journal gives
30 * faster I/O speed because it writes the index less frequently. So this is a
31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32 * larger is the journal, the more memory its index may consume.
33 */
34
35#include "ubifs.h"
debf12d5 36#include <linux/list_sort.h>
da8ef65f
SH
37#include <crypto/hash.h>
38#include <crypto/algapi.h>
1e51764a 39
1e51764a 40/**
debf12d5 41 * struct replay_entry - replay list entry.
1e51764a
AB
42 * @lnum: logical eraseblock number of the node
43 * @offs: node offset
44 * @len: node length
074bcb9b 45 * @deletion: non-zero if this entry corresponds to a node deletion
1e51764a 46 * @sqnum: node sequence number
debf12d5 47 * @list: links the replay list
1e51764a
AB
48 * @key: node key
49 * @nm: directory entry name
50 * @old_size: truncation old size
51 * @new_size: truncation new size
1e51764a 52 *
debf12d5
AB
53 * The replay process first scans all buds and builds the replay list, then
54 * sorts the replay list in nodes sequence number order, and then inserts all
55 * the replay entries to the TNC.
1e51764a
AB
56 */
57struct replay_entry {
58 int lnum;
59 int offs;
60 int len;
16a26b20 61 u8 hash[UBIFS_HASH_ARR_SZ];
074bcb9b 62 unsigned int deletion:1;
1e51764a 63 unsigned long long sqnum;
debf12d5 64 struct list_head list;
1e51764a
AB
65 union ubifs_key key;
66 union {
f4f61d2c 67 struct fscrypt_name nm;
1e51764a
AB
68 struct {
69 loff_t old_size;
70 loff_t new_size;
71 };
1e51764a
AB
72 };
73};
74
75/**
76 * struct bud_entry - entry in the list of buds to replay.
77 * @list: next bud in the list
78 * @bud: bud description object
1e51764a 79 * @sqnum: reference node sequence number
af1dd412
AB
80 * @free: free bytes in the bud
81 * @dirty: dirty bytes in the bud
1e51764a
AB
82 */
83struct bud_entry {
84 struct list_head list;
85 struct ubifs_bud *bud;
1e51764a 86 unsigned long long sqnum;
af1dd412
AB
87 int free;
88 int dirty;
1e51764a
AB
89};
90
91/**
92 * set_bud_lprops - set free and dirty space used by a bud.
93 * @c: UBIFS file-system description object
074bcb9b
AB
94 * @b: bud entry which describes the bud
95 *
96 * This function makes sure the LEB properties of bud @b are set correctly
97 * after the replay. Returns zero in case of success and a negative error code
98 * in case of failure.
1e51764a 99 */
074bcb9b 100static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
1e51764a
AB
101{
102 const struct ubifs_lprops *lp;
103 int err = 0, dirty;
104
105 ubifs_get_lprops(c);
106
074bcb9b 107 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
1e51764a
AB
108 if (IS_ERR(lp)) {
109 err = PTR_ERR(lp);
110 goto out;
111 }
112
113 dirty = lp->dirty;
074bcb9b 114 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
1e51764a
AB
115 /*
116 * The LEB was added to the journal with a starting offset of
117 * zero which means the LEB must have been empty. The LEB
074bcb9b
AB
118 * property values should be @lp->free == @c->leb_size and
119 * @lp->dirty == 0, but that is not the case. The reason is that
7a9c3e39
AB
120 * the LEB had been garbage collected before it became the bud,
121 * and there was not commit inbetween. The garbage collector
122 * resets the free and dirty space without recording it
123 * anywhere except lprops, so if there was no commit then
124 * lprops does not have that information.
1e51764a
AB
125 *
126 * We do not need to adjust free space because the scan has told
127 * us the exact value which is recorded in the replay entry as
074bcb9b 128 * @b->free.
1e51764a
AB
129 *
130 * However we do need to subtract from the dirty space the
131 * amount of space that the garbage collector reclaimed, which
132 * is the whole LEB minus the amount of space that was free.
133 */
074bcb9b 134 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
1e51764a 135 lp->free, lp->dirty);
074bcb9b 136 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
1e51764a
AB
137 lp->free, lp->dirty);
138 dirty -= c->leb_size - lp->free;
139 /*
140 * If the replay order was perfect the dirty space would now be
7d4e9ccb 141 * zero. The order is not perfect because the journal heads
6edbfafd 142 * race with each other. This is not a problem but is does mean
1e51764a
AB
143 * that the dirty space may temporarily exceed c->leb_size
144 * during the replay.
145 */
146 if (dirty != 0)
3668b70f 147 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
79fda517
AB
148 b->bud->lnum, lp->free, lp->dirty, b->free,
149 b->dirty);
1e51764a 150 }
074bcb9b 151 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
1e51764a
AB
152 lp->flags | LPROPS_TAKEN, 0);
153 if (IS_ERR(lp)) {
154 err = PTR_ERR(lp);
155 goto out;
156 }
52c6e6f9
AB
157
158 /* Make sure the journal head points to the latest bud */
074bcb9b 159 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
b36a261e 160 b->bud->lnum, c->leb_size - b->free);
52c6e6f9 161
1e51764a
AB
162out:
163 ubifs_release_lprops(c);
164 return err;
165}
166
074bcb9b
AB
167/**
168 * set_buds_lprops - set free and dirty space for all replayed buds.
