UBIFS: simplify returns
[linux-2.6-block.git] / fs / ubifs / lpt.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements the LEB properties tree (LPT) area. The LPT area
25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27 * between the log and the orphan area.
28 *
29 * The LPT area is like a miniature self-contained file system. It is required
30 * that it never runs out of space, is fast to access and update, and scales
31 * logarithmically. The LEB properties tree is implemented as a wandering tree
32 * much like the TNC, and the LPT area has its own garbage collection.
33 *
34 * The LPT has two slightly different forms called the "small model" and the
35 * "big model". The small model is used when the entire LEB properties table
36 * can be written into a single eraseblock. In that case, garbage collection
37 * consists of just writing the whole table, which therefore makes all other
38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
45e12d90 39 * selected for garbage collection, which consists of marking the clean nodes in
1e51764a
AB
40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41 * the case of the big model, a table of LEB numbers is saved so that the entire
42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43 * mounted.
44 */
45
1e51764a 46#include "ubifs.h"
4d61db4f
AB
47#include <linux/crc16.h>
48#include <linux/math64.h>
5a0e3ad6 49#include <linux/slab.h>
1e51764a
AB
50
51/**
52 * do_calc_lpt_geom - calculate sizes for the LPT area.
53 * @c: the UBIFS file-system description object
54 *
55 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56 * properties of the flash and whether LPT is "big" (c->big_lpt).
57 */
58static void do_calc_lpt_geom(struct ubifs_info *c)
59{
60 int i, n, bits, per_leb_wastage, max_pnode_cnt;
61 long long sz, tot_wastage;
62
63 n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64 max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
65
66 c->lpt_hght = 1;
67 n = UBIFS_LPT_FANOUT;
68 while (n < max_pnode_cnt) {
69 c->lpt_hght += 1;
70 n <<= UBIFS_LPT_FANOUT_SHIFT;
71 }
72
73 c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
74
75 n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76 c->nnode_cnt = n;
77 for (i = 1; i < c->lpt_hght; i++) {
78 n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79 c->nnode_cnt += n;
80 }
81
82 c->space_bits = fls(c->leb_size) - 3;
83 c->lpt_lnum_bits = fls(c->lpt_lebs);
84 c->lpt_offs_bits = fls(c->leb_size - 1);
85 c->lpt_spc_bits = fls(c->leb_size);
86
87 n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88 c->pcnt_bits = fls(n - 1);
89
90 c->lnum_bits = fls(c->max_leb_cnt - 1);
91
92 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93 (c->big_lpt ? c->pcnt_bits : 0) +
94 (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95 c->pnode_sz = (bits + 7) / 8;
96
97 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98 (c->big_lpt ? c->pcnt_bits : 0) +
99 (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100 c->nnode_sz = (bits + 7) / 8;
101
102 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103 c->lpt_lebs * c->lpt_spc_bits * 2;
104 c->ltab_sz = (bits + 7) / 8;
105
106 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107 c->lnum_bits * c->lsave_cnt;
108 c->lsave_sz = (bits + 7) / 8;
109
110 /* Calculate the minimum LPT size */
111 c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112 c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113 c->lpt_sz += c->ltab_sz;
73944a6d
AH
114 if (c->big_lpt)
115 c->lpt_sz += c->lsave_sz;
1e51764a
AB
116
117 /* Add wastage */
118 sz = c->lpt_sz;
119 per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120 sz += per_leb_wastage;
121 tot_wastage = per_leb_wastage;
122 while (sz > c->leb_size) {
123 sz += per_leb_wastage;
124 sz -= c->leb_size;
125 tot_wastage += per_leb_wastage;
126 }
127 tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128 c->lpt_sz += tot_wastage;
129}
130
131/**
132 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133 * @c: the UBIFS file-system description object
134 *
135 * This function returns %0 on success and a negative error code on failure.
136 */
137int ubifs_calc_lpt_geom(struct ubifs_info *c)
138{
139 int lebs_needed;
4d61db4f 140 long long sz;
1e51764a
AB
141
142 do_calc_lpt_geom(c);
143
144 /* Verify that lpt_lebs is big enough */
145 sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
4d61db4f 146 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
1e51764a
AB
147 if (lebs_needed > c->lpt_lebs) {
148 ubifs_err("too few LPT LEBs");
149 return -EINVAL;
150 }
151
152 /* Verify that ltab fits in a single LEB (since ltab is a single node */
153 if (c->ltab_sz > c->leb_size) {
154 ubifs_err("LPT ltab too big");
155 return -EINVAL;
156 }
157
158 c->check_lpt_free = c->big_lpt;
1e51764a
AB
159 return 0;
160}
161
162/**
163 * calc_dflt_lpt_geom - calculate default LPT geometry.
164 * @c: the UBIFS file-system description object
165 * @main_lebs: number of main area LEBs is passed and returned here
166 * @big_lpt: whether the LPT area is "big" is returned here
167 *
168 * The size of the LPT area depends on parameters that themselves are dependent
169 * on the size of the LPT area. This function, successively recalculates the LPT
170 * area geometry until the parameters and resultant geometry are consistent.
171 *
172 * This function returns %0 on success and a negative error code on failure.
173 */
174static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175 int *big_lpt)
176{
177 int i, lebs_needed;
4d61db4f 178 long long sz;
1e51764a
AB
179
180 /* Start by assuming the minimum number of LPT LEBs */
181 c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182 c->main_lebs = *main_lebs - c->lpt_lebs;
183 if (c->main_lebs <= 0)
184 return -EINVAL;
185
186 /* And assume we will use the small LPT model */
187 c->big_lpt = 0;
188
189 /*
190 * Calculate the geometry based on assumptions above and then see if it
191 * makes sense
192 */
193 do_calc_lpt_geom(c);
194
195 /* Small LPT model must have lpt_sz < leb_size */
196 if (c->lpt_sz > c->leb_size) {
197 /* Nope, so try again using big LPT model */
198 c->big_lpt = 1;
199 do_calc_lpt_geom(c);
200 }
201
202 /* Now check there are enough LPT LEBs */
203 for (i = 0; i < 64 ; i++) {
204 sz = c->lpt_sz * 4; /* Allow 4 times the size */
4d61db4f 205 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
1e51764a
AB
206 if (lebs_needed > c->lpt_lebs) {
207 /* Not enough LPT LEBs so try again with more */
208 c->lpt_lebs = lebs_needed;
209 c->main_lebs = *main_lebs - c->lpt_lebs;
210 if (c->main_lebs <= 0)
211 return -EINVAL;
212 do_calc_lpt_geom(c);
213 continue;
214 }
215 if (c->ltab_sz > c->leb_size) {
216 ubifs_err("LPT ltab too big");
217 return -EINVAL;
218 }
219 *main_lebs = c->main_lebs;
220 *big_lpt = c->big_lpt;
221 return 0;
222 }
223 return -EINVAL;
224}
225
226/**
227 * pack_bits - pack bit fields end-to-end.
228 * @addr: address at which to pack (passed and next address returned)
229 * @pos: bit position at which to pack (passed and next position returned)
230 * @val: value to pack
231 * @nrbits: number of bits of value to pack (1-32)
232 */
233static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
234{
235 uint8_t *p = *addr;
236 int b = *pos;
237
238 ubifs_assert(nrbits > 0);
239 ubifs_assert(nrbits <= 32);
240 ubifs_assert(*pos >= 0);
241 ubifs_assert(*pos < 8);
242 ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
243 if (b) {
244 *p |= ((uint8_t)val) << b;
245 nrbits += b;
246 if (nrbits > 8) {
247 *++p = (uint8_t)(val >>= (8 - b));
248 if (nrbits > 16) {
249 *++p = (uint8_t)(val >>= 8);
250 if (nrbits > 24) {
251 *++p = (uint8_t)(val >>= 8);
252 if (nrbits > 32)
253 *++p = (uint8_t)(val >>= 8);
254 }
255 }
256 }
257 } else {
258 *p = (uint8_t)val;
259 if (nrbits > 8) {
260 *++p = (uint8_t)(val >>= 8);
261 if (nrbits > 16) {
262 *++p = (uint8_t)(val >>= 8);
263 if (nrbits > 24)
264 *++p = (uint8_t)(val >>= 8);
265 }
266 }
267 }
268 b = nrbits & 7;
269 if (b == 0)
270 p++;
271 *addr = p;
272 *pos = b;
273}
274
275/**
276 * ubifs_unpack_bits - unpack bit fields.
277 * @addr: address at which to unpack (passed and next address returned)
278 * @pos: bit position at which to unpack (passed and next position returned)
279 * @nrbits: number of bits of value to unpack (1-32)
280 *
281 * This functions returns the value unpacked.