169 * @c: UBIFS file-system description object
170 *
171 * This function sets LEB properties for all replayed buds. Returns zero in
172 * case of success and a negative error code in case of failure.
173 */
174static int set_buds_lprops(struct ubifs_info *c)
175{
176 struct bud_entry *b;
177 int err;
178
179 list_for_each_entry(b, &c->replay_buds, list) {
180 err = set_bud_lprops(c, b);
181 if (err)
182 return err;
183 }
184
185 return 0;
186}
187
1e51764a
AB
188/**
189 * trun_remove_range - apply a replay entry for a truncation to the TNC.
190 * @c: UBIFS file-system description object
191 * @r: replay entry of truncation
192 */
193static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
194{
195 unsigned min_blk, max_blk;
196 union ubifs_key min_key, max_key;
197 ino_t ino;
198
199 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
200 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
201 min_blk += 1;
202
203 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
204 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
205 max_blk -= 1;
206
207 ino = key_inum(c, &r->key);
208
209 data_key_init(c, &min_key, ino, min_blk);
210 data_key_init(c, &max_key, ino, max_blk);
211
212 return ubifs_tnc_remove_range(c, &min_key, &max_key);
213}
214
e58725d5
RW
215/**
216 * inode_still_linked - check whether inode in question will be re-linked.
217 * @c: UBIFS file-system description object
218 * @rino: replay entry to test
219 *
220 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
221 * This case needs special care, otherwise all references to the inode will
222 * be removed upon the first replay entry of an inode with link count 0
223 * is found.
224 */
225static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
226{
227 struct replay_entry *r;
228
229 ubifs_assert(c, rino->deletion);
230 ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
231
232 /*
233 * Find the most recent entry for the inode behind @rino and check
234 * whether it is a deletion.
235 */
236 list_for_each_entry_reverse(r, &c->replay_list, list) {
237 ubifs_assert(c, r->sqnum >= rino->sqnum);
238 if (key_inum(c, &r->key) == key_inum(c, &rino->key))
239 return r->deletion == 0;
240
241 }
242
243 ubifs_assert(c, 0);
244 return false;
245}
246
1e51764a
AB
247/**
248 * apply_replay_entry - apply a replay entry to the TNC.
249 * @c: UBIFS file-system description object
250 * @r: replay entry to apply
251 *
252 * Apply a replay entry to the TNC.
253 */
254static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
255{
074bcb9b 256 int err;
1e51764a 257
515315a1
AB
258 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
259 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
1e51764a 260
074bcb9b
AB
261 if (is_hash_key(c, &r->key)) {
262 if (r->deletion)
1e51764a
AB
263 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
264 else
265 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
16a26b20 266 r->len, r->hash, &r->nm);
1e51764a 267 } else {
074bcb9b 268 if (r->deletion)
1e51764a
AB
269 switch (key_type(c, &r->key)) {
270 case UBIFS_INO_KEY:
271 {
272 ino_t inum = key_inum(c, &r->key);
273
e58725d5
RW
274 if (inode_still_linked(c, r)) {
275 err = 0;
276 break;
277 }
278
1e51764a
AB
279 err = ubifs_tnc_remove_ino(c, inum);
280 break;
281 }
282 case UBIFS_TRUN_KEY:
283 err = trun_remove_range(c, r);
284 break;
285 default:
286 err = ubifs_tnc_remove(c, &r->key);
287 break;
288 }
289 else
290 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
16a26b20 291 r->len, r->hash);
1e51764a
AB
292 if (err)
293 return err;
294
295 if (c->need_recovery)
074bcb9b 296 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
1e51764a
AB
297 r->new_size);
298 }
299
300 return err;
301}
302
303/**
debf12d5
AB
304 * replay_entries_cmp - compare 2 replay entries.
305 * @priv: UBIFS file-system description object
306 * @a: first replay entry
ec037dfc 307 * @b: second replay entry
1e51764a 308 *
debf12d5
AB
309 * This is a comparios function for 'list_sort()' which compares 2 replay
310 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
311 * greater sequence number and %-1 otherwise.
1e51764a 312 */
debf12d5
AB
313static int replay_entries_cmp(void *priv, struct list_head *a,
314 struct list_head *b)
1e51764a 315{
6eb61d58 316 struct ubifs_info *c = priv;
debf12d5
AB
317 struct replay_entry *ra, *rb;
318
319 cond_resched();
320 if (a == b)
321 return 0;
322
323 ra = list_entry(a, struct replay_entry, list);
324 rb = list_entry(b, struct replay_entry, list);
6eb61d58 325 ubifs_assert(c, ra->sqnum != rb->sqnum);
debf12d5
AB
326 if (ra->sqnum > rb->sqnum)
327 return 1;
328 return -1;
1e51764a
AB
329}
330
331/**
debf12d5 332 * apply_replay_list - apply the replay list to the TNC.
1e51764a
AB
333 * @c: UBIFS file-system description object
334 *
debf12d5
AB
335 * Apply all entries in the replay list to the TNC. Returns zero in case of
336 * success and a negative error code in case of failure.
1e51764a 337 */
debf12d5 338static int apply_replay_list(struct ubifs_info *c)
1e51764a 339{
debf12d5
AB
340 struct replay_entry *r;
341 int err;
1e51764a 342
debf12d5 343 list_sort(c, &c->replay_list, &replay_entries_cmp);
1e51764a 344
debf12d5 345 list_for_each_entry(r, &c->replay_list, list) {
1e51764a
AB
346 cond_resched();
347
1e51764a
AB
348 err = apply_replay_entry(c, r);
349 if (err)
350 return err;
1e51764a 351 }
debf12d5 352
1e51764a
AB
353 return 0;
354}
355
356/**
debf12d5
AB
357 * destroy_replay_list - destroy the replay.
358 * @c: UBIFS file-system description object
359 *
360 * Destroy the replay list.
361 */
362static void destroy_replay_list(struct ubifs_info *c)
363{
364 struct replay_entry *r, *tmp;
365
366 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
367 if (is_hash_key(c, &r->key))
f4f61d2c 368 kfree(fname_name(&r->nm));
debf12d5
AB
369 list_del(&r->list);
370 kfree(r);
371 }
372}
373
374/**
375 * insert_node - insert a node to the replay list
1e51764a
AB
376 * @c: UBIFS file-system description object
377 * @lnum: node logical eraseblock number
378 * @offs: node offset
379 * @len: node length
380 * @key: node key
381 * @sqnum: sequence number
382 * @deletion: non-zero if this is a deletion
383 * @used: number of bytes in use in a LEB
384 * @old_size: truncation old size
385 * @new_size: truncation new size
386 *
debf12d5
AB
387 * This function inserts a scanned non-direntry node to the replay list. The
388 * replay list contains @struct replay_entry elements, and we sort this list in
389 * sequence number order before applying it. The replay list is applied at the
390 * very end of the replay process. Since the list is sorted in sequence number
391 * order, the older modifications are applied first. This function returns zero
392 * in case of success and a negative error code in case of failure.
1e51764a
AB
393 */
394static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
16a26b20
SH
395 const u8 *hash, union ubifs_key *key,
396 unsigned long long sqnum, int deletion, int *used,
397 loff_t old_size, loff_t new_size)
1e51764a 398{
1e51764a
AB
399 struct replay_entry *r;
400
515315a1 401 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
debf12d5 402
1e51764a
AB
403 if (key_inum(c, key) >= c->highest_inum)
404 c->highest_inum = key_inum(c, key);
405
1e51764a
AB
406 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
407 if (!r)
408 return -ENOMEM;
409
410 if (!deletion)
411 *used += ALIGN(len, 8);
412 r->lnum = lnum;
413 r->offs = offs;
414 r->len = len;
16a26b20 415 ubifs_copy_hash(c, hash, r->hash);
074bcb9b 416 r->deletion = !!deletion;
1e51764a 417 r->sqnum = sqnum;
074bcb9b 418 key_copy(c, key, &r->key);
1e51764a
AB
419 r->old_size = old_size;
420 r->new_size = new_size;
1e51764a 421
debf12d5 422 list_add_tail(&r->list, &c->replay_list);
1e51764a
AB
423 return 0;
424}
425
426/**
debf12d5 427 * insert_dent - insert a directory entry node into the replay list.
1e51764a
AB
428 * @c: UBIFS file-system description object
429 * @lnum: node logical eraseblock number
430 * @offs: node offset
431 * @len: node length
432 * @key: node key
433 * @name: directory entry name
434 * @nlen: directory entry name length
435 * @sqnum: sequence number
436 * @deletion: non-zero if this is a deletion
437 * @used: number of bytes in use in a LEB
438 *
debf12d5
AB
439 * This function inserts a scanned directory entry node or an extended
440 * attribute entry to the replay list. Returns zero in case of success and a
441 * negative error code in case of failure.
1e51764a
AB
442 */
443static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
16a26b20
SH
444 const u8 *hash, union ubifs_key *key,
445 const char *name, int nlen, unsigned long long sqnum,
446 int deletion, int *used)
1e51764a 447{
1e51764a
AB
448 struct replay_entry *r;
449 char *nbuf;
450
515315a1 451 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
1e51764a
AB
452 if (key_inum(c, key) >= c->highest_inum)
453 c->highest_inum = key_inum(c, key);
454
1e51764a
AB
455 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
456 if (!r)
457 return -ENOMEM;
debf12d5 458
1e51764a
AB
459 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
460 if (!nbuf) {
461 kfree(r);
462 return -ENOMEM;
463 }
464
465 if (!deletion)
466 *used += ALIGN(len, 8);
467 r->lnum = lnum;
468 r->offs = offs;
469 r->len = len;
16a26b20 470 ubifs_copy_hash(c, hash, r->hash);
074bcb9b 471 r->deletion = !!deletion;
1e51764a 472 r->sqnum = sqnum;
074bcb9b 473 key_copy(c, key, &r->key);
f4f61d2c 474 fname_len(&r->nm) = nlen;
1e51764a
AB
475 memcpy(nbuf, name, nlen);
476 nbuf[nlen] = '\0';
f4f61d2c 477 fname_name(&r->nm) = nbuf;
1e51764a 478
debf12d5 479 list_add_tail(&r->list, &c->replay_list);
1e51764a
AB
480 return 0;
481}
482
483/**
484 * ubifs_validate_entry - validate directory or extended attribute entry node.
485 * @c: UBIFS file-system description object
486 * @dent: the node to validate
487 *
488 * This function validates directory or extended attribute entry node @dent.
489 * Returns zero if the node is all right and a %-EINVAL if not.