282 */
283uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
284{
285 const int k = 32 - nrbits;
286 uint8_t *p = *addr;
287 int b = *pos;
727d2dc0
AH
288 uint32_t uninitialized_var(val);
289 const int bytes = (nrbits + b + 7) >> 3;
1e51764a
AB
290
291 ubifs_assert(nrbits > 0);
292 ubifs_assert(nrbits <= 32);
293 ubifs_assert(*pos >= 0);
294 ubifs_assert(*pos < 8);
295 if (b) {
727d2dc0
AH
296 switch (bytes) {
297 case 2:
298 val = p[1];
299 break;
300 case 3:
301 val = p[1] | ((uint32_t)p[2] << 8);
302 break;
303 case 4:
304 val = p[1] | ((uint32_t)p[2] << 8) |
305 ((uint32_t)p[3] << 16);
306 break;
307 case 5:
308 val = p[1] | ((uint32_t)p[2] << 8) |
309 ((uint32_t)p[3] << 16) |
310 ((uint32_t)p[4] << 24);
311 }
1e51764a
AB
312 val <<= (8 - b);
313 val |= *p >> b;
314 nrbits += b;
727d2dc0
AH
315 } else {
316 switch (bytes) {
317 case 1:
318 val = p[0];
319 break;
320 case 2:
321 val = p[0] | ((uint32_t)p[1] << 8);
322 break;
323 case 3:
324 val = p[0] | ((uint32_t)p[1] << 8) |
325 ((uint32_t)p[2] << 16);
326 break;
327 case 4:
328 val = p[0] | ((uint32_t)p[1] << 8) |
329 ((uint32_t)p[2] << 16) |
330 ((uint32_t)p[3] << 24);
331 break;
332 }
333 }
1e51764a
AB
334 val <<= k;
335 val >>= k;
336 b = nrbits & 7;
727d2dc0 337 p += nrbits >> 3;
1e51764a
AB
338 *addr = p;
339 *pos = b;
340 ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
341 return val;
342}
343
344/**
345 * ubifs_pack_pnode - pack all the bit fields of a pnode.
346 * @c: UBIFS file-system description object
347 * @buf: buffer into which to pack
348 * @pnode: pnode to pack
349 */
350void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
351 struct ubifs_pnode *pnode)
352{
353 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
354 int i, pos = 0;
355 uint16_t crc;
356
357 pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
358 if (c->big_lpt)
359 pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
360 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
361 pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
362 c->space_bits);
363 pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
364 c->space_bits);
365 if (pnode->lprops[i].flags & LPROPS_INDEX)
366 pack_bits(&addr, &pos, 1, 1);
367 else
368 pack_bits(&addr, &pos, 0, 1);
369 }
370 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
371 c->pnode_sz - UBIFS_LPT_CRC_BYTES);
372 addr = buf;
373 pos = 0;
374 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
375}
376
377/**
378 * ubifs_pack_nnode - pack all the bit fields of a nnode.
379 * @c: UBIFS file-system description object
380 * @buf: buffer into which to pack
381 * @nnode: nnode to pack
382 */
383void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
384 struct ubifs_nnode *nnode)
385{
386 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
387 int i, pos = 0;
388 uint16_t crc;
389
390 pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
391 if (c->big_lpt)
392 pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
393 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
394 int lnum = nnode->nbranch[i].lnum;
395
396 if (lnum == 0)
397 lnum = c->lpt_last + 1;
398 pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
399 pack_bits(&addr, &pos, nnode->nbranch[i].offs,
400 c->lpt_offs_bits);
401 }
402 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
403 c->nnode_sz - UBIFS_LPT_CRC_BYTES);
404 addr = buf;
405 pos = 0;
406 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
407}
408
409/**
410 * ubifs_pack_ltab - pack the LPT's own lprops table.
411 * @c: UBIFS file-system description object
412 * @buf: buffer into which to pack
413 * @ltab: LPT's own lprops table to pack
414 */
415void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
416 struct ubifs_lpt_lprops *ltab)
417{
418 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
419 int i, pos = 0;
420 uint16_t crc;
421
422 pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
423 for (i = 0; i < c->lpt_lebs; i++) {
424 pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
425 pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
426 }
427 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
428 c->ltab_sz - UBIFS_LPT_CRC_BYTES);
429 addr = buf;
430 pos = 0;
431 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
432}
433
434/**
435 * ubifs_pack_lsave - pack the LPT's save table.
436 * @c: UBIFS file-system description object
437 * @buf: buffer into which to pack
438 * @lsave: LPT's save table to pack
439 */
440void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
441{
442 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
443 int i, pos = 0;
444 uint16_t crc;
445
446 pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
447 for (i = 0; i < c->lsave_cnt; i++)
448 pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
449 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
450 c->lsave_sz - UBIFS_LPT_CRC_BYTES);
451 addr = buf;
452 pos = 0;
453 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
454}
455
456/**
457 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
458 * @c: UBIFS file-system description object
459 * @lnum: LEB number to which to add dirty space
460 * @dirty: amount of dirty space to add
461 */
462void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
463{
464 if (!dirty || !lnum)
465 return;
466 dbg_lp("LEB %d add %d to %d",
467 lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
468 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
469 c->ltab[lnum - c->lpt_first].dirty += dirty;
470}
471
472/**
473 * set_ltab - set LPT LEB properties.
474 * @c: UBIFS file-system description object
475 * @lnum: LEB number
476 * @free: amount of free space
477 * @dirty: amount of dirty space
478 */
479static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
480{
481 dbg_lp("LEB %d free %d dirty %d to %d %d",
482 lnum, c->ltab[lnum - c->lpt_first].free,
483 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
484 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
485 c->ltab[lnum - c->lpt_first].free = free;
486 c->ltab[lnum - c->lpt_first].dirty = dirty;
487}
488
489/**
490 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
491 * @c: UBIFS file-system description object
492 * @nnode: nnode for which to add dirt
493 */
494void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
495{
496 struct ubifs_nnode *np = nnode->parent;
497
498 if (np)
499 ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
500 c->nnode_sz);
501 else {
502 ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
503 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
504 c->lpt_drty_flgs |= LTAB_DIRTY;
505 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
506 }
507 }
508}
509
510/**
511 * add_pnode_dirt - add dirty space to LPT LEB properties.
512 * @c: UBIFS file-system description object
513 * @pnode: pnode for which to add dirt
514 */
515static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
516{
517 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
518 c->pnode_sz);
519}
520
521/**
522 * calc_nnode_num - calculate nnode number.
523 * @row: the row in the tree (root is zero)
524 * @col: the column in the row (leftmost is zero)
525 *
526 * The nnode number is a number that uniquely identifies a nnode and can be used
527 * easily to traverse the tree from the root to that nnode.
528 *
529 * This function calculates and returns the nnode number for the nnode at @row
530 * and @col.
531 */
532static int calc_nnode_num(int row, int col)
533{
534 int num, bits;
535
536 num = 1;
537 while (row--) {
538 bits = (col & (UBIFS_LPT_FANOUT - 1));
539 col >>= UBIFS_LPT_FANOUT_SHIFT;
540 num <<= UBIFS_LPT_FANOUT_SHIFT;
541 num |= bits;
542 }
543 return num;
544}
545
546/**
547 * calc_nnode_num_from_parent - calculate nnode number.
548 * @c: UBIFS file-system description object
549 * @parent: parent nnode
550 * @iip: index in parent
551 *
552 * The nnode number is a number that uniquely identifies a nnode and can be used
553 * easily to traverse the tree from the root to that nnode.
554 *
555 * This function calculates and returns the nnode number based on the parent's
556 * nnode number and the index in parent.
557 */
2ba5f7ae 558static int calc_nnode_num_from_parent(const struct ubifs_info *c,
1e51764a
AB
559 struct ubifs_nnode *parent, int iip)
560{
561 int num, shft;
562
563 if (!parent)
564 return 1;
565 shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
566 num = parent->num ^ (1 << shft);
567 num |= (UBIFS_LPT_FANOUT + iip) << shft;
568 return num;
569}
570
571/**
572 * calc_pnode_num_from_parent - calculate pnode number.
573 * @c: UBIFS file-system description object
574 * @parent: parent nnode
575 * @iip: index in parent
576 *
577 * The pnode number is a number that uniquely identifies a pnode and can be used
578 * easily to traverse the tree from the root to that pnode.
579 *
580 * This function calculates and returns the pnode number based on the parent's
581 * nnode number and the index in parent.
582 */
2ba5f7ae 583static int calc_pnode_num_from_parent(const struct ubifs_info *c,
1e51764a
AB
584 struct ubifs_nnode *parent, int iip)
585{
586 int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
587
588 for (i = 0; i < n; i++) {
589 num <<= UBIFS_LPT_FANOUT_SHIFT;
590 num |= pnum & (UBIFS_LPT_FANOUT - 1);
591 pnum >>= UBIFS_LPT_FANOUT_SHIFT;
592 }
593 num <<= UBIFS_LPT_FANOUT_SHIFT;
594 num |= iip;
595 return num;
596}
597
598/**
599 * ubifs_create_dflt_lpt - create default LPT.
600 * @c: UBIFS file-system description object
601 * @main_lebs: number of main area LEBs is passed and returned here
602 * @lpt_first: LEB number of first LPT LEB
603 * @lpt_lebs: number of LEBs for LPT is passed and returned here
604 * @big_lpt: use big LPT model is passed and returned here
605 *
606 * This function returns %0 on success and a negative error code on failure.
607 */
608int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
609 int *lpt_lebs, int *big_lpt)
610{
611 int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
612 int blnum, boffs, bsz, bcnt;
613 struct ubifs_pnode *pnode = NULL;
614 struct ubifs_nnode *nnode = NULL;
615 void *buf = NULL, *p;
616 struct ubifs_lpt_lprops *ltab = NULL;
617 int *lsave = NULL;
618
619 err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
620 if (err)
621 return err;
622 *lpt_lebs = c->lpt_lebs;
623
624 /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
625 c->lpt_first = lpt_first;
626 /* Needed by 'set_ltab()' */
627 c->lpt_last = lpt_first + c->lpt_lebs - 1;
628 /* Needed by 'ubifs_pack_lsave()' */
629 c->main_first = c->leb_cnt - *main_lebs;
630
631 lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
632 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
633 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
634 buf = vmalloc(c->leb_size);
635 ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
636 if (!pnode || !nnode || !buf || !ltab || !lsave) {
637 err = -ENOMEM;
638 goto out;
639 }
640
641 ubifs_assert(!c->ltab);
642 c->ltab = ltab; /* Needed by set_ltab */
643
644 /* Initialize LPT's own lprops */
645 for (i = 0; i < c->lpt_lebs; i++) {
646 ltab[i].free = c->leb_size;
647 ltab[i].dirty = 0;
648 ltab[i].tgc = 0;
649 ltab[i].cmt = 0;
650 }
651
652 lnum = lpt_first;
653 p = buf;
654 /* Number of leaf nodes (pnodes) */
655 cnt = c->pnode_cnt;
656
657 /*
658 * The first pnode contains the LEB properties for the LEBs that contain
659 * the root inode node and the root index node of the index tree.
660 */
661 node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
662 iopos = ALIGN(node_sz, c->min_io_size);
663 pnode->lprops[0].free = c->leb_size - iopos;
664 pnode->lprops[0].dirty = iopos - node_sz;
665 pnode->lprops[0].flags = LPROPS_INDEX;
666
667 node_sz = UBIFS_INO_NODE_SZ;
668 iopos = ALIGN(node_sz, c->min_io_size);
669 pnode->lprops[1].free = c->leb_size - iopos;
670 pnode->lprops[1].dirty = iopos - node_sz;
671
672 for (i = 2; i < UBIFS_LPT_FANOUT; i++)
673 pnode->lprops[i].free = c->leb_size;
674
675 /* Add first pnode */
676 ubifs_pack_pnode(c, p, pnode);
677 p += c->pnode_sz;
678 len = c->pnode_sz;
679 pnode->num += 1;
680
681 /* Reset pnode values for remaining pnodes */
682 pnode->lprops[0].free = c->leb_size;
683 pnode->lprops[0].dirty = 0;
684 pnode->lprops[0].flags = 0;
685
686 pnode->lprops[1].free = c->leb_size;
687 pnode->lprops[1].dirty = 0;
688
689 /*
690 * To calculate the internal node branches, we keep information about
691 * the level below.
692 */
693 blnum = lnum; /* LEB number of level below */
694 boffs = 0; /* Offset of level below */
695 bcnt = cnt; /* Number of nodes in level below */
696 bsz = c->pnode_sz; /* Size of nodes in level below */
697
698 /* Add all remaining pnodes */
699 for (i = 1; i < cnt; i++) {
700 if (len + c->pnode_sz > c->leb_size) {
701 alen = ALIGN(len, c->min_io_size);
702 set_ltab(c, lnum, c->leb_size - alen, alen - len);
703 memset(p, 0xff, alen - len);
b36a261e 704 err = ubifs_leb_change(c, lnum++, buf, alen);
1e51764a
AB
705 if (err)
706 goto out;
707 p = buf;
708 len = 0;
709 }
710 ubifs_pack_pnode(c, p, pnode);
711 p += c->pnode_sz;
712 len += c->pnode_sz;
713 /*
714 * pnodes are simply numbered left to right starting at zero,
715 * which means the pnode number can be used easily to traverse
716 * down the tree to the corresponding pnode.
717 */
718 pnode->num += 1;
719 }
720
721 row = 0;
722 for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
723 row += 1;
724 /* Add all nnodes, one level at a time */
725 while (1) {
726 /* Number of internal nodes (nnodes) at next level */
727 cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
728 for (i = 0; i < cnt; i++) {
729 if (len + c->nnode_sz > c->leb_size) {
730 alen = ALIGN(len, c->min_io_size);
731 set_ltab(c, lnum, c->leb_size - alen,
732 alen - len);
733 memset(p, 0xff, alen - len);
b36a261e 734 err = ubifs_leb_change(c, lnum++, buf, alen);
1e51764a
AB
735 if (err)
736 goto out;
737 p = buf;
738 len = 0;
739 }
740 /* Only 1 nnode at this level, so it is the root */
741 if (cnt == 1) {
742 c->lpt_lnum = lnum;
743 c->lpt_offs = len;
744 }
745 /* Set branches to the level below */
746 for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
747 if (bcnt) {
748 if (boffs + bsz > c->leb_size) {
749 blnum += 1;
750 boffs = 0;
751 }
752 nnode->nbranch[j].lnum = blnum;
753 nnode->nbranch[j].offs = boffs;
754 boffs += bsz;
755 bcnt--;
756 } else {
757 nnode->nbranch[j].lnum = 0;
758 nnode->nbranch[j].offs = 0;
759 }
760 }
761 nnode->num = calc_nnode_num(row, i);
762 ubifs_pack_nnode(c, p, nnode);
763 p += c->nnode_sz;
764 len += c->nnode_sz;
765 }
766 /* Only 1 nnode at this level, so it is the root */
767 if (cnt == 1)
768 break;
769 /* Update the information about the level below */
770 bcnt = cnt;
771 bsz = c->nnode_sz;
772 row -= 1;
773 }
774
775 if (*big_lpt) {
776 /* Need to add LPT's save table */
777 if (len + c->lsave_sz > c->leb_size) {
778 alen = ALIGN(len, c->min_io_size);
779 set_ltab(c, lnum, c->leb_size - alen, alen - len);
780 memset(p, 0xff, alen - len);
b36a261e 781 err = ubifs_leb_change(c, lnum++, buf, alen);
1e51764a
AB
782 if (err)
783 goto out;
784 p = buf;
785 len = 0;
786 }
787
788 c->lsave_lnum = lnum;
789 c->lsave_offs = len;
790
791 for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
792 lsave[i] = c->main_first + i;
793 for (; i < c->lsave_cnt; i++)
794 lsave[i] = c->main_first;
795
796 ubifs_pack_lsave(c, p, lsave);
797 p += c->lsave_sz;
798 len += c->lsave_sz;
799 }
800
801 /* Need to add LPT's own LEB properties table */
802 if (len + c->ltab_sz > c->leb_size) {
803 alen = ALIGN(len, c->min_io_size);
804 set_ltab(c, lnum, c->leb_size - alen, alen - len);
805 memset(p, 0xff, alen - len);
b36a261e 806 err = ubifs_leb_change(c, lnum++, buf, alen);
1e51764a
AB
807 if (err)
808 goto out;
809 p = buf;
810 len = 0;
811 }
812
813 c->ltab_lnum = lnum;
814 c->ltab_offs = len;
815
816 /* Update ltab before packing it */
817 len += c->ltab_sz;
818 alen = ALIGN(len, c->min_io_size);
819 set_ltab(c, lnum, c->leb_size - alen, alen - len);
820
821 ubifs_pack_ltab(c, p, ltab);
822 p += c->ltab_sz;
823
824 /* Write remaining buffer */
825 memset(p, 0xff, alen - len);
b36a261e 826 err = ubifs_leb_change(c, lnum, buf, alen);
1e51764a
AB
827 if (err)
828 goto out;
829
830 c->nhead_lnum = lnum;
831 c->nhead_offs = ALIGN(len, c->min_io_size);
832
833 dbg_lp("space_bits %d", c->space_bits);
834 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
835 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
836 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
837 dbg_lp("pcnt_bits %d", c->pcnt_bits);
838 dbg_lp("lnum_bits %d", c->lnum_bits);
839 dbg_lp("pnode_sz %d", c->pnode_sz);
840 dbg_lp("nnode_sz %d", c->nnode_sz);
841 dbg_lp("ltab_sz %d", c->ltab_sz);
842 dbg_lp("lsave_sz %d", c->lsave_sz);
843 dbg_lp("lsave_cnt %d", c->lsave_cnt);
844 dbg_lp("lpt_hght %d", c->lpt_hght);
845 dbg_lp("big_lpt %d", c->big_lpt);
846 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
847 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
848 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
849 if (c->big_lpt)
850 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
851out:
852 c->ltab = NULL;
853 kfree(lsave);
854 vfree(ltab);
855 vfree(buf);
856 kfree(nnode);
857 kfree(pnode);
858 return err;
859}
860
861/**
862 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
863 * @c: UBIFS file-system description object
864 * @pnode: pnode
865 *
866 * When a pnode is loaded into memory, the LEB properties it contains are added,
867 * by this function, to the LEB category lists and heaps.