490 */
491int ubifs_validate_entry(struct ubifs_info *c,
492 const struct ubifs_dent_node *dent)
493{
494 int key_type = key_type_flash(c, dent->key);
495 int nlen = le16_to_cpu(dent->nlen);
496
497 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
498 dent->type >= UBIFS_ITYPES_CNT ||
499 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
304790c0 500 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
1e51764a 501 le64_to_cpu(dent->inum) > MAX_INUM) {
235c362b 502 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
1e51764a
AB
503 "directory entry" : "extended attribute entry");
504 return -EINVAL;
505 }
506
507 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
235c362b 508 ubifs_err(c, "bad key type %d", key_type);
1e51764a
AB
509 return -EINVAL;
510 }
511
512 return 0;
513}
514
91c66083
AB
515/**
516 * is_last_bud - check if the bud is the last in the journal head.
517 * @c: UBIFS file-system description object
518 * @bud: bud description object
519 *
520 * This function checks if bud @bud is the last bud in its journal head. This
521 * information is then used by 'replay_bud()' to decide whether the bud can
522 * have corruptions or not. Indeed, only last buds can be corrupted by power
523 * cuts. Returns %1 if this is the last bud, and %0 if not.
524 */
525static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
526{
527 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
528 struct ubifs_bud *next;
529 uint32_t data;
530 int err;
531
532 if (list_is_last(&bud->list, &jh->buds_list))
533 return 1;
534
535 /*
536 * The following is a quirk to make sure we work correctly with UBIFS
537 * images used with older UBIFS.
538 *
539 * Normally, the last bud will be the last in the journal head's list
540 * of bud. However, there is one exception if the UBIFS image belongs
541 * to older UBIFS. This is fairly unlikely: one would need to use old
542 * UBIFS, then have a power cut exactly at the right point, and then
543 * try to mount this image with new UBIFS.
544 *
545 * The exception is: it is possible to have 2 buds A and B, A goes
546 * before B, and B is the last, bud B is contains no data, and bud A is
547 * corrupted at the end. The reason is that in older versions when the
548 * journal code switched the next bud (from A to B), it first added a
549 * log reference node for the new bud (B), and only after this it
550 * synchronized the write-buffer of current bud (A). But later this was
551 * changed and UBIFS started to always synchronize the write-buffer of
552 * the bud (A) before writing the log reference for the new bud (B).
553 *
554 * But because older UBIFS always synchronized A's write-buffer before
555 * writing to B, we can recognize this exceptional situation but
556 * checking the contents of bud B - if it is empty, then A can be
557 * treated as the last and we can recover it.
558 *
559 * TODO: remove this piece of code in a couple of years (today it is
560 * 16.05.2011).
561 */
562 next = list_entry(bud->list.next, struct ubifs_bud, list);
563 if (!list_is_last(&next->list, &jh->buds_list))
564 return 0;
565
d304820a 566 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
91c66083
AB
567 if (err)
568 return 0;
569
570 return data == 0xFFFFFFFF;
571}
572
eb66eff6
AB
573/* authenticate_sleb_hash and authenticate_sleb_hmac are split out for stack usage */
574static int authenticate_sleb_hash(struct ubifs_info *c, struct shash_desc *log_hash, u8 *hash)
575{
576 SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
577
578 hash_desc->tfm = c->hash_tfm;
579 hash_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
580
581 ubifs_shash_copy_state(c, log_hash, hash_desc);
582 return crypto_shash_final(hash_desc, hash);
583}
584
585static int authenticate_sleb_hmac(struct ubifs_info *c, u8 *hash, u8 *hmac)
586{
587 SHASH_DESC_ON_STACK(hmac_desc, c->hmac_tfm);
588
589 hmac_desc->tfm = c->hmac_tfm;
590 hmac_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
591
592 return crypto_shash_digest(hmac_desc, hash, c->hash_len, hmac);
593}
594
da8ef65f
SH
595/**
596 * authenticate_sleb - authenticate one scan LEB
597 * @c: UBIFS file-system description object
598 * @sleb: the scan LEB to authenticate
599 * @log_hash:
600 * @is_last: if true, this is is the last LEB
601 *
602 * This function iterates over the buds of a single LEB authenticating all buds
603 * with the authentication nodes on this LEB. Authentication nodes are written
604 * after some buds and contain a HMAC covering the authentication node itself
605 * and the buds between the last authentication node and the current
606 * authentication node. It can happen that the last buds cannot be authenticated
607 * because a powercut happened when some nodes were written but not the
608 * corresponding authentication node. This function returns the number of nodes
609 * that could be authenticated or a negative error code.
610 */
611static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
612 struct shash_desc *log_hash, int is_last)
613{
614 int n_not_auth = 0;
615 struct ubifs_scan_node *snod;
616 int n_nodes = 0;
617 int err;
618 u8 *hash, *hmac;
619
620 if (!ubifs_authenticated(c))
621 return sleb->nodes_cnt;
622
623 hash = kmalloc(crypto_shash_descsize(c->hash_tfm), GFP_NOFS);
624 hmac = kmalloc(c->hmac_desc_len, GFP_NOFS);
625 if (!hash || !hmac) {
626 err = -ENOMEM;
627 goto out;
628 }
629
630 list_for_each_entry(snod, &sleb->nodes, list) {
631
632 n_nodes++;
633
634 if (snod->type == UBIFS_AUTH_NODE) {
635 struct ubifs_auth_node *auth = snod->node;
da8ef65f 636
eb66eff6 637 err = authenticate_sleb_hash(c, log_hash, hash);
da8ef65f
SH
638 if (err)
639 goto out;
640
eb66eff6 641 err = authenticate_sleb_hmac(c, hash, hmac);
da8ef65f
SH
642 if (err)
643 goto out;
644
645 err = ubifs_check_hmac(c, auth->hmac, hmac);
646 if (err) {
647 err = -EPERM;
648 goto out;
649 }
650 n_not_auth = 0;
651 } else {
652 err = crypto_shash_update(log_hash, snod->node,
653 snod->len);
654 if (err)
655 goto out;
656 n_not_auth++;
657 }
658 }
659
660 /*
661 * A powercut can happen when some nodes were written, but not yet
662 * the corresponding authentication node. This may only happen on
663 * the last bud though.