868 */
869static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
870{
871 int i;
872
873 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
874 int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
875 int lnum = pnode->lprops[i].lnum;
876
877 if (!lnum)
878 return;
879 ubifs_add_to_cat(c, &pnode->lprops[i], cat);
880 }
881}
882
883/**
884 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
885 * @c: UBIFS file-system description object
886 * @old_pnode: pnode copied
887 * @new_pnode: pnode copy
888 *
889 * During commit it is sometimes necessary to copy a pnode
890 * (see dirty_cow_pnode). When that happens, references in
891 * category lists and heaps must be replaced. This function does that.
892 */
893static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
894 struct ubifs_pnode *new_pnode)
895{
896 int i;
897
898 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
899 if (!new_pnode->lprops[i].lnum)
900 return;
901 ubifs_replace_cat(c, &old_pnode->lprops[i],
902 &new_pnode->lprops[i]);
903 }
904}
905
906/**
907 * check_lpt_crc - check LPT node crc is correct.
908 * @c: UBIFS file-system description object
909 * @buf: buffer containing node
910 * @len: length of node
911 *
912 * This function returns %0 on success and a negative error code on failure.
913 */
914static int check_lpt_crc(void *buf, int len)
915{
916 int pos = 0;
917 uint8_t *addr = buf;
918 uint16_t crc, calc_crc;
919
920 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
921 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
922 len - UBIFS_LPT_CRC_BYTES);
923 if (crc != calc_crc) {
924 ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
925 calc_crc);
7c46d0ae 926 dump_stack();
1e51764a
AB
927 return -EINVAL;
928 }
929 return 0;
930}
931
932/**
933 * check_lpt_type - check LPT node type is correct.
934 * @c: UBIFS file-system description object
935 * @addr: address of type bit field is passed and returned updated here
936 * @pos: position of type bit field is passed and returned updated here
937 * @type: expected type
938 *
939 * This function returns %0 on success and a negative error code on failure.
940 */
941static int check_lpt_type(uint8_t **addr, int *pos, int type)
942{
943 int node_type;
944
945 node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
946 if (node_type != type) {
947 ubifs_err("invalid type (%d) in LPT node type %d", node_type,
948 type);
7c46d0ae 949 dump_stack();
1e51764a
AB
950 return -EINVAL;
951 }
952 return 0;
953}
954
955/**
956 * unpack_pnode - unpack a pnode.
957 * @c: UBIFS file-system description object
958 * @buf: buffer containing packed pnode to unpack
959 * @pnode: pnode structure to fill
960 *
961 * This function returns %0 on success and a negative error code on failure.
962 */
2ba5f7ae 963static int unpack_pnode(const struct ubifs_info *c, void *buf,
1e51764a
AB
964 struct ubifs_pnode *pnode)
965{
966 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
967 int i, pos = 0, err;
968
969 err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
970 if (err)
971 return err;
972 if (c->big_lpt)
973 pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
974 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
975 struct ubifs_lprops * const lprops = &pnode->lprops[i];
976
977 lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
978 lprops->free <<= 3;
979 lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
980 lprops->dirty <<= 3;
981
982 if (ubifs_unpack_bits(&addr, &pos, 1))
983 lprops->flags = LPROPS_INDEX;
984 else
985 lprops->flags = 0;
986 lprops->flags |= ubifs_categorize_lprops(c, lprops);
987 }
988 err = check_lpt_crc(buf, c->pnode_sz);
989 return err;
990}
991
992/**
2ba5f7ae 993 * ubifs_unpack_nnode - unpack a nnode.
1e51764a
AB
994 * @c: UBIFS file-system description object
995 * @buf: buffer containing packed nnode to unpack
996 * @nnode: nnode structure to fill
997 *
998 * This function returns %0 on success and a negative error code on failure.
999 */
2ba5f7ae
AB
1000int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1001 struct ubifs_nnode *nnode)
1e51764a
AB
1002{
1003 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1004 int i, pos = 0, err;
1005
1006 err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
1007 if (err)
1008 return err;
1009 if (c->big_lpt)
1010 nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1011 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1012 int lnum;
1013
1014 lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1015 c->lpt_first;
1016 if (lnum == c->lpt_last + 1)
1017 lnum = 0;
1018 nnode->nbranch[i].lnum = lnum;
1019 nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1020 c->lpt_offs_bits);
1021 }
1022 err = check_lpt_crc(buf, c->nnode_sz);
1023 return err;
1024}
1025
1026/**
1027 * unpack_ltab - unpack the LPT's own lprops table.
1028 * @c: UBIFS file-system description object
1029 * @buf: buffer from which to unpack
1030 *
1031 * This function returns %0 on success and a negative error code on failure.
1032 */
2ba5f7ae 1033static int unpack_ltab(const struct ubifs_info *c, void *buf)
1e51764a
AB
1034{
1035 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1036 int i, pos = 0, err;
1037
1038 err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
1039 if (err)
1040 return err;
1041 for (i = 0; i < c->lpt_lebs; i++) {
1042 int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1043 int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1044
1045 if (free < 0 || free > c->leb_size || dirty < 0 ||
1046 dirty > c->leb_size || free + dirty > c->leb_size)
1047 return -EINVAL;
1048
1049 c->ltab[i].free = free;
1050 c->ltab[i].dirty = dirty;
1051 c->ltab[i].tgc = 0;
1052 c->ltab[i].cmt = 0;
1053 }
1054 err = check_lpt_crc(buf, c->ltab_sz);
1055 return err;
1056}
1057
1058/**
1059 * unpack_lsave - unpack the LPT's save table.
1060 * @c: UBIFS file-system description object
1061 * @buf: buffer from which to unpack
1062 *
1063 * This function returns %0 on success and a negative error code on failure.
1064 */
2ba5f7ae 1065static int unpack_lsave(const struct ubifs_info *c, void *buf)
1e51764a
AB
1066{
1067 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1068 int i, pos = 0, err;
1069
1070 err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
1071 if (err)
1072 return err;
1073 for (i = 0; i < c->lsave_cnt; i++) {
1074 int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1075
1076 if (lnum < c->main_first || lnum >= c->leb_cnt)
1077 return -EINVAL;
1078 c->lsave[i] = lnum;
1079 }
1080 err = check_lpt_crc(buf, c->lsave_sz);
1081 return err;
1082}
1083
1084/**
1085 * validate_nnode - validate a nnode.
1086 * @c: UBIFS file-system description object
1087 * @nnode: nnode to validate
1088 * @parent: parent nnode (or NULL for the root nnode)
1089 * @iip: index in parent
1090 *
1091 * This function returns %0 on success and a negative error code on failure.
1092 */
2ba5f7ae 1093static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1e51764a
AB
1094 struct ubifs_nnode *parent, int iip)
1095{
1096 int i, lvl, max_offs;
1097
1098 if (c->big_lpt) {
1099 int num = calc_nnode_num_from_parent(c, parent, iip);
1100
1101 if (nnode->num != num)
1102 return -EINVAL;
1103 }
1104 lvl = parent ? parent->level - 1 : c->lpt_hght;
1105 if (lvl < 1)
1106 return -EINVAL;
1107 if (lvl == 1)
1108 max_offs = c->leb_size - c->pnode_sz;
1109 else
1110 max_offs = c->leb_size - c->nnode_sz;
1111 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1112 int lnum = nnode->nbranch[i].lnum;
1113 int offs = nnode->nbranch[i].offs;
1114
1115 if (lnum == 0) {
1116 if (offs != 0)
1117 return -EINVAL;
1118 continue;
1119 }
1120 if (lnum < c->lpt_first || lnum > c->lpt_last)
1121 return -EINVAL;
1122 if (offs < 0 || offs > max_offs)
1123 return -EINVAL;
1124 }
1125 return 0;
1126}
1127
1128/**
1129 * validate_pnode - validate a pnode.
1130 * @c: UBIFS file-system description object
1131 * @pnode: pnode to validate
1132 * @parent: parent nnode
1133 * @iip: index in parent
1134 *
1135 * This function returns %0 on success and a negative error code on failure.
1136 */
2ba5f7ae 1137static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1e51764a
AB
1138 struct ubifs_nnode *parent, int iip)
1139{
1140 int i;
1141
1142 if (c->big_lpt) {
1143 int num = calc_pnode_num_from_parent(c, parent, iip);
1144
1145 if (pnode->num != num)
1146 return -EINVAL;
1147 }
1148 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1149 int free = pnode->lprops[i].free;
1150 int dirty = pnode->lprops[i].dirty;
1151
1152 if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1153 (free & 7))
1154 return -EINVAL;
1155 if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1156 return -EINVAL;
1157 if (dirty + free > c->leb_size)
1158 return -EINVAL;
1159 }
1160 return 0;
1161}
1162
1163/**
1164 * set_pnode_lnum - set LEB numbers on a pnode.
1165 * @c: UBIFS file-system description object
1166 * @pnode: pnode to update
1167 *
1168 * This function calculates the LEB numbers for the LEB properties it contains
1169 * based on the pnode number.