664 */
665 if (n_not_auth) {
666 if (is_last) {
667 dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
668 n_not_auth, sleb->lnum);
669 err = 0;
670 } else {
671 dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
672 n_not_auth, sleb->lnum);
673 err = -EPERM;
674 }
675 } else {
676 err = 0;
677 }
678out:
679 kfree(hash);
680 kfree(hmac);
681
682 return err ? err : n_nodes - n_not_auth;
683}
684
1e51764a
AB
685/**
686 * replay_bud - replay a bud logical eraseblock.
687 * @c: UBIFS file-system description object
e76a4526 688 * @b: bud entry which describes the bud
1e51764a 689 *
e76a4526
AB
690 * This function replays bud @bud, recovers it if needed, and adds all nodes
691 * from this bud to the replay list. Returns zero in case of success and a
692 * negative error code in case of failure.
1e51764a 693 */
e76a4526 694static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
1e51764a 695{
91c66083 696 int is_last = is_last_bud(c, b->bud);
e76a4526 697 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
da8ef65f 698 int n_nodes, n = 0;
1e51764a
AB
699 struct ubifs_scan_leb *sleb;
700 struct ubifs_scan_node *snod;
1e51764a 701
91c66083
AB
702 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
703 lnum, b->bud->jhead, offs, is_last);
e76a4526 704
91c66083
AB
705 if (c->need_recovery && is_last)
706 /*
707 * Recover only last LEBs in the journal heads, because power
708 * cuts may cause corruptions only in these LEBs, because only
709 * these LEBs could possibly be written to at the power cut
710 * time.
711 */
efcfde54 712 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
1e51764a 713 else
348709ba 714 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
1e51764a
AB
715 if (IS_ERR(sleb))
716 return PTR_ERR(sleb);
717
da8ef65f
SH
718 n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
719 if (n_nodes < 0) {
720 err = n_nodes;
721 goto out;
722 }
723
724 ubifs_shash_copy_state(c, b->bud->log_hash,
725 c->jheads[b->bud->jhead].log_hash);
726
1e51764a
AB
727 /*
728 * The bud does not have to start from offset zero - the beginning of
729 * the 'lnum' LEB may contain previously committed data. One of the
730 * things we have to do in replay is to correctly update lprops with
731 * newer information about this LEB.
732 *
733 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
734 * bytes of free space because it only contain information about
735 * committed data.
736 *
737 * But we know that real amount of free space is 'c->leb_size -
738 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
739 * 'sleb->endpt' is used by bud data. We have to correctly calculate
740 * how much of these data are dirty and update lprops with this
741 * information.
742 *
743 * The dirt in that LEB region is comprised of padding nodes, deletion
744 * nodes, truncation nodes and nodes which are obsoleted by subsequent
745 * nodes in this LEB. So instead of calculating clean space, we
746 * calculate used space ('used' variable).
747 */
748
749 list_for_each_entry(snod, &sleb->nodes, list) {
16a26b20 750 u8 hash[UBIFS_HASH_ARR_SZ];
1e51764a
AB
751 int deletion = 0;
752
753 cond_resched();
754
755 if (snod->sqnum >= SQNUM_WATERMARK) {
235c362b 756 ubifs_err(c, "file system's life ended");
1e51764a
AB
757 goto out_dump;
758 }
759
16a26b20
SH
760 ubifs_node_calc_hash(c, snod->node, hash);
761
1e51764a
AB
762 if (snod->sqnum > c->max_sqnum)
763 c->max_sqnum = snod->sqnum;
764
765 switch (snod->type) {
766 case UBIFS_INO_NODE:
767 {
768 struct ubifs_ino_node *ino = snod->node;
769 loff_t new_size = le64_to_cpu(ino->size);
770
771 if (le32_to_cpu(ino->nlink) == 0)
772 deletion = 1;
16a26b20 773 err = insert_node(c, lnum, snod->offs, snod->len, hash,
1e51764a
AB
774 &snod->key, snod->sqnum, deletion,
775 &used, 0, new_size);
776 break;
777 }
778 case UBIFS_DATA_NODE:
779 {
780 struct ubifs_data_node *dn = snod->node;
781 loff_t new_size = le32_to_cpu(dn->size) +
782 key_block(c, &snod->key) *
783 UBIFS_BLOCK_SIZE;
784
16a26b20 785 err = insert_node(c, lnum, snod->offs, snod->len, hash,
1e51764a
AB
786 &snod->key, snod->sqnum, deletion,
787 &used, 0, new_size);
788 break;
789 }
790 case UBIFS_DENT_NODE:
791 case UBIFS_XENT_NODE:
792 {
793 struct ubifs_dent_node *dent = snod->node;
794
795 err = ubifs_validate_entry(c, dent);
796 if (err)
797 goto out_dump;
798
16a26b20 799 err = insert_dent(c, lnum, snod->offs, snod->len, hash,
1e51764a
AB
800 &snod->key, dent->name,
801 le16_to_cpu(dent->nlen), snod->sqnum,
802 !le64_to_cpu(dent->inum), &used);
803 break;
804 }
805 case UBIFS_TRUN_NODE:
806 {
807 struct ubifs_trun_node *trun = snod->node;
808 loff_t old_size = le64_to_cpu(trun->old_size);
809 loff_t new_size = le64_to_cpu(trun->new_size);
810 union ubifs_key key;
811
812 /* Validate truncation node */
813 if (old_size < 0 || old_size > c->max_inode_sz ||
814 new_size < 0 || new_size > c->max_inode_sz ||
815 old_size <= new_size) {
235c362b 816 ubifs_err(c, "bad truncation node");
1e51764a
AB
817 goto out_dump;
818 }
819
820 /*
821 * Create a fake truncation key just to use the same
822 * functions which expect nodes to have keys.
823 */
824 trun_key_init(c, &key, le32_to_cpu(trun->inum));
16a26b20 825 err = insert_node(c, lnum, snod->offs, snod->len, hash,
1e51764a
AB
826 &key, snod->sqnum, 1, &used,
827 old_size, new_size);
828 break;
829 }
6a98bc46
SH
830 case UBIFS_AUTH_NODE:
831 break;
1e51764a 832 default:
235c362b 833 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
1e51764a
AB
834 snod->type, lnum, snod->offs);
835 err = -EINVAL;
836 goto out_dump;
837 }
838 if (err)
839 goto out;
da8ef65f
SH
840
841 n++;
842 if (n == n_nodes)
843 break;
1e51764a
AB
844 }
845
6eb61d58
RW
846 ubifs_assert(c, ubifs_search_bud(c, lnum));
847 ubifs_assert(c, sleb->endpt - offs >= used);
848 ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
1e51764a 849
e76a4526
AB
850 b->dirty = sleb->endpt - offs - used;
851 b->free = c->leb_size - sleb->endpt;
79fda517
AB
852 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
853 lnum, b->dirty, b->free);
1e51764a
AB
854
855out:
856 ubifs_scan_destroy(sleb);
857 return err;
858
859out_dump:
235c362b 860 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
edf6be24 861 ubifs_dump_node(c, snod->node);
1e51764a
AB
862 ubifs_scan_destroy(sleb);
863 return -EINVAL;
864}
865
1e51764a
AB
866/**
867 * replay_buds - replay all buds.
868 * @c: UBIFS file-system description object
869 *
870 * This function returns zero in case of success and a negative error code in
871 * case of failure.
872 */
873static int replay_buds(struct ubifs_info *c)
874{
875 struct bud_entry *b;
074bcb9b 876 int err;
7703f09d 877 unsigned long long prev_sqnum = 0;
1e51764a
AB
878
879 list_for_each_entry(b, &c->replay_buds, list) {
e76a4526 880 err = replay_bud(c, b);
1e51764a
AB
881 if (err)
882 return err;
7703f09d 883
6eb61d58 884 ubifs_assert(c, b->sqnum > prev_sqnum);
7703f09d 885 prev_sqnum = b->sqnum;
1e51764a
AB
886 }
887
888 return 0;
889}
890
891/**
892 * destroy_bud_list - destroy the list of buds to replay.
893 * @c: UBIFS file-system description object
894 */
895static void destroy_bud_list(struct ubifs_info *c)
896{
897 struct bud_entry *b;
898
899 while (!list_empty(&c->replay_buds)) {
900 b = list_entry(c->replay_buds.next, struct bud_entry, list);
901 list_del(&b->list);
902 kfree(b);
903 }
904}
905
906/**
907 * add_replay_bud - add a bud to the list of buds to replay.
908 * @c: UBIFS file-system description object
909 * @lnum: bud logical eraseblock number to replay
910 * @offs: bud start offset
911 * @jhead: journal head to which this bud belongs
912 * @sqnum: reference node sequence number
913 *
914 * This function returns zero in case of success and a negative error code in
915 * case of failure.
916 */
917static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
918 unsigned long long sqnum)
919{
920 struct ubifs_bud *bud;
921 struct bud_entry *b;
da8ef65f 922 int err;
1e51764a
AB
923
924 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
925
926 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
927 if (!bud)
928 return -ENOMEM;
929
930 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
931 if (!b) {
da8ef65f
SH
932 err = -ENOMEM;
933 goto out;
1e51764a
AB
934 }
935
936 bud->lnum = lnum;
937 bud->start = offs;
938 bud->jhead = jhead;
da8ef65f
SH
939 bud->log_hash = ubifs_hash_get_desc(c);
940 if (IS_ERR(bud->log_hash)) {
941 err = PTR_ERR(bud->log_hash);
942 goto out;
943 }
944
945 ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
946
1e51764a
AB
947 ubifs_add_bud(c, bud);
948
949 b->bud = bud;
950 b->sqnum = sqnum;
951 list_add_tail(&b->list, &c->replay_buds);
952
953 return 0;
da8ef65f
SH
954out:
955 kfree(bud);
956 kfree(b);
957
958 return err;
1e51764a
AB
959}
960
961/**
962 * validate_ref - validate a reference node.