1170 */
2ba5f7ae
AB
1171static void set_pnode_lnum(const struct ubifs_info *c,
1172 struct ubifs_pnode *pnode)
1e51764a
AB
1173{
1174 int i, lnum;
1175
1176 lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1177 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1178 if (lnum >= c->leb_cnt)
1179 return;
1180 pnode->lprops[i].lnum = lnum++;
1181 }
1182}
1183
1184/**
1185 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1186 * @c: UBIFS file-system description object
1187 * @parent: parent nnode (or NULL for the root)
1188 * @iip: index in parent
1189 *
1190 * This function returns %0 on success and a negative error code on failure.
1191 */
1192int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1193{
1194 struct ubifs_nbranch *branch = NULL;
1195 struct ubifs_nnode *nnode = NULL;
1196 void *buf = c->lpt_nod_buf;
1197 int err, lnum, offs;
1198
1199 if (parent) {
1200 branch = &parent->nbranch[iip];
1201 lnum = branch->lnum;
1202 offs = branch->offs;
1203 } else {
1204 lnum = c->lpt_lnum;
1205 offs = c->lpt_offs;
1206 }
1207 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1208 if (!nnode) {
1209 err = -ENOMEM;
1210 goto out;
1211 }
1212 if (lnum == 0) {
1213 /*
1214 * This nnode was not written which just means that the LEB
1215 * properties in the subtree below it describe empty LEBs. We
1216 * make the nnode as though we had read it, which in fact means
1217 * doing almost nothing.
1218 */
1219 if (c->big_lpt)
1220 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1221 } else {
d304820a 1222 err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1e51764a
AB
1223 if (err)
1224 goto out;
2ba5f7ae 1225 err = ubifs_unpack_nnode(c, buf, nnode);
1e51764a
AB
1226 if (err)
1227 goto out;
1228 }
1229 err = validate_nnode(c, nnode, parent, iip);
1230 if (err)
1231 goto out;
1232 if (!c->big_lpt)
1233 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1234 if (parent) {
1235 branch->nnode = nnode;
1236 nnode->level = parent->level - 1;
1237 } else {
1238 c->nroot = nnode;
1239 nnode->level = c->lpt_hght;
1240 }
1241 nnode->parent = parent;
1242 nnode->iip = iip;
1243 return 0;
1244
1245out:
1246 ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
7c46d0ae 1247 dump_stack();
1e51764a
AB
1248 kfree(nnode);
1249 return err;
1250}
1251
1252/**
1253 * read_pnode - read a pnode from flash and link it to the tree in memory.
1254 * @c: UBIFS file-system description object
1255 * @parent: parent nnode
1256 * @iip: index in parent
1257 *
1258 * This function returns %0 on success and a negative error code on failure.
1259 */
1260static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1261{
1262 struct ubifs_nbranch *branch;
1263 struct ubifs_pnode *pnode = NULL;
1264 void *buf = c->lpt_nod_buf;
1265 int err, lnum, offs;
1266
1267 branch = &parent->nbranch[iip];
1268 lnum = branch->lnum;
1269 offs = branch->offs;
1270 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
54acbaaa
AB
1271 if (!pnode)
1272 return -ENOMEM;
1273
1e51764a
AB
1274 if (lnum == 0) {
1275 /*
1276 * This pnode was not written which just means that the LEB
1277 * properties in it describe empty LEBs. We make the pnode as
1278 * though we had read it.
1279 */
1280 int i;
1281
1282 if (c->big_lpt)
1283 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1284 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1285 struct ubifs_lprops * const lprops = &pnode->lprops[i];
1286
1287 lprops->free = c->leb_size;
1288 lprops->flags = ubifs_categorize_lprops(c, lprops);
1289 }
1290 } else {
d304820a 1291 err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1e51764a
AB
1292 if (err)
1293 goto out;
1294 err = unpack_pnode(c, buf, pnode);
1295 if (err)
1296 goto out;
1297 }
1298 err = validate_pnode(c, pnode, parent, iip);
1299 if (err)
1300 goto out;
1301 if (!c->big_lpt)
1302 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1303 branch->pnode = pnode;
1304 pnode->parent = parent;
1305 pnode->iip = iip;
1306 set_pnode_lnum(c, pnode);
1307 c->pnodes_have += 1;
1308 return 0;
1309
1310out:
1311 ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
edf6be24 1312 ubifs_dump_pnode(c, pnode, parent, iip);
7c46d0ae 1313 dump_stack();
3668b70f 1314 ubifs_err("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1e51764a
AB
1315 kfree(pnode);
1316 return err;
1317}
1318
1319/**
1320 * read_ltab - read LPT's own lprops table.
1321 * @c: UBIFS file-system description object
1322 *
1323 * This function returns %0 on success and a negative error code on failure.
1324 */
1325static int read_ltab(struct ubifs_info *c)
1326{
1327 int err;
1328 void *buf;
1329
1330 buf = vmalloc(c->ltab_sz);
1331 if (!buf)
1332 return -ENOMEM;
d304820a 1333 err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1e51764a
AB
1334 if (err)
1335 goto out;
1336 err = unpack_ltab(c, buf);
1337out:
1338 vfree(buf);
1339 return err;
1340}
1341
1342/**
1343 * read_lsave - read LPT's save table.
1344 * @c: UBIFS file-system description object
1345 *
1346 * This function returns %0 on success and a negative error code on failure.
1347 */
1348static int read_lsave(struct ubifs_info *c)
1349{
1350 int err, i;
1351 void *buf;
1352
1353 buf = vmalloc(c->lsave_sz);
1354 if (!buf)
1355 return -ENOMEM;
d304820a
AB
1356 err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1357 c->lsave_sz, 1);
1e51764a
AB
1358 if (err)
1359 goto out;
1360 err = unpack_lsave(c, buf);
1361 if (err)
1362 goto out;
1363 for (i = 0; i < c->lsave_cnt; i++) {
1364 int lnum = c->lsave[i];
0e54c899 1365 struct ubifs_lprops *lprops;
1e51764a
AB
1366
1367 /*
1368 * Due to automatic resizing, the values in the lsave table
1369 * could be beyond the volume size - just ignore them.
1370 */
1371 if (lnum >= c->leb_cnt)
1372 continue;
0e54c899
VK
1373 lprops = ubifs_lpt_lookup(c, lnum);
1374 if (IS_ERR(lprops)) {
1375 err = PTR_ERR(lprops);
1376 goto out;
1377 }
1e51764a
AB
1378 }
1379out:
1380 vfree(buf);
1381 return err;
1382}
1383
1384/**
1385 * ubifs_get_nnode - get a nnode.
1386 * @c: UBIFS file-system description object
1387 * @parent: parent nnode (or NULL for the root)
1388 * @iip: index in parent
1389 *
1390 * This function returns a pointer to the nnode on success or a negative error
1391 * code on failure.
1392 */
1393struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1394 struct ubifs_nnode *parent, int iip)
1395{
1396 struct ubifs_nbranch *branch;
1397 struct ubifs_nnode *nnode;
1398 int err;
1399
1400 branch = &parent->nbranch[iip];
1401 nnode = branch->nnode;
1402 if (nnode)
1403 return nnode;
1404 err = ubifs_read_nnode(c, parent, iip);
1405 if (err)
1406 return ERR_PTR(err);
1407 return branch->nnode;
1408}
1409
1410/**
1411 * ubifs_get_pnode - get a pnode.
1412 * @c: UBIFS file-system description object
1413 * @parent: parent nnode
1414 * @iip: index in parent
1415 *
1416 * This function returns a pointer to the pnode on success or a negative error
1417 * code on failure.
1418 */
1419struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1420 struct ubifs_nnode *parent, int iip)
1421{
1422 struct ubifs_nbranch *branch;
1423 struct ubifs_pnode *pnode;
1424 int err;
1425
1426 branch = &parent->nbranch[iip];
1427 pnode = branch->pnode;
1428 if (pnode)
1429 return pnode;
1430 err = read_pnode(c, parent, iip);
1431 if (err)
1432 return ERR_PTR(err);
1433 update_cats(c, branch->pnode);
1434 return branch->pnode;
1435}
1436
1437/**
1438 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1439 * @c: UBIFS file-system description object
1440 * @lnum: LEB number to lookup
1441 *
1442 * This function returns a pointer to the LEB properties on success or a
1443 * negative error code on failure.
1444 */
1445struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1446{
1447 int err, i, h, iip, shft;
1448 struct ubifs_nnode *nnode;
1449 struct ubifs_pnode *pnode;
1450
1451 if (!c->nroot) {
1452 err = ubifs_read_nnode(c, NULL, 0);
1453 if (err)
1454 return ERR_PTR(err);
1455 }
1456 nnode = c->nroot;
1457 i = lnum - c->main_first;
1458 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1459 for (h = 1; h < c->lpt_hght; h++) {
1460 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1461 shft -= UBIFS_LPT_FANOUT_SHIFT;
1462 nnode = ubifs_get_nnode(c, nnode, iip);
1463 if (IS_ERR(nnode))
6da5156f 1464 return ERR_CAST(nnode);
1e51764a
AB
1465 }
1466 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1e51764a
AB
1467 pnode = ubifs_get_pnode(c, nnode, iip);
1468 if (IS_ERR(pnode))
6da5156f 1469 return ERR_CAST(pnode);
1e51764a
AB
1470 iip = (i & (UBIFS_LPT_FANOUT - 1));
1471 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1472 pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1473 pnode->lprops[iip].flags);
1474 return &pnode->lprops[iip];
1475}
1476
1477/**
1478 * dirty_cow_nnode - ensure a nnode is not being committed.