963 * @c: UBIFS file-system description object
964 * @ref: the reference node to validate
965 * @ref_lnum: LEB number of the reference node
966 * @ref_offs: reference node offset
967 *
968 * This function returns %1 if a bud reference already exists for the LEB. %0 is
969 * returned if the reference node is new, otherwise %-EINVAL is returned if
970 * validation failed.
971 */
972static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
973{
974 struct ubifs_bud *bud;
975 int lnum = le32_to_cpu(ref->lnum);
976 unsigned int offs = le32_to_cpu(ref->offs);
977 unsigned int jhead = le32_to_cpu(ref->jhead);
978
979 /*
980 * ref->offs may point to the end of LEB when the journal head points
981 * to the end of LEB and we write reference node for it during commit.
982 * So this is why we require 'offs > c->leb_size'.
983 */
984 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
985 lnum < c->main_first || offs > c->leb_size ||
986 offs & (c->min_io_size - 1))
987 return -EINVAL;
988
989 /* Make sure we have not already looked at this bud */
990 bud = ubifs_search_bud(c, lnum);
991 if (bud) {
992 if (bud->jhead == jhead && bud->start <= offs)
993 return 1;
235c362b 994 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
1e51764a
AB
995 return -EINVAL;
996 }
997
998 return 0;
999}
1000
1001/**
1002 * replay_log_leb - replay a log logical eraseblock.
1003 * @c: UBIFS file-system description object
1004 * @lnum: log logical eraseblock to replay
1005 * @offs: offset to start replaying from
1006 * @sbuf: scan buffer
1007 *
1008 * This function replays a log LEB and returns zero in case of success, %1 if
1009 * this is the last LEB in the log, and a negative error code in case of
1010 * failure.
1011 */
1012static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
1013{
1014 int err;
1015 struct ubifs_scan_leb *sleb;
1016 struct ubifs_scan_node *snod;
1017 const struct ubifs_cs_node *node;
1018
1019 dbg_mnt("replay log LEB %d:%d", lnum, offs);
348709ba
AB
1020 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
1021 if (IS_ERR(sleb)) {
ed43f2f0
AB
1022 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
1023 return PTR_ERR(sleb);
7d08ae3c
AB
1024 /*
1025 * Note, the below function will recover this log LEB only if
1026 * it is the last, because unclean reboots can possibly corrupt
1027 * only the tail of the log.
1028 */
ed43f2f0 1029 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1e51764a
AB
1030 if (IS_ERR(sleb))
1031 return PTR_ERR(sleb);
1032 }
1033
1034 if (sleb->nodes_cnt == 0) {
1035 err = 1;
1036 goto out;
1037 }
1038
1039 node = sleb->buf;
1e51764a
AB
1040 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1041 if (c->cs_sqnum == 0) {
1042 /*
1043 * This is the first log LEB we are looking at, make sure that
1044 * the first node is a commit start node. Also record its
1045 * sequence number so that UBIFS can determine where the log
1046 * ends, because all nodes which were have higher sequence
1047 * numbers.
1048 */
1049 if (snod->type != UBIFS_CS_NODE) {
235c362b 1050 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
a6aae4dd 1051 lnum, offs);
1e51764a
AB
1052 goto out_dump;
1053 }
1054 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
235c362b 1055 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
a6aae4dd
AB
1056 lnum, offs,
1057 (unsigned long long)le64_to_cpu(node->cmt_no),
1058 c->cmt_no);
1e51764a
AB
1059 goto out_dump;
1060 }
1061
1062 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1063 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
da8ef65f
SH
1064
1065 err = ubifs_shash_init(c, c->log_hash);
1066 if (err)
1067 goto out;
1068
1069 err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1070 if (err < 0)
1071 goto out;
1e51764a
AB
1072 }
1073
1074 if (snod->sqnum < c->cs_sqnum) {
1075 /*
1076 * This means that we reached end of log and now
1077 * look to the older log data, which was already
1078 * committed but the eraseblock was not erased (UBIFS
6edbfafd 1079 * only un-maps it). So this basically means we have to
1e51764a
AB
1080 * exit with "end of log" code.
1081 */
1082 err = 1;
1083 goto out;
1084 }
1085
1086 /* Make sure the first node sits at offset zero of the LEB */
1087 if (snod->offs != 0) {
235c362b 1088 ubifs_err(c, "first node is not at zero offset");
1e51764a
AB
1089 goto out_dump;
1090 }
1091
1092 list_for_each_entry(snod, &sleb->nodes, list) {
1e51764a
AB
1093 cond_resched();
1094
1095 if (snod->sqnum >= SQNUM_WATERMARK) {
235c362b 1096 ubifs_err(c, "file system's life ended");
1e51764a
AB
1097 goto out_dump;
1098 }
1099
1100 if (snod->sqnum < c->cs_sqnum) {
235c362b 1101 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
a6aae4dd 1102 snod->sqnum, c->cs_sqnum);
1e51764a
AB
1103 goto out_dump;
1104 }
1105
1106 if (snod->sqnum > c->max_sqnum)
1107 c->max_sqnum = snod->sqnum;
1108
1109 switch (snod->type) {
1110 case UBIFS_REF_NODE: {
1111 const struct ubifs_ref_node *ref = snod->node;
1112
1113 err = validate_ref(c, ref);
1114 if (err == 1)
1115 break; /* Already have this bud */
1116 if (err)
1117 goto out_dump;
1118
da8ef65f
SH
1119 err = ubifs_shash_update(c, c->log_hash, ref,
1120 UBIFS_REF_NODE_SZ);
1121 if (err)
1122 goto out;
1123
1e51764a
AB
1124 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1125 le32_to_cpu(ref->offs),
1126 le32_to_cpu(ref->jhead),
1127 snod->sqnum);
1128 if (err)
1129 goto out;
1130
1131 break;
1132 }
1133 case UBIFS_CS_NODE:
1134 /* Make sure it sits at the beginning of LEB */
1135 if (snod->offs != 0) {
235c362b 1136 ubifs_err(c, "unexpected node in log");
1e51764a
AB
1137 goto out_dump;
1138 }
1139 break;
1140 default:
235c362b 1141 ubifs_err(c, "unexpected node in log");
1e51764a
AB
1142 goto out_dump;
1143 }
1144 }
1145
1146 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1147 c->lhead_lnum = lnum;
1148 c->lhead_offs = sleb->endpt;
1149 }
1150
1151 err = !sleb->endpt;
1152out:
1153 ubifs_scan_destroy(sleb);
1154 return err;
1155
1156out_dump:
235c362b 1157 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1e51764a 1158 lnum, offs + snod->offs);
edf6be24 1159 ubifs_dump_node(c, snod->node);
1e51764a
AB
1160 ubifs_scan_destroy(sleb);
1161 return -EINVAL;
1162}
1163
1164/**
1165 * take_ihead - update the status of the index head in lprops to 'taken'.
1166 * @c: UBIFS file-system description object
1167 *
1168 * This function returns the amount of free space in the index head LEB or a
1169 * negative error code.
1170 */
1171static int take_ihead(struct ubifs_info *c)
1172{
1173 const struct ubifs_lprops *lp;
1174 int err, free;
1175
1176 ubifs_get_lprops(c);
1177
1178 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1179 if (IS_ERR(lp)) {
1180 err = PTR_ERR(lp);
1181 goto out;
1182 }
1183
1184 free = lp->free;
1185
1186 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1187 lp->flags | LPROPS_TAKEN, 0);
1188 if (IS_ERR(lp)) {
1189 err = PTR_ERR(lp);
1190 goto out;
1191 }
1192
1193 err = free;
1194out:
1195 ubifs_release_lprops(c);
1196 return err;
1197}
1198
1199/**
1200 * ubifs_replay_journal - replay journal.
1201 * @c: UBIFS file-system description object
1202 *
1203 * This function scans the journal, replays and cleans it up. It makes sure all
1204 * memory data structures related to uncommitted journal are built (dirty TNC
1205 * tree, tree of buds, modified lprops, etc).
1206 */
1207int ubifs_replay_journal(struct ubifs_info *c)
1208{
d51f17ea 1209 int err, lnum, free;
1e51764a
AB
1210
1211 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1212
1213 /* Update the status of the index head in lprops to 'taken' */
1214 free = take_ihead(c);
1215 if (free < 0)
1216 return free; /* Error code */
1217
1218 if (c->ihead_offs != c->leb_size - free) {
235c362b 1219 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1e51764a
AB
1220 c->ihead_offs);
1221 return -EINVAL;
1222 }
1223
1e51764a 1224 dbg_mnt("start replaying the journal");
1e51764a 1225 c->replaying = 1;
1e51764a 1226 lnum = c->ltail_lnum = c->lhead_lnum;
1e51764a 1227
d51f17ea
AB
1228 do {
1229 err = replay_log_leb(c, lnum, 0, c->sbuf);
88cff0f0 1230 if (err == 1) {
1231 if (lnum != c->lhead_lnum)
1232 /* We hit the end of the log */
1233 break;
1234
1235 /*
1236 * The head of the log must always start with the
1237 * "commit start" node on a properly formatted UBIFS.
1238 * But we found no nodes at all, which means that
c7e593b3 1239 * something went wrong and we cannot proceed mounting
88cff0f0 1240 * the file-system.
1241 */
235c362b 1242 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
88cff0f0 1243 lnum, 0);
1244 err = -EINVAL;
1245 }
1e51764a
AB
1246 if (err)
1247 goto out;
d51f17ea 1248 lnum = ubifs_next_log_lnum(c, lnum);
c212f402 1249 } while (lnum != c->ltail_lnum);
1e51764a
AB
1250
1251 err = replay_buds(c);
1252 if (err)
1253 goto out;
1254
debf12d5 1255 err = apply_replay_list(c);
1e51764a
AB
1256 if (err)
1257 goto out;
1258
074bcb9b
AB
1259 err = set_buds_lprops(c);
1260 if (err)
1261 goto out;
1262
6edbfafd 1263 /*
b137545c
AB
1264 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1265 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
6edbfafd
AB
1266 * depend on it. This means we have to initialize it to make sure
1267 * budgeting works properly.
1268 */
b137545c
AB
1269 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1270 c->bi.uncommitted_idx *= c->max_idx_node_sz;
6edbfafd 1271
6eb61d58 1272 ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
79fda517
AB
1273 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1274 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
e84461ad 1275 (unsigned long)c->highest_inum);
1e51764a 1276out:
debf12d5 1277 destroy_replay_list(c);
1e51764a 1278 destroy_bud_list(c);
1e51764a
AB
1279 c->replaying = 0;
1280 return err;
1281}