1479 * @c: UBIFS file-system description object
1480 * @nnode: nnode to check
1481 *
1482 * Returns dirtied nnode on success or negative error code on failure.
1483 */
1484static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1485 struct ubifs_nnode *nnode)
1486{
1487 struct ubifs_nnode *n;
1488 int i;
1489
1490 if (!test_bit(COW_CNODE, &nnode->flags)) {
1491 /* nnode is not being committed */
1492 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1493 c->dirty_nn_cnt += 1;
1494 ubifs_add_nnode_dirt(c, nnode);
1495 }
1496 return nnode;
1497 }
1498
1499 /* nnode is being committed, so copy it */
1500 n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1501 if (unlikely(!n))
1502 return ERR_PTR(-ENOMEM);
1503
1504 memcpy(n, nnode, sizeof(struct ubifs_nnode));
1505 n->cnext = NULL;
1506 __set_bit(DIRTY_CNODE, &n->flags);
1507 __clear_bit(COW_CNODE, &n->flags);
1508
1509 /* The children now have new parent */
1510 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1511 struct ubifs_nbranch *branch = &n->nbranch[i];
1512
1513 if (branch->cnode)
1514 branch->cnode->parent = n;
1515 }
1516
1517 ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1518 __set_bit(OBSOLETE_CNODE, &nnode->flags);
1519
1520 c->dirty_nn_cnt += 1;
1521 ubifs_add_nnode_dirt(c, nnode);
1522 if (nnode->parent)
1523 nnode->parent->nbranch[n->iip].nnode = n;
1524 else
1525 c->nroot = n;
1526 return n;
1527}
1528
1529/**
1530 * dirty_cow_pnode - ensure a pnode is not being committed.
1531 * @c: UBIFS file-system description object
1532 * @pnode: pnode to check
1533 *
1534 * Returns dirtied pnode on success or negative error code on failure.
1535 */
1536static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1537 struct ubifs_pnode *pnode)
1538{
1539 struct ubifs_pnode *p;
1540
1541 if (!test_bit(COW_CNODE, &pnode->flags)) {
1542 /* pnode is not being committed */
1543 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1544 c->dirty_pn_cnt += 1;
1545 add_pnode_dirt(c, pnode);
1546 }
1547 return pnode;
1548 }
1549
1550 /* pnode is being committed, so copy it */
1551 p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1552 if (unlikely(!p))
1553 return ERR_PTR(-ENOMEM);
1554
1555 memcpy(p, pnode, sizeof(struct ubifs_pnode));
1556 p->cnext = NULL;
1557 __set_bit(DIRTY_CNODE, &p->flags);
1558 __clear_bit(COW_CNODE, &p->flags);
1559 replace_cats(c, pnode, p);
1560
1561 ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1562 __set_bit(OBSOLETE_CNODE, &pnode->flags);
1563
1564 c->dirty_pn_cnt += 1;
1565 add_pnode_dirt(c, pnode);
1566 pnode->parent->nbranch[p->iip].pnode = p;
1567 return p;
1568}
1569
1570/**
1571 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1572 * @c: UBIFS file-system description object
1573 * @lnum: LEB number to lookup
1574 *
1575 * This function returns a pointer to the LEB properties on success or a
1576 * negative error code on failure.
1577 */
1578struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1579{
1580 int err, i, h, iip, shft;
1581 struct ubifs_nnode *nnode;
1582 struct ubifs_pnode *pnode;
1583
1584 if (!c->nroot) {
1585 err = ubifs_read_nnode(c, NULL, 0);
1586 if (err)
1587 return ERR_PTR(err);
1588 }
1589 nnode = c->nroot;
1590 nnode = dirty_cow_nnode(c, nnode);
1591 if (IS_ERR(nnode))
6da5156f 1592 return ERR_CAST(nnode);
1e51764a
AB
1593 i = lnum - c->main_first;
1594 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1595 for (h = 1; h < c->lpt_hght; h++) {
1596 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1597 shft -= UBIFS_LPT_FANOUT_SHIFT;
1598 nnode = ubifs_get_nnode(c, nnode, iip);
1599 if (IS_ERR(nnode))
6da5156f 1600 return ERR_CAST(nnode);
1e51764a
AB
1601 nnode = dirty_cow_nnode(c, nnode);
1602 if (IS_ERR(nnode))
6da5156f 1603 return ERR_CAST(nnode);
1e51764a
AB
1604 }
1605 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1e51764a
AB
1606 pnode = ubifs_get_pnode(c, nnode, iip);
1607 if (IS_ERR(pnode))
6da5156f 1608 return ERR_CAST(pnode);
1e51764a
AB
1609 pnode = dirty_cow_pnode(c, pnode);
1610 if (IS_ERR(pnode))
6da5156f 1611 return ERR_CAST(pnode);
1e51764a
AB
1612 iip = (i & (UBIFS_LPT_FANOUT - 1));
1613 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1614 pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1615 pnode->lprops[iip].flags);
1616 ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1617 return &pnode->lprops[iip];
1618}
1619
1620/**
1621 * lpt_init_rd - initialize the LPT for reading.
1622 * @c: UBIFS file-system description object
1623 *
1624 * This function returns %0 on success and a negative error code on failure.
1625 */
1626static int lpt_init_rd(struct ubifs_info *c)
1627{
1628 int err, i;
1629
1630 c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1631 if (!c->ltab)
1632 return -ENOMEM;
1633
1634 i = max_t(int, c->nnode_sz, c->pnode_sz);
1635 c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1636 if (!c->lpt_nod_buf)
1637 return -ENOMEM;
1638
1639 for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1640 c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1641 GFP_KERNEL);
1642 if (!c->lpt_heap[i].arr)
1643 return -ENOMEM;
1644 c->lpt_heap[i].cnt = 0;
1645 c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1646 }
1647
1648 c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1649 if (!c->dirty_idx.arr)
1650 return -ENOMEM;
1651 c->dirty_idx.cnt = 0;
1652 c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1653
1654 err = read_ltab(c);
1655 if (err)
1656 return err;
1657
1658 dbg_lp("space_bits %d", c->space_bits);
1659 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1660 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1661 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1662 dbg_lp("pcnt_bits %d", c->pcnt_bits);
1663 dbg_lp("lnum_bits %d", c->lnum_bits);
1664 dbg_lp("pnode_sz %d", c->pnode_sz);
1665 dbg_lp("nnode_sz %d", c->nnode_sz);
1666 dbg_lp("ltab_sz %d", c->ltab_sz);
1667 dbg_lp("lsave_sz %d", c->lsave_sz);
1668 dbg_lp("lsave_cnt %d", c->lsave_cnt);
1669 dbg_lp("lpt_hght %d", c->lpt_hght);
1670 dbg_lp("big_lpt %d", c->big_lpt);
1671 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1672 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1673 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1674 if (c->big_lpt)
1675 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1676
1677 return 0;
1678}
1679
1680/**
1681 * lpt_init_wr - initialize the LPT for writing.
1682 * @c: UBIFS file-system description object
1683 *
1684 * 'lpt_init_rd()' must have been called already.
1685 *
1686 * This function returns %0 on success and a negative error code on failure.
1687 */
1688static int lpt_init_wr(struct ubifs_info *c)
1689{
1690 int err, i;
1691
1692 c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1693 if (!c->ltab_cmt)
1694 return -ENOMEM;
1695
1696 c->lpt_buf = vmalloc(c->leb_size);
1697 if (!c->lpt_buf)
1698 return -ENOMEM;
1699
1700 if (c->big_lpt) {
1701 c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1702 if (!c->lsave)
1703 return -ENOMEM;
1704 err = read_lsave(c);
1705 if (err)
1706 return err;
1707 }
1708
1709 for (i = 0; i < c->lpt_lebs; i++)
1710 if (c->ltab[i].free == c->leb_size) {
1711 err = ubifs_leb_unmap(c, i + c->lpt_first);
1712 if (err)
1713 return err;
1714 }
1715
1716 return 0;
1717}
1718
1719/**
1720 * ubifs_lpt_init - initialize the LPT.
1721 * @c: UBIFS file-system description object
1722 * @rd: whether to initialize lpt for reading
1723 * @wr: whether to initialize lpt for writing
1724 *
1725 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1726 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1727 * true.
1728 *
1729 * This function returns %0 on success and a negative error code on failure.
1730 */
1731int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1732{
1733 int err;
1734
1735 if (rd) {
1736 err = lpt_init_rd(c);
1737 if (err)
49942976 1738 goto out_err;
1e51764a
AB
1739 }
1740
1741 if (wr) {
1742 err = lpt_init_wr(c);
1743 if (err)
49942976 1744 goto out_err;
1e51764a
AB
1745 }
1746
1747 return 0;
49942976
AB
1748
1749out_err:
11e3be0b
AB
1750 if (wr)
1751 ubifs_lpt_free(c, 1);
1752 if (rd)
1753 ubifs_lpt_free(c, 0);
49942976 1754 return err;
1e51764a
AB
1755}
1756
1757/**
1758 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1759 * @nnode: where to keep a nnode
1760 * @pnode: where to keep a pnode
1761 * @cnode: where to keep a cnode
1762 * @in_tree: is the node in the tree in memory
1763 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1764 * the tree
1765 * @ptr.pnode: ditto for pnode
1766 * @ptr.cnode: ditto for cnode
1767 */
1768struct lpt_scan_node {
1769 union {
1770 struct ubifs_nnode nnode;
1771 struct ubifs_pnode pnode;
1772 struct ubifs_cnode cnode;
1773 };
1774 int in_tree;
1775 union {
1776 struct ubifs_nnode *nnode;
1777 struct ubifs_pnode *pnode;
1778 struct ubifs_cnode *cnode;
1779 } ptr;
1780};
1781
1782/**
1783 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1784 * @c: the UBIFS file-system description object
1785 * @path: where to put the nnode
1786 * @parent: parent of the nnode
1787 * @iip: index in parent of the nnode
1788 *
1789 * This function returns a pointer to the nnode on success or a negative error
1790 * code on failure.
1791 */
1792static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1793 struct lpt_scan_node *path,
1794 struct ubifs_nnode *parent, int iip)
1795{
1796 struct ubifs_nbranch *branch;
1797 struct ubifs_nnode *nnode;
1798 void *buf = c->lpt_nod_buf;
1799 int err;
1800
1801 branch = &parent->nbranch[iip];
1802 nnode = branch->nnode;
1803 if (nnode) {
1804 path->in_tree = 1;
1805 path->ptr.nnode = nnode;
1806 return nnode;
1807 }
1808 nnode = &path->nnode;
1809 path->in_tree = 0;
1810 path->ptr.nnode = nnode;
1811 memset(nnode, 0, sizeof(struct ubifs_nnode));
1812 if (branch->lnum == 0) {
1813 /*
1814 * This nnode was not written which just means that the LEB
1815 * properties in the subtree below it describe empty LEBs. We
1816 * make the nnode as though we had read it, which in fact means
1817 * doing almost nothing.
1818 */
1819 if (c->big_lpt)
1820 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1821 } else {
d304820a
AB
1822 err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1823 c->nnode_sz, 1);
1e51764a
AB
1824 if (err)
1825 return ERR_PTR(err);
2ba5f7ae 1826 err = ubifs_unpack_nnode(c, buf, nnode);
1e51764a
AB
1827 if (err)
1828 return ERR_PTR(err);
1829 }
1830 err = validate_nnode(c, nnode, parent, iip);
1831 if (err)
1832 return ERR_PTR(err);
1833 if (!c->big_lpt)
1834 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1835 nnode->level = parent->level - 1;
1836 nnode->parent = parent;
1837 nnode->iip = iip;
1838 return nnode;
1839}
1840
1841/**
1842 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1843 * @c: the UBIFS file-system description object
1844 * @path: where to put the pnode
1845 * @parent: parent of the pnode
1846 * @iip: index in parent of the pnode
1847 *
1848 * This function returns a pointer to the pnode on success or a negative error
1849 * code on failure.
1850 */
1851static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1852 struct lpt_scan_node *path,
1853 struct ubifs_nnode *parent, int iip)
1854{
1855 struct ubifs_nbranch *branch;
1856 struct ubifs_pnode *pnode;
1857 void *buf = c->lpt_nod_buf;
1858 int err;
1859
1860 branch = &parent->nbranch[iip];
1861 pnode = branch->pnode;
1862 if (pnode) {
1863 path->in_tree = 1;
1864 path->ptr.pnode = pnode;
1865 return pnode;
1866 }
1867 pnode = &path->pnode;
1868 path->in_tree = 0;
1869 path->ptr.pnode = pnode;
1870 memset(pnode, 0, sizeof(struct ubifs_pnode));
1871 if (branch->lnum == 0) {
1872 /*
1873 * This pnode was not written which just means that the LEB
1874 * properties in it describe empty LEBs. We make the pnode as
1875 * though we had read it.
1876 */
1877 int i;
1878
1879 if (c->big_lpt)
1880 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1881 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1882 struct ubifs_lprops * const lprops = &pnode->lprops[i];
1883
1884 lprops->free = c->leb_size;
1885 lprops->flags = ubifs_categorize_lprops(c, lprops);
1886 }
1887 } else {
1888 ubifs_assert(branch->lnum >= c->lpt_first &&
1889 branch->lnum <= c->lpt_last);
1890 ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
d304820a
AB
1891 err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1892 c->pnode_sz, 1);
1e51764a
AB
1893 if (err)
1894 return ERR_PTR(err);
1895 err = unpack_pnode(c, buf, pnode);
1896 if (err)
1897 return ERR_PTR(err);
1898 }
1899 err = validate_pnode(c, pnode, parent, iip);
1900 if (err)
1901 return ERR_PTR(err);
1902 if (!c->big_lpt)
1903 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1904 pnode->parent = parent;
1905 pnode->iip = iip;
1906 set_pnode_lnum(c, pnode);
1907 return pnode;
1908}
1909
1910/**
1911 * ubifs_lpt_scan_nolock - scan the LPT.
1912 * @c: the UBIFS file-system description object
1913 * @start_lnum: LEB number from which to start scanning
1914 * @end_lnum: LEB number at which to stop scanning
1915 * @scan_cb: callback function called for each lprops
1916 * @data: data to be passed to the callback function
1917 *
1918 * This function returns %0 on success and a negative error code on failure.
1919 */
1920int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1921 ubifs_lpt_scan_callback scan_cb, void *data)
1922{
1923 int err = 0, i, h, iip, shft;
1924 struct ubifs_nnode *nnode;
1925 struct ubifs_pnode *pnode;
1926 struct lpt_scan_node *path;
1927
1928 if (start_lnum == -1) {
1929 start_lnum = end_lnum + 1;
1930 if (start_lnum >= c->leb_cnt)
1931 start_lnum = c->main_first;
1932 }
1933
1934 ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1935 ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1936
1937 if (!c->nroot) {
1938 err = ubifs_read_nnode(c, NULL, 0);
1939 if (err)
1940 return err;
1941 }
1942
1943 path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1944 GFP_NOFS);
1945 if (!path)
1946 return -ENOMEM;
1947
1948 path[0].ptr.nnode = c->nroot;
1949 path[0].in_tree = 1;
1950again:
1951 /* Descend to the pnode containing start_lnum */
1952 nnode = c->nroot;
1953 i = start_lnum - c->main_first;
1954 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1955 for (h = 1; h < c->lpt_hght; h++) {
1956 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1957 shft -= UBIFS_LPT_FANOUT_SHIFT;
1958 nnode = scan_get_nnode(c, path + h, nnode, iip);
1959 if (IS_ERR(nnode)) {
1960 err = PTR_ERR(nnode);
1961 goto out;
1962 }
1963 }
1964 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1e51764a
AB
1965 pnode = scan_get_pnode(c, path + h, nnode, iip);
1966 if (IS_ERR(pnode)) {
1967 err = PTR_ERR(pnode);
1968 goto out;
1969 }
1970 iip = (i & (UBIFS_LPT_FANOUT - 1));
1971
1972 /* Loop for each lprops */
1973 while (1) {
1974 struct ubifs_lprops *lprops = &pnode->lprops[iip];
1975 int ret, lnum = lprops->lnum;
1976
1977 ret = scan_cb(c, lprops, path[h].in_tree, data);
1978 if (ret < 0) {
1979 err = ret;
1980 goto out;
1981 }
1982 if (ret & LPT_SCAN_ADD) {
1983 /* Add all the nodes in path to the tree in memory */
1984 for (h = 1; h < c->lpt_hght; h++) {
1985 const size_t sz = sizeof(struct ubifs_nnode);
1986 struct ubifs_nnode *parent;
1987
1988 if (path[h].in_tree)
1989 continue;
eaecf43a 1990 nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1e51764a
AB
1991 if (!nnode) {
1992 err = -ENOMEM;
1993 goto out;
1994 }
1e51764a
AB
1995 parent = nnode->parent;
1996 parent->nbranch[nnode->iip].nnode = nnode;
1997 path[h].ptr.nnode = nnode;
1998 path[h].in_tree = 1;
1999 path[h + 1].cnode.parent = nnode;
2000 }
2001 if (path[h].in_tree)
2002 ubifs_ensure_cat(c, lprops);
2003 else {
2004 const size_t sz = sizeof(struct ubifs_pnode);
2005 struct ubifs_nnode *parent;
2006
eaecf43a 2007 pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
1e51764a
AB
2008 if (!pnode) {
2009 err = -ENOMEM;
2010 goto out;
2011 }
1e51764a
AB
2012 parent = pnode->parent;
2013 parent->nbranch[pnode->iip].pnode = pnode;
2014 path[h].ptr.pnode = pnode;
2015 path[h].in_tree = 1;
2016 update_cats(c, pnode);
2017 c->pnodes_have += 1;
2018 }
2019 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2020 c->nroot, 0, 0);
2021 if (err)
2022 goto out;
2023 err = dbg_check_cats(c);
2024 if (err)
2025 goto out;
2026 }
2027 if (ret & LPT_SCAN_STOP) {
2028 err = 0;
2029 break;
2030 }
2031 /* Get the next lprops */
2032 if (lnum == end_lnum) {
2033 /*
2034 * We got to the end without finding what we were
2035 * looking for
2036 */
2037 err = -ENOSPC;
2038 goto out;
2039 }
2040 if (lnum + 1 >= c->leb_cnt) {
2041 /* Wrap-around to the beginning */
2042 start_lnum = c->main_first;
2043 goto again;
2044 }
2045 if (iip + 1 < UBIFS_LPT_FANOUT) {
2046 /* Next lprops is in the same pnode */
2047 iip += 1;
2048 continue;
2049 }
2050 /* We need to get the next pnode. Go up until we can go right */
2051 iip = pnode->iip;
2052 while (1) {
2053 h -= 1;
2054 ubifs_assert(h >= 0);
2055 nnode = path[h].ptr.nnode;
2056 if (iip + 1 < UBIFS_LPT_FANOUT)
2057 break;
2058 iip = nnode->iip;
2059 }
2060 /* Go right */
2061 iip += 1;
2062 /* Descend to the pnode */
2063 h += 1;
2064 for (; h < c->lpt_hght; h++) {
2065 nnode = scan_get_nnode(c, path + h, nnode, iip);
2066 if (IS_ERR(nnode)) {
2067 err = PTR_ERR(nnode);
2068 goto out;
2069 }
2070 iip = 0;
2071 }
2072 pnode = scan_get_pnode(c, path + h, nnode, iip);
2073 if (IS_ERR(pnode)) {
2074 err = PTR_ERR(pnode);
2075 goto out;
2076 }
2077 iip = 0;
2078 }
2079out:
2080 kfree(path);
2081 return err;
2082}
2083
1e51764a
AB
2084/**
2085 * dbg_chk_pnode - check a pnode.
2086 * @c: the UBIFS file-system description object
2087 * @pnode: pnode to check
2088 * @col: pnode column
2089 *
2090 * This function returns %0 on success and a negative error code on failure.
2091 */
2092static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2093 int col)
2094{
2095 int i;
2096
2097 if (pnode->num != col) {
a6aae4dd
AB
2098 ubifs_err("pnode num %d expected %d parent num %d iip %d",
2099 pnode->num, col, pnode->parent->num, pnode->iip);
1e51764a
AB
2100 return -EINVAL;
2101 }
2102 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2103 struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2104 int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2105 c->main_first;
2106 int found, cat = lprops->flags & LPROPS_CAT_MASK;
2107 struct ubifs_lpt_heap *heap;
2108 struct list_head *list = NULL;
2109
2110 if (lnum >= c->leb_cnt)
2111 continue;
2112 if (lprops->lnum != lnum) {
a6aae4dd
AB
2113 ubifs_err("bad LEB number %d expected %d",
2114 lprops->lnum, lnum);
1e51764a
AB
2115 return -EINVAL;
2116 }
2117 if (lprops->flags & LPROPS_TAKEN) {
2118 if (cat != LPROPS_UNCAT) {
a6aae4dd
AB
2119 ubifs_err("LEB %d taken but not uncat %d",
2120 lprops->lnum, cat);
1e51764a
AB
2121 return -EINVAL;
2122 }
2123 continue;
2124 }
2125 if (lprops->flags & LPROPS_INDEX) {
2126 switch (cat) {
2127 case LPROPS_UNCAT:
2128 case LPROPS_DIRTY_IDX:
2129 case LPROPS_FRDI_IDX:
2130 break;
2131 default:
a6aae4dd
AB
2132 ubifs_err("LEB %d index but cat %d",
2133 lprops->lnum, cat);
1e51764a
AB
2134 return -EINVAL;
2135 }
2136 } else {
2137 switch (cat) {
2138 case LPROPS_UNCAT:
2139 case LPROPS_DIRTY:
2140 case LPROPS_FREE:
2141 case LPROPS_EMPTY:
2142 case LPROPS_FREEABLE:
2143 break;
2144 default:
a6aae4dd
AB
2145 ubifs_err("LEB %d not index but cat %d",
2146 lprops->lnum, cat);
1e51764a
AB
2147 return -EINVAL;
2148 }
2149 }
2150 switch (cat) {
2151 case LPROPS_UNCAT:
2152 list = &c->uncat_list;
2153 break;
2154 case LPROPS_EMPTY:
2155 list = &c->empty_list;
2156 break;
2157 case LPROPS_FREEABLE:
2158 list = &c->freeable_list;
2159 break;
2160 case LPROPS_FRDI_IDX:
2161 list = &c->frdi_idx_list;
2162 break;
2163 }
2164 found = 0;
2165 switch (cat) {
2166 case LPROPS_DIRTY:
2167 case LPROPS_DIRTY_IDX:
2168 case LPROPS_FREE:
2169 heap = &c->lpt_heap[cat - 1];
2170 if (lprops->hpos < heap->cnt &&
2171 heap->arr[lprops->hpos] == lprops)
2172 found = 1;
2173 break;
2174 case LPROPS_UNCAT:
2175 case LPROPS_EMPTY:
2176 case LPROPS_FREEABLE:
2177 case LPROPS_FRDI_IDX:
2178 list_for_each_entry(lp, list, list)
2179 if (lprops == lp) {
2180 found = 1;
2181 break;
2182 }
2183 break;
2184 }
2185 if (!found) {
a6aae4dd
AB
2186 ubifs_err("LEB %d cat %d not found in cat heap/list",
2187 lprops->lnum, cat);
1e51764a
AB
2188 return -EINVAL;
2189 }
2190 switch (cat) {
2191 case LPROPS_EMPTY:
2192 if (lprops->free != c->leb_size) {
a6aae4dd
AB
2193 ubifs_err("LEB %d cat %d free %d dirty %d",
2194 lprops->lnum, cat, lprops->free,
2195 lprops->dirty);
1e51764a
AB
2196 return -EINVAL;
2197 }
ce6ebdb8 2198 break;
1e51764a
AB
2199 case LPROPS_FREEABLE:
2200 case LPROPS_FRDI_IDX:
2201 if (lprops->free + lprops->dirty != c->leb_size) {
a6aae4dd
AB
2202 ubifs_err("LEB %d cat %d free %d dirty %d",
2203 lprops->lnum, cat, lprops->free,
2204 lprops->dirty);
1e51764a
AB
2205 return -EINVAL;
2206 }
ce6ebdb8 2207 break;
1e51764a
AB
2208 }
2209 }
2210 return 0;
2211}
2212
2213/**
2214 * dbg_check_lpt_nodes - check nnodes and pnodes.
2215 * @c: the UBIFS file-system description object
2216 * @cnode: next cnode (nnode or pnode) to check
2217 * @row: row of cnode (root is zero)
2218 * @col: column of cnode (leftmost is zero)
2219 *
2220 * This function returns %0 on success and a negative error code on failure.
2221 */
2222int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2223 int row, int col)
2224{
2225 struct ubifs_nnode *nnode, *nn;
2226 struct ubifs_cnode *cn;
2227 int num, iip = 0, err;
2228
2b1844a8 2229 if (!dbg_is_chk_lprops(c))
1e51764a
AB
2230 return 0;
2231
2232 while (cnode) {
2233 ubifs_assert(row >= 0);
2234 nnode = cnode->parent;
2235 if (cnode->level) {
2236 /* cnode is a nnode */
2237 num = calc_nnode_num(row, col);
2238 if (cnode->num != num) {
79fda517 2239 ubifs_err("nnode num %d expected %d parent num %d iip %d",
a6aae4dd
AB
2240 cnode->num, num,
2241 (nnode ? nnode->num : 0), cnode->iip);
1e51764a
AB
2242 return -EINVAL;
2243 }
2244 nn = (struct ubifs_nnode *)cnode;
2245 while (iip < UBIFS_LPT_FANOUT) {
2246 cn = nn->nbranch[iip].cnode;
2247 if (cn) {
2248 /* Go down */
2249 row += 1;
2250 col <<= UBIFS_LPT_FANOUT_SHIFT;
2251 col += iip;
2252 iip = 0;
2253 cnode = cn;
2254 break;
2255 }
2256 /* Go right */
2257 iip += 1;
2258 }
2259 if (iip < UBIFS_LPT_FANOUT)
2260 continue;
2261 } else {
2262 struct ubifs_pnode *pnode;
2263
2264 /* cnode is a pnode */
2265 pnode = (struct ubifs_pnode *)cnode;
2266 err = dbg_chk_pnode(c, pnode, col);
2267 if (err)
2268 return err;
2269 }
2270 /* Go up and to the right */
2271 row -= 1;
2272 col >>= UBIFS_LPT_FANOUT_SHIFT;
2273 iip = cnode->iip + 1;
2274 cnode = (struct ubifs_cnode *)nnode;
2275 }
2276 return 0;
2277}